1
|
E2 protein is the major determinant of specificity at the human papillomavirus origin of replication. PLoS One 2019; 14:e0224334. [PMID: 31644607 PMCID: PMC6808437 DOI: 10.1371/journal.pone.0224334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/11/2019] [Indexed: 01/21/2023] Open
Abstract
The replication of human papillomavirus (HPV) genomes requires E1 and E2 proteins as the viral trans-factors and the replication origin, located in the URR, as a cis-element. The minimal requirements for an HPV replication origin vary among different virus types but always include one or more binding sites for the E2 protein. The requirements for an E1 binding site seem to vary among different HPV genera, with alpha-HPV11 and -18 minimal origins able to replicate without E1 binding site in contrast to beta-HPV8. In the present article, we analysed the sequence requirements for the beta-HPV5 minimal origin of replication. We show that the HPV5 URR is able to replicate in U2OS cells without the sequence proposed as an E1 binding site, albeit at lower levels than wt URR, given that three E2 binding sites are intact and both viral replication proteins are present. The lack of an absolute requirement of the E1 binding site for the origin of replication of HPV5 led us to analyse whether the viral E1 and E2 proteins from other HPV types are competent to support replication from this origin. Surprisingly, the E1 and E2 proteins from beta-HPV types support replication from the origin in contrast to proteins from alpha-HPV types 11, -16, or -18. Furthermore, the replication proteins E1 and E2 of these alpha-HPV types are unable to support the replication of HPV5 URR, even if the E1 binding site is intact. In light of these results, we performed a detailed analysis of the ability of different combinations of E1 and E2 proteins from various alpha- and beta-HPV types to support the replication of URR sequences from the respective HPV types in the U2OS cell line.
Collapse
|
2
|
Nuovo G, Nicol A, de Andrade CV, Magro C. New biomarkers of human papillomavirus infection in epidermodysplasia verruciformis. Ann Diagn Pathol 2019; 40:81-87. [PMID: 31075668 DOI: 10.1016/j.anndiagpath.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 11/27/2022]
Abstract
The cause of epidermodysplasia verruciformis is infection by human papillomavirus, usually types 5 or 8, and it exhibits a high potential for malignant transformation. The diagnostic histologic features of epidermodysplasia verruciformis are not always present and can be mimicked by non-viral diseases. The purpose of this study was to interrogate such lesions for new potential biomarkers to aid in the diagnostic accuracy. HPV DNA was high copy and localized to the upper half of the lesion in cells with cytologic features that included perinuclear halos, blue-grey cytoplasm, and hyper/parakeratosis. Serial section analyses demonstrated that there was increased expression of importin-β, exportin-5, Mcl1, p16, Ki67 and PDL1 in 13/13 epidermodysplasia verruciformis lesions. Each of these proteins localized primarily to the less differentiated cells in the parabasal aspect of the lesion. Only Ki67 and exportin-5 were expressed in the normal epithelia, though much less so, in 13/13 aged matched controls. It is concluded that the host response to HPV 5/8 infection in epidermodysplasia verruciformis includes the up regulation of several proteins including p16, Ki67, importin-β, exportin-5, Mcl1, and PDL1. Thus, these proteins may serve as new biomarkers of this disease that can aid in cases that are equivocal for epidermodysplasia verruciformis on histologic examination.
Collapse
Affiliation(s)
- Gerard Nuovo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States of America; Phylogeny Medical Laboratory, Powell, OH, United States of America.
| | - Alcina Nicol
- National Institute of Infectious Diseases Evandro Chagas-Oswaldo Cruz Foundation (INI/FIOCRUZ), Rio de Janeiro, Brazil
| | - Cecilia Vianna de Andrade
- National Institute of Infectious Diseases Evandro Chagas-Oswaldo Cruz Foundation (INI/FIOCRUZ), Rio de Janeiro, Brazil; Fiocruz National Institute of Women's, Children and Adolescent's Health Fernandes Figueira, Rio de Janeiro, Brazil
| | | |
Collapse
|
3
|
Marx B, Hufbauer M, Zigrino P, Majewski S, Markiefka B, Sachsenheimer T, Brügger B, Akgül B. Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: implication in carcinogenesis. Oncotarget 2018; 9:34142-34158. [PMID: 30344928 PMCID: PMC6183346 DOI: 10.18632/oncotarget.26140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022] Open
Abstract
Phospholipids regulate numerous cellular functions and their deregulation is known to be associated with cancer development. Here, we show for the first time that expression of the E6 oncoprotein of human papillomavirus type 8 (HPV8) leads to a profound increase in nuclear phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) lipid levels in monolayer cultures, that led to an aberrant phospholipidation of cellular proteins. Elevated PI(4,5)P2 levels in organotypic skin cultures, skin tumors of K14-HPV8-E6 transgenic mice as well as HPV8 positive skin carcinomas highly suggest a decisive role of PI(4,5)P2 in HPV associated squamous-cell-carcinoma development. Furthermore, mass-spectrometric analysis confirmed an increase of PI(4,5)P2, which was characterized by a shift in the distribution of lipid species. PI(4,5)P2 upregulation was independent of E6 interference with MAML1. However, E6 does interfere with the PI(4,5)P2 metabolic pathway by upregulation of phosphatidylinositol-4-phosphate-5-kinase type I and phosphatidylinositol-5-phosphate 4-kinase type II as well as the binding to 5'-phosphatase OCRL and phosphatidylinositol. All of these mechanisms combined may contribute to PI(4,5)P2 elevation in E6 positive cells. The identification of CAND1 and SND1 - two proteins known to be involved in carcinogenic processes - were significantly stronger phospholipidized in the presence of E6. In conclusion we provide evidence that the modulation of the PI(4,5)P2 metabolism is a novel oncogenic mechanism relevant for HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Benjamin Marx
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Birgid Markiefka
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
The Myb-related protein MYPOP is a novel intrinsic host restriction factor of oncogenic human papillomaviruses. Oncogene 2018; 37:6275-6284. [PMID: 30018400 PMCID: PMC6265261 DOI: 10.1038/s41388-018-0398-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/08/2022]
Abstract
The skin represents a physical and chemical barrier against invading pathogens, which is additionally supported by restriction factors that provide intrinsic cellular immunity. These factors detect viruses to block their replication cycle. Here, we uncover the Myb-related transcription factor, partner of profilin (MYPOP) as a novel antiviral protein. It is highly expressed in the epithelium and binds to the minor capsid protein L2 and the DNA of human papillomaviruses (HPV), which are the primary causative agents of cervical cancer and other tumors. The early promoter activity and early gene expression of the oncogenic HPV types 16 and 18 is potently silenced by MYPOP. Cellular MYPOP-depletion relieves the restriction of HPV16 infection, demonstrating that MYPOP acts as a restriction factor. Interestingly, we found that MYPOP protein levels are significantly reduced in diverse HPV-transformed cell lines and in HPV-induced cervical cancer. Decades ago it became clear that the early oncoproteins E6 and E7 cooperate to immortalize keratinocytes by promoting degradation of tumor suppressor proteins. Our findings suggest that E7 stimulates MYPOP degradation. Moreover, overexpression of MYPOP blocks colony formation of HPV and non-virally transformed keratinocytes, suggesting that MYPOP exhibits tumor suppressor properties.
Collapse
|
5
|
Podgórska M, Ołdak M, Marthaler A, Fingerle A, Walch-Rückheim B, Lohse S, Müller CSL, Vogt T, Ustav M, Wnorowski A, Malejczyk M, Majewski S, Smola S. Chronic Inflammatory Microenvironment in Epidermodysplasia Verruciformis Skin Lesions: Role of the Synergism Between HPV8 E2 and C/EBPβ to Induce Pro-Inflammatory S100A8/A9 Proteins. Front Microbiol 2018; 9:392. [PMID: 29563902 PMCID: PMC5845987 DOI: 10.3389/fmicb.2018.00392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
Abstract
Persistent genus β-HPV (human papillomavirus) infection is a major co-factor for non-melanoma skin cancer in patients suffering from the inherited skin disease epidermodysplasia verruciformis (EV). Malignant EV lesions are particularly associated with HPV type 5 or 8. There is clinical and molecular evidence that HPV8 actively suppresses epithelial immunosurveillance by interfering with the recruitment of Langerhans cells, which may favor viral persistence. Mechanisms how persistent HPV8 infection promotes the carcinogenic process are, however, less well understood. In various tumor types chronic inflammation has a central role in tumor progression. The calprotectin complex consisting of S100A8 and S100A9 proteins has recently been identified as key driver of chronic and tumor promoting inflammation in skin carcinogenesis. It induces chemotaxis of neutrophil granulocytes and modulates inflammatory as well as immune responses. In this study, we demonstrate that skin lesions of EV-patients are massively infiltrated by inflammatory cells, including CD15+ granulocytes. At the same time we observed a very strong expression of S100A8 and S100A9 proteins in lesional keratinocytes, which was mostly confined to the suprabasal layers of the epidermis. Both proteins were hardly detected in non-lesional skin. Further experiments revealed that the HPV8 oncoproteins E6 and E7 were not involved in S100A8/A9 up-regulation. They rather suppressed differentiation-induced S100A8/A9 expression. In contrast, the viral transcription factor E2 strongly enhanced PMA-mediated S100A8/A9 up-regulation in primary human keratinocytes. Similarly, a tremendous up-regulation of both S100 proteins was observed, when minute amounts of the PMA-inducible CCAAT/enhancer binding protein β (C/EBPβ), which is expressed at low levels in the suprabasal layers of the epidermis, were co-expressed together with HPV8 E2. This confirmed our previous observation that C/EBPβ interacts and functionally synergizes with the HPV8 E2 protein in differentiation-dependent gene expression. Potent synergistic up-regulation of S100A8/A9 was seen at transcriptional and protein levels. S100A8/A9 containing supernatants from keratinocytes co-expressing HPV8 E2 and C/EBPβ significantly induced chemotaxis of granulocytes in migration assays supporting the relevance of our finding. In conclusion, our data suggest that the HPV8 E2 protein actively contributes to the recruitment of myeloid cells into EV skin lesions, which may support chronic inflammation and progression to skin cancer.
Collapse
Affiliation(s)
- Marta Podgórska
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Monika Ołdak
- Institute of Virology, Saarland University Medical Center, Homburg, Germany.,Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Anna Marthaler
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Alina Fingerle
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | | | - Stefan Lohse
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Cornelia S L Müller
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Thomas Vogt
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Mart Ustav
- Icosagen Cell Factory OÜ, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Artur Wnorowski
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Magdalena Malejczyk
- Diagnostic Laboratory of STDs, Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
6
|
Marx B, Miller-Lazic D, Doorbar J, Majewski S, Hofmann K, Hufbauer M, Akgül B. HPV8-E6 Interferes with Syntenin-2 Expression through Deregulation of Differentiation, Methylation and Phosphatidylinositide-Kinase Dependent Mechanisms. Front Microbiol 2017; 8:1724. [PMID: 28970821 PMCID: PMC5609557 DOI: 10.3389/fmicb.2017.01724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/24/2017] [Indexed: 12/01/2022] Open
Abstract
The E6 oncoproteins of high-risk human papillomaviruses (HPV) of genus alpha contain a short peptide sequence at the carboxy-terminus, the PDZ binding domain, with which they interact with the corresponding PDZ domain of cellular proteins. Interestingly, E6 proteins from papillomaviruses of genus beta (betaPV) do not encode a comparable PDZ binding domain. Irrespective of this fact, we previously showed that the E6 protein of HPV8 (betaPV type) could circumvent this deficit by targeting the PDZ protein Syntenin-2 through transcriptional repression (Lazic et al., 2012). Despite its high binding affinity to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), very little is known about Syntenin-2. This study aimed to extend the knowledge on Syntenin-2 and how its expression is controlled. We now identified that Syntenin-2 is expressed at high levels in differentiating and in lower amounts in keratinocytes cultured in serum-free media containing low calcium concentration. HPV8-E6 led to a further reduction of Syntenin-2 expression only in cells cultured in low calcium. In the skin of patients suffering from Epidermodysplasia verruciformis, who are predisposed to betaPV infection, Syntenin-2 was expressed in differentiating keratinocytes of non-lesional skin, but was absent in virus positive squamous tumors. Using 5-Aza-2′-deoxycytidine, which causes DNA demethylation, Syntenin-2 transcription was profoundly activated and fully restored in the absence and presence of HPV8-E6, implicating that E6 mediated repression of Syntenin-2 transcription is due to promoter hypermethylation. Since Syntenin-2 binds to PI(4,5)P2, we further tested whether the PI(4,5)P2 metabolic pathway might govern Syntenin-2 expression. PI(4,5)P2 is generated by the activity of phosphatidylinositol-4-phosphate-5-kinase type I (PIP5KI) or phosphatidylinositol-5-phosphate-4-kinase type II (PIP4KII) isoforms α, β and γ. Phosphatidylinositide kinases have recently been identified as regulators of gene transcription. Surprisingly, transfection of siRNAs directed against PIP5KI and PIP4KII resulted in higher Syntenin-2 expression with the highest effect mediated by siPIP5KIα. HPV8-E6 was able to counteract siPIP4KIIα, siPIP4KIIβ and siPIP5KIγ mediated Syntenin-2 re-expression but not siPIP5KIα. Finally, we identified Syntenin-2 as a key factor regulating PIP5KIα expression. Collectively, our data demonstrates that Syntenin-2 is regulated through multiple mechanisms and that downregulation of Syntenin-2 expression may contribute to E6 mediated dedifferentiation of infected skin cells.
Collapse
Affiliation(s)
- Benjamin Marx
- Institute of Virology, University of CologneCologne, Germany
| | | | - John Doorbar
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University of WarsawWarsaw, Poland
| | - Kay Hofmann
- Institute for Genetics, University of CologneCologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of CologneCologne, Germany
| | - Baki Akgül
- Institute of Virology, University of CologneCologne, Germany
| |
Collapse
|
7
|
Porter SS, Stepp WH, Stamos JD, McBride AA. Host cell restriction factors that limit transcription and replication of human papillomavirus. Virus Res 2017; 231:10-20. [PMID: 27863967 PMCID: PMC5325803 DOI: 10.1016/j.virusres.2016.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 02/08/2023]
Abstract
The life cycle of human papillomaviruses (HPV) is tightly regulated by the differentiation state of mucosal and cutaneous keratinocytes. To counteract viral infection, constitutively expressed cellular factors, which are defined herein as restriction factors, directly mitigate viral gene expression and replication. In turn, some HPV gene products target these restriction factors and abrogate their anti-viral effects to establish efficient gene expression and replication programs. Ironically, in certain circumstances, this delicate counterbalance between viral gene products and restriction factors facilitates persistent infection by HPVs. This review serves to recapitulate the current knowledge of nuclear restriction factors that directly affect the HPV infectious cycle.
Collapse
Affiliation(s)
- Samuel S Porter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA; Biological Sciences Graduate Program, University of Maryland, University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| | - Wesley H Stepp
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA
| | - James D Stamos
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Heuser S, Hufbauer M, Marx B, Tok A, Majewski S, Pfister H, Akgül B. The levels of epithelial anchor proteins β-catenin and zona occludens-1 are altered by E7 of human papillomaviruses 5 and 8. J Gen Virol 2016; 97:463-472. [DOI: 10.1099/jgv.0.000363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Sandra Heuser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Benjamin Marx
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Ali Tok
- Department of Urology, University Hospital Cologne, Cologne, Germany
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University in Warsaw, Warsaw, Poland
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Hufbauer M, Cooke J, van der Horst GTJ, Pfister H, Storey A, Akgül B. Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis. Mol Cancer 2015; 14:183. [PMID: 26511842 PMCID: PMC4625724 DOI: 10.1186/s12943-015-0453-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The failure to mount an effective DNA damage response to repair UV induced cyclobutane pyrimidine dimers (CPDs) results in an increased propensity to develop cutaneous squamous cell carcinoma (cSCC). High-risk patient groups, such as organ transplant recipients (OTRs) frequently exhibit field cancerization at UV exposed body sites from which multiple human papillomavirus (HPV)-associated cSCCs develop rapidly, leading to profound morbidity and increased mortality. In vitro molecular evidence indicates that HPV of genus beta-papillomavirus (β-PV) play an important role in accelerating the early stages of skin tumorigenesis. METHODS We investigated the effects of UV induced DNA damage in murine models of β-PV E6 oncoprotein driven skin tumorigenesis by crossing K14-HPV8-E6wt mice (developing skin tumors after UV treatment) with K14-CPD-photolyase animals and by generating the K14-HPV8-E6-K136N mutant mouse strain. Thymine dimers (marker for CPDs) and γH2AX (a marker for DNA double strand breaks) levels were determined in the murine skin and organotypic skin cultures of E6 expressing primary human keratinocytes after UV-irradiation by immunohistochemistry and in cell lines by In Cell Western blotting. Phosphorylation of ATR/Chk1 and ATM were assessed in cell lines and organotypic skin cultures by Western blots and immunohistochemistry. RESULTS Skin tumor development after UV-irradiation in K14-HPV8-E6wt mice could completely be blocked through expression of CPD-photolyase. Through quantification of thymine dimers after UV irradiation in cells expressing E6 proteins with point mutations at conserved residues we identified a critical lysine in the C-terminal part of the protein for prevention of DNA damage repair and p300 binding. Whereas all K14-HPV8-E6wt animals develop skin tumors after UV expression of the HPV8-E6-K136N mutant significantly blocked skin tumor development after UV treatment. The persistence of CPDs in hyperproliferative epidermis K14-HPV8-E6wt skin resulted in the accumulation of γH2AX foci. DNA damage sensing was impaired in E6 positive cells grown as monolayer culture and in organotypic cultures, due to lack of phosphorylation of ATM, ATR and Chk1. CONCLUSION We showed that cells expressing E6 fail to sense and mount an effective response to repair UV-induced DNA lesions and demonstrated a physiological relevance of E6-mediated inhibition of DNA damage repair for tumor initiation. These are the first mechanistical in vivo data on the tumorigenicity of HPV8 and demonstrate that the impairment of DNA damage repair pathways by the viral E6 protein is a critical factor in HPV-driven skin carcinogenesis.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany
| | - James Cooke
- Centre for Cutaneous Research, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Gijsbertus T J van der Horst
- MGC, Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, 3000, CA, The Netherlands
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany
| | - Alan Storey
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Baki Akgül
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany.
| |
Collapse
|
10
|
McKinney CC, Hussmann KL, McBride AA. The Role of the DNA Damage Response throughout the Papillomavirus Life Cycle. Viruses 2015; 7:2450-69. [PMID: 26008695 PMCID: PMC4452914 DOI: 10.3390/v7052450] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022] Open
Abstract
The DNA damage response (DDR) maintains genomic integrity through an elaborate network of signaling pathways that sense DNA damage and recruit effector factors to repair damaged DNA. DDR signaling pathways are usurped and manipulated by the replication programs of many viruses. Here, we review the papillomavirus (PV) life cycle, highlighting current knowledge of how PVs recruit and engage the DDR to facilitate productive infection.
Collapse
Affiliation(s)
- Caleb C McKinney
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Katherine L Hussmann
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Lazić D, Alborzi F, Marcuzzi GP, Angel P, Hess J, Pfister H, Akgül B. Enhanced StefinA and Sprr2 expression during papilloma formation in HPV8 transgenic mice. J Dermatol Sci 2011; 62:84-90. [PMID: 21458245 DOI: 10.1016/j.jdermsci.2011.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/16/2011] [Accepted: 02/19/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND The human papillomavirus type 8 (HPV8) is associated with the development of non-melanoma skin cancer. Transgenic mice expressing the complete early gene region of HPV8 (E6/E7/E1/E2/E4=CER) or E6 separately under the control of the keratin14 promoter spontaneously developed papillomas characterized by varying degrees of epidermal dysplasia. Papilloma growth could be synchronized by a single UVA/B irradiation of the skin, which led to the development of papillomas within three weeks. OBJECTIVE The objective of this study was to identify alterations in cellular gene expression correlated with HPV8 oncogene expression in transgenic mice. METHODS We applied global gene expression profiling by microarray analysis and confirmed deregulation of cellular genes by qRT-PCR and immunohistochemical analysis. RESULTS By comparison of non-lesional HPV8-CER skin with skin of the parental mouse strain FVB/n, two cellular genes, namely StefinA and Sprr2, coding for precursor proteins of the cornified envelope, were predicted to be strongly upregulated in transgenic skin, which could be confirmed in subsequent qRT-PCR experiments. StefinA and Sprr2 mRNA expression was enhanced until day 7 after UV treatment with higher levels in HPV8 positive skin. While the expression of both genes returned to a normal level in the course of epidermis regeneration in wt mice, the expression persisted elevated in hyperplastic transgenic skin. Staining of an UV induced papilloma of FVB/n wt mouse revealed also strong expression of StefinA and Sprr2 indicating that upregulation in later stages of papilloma formation is independent of HPV8. CONCLUSION In non-lesional HPV8-CER transgenic skin StefinA and Sprr2 were found to be indirect/direct transcriptional targets of HPV8.
Collapse
Affiliation(s)
- Daliborka Lazić
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
The E2 protein of human papillomavirus type 8 increases the expression of matrix metalloproteinase-9 in human keratinocytes and organotypic skin cultures. Med Microbiol Immunol 2011; 200:127-35. [PMID: 21274725 DOI: 10.1007/s00430-011-0183-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Indexed: 10/18/2022]
Abstract
Non-melanoma skin cancer (NMSC) is the most frequent human cancer of Caucasian populations. Although the ultraviolet irradiation is a key contributor to the establishment of this keratinocyte malignancy, the infection by some types of human papillomavirus (HPV) has also been implicated in NMSC development. Cancers occur as a result of a complex series of interactions between the cancer cell and its surrounding matrix. The matrix metalloproteinases (MMPs) play a role in degrading the extracellular matrix. MMP9 is an important gelatinase involved in processes such as cell migration, invasion and metastasis. In this report, we demonstrated by EMSA experiments that the MMP9 promoter contains a binding site for the transcriptional regulator E2 of HPV8. Transient reporter gene assays showed that HPV8-E2 activated the MMP9 promoter in a dose-dependent manner in human epidermal keratinocytes. An E2 transactivation-defective mutant (I73L) as well as a DNA-binding deficient mutant (R433K) demonstrated no activation of the MMP9 promoter, suggesting that both an intact transactivation and DNA-binding domain are required for E2 activation of the MMP9-promoter. The functional role of the E2 binding site within the MMP9 promoter was also confirmed by mutating the E2 binding site. In organotypic cultures of human skin, an overexpression of MMP9 was observed in suprabasal layers of the HPV8 E2-expressing epidermis thus confirming the results of the monolayer cultures. These results demonstrate that the early gene E2 of HPV8 is able to increase the expression of MMP9 by direct activation of the MMP9-promoter.
Collapse
|
13
|
Abstract
Papillomaviruses establish persistent infection in the dividing, basal epithelial cells of the host. The viral genome is maintained as a circular, double-stranded DNA, extrachromosomal element within these cells. Viral genome amplification occurs only when the epithelial cells differentiate and viral particles are shed in squames that are sloughed from the surface of the epithelium. There are three modes of replication in the papillomavirus life cycle. Upon entry, in the establishment phase, the viral genome is amplified to a low copy number. In the second maintenance phase, the genome replicates in dividing cells at a constant copy number, in synchrony with the cellular DNA. And finally, in the vegetative or productive phase, the viral DNA is amplified to a high copy number in differentiated cells and is destined to be packaged in viral capsids. This review discusses the cis elements and protein factors required for each stage of papillomavirus replication.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Pfefferle R, Marcuzzi GP, Akgül B, Kasper HU, Schulze F, Haase I, Wickenhauser C, Pfister H. The human papillomavirus type 8 E2 protein induces skin tumors in transgenic mice. J Invest Dermatol 2008; 128:2310-5. [PMID: 18401427 DOI: 10.1038/jid.2008.73] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transgenic mice expressing early genes of the cutaneous human papillomavirus 8 (HPV8) spontaneously develop skin papillomas, epidermal dysplasia, and squamous cell carcinoma (6%). As the HPV8 protein E2 revealed transforming capacity in vitro, we generated three epidermal specific HPV8-E2-transgenic FVB/N mouse lines to dissect its role in tumor development. The rate of tumor formation in the three lines correlated with the different E2-mRNA levels. More than 60% of heterozygous line 2 mice, but none of the HPV8-negative littermates, spontaneously developed ulcerous lesions of the skin over an observation period of up to 144 weeks, beginning on average 74+/-22 weeks after birth. Most lesions presented infundibular hyperplasia and acanthosis combined with low-grade dysplasia. Severe dysplasia of the epidermis occurred in 6%. Two carcinomas revealed a sharply demarcated spindle-cell component. Only 3 weeks after a single UV irradiation, 87% of heterozygous line 2 and 36% of line 35 mice developed skin tumors. A rapidly growing invasive tumor composed of spindle cells arose 10 weeks after irradiation of a line-35 animal. The histology of skin cancers in HPV8-E2 mice is reminiscent of a subset of highly aggressive squamous cell carcinoma in immunosuppressed transplant recipients with a massive spindle-cell component.
Collapse
Affiliation(s)
- Regina Pfefferle
- Institute of Virology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Akgül B, Ghali L, Davies D, Pfister H, Leigh IM, Storey A. HPV8 early genes modulate differentiation and cell cycle of primary human adult keratinocytes. Exp Dermatol 2007; 16:590-9. [PMID: 17576239 PMCID: PMC2423465 DOI: 10.1111/j.1600-0625.2007.00569.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human papillomaviruses (HPV) have been associated with the development of non-melanoma skin cancer (NMSC) but the molecular mechanisms of the role of the virus in NMSC development are not clearly understood. Abnormal epithelial differentiation seen in malignant transformation of keratinocytes is associated with changes in keratin expression. The purpose of this study was to investigate the phenotype of primary human adult keratinocytes expressing early genes of HPV8 with specific reference to their differentiation and cell cycle profile to determine whether early genes of HPV8 lead to changes that are consistent with transformation. The expression of HPV8 early genes either individually or simultaneously caused distinct changes in the keratinocyte morphology and induced an abnormal keratin expression pattern, that included simple epithelial (K8, K18, K19), hyperproliferation-specific (K6, K16), basal-specific (K14, K15) and differentiation-specific (K1, K10) keratins. Our results indicate that expression of HPV8 early genes disrupts the normal keratin expression pattern in vitro. Expression of HPV8-E7 alone caused polyploidy that was associated with decreased expression of p21 and pRb. Expression of individual genes or in combination differentially influenced cell morphology and cell cycle distribution which might be important in HPV8-induced keratinocyte transformation.
Collapse
Affiliation(s)
- Baki Akgül
- Skin Tumour Laboratory, Cancer Research UK, London, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Luron L, Avril MF, Sarasin A, Daya-Grosjean L. Prevalence of human papillomavirus in skin tumors from repair deficient xeroderma pigmentosum patients. Cancer Lett 2006; 250:213-9. [PMID: 17126994 DOI: 10.1016/j.canlet.2006.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 09/07/2006] [Accepted: 10/11/2006] [Indexed: 11/28/2022]
Abstract
The predisposition to skin cancers in childhood is the hallmark of xeroderma pigmentosum (XP), a rare autosomal recessive disorder, deficient in DNA repair and hypersensitive to ultraviolet irradiation. Human papillomavirus (HPVs), are common infections of the skin which are often found associated to benign lesions and non-melanoma skin cancers (NMSC), mainly squamous cell carcinomas (SCC) and basal cell carcinomas (BCC). Our study is the first to analyse 40 SCCs, 27 BCCs and nine normal skin biopsies from XP patients for HPV DNA which are found more frequently in SCCs (20/40) than in BCCs (4/27) or normal skin (2/9). The HPV spectrum includes 22 different epidermodysplasia verruciformis (EV) HPV types, which predominate in SCCs (48%) compared to BCCs (15%) and normal skin (22%). Our data, showing an association between EV HPV and SCCs from young XP patients is comparable to that found for NMSC from adult immunosuppressed organ transplant patients and raises the question of the importance of HPV infection in skin carcinogenesis.
Collapse
Affiliation(s)
- Lionel Luron
- Laboratoire Génomes et Cancers, FRE 2939 CNRS Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | | | |
Collapse
|
17
|
Müller-Schiffmann A, Beckmann J, Steger G. The E6 protein of the cutaneous human papillomavirus type 8 can stimulate the viral early and late promoters by distinct mechanisms. J Virol 2006; 80:8718-28. [PMID: 16912319 PMCID: PMC1563847 DOI: 10.1128/jvi.00250-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The expression of the proteins encoded by human papillomaviruses (HPVs) is tightly linked to the differentiation program of the infected keratinocytes. The late promoter, expressing the structural proteins, becomes activated in the differentiated keratinocytes, while the early promoter is also active in the basal layers. We have shown previously that the viral transcriptional regulator E2 and the cellular coactivator p300 cooperate in activation of gene expression of HPV8, which infects the skin and is associated with epidermodysplasia verruciformis. Here we demonstrate that this activation is further stimulated after overexpression of the E6 oncoprotein of HPV8 (8E6). RNase protection experiments revealed that 8E6 efficiently cooperates with 8E2 and p300 in activation of the late promoter. In addition, the early promoter, which did not respond to 8E2 and/or p300, was stimulated more than fourfold by 8E6. Our data suggest that both promoters are activated via distinct mechanisms, since the activation of the early promoter was achieved by the N-terminal moiety of 8E6; in contrast, its C-terminal half was sufficient for late promoter activation. This was markedly reduced by the deletion of amino acids 132 to 136 of 8E6, which also abolished the binding to p300, indicating that a direct interaction between 8E6 and p300 is involved. Moreover, a 45-amino-acid segment within the C/H3 region of p300 is required for 8E6 to stimulate the coactivator function of p300. Our results demonstrate for the first time that an E6 oncoprotein of HPV directly contributes to the regulation of HPV gene expression.
Collapse
|
18
|
Akgül B, Cürten M, Haigis H, Rogosz I, Pfister H. Interferon regulatory factor 5.2 acts as a transcription repressor of Epidermodysplasia verruciformis-associated human papillomaviruses. Arch Virol 2006; 151:2461-73. [PMID: 16773233 DOI: 10.1007/s00705-006-0806-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 05/11/2006] [Indexed: 02/02/2023]
Abstract
Human papillomavirus type 8 (HPV8) poses a high risk for malignant conversion of skin lesions in patients with Epidermodysplasia verruciformis (Ev). Its oncogene promoter P(175) contains the conserved sequence motifs CCAAC, M29, and an A/T-rich region, which are common in many Ev-associated viruses. In human keratinocytes P(175) shows very weak activity. We used the M29 sequence as bait in a yeast-one-hybrid screen of a HaCaT cDNA library to identify interacting proteins regulating P(175). We report the identification of a cDNA encoding the interferon regulatory factor IRF5.2. In band shift assays the physical interaction of IRF5.2 and M29 was confirmed, and also its binding to the negative regulatory element (NRE) of HPV8 could be demonstrated. In transient reporter gene assays, overexpressed IRF5.2 acts as a transcriptional repressor of HPV8 and the Ev-associated HPV types 5, 14, and 25. These results indicate that the cellular transcription factor IRF5.2 is a general transcription repressor of Ev-associated HPV.
Collapse
Affiliation(s)
- B Akgül
- Institute of Virology, University of Cologne, Cologne, Germany.
| | | | | | | | | |
Collapse
|
19
|
Ortak T, Uysal AC, Alagoz MS, Orbay H, Sensoz O. Epidermodysplasia Verruciformis: An Unusual Presentation. Dermatol Surg 2006; 32:302-6. [PMID: 16442060 DOI: 10.1111/j.1524-4725.2006.32056.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epidermodysplasia verruciformis (EV) is a rare autosomal recessive genetic disorder of the immune system manifested by increased susceptibility to cutaneous human papillomavirus (HPV) infection beginning from the early years of life, and compromising lesions resembling flat warts, especially on the distal extremities and the face; but malignant transformation occurs in sun-exposed areas within the third or fourth decade of life. OBJECTIVE We describe two case reports of epidermodysplasia verruciformis, one of which was onset and had more aggressive features than the usual presentation. METHODS Intermittent surgical excision of the tumoral lesions were performed in the first case, whereas only one surgical intervestion was sufficient in the second case. RESULTS The early onset case was more aggressive, and new tumoral lesions were seen, whereas the other patients was free of the disease for 2 years.CONCLUSION Epidermodysplasia verruciformis possess multi factorial etiologies, and the main prognostic factor of the behavior of the disease may be the family history and genetic susceptibility.
Collapse
Affiliation(s)
- Turgut Ortak
- Department of Plastic and Reconstructive Surgery, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | | | | | | | | |
Collapse
|
20
|
Abstract
Human papillomaviruses (HPVs) are DNA tumour viruses that induce hyperproliferative lesions in cutaneous and mucosal epithelia. The relationship between HPV and non-melanoma skin cancer (NMSC) is important clinically since NMSC is the most common form of malignancy among fair-skinned populations. It is well established that solar ultraviolet (UV) irradiation is the major risk factor for developing NMSC, but a pathogenic role for HPV in the development of NMSC has also been proposed. Recent molecular studies reveal a likely role for HPV infection in skin carcinogenesis as a co-factor in association with UV. This review summarizes the literature describing these data, highlights some of the important findings derived from these studies, and speculates on future perspectives.
Collapse
Affiliation(s)
- Baki Akgül
- Skin Tumour Laboratory, Cancer Research UK, London
| | | | | |
Collapse
|
21
|
ORTAK TURGUT, UYSAL AHMETCAGRI, ALAGOZ MURATSAHIN, ORBAY HAKAN, SENSOZ OMER. Epidermodysplasia Verruciformis. Dermatol Surg 2006. [DOI: 10.1097/00042728-200602000-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Akgül B, Lemme W, García-Escudero R, Storey A, Pfister HJ. UV-B irradiation stimulates the promoter activity of the high-risk, cutaneous human papillomavirus 5 and 8 in primary keratinocytes. Arch Virol 2004; 150:145-51. [PMID: 15654507 PMCID: PMC2423462 DOI: 10.1007/s00705-004-0398-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 07/19/2004] [Indexed: 10/25/2022]
Abstract
Human papillomaviruses (HPV) have been implicated in the development of non-melanoma skin cancer (NMSC). HPV types 5 and 8 are strongly associated with NMSC in patients with the inherited disease Epidermodysplasia verruciformis (Ev). In these patients tumours arise predominantly on sun-exposed skin and consistently harbour HPV DNAs. To determine whether UV-B irradiation modulates the noncoding region (NCR) promoter activity of the Ev-HPV types 5, 8, 9, 14, 23, 24, and 25 we performed transient transfection assays with NCR luciferase reporter gene constructs in primary human epithelial keratinocytes (PHEKs) and in p53-null RTS3b cells. Each of the HPVs showed different basal NCR activity in both cell types and reacted differently upon UVB treatment and p53 cotransfection in RTS3b cells. The NCR of HPV5 and 8 were the only ones to be activated by UV-B in PHEKs. The stimulation of the NCR activity of the high-risk cutaneous HPV types 5 and 8 by UV-B irradiation may point to a role of this interaction in the development of NMSC.
Collapse
Affiliation(s)
- B Akgül
- Institute of Virology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | | | | | | | | |
Collapse
|
23
|
de Oliveira WRP, Rady PL, Grady J, Hughes TK, Neto CF, Rivitti EA, Tyring SK. Association of p53 arginine polymorphism with skin cancer. Int J Dermatol 2004; 43:489-93. [PMID: 15230885 DOI: 10.1111/j.1365-4632.2004.02289.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The presence of arginine at codon 72 in p53 protein is proposed to be a genetic risk factor in human papillomavirus (HPV)-related carcinogenesis. OBJECTIVE To study the prevalence of p53 polymorphism at codon 72 in skin biopsies of epidermodysplasia verruciformis (EV) patients compared to DNA samples from healthy individuals. PATIENTS AND METHODS DNA samples extracted from normal skin and tumor biopsies of 22 Brazilian patients with EV and blood samples from 27 healthy Brazilian individuals were studied for p53 codon 72 polymorphisms using restriction fragment length polymorphism (RFLP) analysis. RESULTS All EV patients with the malignant form of EV were homozygous for arginine (Arg/Arg) at codon 72 of the p53 gene, in contrast to none with the benign form (P < 0.0001). CONCLUSIONS p53 arginine polymorphism is likely to be associated with the development of skin malignancies in EV patients from Brazil.
Collapse
|