1
|
Ishihara S, Dang‐Nguyen TQ, Kikuchi K, Arakawa A, Mikawa S, Osaki M, Otoi T, Luu QM, Nguyen TS, Taniguchi M. Characteristic features of porcine endogenous retroviruses in Vietnamese native pigs. Anim Sci J 2020; 91:e13336. [PMID: 32219916 DOI: 10.1111/asj.13336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
We aimed to clarify the genomic characteristics of porcine endogenous retroviruses (PERVs) in Vietnamese native pig (VnP) breeds. First, we investigated genetic polymorphisms in β- and γ-like PERVs, and we then measured the copy numbers of infectious γ-like PERVs (PERV-A, B, and C). We purified genomic DNA from 15 VnP breeds from 12 regions all over the country and three Western pig breeds as controls, and investigated genetic polymorphisms in all known PERVs, including the beta (β)1-4 and gamma (γ)1-5 groups. PERVs of β1, β2, β3, and γ4 were highly polymorphic with VnP-specific haplotypes. We did not identify genetic polymorphisms in β4, γ1, or γ2 PERVs. We then applied a real-time polymerase chain reaction-based method to estimate copy numbers of the gag, pol, and env genes of γ1 PERVs (defined as A, B, and C). VnP breeds showed significantly lower copy number of the PERV genes compared with the Western pig breeds (on average, 16.2 and 35.7 copies, respectively, p < .05). Two VnP breeds showed significantly higher copy number compared with the other VnPs (p < .05). Our results elucidated that VnPs have specific haplotypes and a low copy number of PERV genes.
Collapse
Affiliation(s)
- Shinya Ishihara
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Japan
| | - Thanh Q. Dang‐Nguyen
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Japan
| | - Aisaku Arakawa
- Institute of Livestock and Grassland Science National Agriculture and Food Research Organization Tsukuba Japan
| | - Satoshi Mikawa
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Japan
| | - Makoto Osaki
- National Institute of Animal Health National Agriculture and Food Research Organization Tsukuba Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Quang Minh Luu
- Key Laboratory of Animal Cell Technology National Institute of Animal Science Hanoi Vietnam
| | - Thanh Son Nguyen
- Key Laboratory of Animal Cell Technology National Institute of Animal Science Hanoi Vietnam
| | - Masaaki Taniguchi
- Institute of Livestock and Grassland Science National Agriculture and Food Research Organization Tsukuba Japan
| |
Collapse
|
2
|
Ramsay L, Marchetto MC, Caron M, Chen SH, Busche S, Kwan T, Pastinen T, Gage FH, Bourque G. Conserved expression of transposon-derived non-coding transcripts in primate stem cells. BMC Genomics 2017; 18:214. [PMID: 28245871 PMCID: PMC5331655 DOI: 10.1186/s12864-017-3568-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A significant portion of expressed non-coding RNAs in human cells is derived from transposable elements (TEs). Moreover, it has been shown that various long non-coding RNAs (lncRNAs), which come from the human endogenous retrovirus subfamily H (HERVH), are not only expressed but required for pluripotency in human embryonic stem cells (hESCs). RESULTS To identify additional TE-derived functional non-coding transcripts, we generated RNA-seq data from induced pluripotent stem cells (iPSCs) of four primate species (human, chimpanzee, gorilla, and rhesus) and searched for transcripts whose expression was conserved. We observed that about 30% of TE instances expressed in human iPSCs had orthologous TE instances that were also expressed in chimpanzee and gorilla. Notably, our analysis revealed a number of repeat families with highly conserved expression profiles including HERVH but also MER53, which is known to be the source of a placental-specific family of microRNAs (miRNAs). We also identified a number of repeat families from all classes of TEs, including MLT1-type and Tigger families, that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved. CONCLUSIONS Together, these results describe TE families and TE-derived lncRNAs whose conserved expression patterns can be used to identify what are likely functional TE-derived non-coding transcripts in primate iPSCs.
Collapse
Affiliation(s)
- LeeAnn Ramsay
- Department of Human Genetics, McGill University, Dr Penfield Avenue, Montreal, H3A 1B1, Canada
| | - Maria C Marchetto
- Lab of Genetics, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Maxime Caron
- Department of Human Genetics, McGill University, Dr Penfield Avenue, Montreal, H3A 1B1, Canada
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada
| | - Shu-Huang Chen
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada
| | - Stephan Busche
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University, Dr Penfield Avenue, Montreal, H3A 1B1, Canada
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Dr Penfield Avenue, Montreal, H3A 1B1, Canada
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada
| | - Fred H Gage
- Lab of Genetics, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Dr Penfield Avenue, Montreal, H3A 1B1, Canada.
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada.
| |
Collapse
|
3
|
Schmitt K, Reichrath J, Roesch A, Meese E, Mayer J. Transcriptional profiling of human endogenous retrovirus group HERV-K(HML-2) loci in melanoma. Genome Biol Evol 2013; 5:307-28. [PMID: 23338945 PMCID: PMC3590776 DOI: 10.1093/gbe/evt010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease.
Collapse
Affiliation(s)
- Katja Schmitt
- Institute of Human Genetics, Medical Faculty, University of Saarland, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
4
|
Magiorkinis G, Belshaw R, Katzourakis A. 'There and back again': revisiting the pathophysiological roles of human endogenous retroviruses in the post-genomic era. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120504. [PMID: 23938753 PMCID: PMC3758188 DOI: 10.1098/rstb.2012.0504] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Almost 8% of the human genome comprises endogenous retroviruses (ERVs). While they have been shown to cause specific pathologies in animals, such as cancer, their association with disease in humans remains controversial. The limited evidence is partly due to the physical and bioethical restrictions surrounding the study of transposons in humans, coupled with the major experimental and bioinformatics challenges surrounding the association of ERVs with disease in general. Two biotechnological landmarks of the past decade provide us with unprecedented research artillery: (i) the ultra-fine sequencing of the human genome and (ii) the emergence of high-throughput sequencing technologies. Here, we critically assemble research about potential pathologies of ERVs in humans. We argue that the time is right to revisit the long-standing questions of human ERV pathogenesis within a robust and carefully structured framework that makes full use of genomic sequence data. We also pose two thought-provoking research questions on potential pathophysiological roles of ERVs with respect to immune escape and regulation.
Collapse
|
5
|
Abstract
Endogenous retroviruses (ERVs) differ from typical retroviruses in being inherited through the host germline and therefore are a unique combination of pathogen and selfish genetic element. Some ERV lineages proliferate by infecting germline cells, as do typical retroviruses, whereas others lack the env gene required for virions to enter cells and thus behave like retrotransposons. We wished to know what factors determined the relative abundance of different ERV lineages, so we analyzed ERV loci recovered from 38 mammal genomes by in silico screening. By modeling the relationship between proliferation and replication mechanism in detail within one group, the intracisternal A-type particles (IAPs), and performing simple correlations across all ERV lineages, we show that when ERVs lose the env gene their proliferation within that genome is boosted by a factor of ∼30. We also show that ERV abundance follows the Pareto principle or 20/80 rule, with ∼20% of lineages containing 80% of the loci. This rule is observed in many biological systems, including infectious disease epidemics, where commonly ∼20% of the infected individuals are responsible for 80% of onward infection. We thus borrow simple epidemiological and ecological models and show that retrotransposition and loss of env is the trait that leads endogenous retroviruses to becoming genomic superspreaders that take over a significant proportion of their host's genome.
Collapse
|
6
|
Kim YJ, Huh JW, Kim DS, Han K, Kim HM, Kim HS. Evolutionary diversification of DYX1C1 transcripts via an HERV-H LTR integration event. Genes Genet Syst 2012; 86:277-84. [PMID: 22214596 DOI: 10.1266/ggs.86.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DYX1C1 is a candidate gene for developmental dyslexia and has three alternative pre-mRNA spliced forms in the human genome. One of the transcripts contains an HERV-H LTR that could affect the expression level of DYX1C1. We speculate that the HERV-H LTR integrated into the DYX1C1 locus in the catarrhine lineage after its divergence from the platyrrhine lineage. Reverse transcription-PCR of the HERV-H LTR-related transcript produced four alternative forms from several human tissues. All of alternative forms were also identified in various rhesus macaque tissues. Through sequencing analysis of various primate DNA samples, we found that a part of the HERV-H LTR sequence was duplicated within the DYX1C1 exon 9 only in catarrhines. However, the duplication event did not cause frameshift mutation of the DYX1C1 transcript. Taken together, this HERV-H LTR insertion into DYX1C1 has contributed to transcript diversification of DYX1C1 during primate evolution.
Collapse
Affiliation(s)
- Yun-Ji Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Ha HS, Chung WK, Ahn K, Bae JH, Park SJ, Moon JW, Nam KH, Han K, Cho HG, Kim HS. Development of GEBRET: a web-based analysis tool for retroelements in primate genomes. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Hancks DC, Kazazian H. SVA retrotransposons: Evolution and genetic instability. Semin Cancer Biol 2010; 20:234-45. [PMID: 20416380 PMCID: PMC2945828 DOI: 10.1016/j.semcancer.2010.04.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/01/2010] [Accepted: 04/14/2010] [Indexed: 01/21/2023]
Abstract
SINE-VNTR-Alus (SVA) are non-autonomous hominid specific retrotransposons that are associated with disease in humans. SVAs are evolutionarily young and presumably mobilized by the LINE-1 reverse transcriptase in trans. SVAs are currently active and may impact the host through a variety of mechanisms including insertional mutagenesis, exon shuffling, alternative splicing, and the generation of differentially methylated regions (DMR). Here we review SVA biology, including SVA insertions associated with known diseases. Further, we discuss a model describing the initial formation of SVA and the mechanisms by which SVA may impact the host.
Collapse
Affiliation(s)
- Dustin C. Hancks
- Department of Genetics, The University of Pennsylvania School of Medicine
| | - Haig Kazazian
- Department of Genetics, The University of Pennsylvania School of Medicine
| |
Collapse
|
9
|
Chang NT, Yang WK, Huang HC, Yeh KW, Wu CW. The transcriptional activity of HERV-I LTR is negatively regulated by its cis-elements and wild type p53 tumor suppressor protein. J Biomed Sci 2006; 14:211-22. [PMID: 17151828 DOI: 10.1007/s11373-006-9126-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/24/2006] [Indexed: 11/29/2022] Open
Abstract
Human endogenous retroviruses (HERVs), abundantly inter-dispersed in the genome, carry long terminal repeats (LTRs) that may potentially retro-transpose to new genomic sites and deregulate the neighboring cellular genes. However, normally HERVs are either structurally defective or inactive due possibly to stringent negative control mechanisms. To study the possible negative regulation of HERV, we isolated the LTR of RTVL-Ia and constructed site-specific mutations for analysis of the promoter and enhancer functions by using chloramphenicol acetyl transferase (CAT) reporter assay. Our results showed that in most transfected human cells the LTR-mediated CAT expression was negligible unless a sequence segment at the AGTAAA polyadenylation site was deleted. In addition, we have found that the wild type p53 may inhibit whereas a p53 mutant (V143A) stimulate the transcriptional activity of HERV-I LTR. Our results imply that HERV-I LTR, while under negative control by its LTR cis-elements and by wild type p53, may become active upon p53 mutation.
Collapse
Affiliation(s)
- Nien-Tzu Chang
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Mayer J, Meese E. Human endogenous retroviruses in the primate lineage and their influence on host genomes. Cytogenet Genome Res 2005; 110:448-56. [PMID: 16093697 DOI: 10.1159/000084977] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 01/30/2004] [Indexed: 10/25/2022] Open
Abstract
Primates emerged about 60 million years ago. Since that time various primate-targeting retroviruses have integrated in the germ line of primate species, and some drifted to fixation. After germ line fixation, continued activity of proviruses resulted in intragenomic spread of so-called endogenous retroviruses (ERVs). Variant ERVs emerged, amplified in the genome and profoundly altered genome structures and potentially functionality. Importantly, ERVs are genome modifiers of exogenous origin. The human genome contains about 8% of sequences of retroviral origin. The human ERVs (HERVs) comprise many distinct families that amplified to copy numbers of up to several thousand. We review here the evolution of several well-characterized HERV families in the human lineage since initial germ line fixation. It is apparent that endogenous retroviruses profoundly affected the genomes of species in the evolutionary lineage leading to Homo sapiens.
Collapse
Affiliation(s)
- J Mayer
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg/Saar, Germany.
| | | |
Collapse
|
11
|
Macfarlane C, Simmonds P. Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations. J Mol Evol 2005; 59:642-56. [PMID: 15693620 DOI: 10.1007/s00239-004-2656-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient germ cell infection by exogenous retroviruses and occupy up to 8% of the human genome. It has been suggested that HERV sequences have contributed to primate evolution by regulating the expression of cellular genes and mediating chromosome rearrangements. After integration approximately 28 million years ago, members of the HERV-K (HML-2) family have continued to amplify and recombine. To investigate the utility of HML-2 polymorphisms as markers for the study of more recent human evolution, we compiled a list of the structure and integration sites of sequences that are unique to humans and screened each insertion for polymorphism within the human genome databases. Of the total of 74 HML-2 sequences, 18 corresponded to complete or near-complete proviruses, 49 were solitary long terminal repeats (LTRs), 6 were incomplete LTRs, and 1 was a SVA retrotransposon. A number of different allelic configurations were identified including the alternation of a provirus and solitary LTR. We developed polymerase chain reaction-based assays for seven HML-2 loci and screened 109 human DNA samples from Africa, Europe, Asia, and Southeast Asia. Our results indicate that the diversity of HML-2 elements is higher in African than non-African populations, with population differentiation values ranging from 0.6 to 9.8%. These findings denote a recent expansion from Africa. We compare the phylogenetic relationships of HML-2 sequences that are unique to humans and consider whether these elements have played a role in the remodeling of the hominid genome.
Collapse
Affiliation(s)
- Catriona Macfarlane
- Center for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, Scotland EH9 1QH, UK.
| | | |
Collapse
|
12
|
Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 2004; 36:1073-8. [PMID: 15448691 DOI: 10.1038/ng1429] [Citation(s) in RCA: 648] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 08/20/2004] [Indexed: 11/09/2022]
Abstract
Premature termination codons induce rapid transcript degradation in eukaryotic cells through nonsense-mediated mRNA decay (NMD). This pathway can modulate phenotypes arising from nonsense or frameshift mutations, but little is known about the physiologic role of NMD in higher eukaryotes. To address this issue, we examined expression profiles in mammalian cells depleted of Rent1 (also called hUpf1), a factor essential for NMD. Upregulated transcripts included those with upstream open reading frames in the 5' untranslated region, alternative splicing that introduces nonsense codons or frameshifts, introns in the 3' untranslated region or selenocysteine codons. Transcripts derived from ancient transposons and endogenous retroviruses were also upregulated. These RNAs are unified by the presence of a spliced intron at least 50 nucleotides downstream of a termination codon, a context sufficient to initiate NMD. Consistent with direct regulation by NMD, representative upregulated transcripts decayed more slowly in cells deficient in NMD. In addition, inhibition of NMD induced by amino acid starvation upregulated transcripts that promote amino acid homeostasis. These results document that nonsense surveillance is a crucial post-transcriptional regulatory event that influences the expression of broad classes of physiologic transcripts, has been functionally incorporated into essential homeostatic mechanisms and suppresses expression of evolutionary remnants.
Collapse
Affiliation(s)
- Joshua T Mendell
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 539 Broadway Research Building, 733 N. Broadway, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
13
|
Lavie L, Medstrand P, Schempp W, Meese E, Mayer J. Human endogenous retrovirus family HERV-K(HML-5): status, evolution, and reconstruction of an ancient betaretrovirus in the human genome. J Virol 2004; 78:8788-98. [PMID: 15280487 PMCID: PMC479102 DOI: 10.1128/jvi.78.16.8788-8798.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human genome harbors numerous distinct families of so-called human endogenous retroviruses (HERV) which are remnants of exogenous retroviruses that entered the germ line millions of years ago. We describe here the hitherto little-characterized betaretrovirus HERV-K(HML-5) family (named HERVK22 in Repbase) in greater detail. Out of 139 proviruses, only a few loci represent full-length proviruses, and many lack gag protease and/or env gene regions. We generated a consensus sequence from multiple alignment of 62 HML-5 loci that displays open reading frames for the four major retroviral proteins. Four HML-5 long terminal repeat (LTR) subfamilies were identified that are associated with monophyletic proviral bodies, implying different evolution of HML-5 LTRs and genes. Sequence analysis indicated that the proviruses formed approximately 55 million years ago. Accordingly, HML-5 proviral sequences were detected in Old World and New World primates but not in prosimians. No recent activity is associated with this HERV family. We also conclude that the HML-5 consensus sequence primer binding site is identical to methionine tRNA. Therefore, the family should be designated HERV-M. Our study provides important insights into the structure and evolution of the oldest betaretrovirus in the primate genome known to date.
Collapse
Affiliation(s)
- Laurence Lavie
- Department of Human Genetics, Building 60, University of Saarland, Medical Faculty, 66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Pavlícek A, Paces J, Elleder D, Hejnar J. Processed pseudogenes of human endogenous retroviruses generated by LINEs: their integration, stability, and distribution. Genome Res 2002; 12:391-9. [PMID: 11875026 PMCID: PMC155283 DOI: 10.1101/gr.216902] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report here the presence of numerous processed pseudogenes derived from the W family of endogenous retroviruses in the human genome. These pseudogenes are structurally colinear with the retroviral mRNA followed by a poly(A) tail. Our analysis of insertion sites of HERV-W processed pseudogenes shows a strong preference for the insertion motif of long interspersed nuclear element (LINE) retrotransposons. The genomic distribution, stability during evolution, and frequent truncations at the 5' end resemble those of the pseudogenes generated by LINEs. We therefore suggest that HERV-W processed pseudogenes arose by multiple and independent LINE-mediated retrotransposition of retroviral mRNA. These data document that the majority of HERV-W copies are actually nontranscribed promoterless pseudogenes. The current search for HERV-Ws associated with several human diseases should concentrate on a small subset of transcriptionally competent elements.
Collapse
Affiliation(s)
- Adam Pavlícek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 6, CZ-16637, Czech Republic
| | | | | | | |
Collapse
|
15
|
Seifarth W, Baust C, Schön U, Reichert A, Hehlmann R, Leib-Mösch C. HERV-IP-T47D, a novel type C-related human endogenous retroviral sequence derived from T47D particles. AIDS Res Hum Retroviruses 2000; 16:471-80. [PMID: 10772533 DOI: 10.1089/088922200309133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A new type C retrovirus-related endogenous pol sequence (ERV-FTD) found to be occasionally copackaged in retrovirus-like particles released by the human mammary carcinoma cell line T47D was used to screen a human genomic library (Seifarth W, Skladny H, Krieg-Schneider F, Reichert A, Hehlmann R, and Leib-Mösch C: J Virol 1995;69:6408-6416). The DNA sequence of one full-length clone now reveals a human endogenous proviral sequence (HERV) of 4190 bp in length comprising a 5' LTR (489 bp) and regions with 37 and 74% overall amino acid homology to RTVL-Ia gag and pol genes, respectively. About 35 related elements were found to be distributed on all human chromosomes except 16, 17, and Y. Sequence comparisons with Mo-MuLV and various type C-related HERVs suggest that despite a proline primer-binding site this novel HERV element, now named HERV-IP-T47D, can be assigned to one family together with known HERV-I elements. Phylogenetic analyses of 5 proviral and 25 solitary LTR sequences confirmed the existence of two distinct but closely related subgroups of the HERV-IP superfamily in the primate genome. In contrast to most known HERV-families, the evolutionary age of HERV-IP elements dates back prior to the divergence of New and Old World monkeys. Despite their old age, members of the HERV-IP family are still transcriptionally active and were found to be highly expressed in specific human tissues such as liver and kidney.
Collapse
Affiliation(s)
- W Seifarth
- Medical Clinic III, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Kim HS, Crow TJ. Identification and phylogenetic analysis of novel human endogenous retroviral sequences belonging to the HERV-H family on human X and Y chromosomes. Genes Genet Syst 1999; 74:129-34. [PMID: 10650840 DOI: 10.1266/ggs.74.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
HERV-H, a family of endogenous retroviral elements that has undergone successive expansions in the human genome, includes sequences that are expressed in placenta and T cells. With a PCR approach to the HERV-H using human monochromosomal somatic cell hybrid DNA, we identified 8 new HERV-H sequences on the X chromosome, and one novel HERV-H element, HY-1, the first reported such element on the Y chromosome, and compared these with sequences in the nucleotide sequence database. Phylogenetic analysis indicated that clone HX-1 and BAC clone 523A23 on the X chromosome were found to be in close relationship to the sequences of DJ088A21 on the human chromosome 7q31. This finding allows us to speculate that HERV-H elements may have evolved by intra-chromosomal spread. Our data may relevant to an understanding of human genomic plasticity.
Collapse
Affiliation(s)
- H S Kim
- POWIC, Department of Psychiatry, Warneford Hospital, University of Oxford, United Kingdom
| | | |
Collapse
|
18
|
Lindeskog M, Mager DL, Blomberg J. Isolation of a human endogenous retroviral HERV-H element with an open env reading frame. Virology 1999; 258:441-50. [PMID: 10366582 DOI: 10.1006/viro.1999.9750] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
About 100 elements of the human endogenous retroviral HERV-H family have full-length env genes potentially coding for Env proteins with sequences highly similar to the immunosuppressive peptide CKS-17 from the MLV transmembrane protein p15E. However, previously sequenced HERV-H env genes have contained stop codons or framehifts. To isolate elements with open env reading frames, we first tried to assess the diversity of HERV-H env genes by comparing PCR-generated env sequences from genomic DNA with published HERV-H sequences. A region at the beginning of env displayed a similarity of 84-98% among 15 different elements. We then used a probe from one of the PCR-generated clones, 98% similar to the consensus sequence in this region, to screen a human genomic lambda library. Three HERV-H elements displaying ca. 98% identity in the env gene were isolated and were shown to have integrated relatively recently, after the divergence of the orangutan and the african great ape lineages. One of these elements, HERV-H19, had a 1752-bp open env reading frame, producing a 77-kDa Env protein in in vitro translation reactions. This is the first demonstration of a coding competent member of the HERV-H family. These findings raise the possibility that HERV-H Env proteins may play a biological role in human cells.
Collapse
Affiliation(s)
- M Lindeskog
- Section of Virology, Lund University, Sölvegatan 23, Lund, S-22362, Sweden.
| | | | | |
Collapse
|
19
|
Abstract
Up to 1% of the human genome is represented by human endogenous retroviruses (HERVs) and their fragments that are likely footprints of ancient primate germ-cell infections by retroviruses that occurred 10-60 million years ago. HERV solitary long terminal repeats (LTRs) can be often met in close vicinity to functional genes. The LTRs comprise a set of regulatory sequences like promoters, enhancers, hormone responsive elements and polyadenylation signals that might come out as new regulatory signals to resident genes and thus change their regulation in evolution. Moreover, the LTRs have a potential for chromatin remodeling that can also modulate gene expression. This review describes the integration specificity and distribution of the HERVs and LTRs in the human genome and discusses possible functional consequences of their integration in the vicinity of genes.
Collapse
Affiliation(s)
- E D Sverdlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.
| |
Collapse
|
20
|
Leblanc P, Desset S, Dastugue B, Vaury C. Invertebrate retroviruses: ZAM a new candidate in D.melanogaster. EMBO J 1997; 16:7521-31. [PMID: 9405380 PMCID: PMC1170351 DOI: 10.1093/emboj/16.24.7521] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ZAM, a new retroelement of Drosophila melanogaster, was identified as a mutational insertion at the white locus. It displays all the structural features of a vertebrate retrovirus. Its three open reading frames encode predicted products resembling the products of the gag, pol and env genes of retroviruses. Its transcription gives rise to an 8.6 kb full-length RNA and a 1.7 kb spliced message for the env gene. The latter encodes an envelope protein that is typical of elements having an extracellular phase of the life cycle. The identification of a ZAM envelope retrogene provides evidence that ZAM is mobilized through a reverse trancriptional process in the germ line of flies. We report that ZAM is distributed differently among D.melanogaster strains. Two stocks out of >15 tested display a ZAM high copy number, with numerous copies distributed on chromosomal arms. This high copy number is associated with a high transcriptional rate of ZAM. The existence of these two categories of strains offers a new genetic system in which the properties of a potential invertebrate retrovirus can be tested.
Collapse
Affiliation(s)
- P Leblanc
- Unité INSERM U384, Faculté de Médecine, Place Henri Dunant, 63000 Clermont-Ferrand, France
| | | | | | | |
Collapse
|
21
|
Anderssen S, Sjøttem E, Svineng G, Johansen T. Comparative analyses of LTRs of the ERV-H family of primate-specific retrovirus-like elements isolated from marmoset, African green monkey, and man. Virology 1997; 234:14-30. [PMID: 9234943 DOI: 10.1006/viro.1997.8590] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have isolated 8 different long terminal repeat (LTR) sequences of the ERV-H family of endogenous retrovirus-like elements from human chromosome 18, 9 from African green monkey, and 28 from marmoset. Human ERV-H LTRs have been divided into three types designated Type I, Type Ia, and Type II. Comparative analyses of the 45 isolated LTRs and 60 human ERV-H LTRs enabled a further subdivision into 13 subtypes. Type I elements were widely distributed in all three species. Their average evolutionary age (40 MYr), estimated by a consensus sequence approach, suggests that they first expanded in the genomes at the time New- and Old World monkeys diverged. The occurence of some very old Type I sequences indicate that ERV-H elements may have integrated even before prosimians and primates diverged. Type Ia and - II elements were found in both monkey species. Promoter active Type I and Type Ia LTRs were found while Type II LTRs were inactive. Promoter active Type I LTRs generally contained a functional GC/GT box immediately 3' to the TATA box, providing strong binding of Sp1 family proteins, while the highly promoter active Type Ia element H6 contained synergistically acting Sp1 binding sites located in the U3 enhancer region.
Collapse
Affiliation(s)
- S Anderssen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | |
Collapse
|
22
|
Blusch JH, Haltmeier M, Frech K, Sander I, Leib-Mösch C, Brack-Werner R, Werner T. Identification of endogenous retroviral sequences based on modular organization: proviral structure at the SSAV1 locus. Genomics 1997; 43:52-61. [PMID: 9226372 DOI: 10.1006/geno.1997.4790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The current genome sequencing projects reveal megabases of unknown genomic sequences. About 1% of these sequences can be expected to be of retroviral origin. These are often severely deleted or mutated. Therefore, identification of the retroviral origin of these sequences can be very difficult due to the absence of convincing overall sequence similarity. There are also many copies of solo-LTRs (long terminal repeats) distributed throughout genomic sequences. LTR and envelope sequences in general are among the most divergent parts of the retroviral genome and thus especially hard to detect in mutated endogenous sequences. We took advantage of the fact that these retroviral sections contain short highly conserved sequence regions providing retroviral hallmarks even after loss of overall similarity. We defined several sequence elements and peptide motifs within LTR and Env sequences and used these elements to construct models for LTRs and Env proteins of mammalian C-type retroviruses. We then used this strategy to identify successfully the hitherto missing LTRs and an env-like region in the S71 human retroviral sequence. Our approach provides a new strategy for identifying remotely related retroviral sequences in genomic DNA (especially human DNA), of potential significance for the interpretation of genomic sequences obtained from the current large-scale sequencing projects.
Collapse
Affiliation(s)
- J H Blusch
- GSF-National Research Center for Environment and Health, Institute of Mammalian Genetics, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The possible use of pig organs and tissues as xenografts in humans is actively being considered in biomedical research. We therefore examined whether pig endogenous retrovirus (PERV) genomes can be infectiously transmitted to human cells in culture. Two pig kidney cell lines spontaneously produce C-type retrovirus particles. Cell-free retrovirus produced by the PK-15 kidney cell line (PERV-PK) infected pig, mink and human kidney 293 cell lines and co-cultivation of X-irradiated PK-15 cells with human cells resulted in a broader range of human cell infection, including human diploid fibroblasts and B- and T-cell lines. Kidney, heart and spleen tissue obtained from domestic pigs contained multiple copies of integrated PERV genomes and expressed viral RNA. Upon passage in human cells PERV-PK could rescue a Moloney retroviral vector and acquired resistance to lysis by human complement.
Collapse
Affiliation(s)
- C Patience
- Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
24
|
Sjøttem E, Anderssen S, Johansen T. The promoter activity of long terminal repeats of the HERV-H family of human retrovirus-like elements is critically dependent on Sp1 family proteins interacting with a GC/GT box located immediately 3' to the TATA box. J Virol 1996; 70:188-98. [PMID: 8523525 PMCID: PMC189804 DOI: 10.1128/jvi.70.1.188-198.1996] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The HERV-H family of endogenous retrovirus-like elements is widely distributed in the human genome, with about 1,000 full-length elements and a similar number of solitary long terminal repeats (LTRs). HERV-H LTRs have been shown to direct the transcription of both HERV-H-encoded and adjacent cellular genes. Transcripts of HERV-H elements are especially abundant in placenta, teratocarcinoma cell lines, and cell lines derived from testicular and lung tumors. Here we report that only a subset of HERV-H LTRs display promoter activity in human cell lines and that these LTRs are characterized by the presence of a GC/GT box immediately downstream of the TATA box. This GC/GT box is required for promoter activity, while, surprisingly, the TATA box is dispensable. The ubiquitously expressed transcription factors Sp1 and Sp3 bound to this GC/GT box and stimulated transcription from the promoter-active LTRs in the teratocarcinoma cell line NTera2-D1. However, in HeLa and Drosophila SL-2 cells, Sp1 acted as a transcriptional activator of the LTRs, while Sp3 acted as a repressor of Sp1-mediated transcriptional activation. Cotransfection studies also revealed that the tissue-specific Sp1-related protein BTEB bound to this GC/GT box and stimulated transcription from the LTR promoters in NTera2-D1 cells. These results show that members of the Sp1 protein family are crucial determinants for transcriptional activation of HERV-H LTR promoters and suggest that these proteins may also be involved in determining the tissue-specific expression pattern of HERV-H elements.
Collapse
Affiliation(s)
- E Sjøttem
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, Norway
| | | | | |
Collapse
|
25
|
Abstract
Retroelements comprise a substantial portion of the human genome. Their large number and ubiquitous distribution has led scientists to speculate about their evolutionary origin and their biological functions. Human endogenous retroviruses and their retrotransposon relatives represent a reservoir of possibly pathogenic retroviral genes that may be activated spontaneously or by environmental conditions. They can act as insertion mutagens and activate or inactivate cellular genes, or may be involved in chromosome aberrations by recombination of related elements on different chromosomal locations. Retroviral gene products themselves may also be pathogenic and, for example, could be implicated in the development of tumors and autoimmune diseases. On the other hand, endogenous retroviral elements and nonviral retroposons are thought to have played an important role in shaping the genomes of vertebrates by intracellular transposition events and by generating hot spots of recombination. In the course of time, some of these elements have acquired cellular functions, such as, for instance, in the regulation of gene expression. Therefore, the role of human endogenous retroviruses and retroposons in biological processes is currently a subject of great interest.
Collapse
Affiliation(s)
- C Leib-Mösch
- III. Medizinische Klinik, Klinikum Mannheim, Universität Heidelberg, Mannheim, Federal Republic of Germany
| | | |
Collapse
|