1
|
Prospects for the application of Müller glia and their derivatives in retinal regenerative therapies. Prog Retin Eye Res 2021; 85:100970. [PMID: 33930561 DOI: 10.1016/j.preteyeres.2021.100970] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision. Müller glial cells, which are the major structural cells of the retina, play a very important role in retinal homeostasis during health and disease. They are responsible for the spontaneous retinal regeneration observed in zebrafish and lower vertebrates during early postnatal life, and despite the presence of Müller glia with stem cell characteristics in the adult mammalian retina, there is no evidence that they promote regeneration in humans. Like many other stem cells and neurons derived from pluripotent stem cells, Müller glia with stem cell potential do not differentiate into retinal neurons or integrate into the retina when transplanted into the vitreous of experimental animals with retinal degeneration. However, despite their lack of integration, grafted Müller glia have been shown to induce partial restoration of visual function in spontaneous or induced experimental models of photoreceptor or retinal ganglion cell damage. This improvement in visual function observed after Müller cell transplantation has been ascribed to the release of neuroprotective factors that promote the repair and survival of damaged neurons. Due to the development and availability of pluripotent stem cell lines for therapeutic uses, derivation of Müller cells from retinal organoids formed by iPSC and ESC has provided more realistic prospects for the application of these cells to retinal therapies. Several opportunities for research in the regenerative field have also been unlocked in recent years due to a better understanding of the genomic and proteomic profiles of the developing and regenerating retina in zebrafish, providing the basis for further studies of the human retina. In addition, the increased interest on the nature and function of cellular organelle release and the characterization of molecular components of exosomes released by Müller glia, may help us to design new approaches that could be applied to the development of more effective treatments for retinal degenerative diseases.
Collapse
|
2
|
Herrera E, Agudo-Barriuso M, Murcia-Belmonte V. Cranial Pair II: The Optic Nerves. Anat Rec (Hoboken) 2018; 302:428-445. [DOI: 10.1002/ar.23922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/19/2017] [Accepted: 05/14/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH); Av. Santiago Ramón y Cajal, s/n., 03550 Sant Joan d'Alacant Alicante Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina; Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca); Murcia Spain
| | - Verónica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH); Av. Santiago Ramón y Cajal, s/n., 03550 Sant Joan d'Alacant Alicante Spain
| |
Collapse
|
3
|
Abstract
Purpose of review Progress in stem cell research for blinding diseases over the past decade is now being applied to patients with retinal degenerative diseases and soon perhaps, glaucoma. However, the field still has much to learn about the conversion of stem cells into various retinal cell types, and the potential delivery methods that will be required to optimize the clinical efficacy of stem cells delivered into the eye. Recent findings Recent groundbreaking human clinical trials have demonstrated both the opportunities and current limitations of stem cell transplantation for retinal diseases. New progress in developing in vitro retinal organoids, coupled with the maturation of bio-printing technology, and non-invasive high-resolution imaging have created new possibilities for repairing and regenerating the diseased retina and rigorously validating its clinical impact in vivo. Summary While promising progress is being made, meticulous clinical trials with cells derived using good manufacturing practice, novel surgical methods, and improved methods to derive all of the neuronal cell types present in the retina will be indispensable for developing stem cell transplantation as a paradigm shift for the treatment of blinding diseases.
Collapse
|
4
|
Sam TN, Xiao J, Roehrich H, Low WC, Gregerson DS. Engrafted Neural Progenitor Cells Express a Tissue-Restricted Reporter Gene Associated with Differentiated Retinal Photoreceptor Cells. Cell Transplant 2017; 15:147-60. [PMID: 16719048 DOI: 10.3727/000000006783982098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural progenitor cells (NPCs) have shown ability to repair injured CNS, and might provide precursors to retinal neurons. NPCs were isolated from the brains of 14 day murine embryos of transgenic mice that express β-galactosidase (β-gal) on the arrestin promoter, which specifically directs expression to retinal photoreceptor cells. NPCs were transferred to adult, syngeneic mice via inoculation into the anterior chamber of the eye, the peritoneal cavity, or the brain. At 14 weeks postgrafting, tissues were collected and examined to determine if differentiated NPC progeny were present in retina based on histochemical detection of β-gal. Four of six anterior chamber-inoculated recipients showed Bluo-gal-stained cells in retina, indicating the presence of transferred NPCs or their progeny. Because the progenitor cells do not express β-gal, positive staining indicates differentiation leading to activation of the arrestin promoter. Two recipients inoculated by the intraperitoneal route also exhibited Bluo-gal staining in retina. The NPCs did not express β-gal if inoculated into brain, but survived and dispersed. Most recipients, regardless of inoculation route, were PCR positive for β-gal DNA in extraocular tissues, but no Bluo-gal staining was found outside of the retina. Injury to the retina promoted, but was not required, for progenitor cell engraftment. β-Gal-positive cells were concentrated in the outer layers of the retina. In summary, a reporter gene specifically expressed in differentiated retinal photoreceptor cells due to the activity of the arrestin promoter was expressed in recipient mouse retina following transfer of NPCs prepared from the β-gal transgenic mice. The presence of β-gal DNA, but not Bluo-gal staining, in spleen and other tissues revealed that the cells also migrated elsewhere and took up residence in other organs, but did not undergo differentiation that led to β-gal expression.
Collapse
Affiliation(s)
- Thien N Sam
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
5
|
Wang Q, Gao S, Luo Y, Kang QY. Compound anisodine affects the proliferation and calcium overload of hypoxia-induced rat retinal progenitor cells and brain neural stem cells via the p-ERK1/2/HIF-1α/VEGF pathway. Exp Ther Med 2017; 14:600-608. [PMID: 28672973 PMCID: PMC5488403 DOI: 10.3892/etm.2017.4528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
As a Traditional Chinese Medicine, compound anisodine (CA) has previously been shown to regulate the vegetative nervous system, improve microcirculation and scavenge reactive oxygen species, and has been commonly utilized as a neuroprotective agent to treat ischemic optic neuropathy and choroidoretinopathy. The present study aimed to investigate the neuroprotective effects of CA on the proliferation and calcium overload of hypoxia-induced rat retinal progenitor cells (RPCs) and brain neural stem cells (BNSCs) harvested from neonatal Sprague-Dawley rats. Cells were treated with CA at 0.126, 0.252, 0.505 or 1.010 g/l for four hours prior to or after hypoxia (<1% oxygen) for four h, followed by re-oxygenation for four hours; a normal control group and a CA-untreated hypoxia model group were also included. An MTT assay demonstrated that the cell viability was markedly improved following treatment with 0.126–1.010 g/l CA, compared with that in the hypoxia model group (P<0.05). Bromodeoxyuridine (BrdU) immunocytochemical staining and flow cytometry indicated that after culture in hypoxia for 4 h, the number of BrdU+ RPCs and BNSCs was significant decreased, as well as the cell population in S+G2 phase of the cell cycle, which was significantly attenuated by treatment with 1.010 g/l CA for 4 h prior to hypoxia (P<0.05). Furthermore, laser scanning confocal microscopy showed that the intracellular calcium concentration in hypoxia-cultured RPCs and BNSCs was markedly increased, which was attenuated by 0.126–1.010 g/l CA in a concentration-dependent manner (P<0.05). Furthermore, western blot analysis demonstrated that after hypoxia, the protein levels of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) were upregulated in RPCs and BNSCs, whereas phosphorylated extracellular signal-regulated kinase (phospho-ERK 1/2Thr202/Tyr204) and Cyclin D1 were downregulated; of note, treatment with 1.010 g/l CA significantly attenuated these changes (P<0.05). The results of the present study suggested that CA may improve the proliferation and inhibit calcium overload in hypoxia-induced RPCs and BNSCs by altering the protein levels of Cyclin D1 as well as signaling through the p-ERK1/2/HIF-1α/VEGF pathway.
Collapse
Affiliation(s)
- Qun Wang
- Department of Ophthalmology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shan Gao
- Department of Ophthalmology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yu Luo
- Environment and Genes Related to Diseases Key Laboratory of Education Ministry, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qian-Yan Kang
- Department of Ophthalmology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
6
|
Jindal N, Banik A, Prabhakar S, Vaiphie K, Anand A. Alteration of Neurotrophic Factors After Transplantation of Bone Marrow Derived Lin-ve Stem Cell in NMDA-Induced Mouse Model of Retinal Degeneration. J Cell Biochem 2017; 118:1699-1711. [PMID: 27935095 DOI: 10.1002/jcb.25827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/06/2016] [Indexed: 02/02/2023]
Abstract
Retinal ganglion cell layer (RGCs) is one of the important layers of retina, depleted in Glaucoma. Loss of RGC neurons is a major cellular mechanism involved in its pathogenesis resulting in severe vision loss. Stem cell therapy has emerged as a potential strategy to arrest the apoptotic loss of RGCs and also replace the degenerative cells in damaged retina. Here, we have investigated the incorporation and survival of mouse bone marrow derived Lin-ve stem cells in N-methyl-d-aspartate (NMDA)-induced mouse model of retinal degeneration. Two days after intravitreal injection of NMDA (100 mM) showed significant decrease in ganglion cell number and increase in TUNEL positive apoptotic cells in retinal layers. The injury was further characterized by immunohistochemical expression of Brn3b, GFAP, Bcl2, pCREB, CNTF, GDNF, and BDNF in retinal layers. Lin-ve cells (100,000 dose) were intravitreally transplanted after 2 days of injury and evaluated after 7, 14, and 21 days of transplantation. Transplanted cells were found to have migrated from intravitreal space and incorporated into injured retina at 7, 14, and 21 days post-transplantation. At 21 days Brn3b, CNTF, and BDNF expression was found to be upregulated whereas GDNF was downregulated when compared to respective injury time points. Molecular data showed decrease in the expression of Brn3b, BDNF, CNTF, and GDNF post transplantation when compared with injury groups. This study reveals that Lin-ve stem cells may exert neuroprotective effect in damaged retina mediated by participation of neurotrophic factors induced by stem cell transplantation at the site of injury. J. Cell. Biochem. 118: 1699-1711, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neeru Jindal
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| | - Avijit Banik
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| | - Sudesh Prabhakar
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| | - Kim Vaiphie
- Department of Histopathology, PGIMER, Chandigarh 160012, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| |
Collapse
|
7
|
Chohan A, Singh U, Kumar A, Kaur J. Müller stem cell dependent retinal regeneration. Clin Chim Acta 2016; 464:160-164. [PMID: 27876464 DOI: 10.1016/j.cca.2016.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022]
Abstract
Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement.
Collapse
Affiliation(s)
- Annu Chohan
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Usha Singh
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Kumar
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jasbir Kaur
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
8
|
Predegenerated Schwann cells--a novel prospect for cell therapy for glaucoma: neuroprotection, neuroregeneration and neuroplasticity. Sci Rep 2016; 6:23187. [PMID: 27034151 PMCID: PMC4817039 DOI: 10.1038/srep23187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is an optic neuropathy that leads to irreversible blindness. Because the current therapies are not sufficient to protect against glaucoma-induced visual impairment, new treatment approaches are necessary to prevent disease progression. Cell transplantation techniques are currently considered to be among the most promising opportunities for nervous system damage treatment. The beneficial effects of undifferentiated cells have been investigated in experimental models of glaucoma, however experiments were accompanied by various barriers, which would make putative treatment difficult or even impossible to apply in a clinical setting. The novel therapy proposed in our study creates conditions to eliminate some of the identified barriers described for precursor cells transplantation and allows us to observe direct neuroprotective and pro-regenerative effects in ongoing optic neuropathy without additional modifications to the transplanted cells. We demonstrated that the proposed novel Schwann cell therapy might be promising, effective and easy to apply, and is safer than the alternative cell therapies for the treatment of glaucoma.
Collapse
|
9
|
Kundu J, Michaelson A, Talbot K, Baranov P, Young MJ, Carrier RL. Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture. Acta Biomater 2016; 31:61-70. [PMID: 26621699 DOI: 10.1016/j.actbio.2015.11.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/02/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022]
Abstract
Tissue decellularization strategies have enabled engineering of scaffolds that preserve native extracellular matrix (ECM) structure and composition. In this study, we developed decellularized retina (decell-retina) thin films. We hypothesized that these films, mimicking the retina niche, would promote human retinal progenitor cell (hRPC) attachment, proliferation and differentiation. Retinas isolated from bovine eyes were decellularized using 1% w/v sodium dodecyl sulfate (SDS) and pepsin digested. The resulting decell-retina was biochemically assayed for composition and cast dried to develop thin films. Attachment, viability, morphology, proliferation and gene expression of hRPC cultured on the films were studied in vitro. Biochemical analyses of decell-retina compared to native retina indicated the bulk of DNA (94%) was removed, while the majority of sulfated GAGs (55%), collagen (83%), hyaluronic acid (87%), and key growth factors were retained. The decell-retina films supported hRPC attachment and growth, with cell number increasing 1.5-fold over a week. RT-PCR analysis revealed hRPC expression of rhodopsin, rod outer membrane, neural retina-specific leucine zipper neural and cone-rod homeobox gene on decell-retina films, indicating photoreceptor development. In conclusion, novel decell-retina films show promise as potential substrates for culture and/or transplantation of retinal progenitor cells to treat retinal degenerative disorders. STATEMENT OF SIGNIFICANCE In this study, we report the development of a novel biomaterial, based on decellularized retina (decell-retina) that mimics the retina niche and promotes human retinal progenitor cell (hRPC) attachment, proliferation and differentiation. We estimated, for the first time, the amounts of collagen I, GAGs and HA present in native retina, as well as the decell-retina. We demonstrated that retinas can be decellularized using ionic detergents and can be processed into mechanically stable thin films, which can act as substrates for culturing hRPCs. Rhodopsin, ROM1, NRL and CRX gene expression on the decell-retina films indicated photoreceptor development from RPCs. These results support the potential of decell-retina as a cell delivery platform to treat and manage retinal degenerative disease like AMD.
Collapse
|
10
|
Parameswaran S, Dravid SM, Teotia P, Krishnamoorthy RR, Qiu F, Toris C, Morrison J, Ahmad I. Continuous non-cell autonomous reprogramming to generate retinal ganglion cells for glaucomatous neuropathy. Stem Cells 2015; 33:1743-58. [PMID: 25753398 PMCID: PMC4524556 DOI: 10.1002/stem.1987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/06/2015] [Indexed: 02/03/2023]
Abstract
Glaucoma, where the retinal ganglion cells (RGCs) carrying the visual signals from the retina to the visual centers in the brain are progressively lost, is the most common cause of irreversible blindness. The management approaches, whether surgical, pharmacological, or neuroprotective do not reverse the degenerative changes. The stem cell approach to replace dead RGCs is a viable option but currently faces several barriers, such as the lack of a renewable, safe, and ethical source of RGCs that are functional and could establish contacts with bona fide targets. To address these barriers, we have derived RGCs from the easily accessible adult limbal cells, reprogrammed to pluripotency by a non-nucleic acid approach, thus circumventing the risk of insertional mutagenesis. The generation of RGCs from the induced pluripotent stem (iPS) cells, also accomplished non-cell autonomously, recapitulated the developmental mechanism, ensuring the predictability and stability of the acquired phenotype, comparable to that of native RGCs at biochemical, molecular, and functional levels. More importantly, the induced RGCs expressed axonal guidance molecules and demonstrated the potential to establish contacts with specific targets. Furthermore, when transplanted in the rat model of ocular hypertension, these cells incorporated into the host RGC layer and expressed RGC-specific markers. Transplantation of these cells in immune-deficient mice did not produce tumors. Together, our results posit retinal progenitors generated from non-nucleic acid-derived iPS cells as a safe and robust source of RGCs for replacing dead RGCs in glaucoma.
Collapse
Affiliation(s)
- Sowmya Parameswaran
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | | | - Pooja Teotia
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | | | - Fang Qiu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Carol Toris
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | - John Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, OR
| | - Iqbal Ahmad
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
11
|
Yanai A, Laver CRJ, Gregory-Evans CY, Liu RR, Gregory-Evans K. Enhanced functional integration of human photoreceptor precursors into human and rodent retina in an ex vivo retinal explant model system. Tissue Eng Part A 2015; 21:1763-71. [PMID: 25693608 DOI: 10.1089/ten.tea.2014.0669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinal disease is the major cause of irreversible blindness in developed countries. Transplantation of photoreceptor precursor cells (PPCs) derived from human embryonic stem cells (hESCs) is a promising and widely applicable approach for the treatment of these blinding conditions. Previously, it has been shown that after transplantation into the degenerating retina, the percentage of PPCs that undergo functional integration is low. The factors that inhibit PPC engraftment remain largely unknown, in part, because so many adverse factors could be at play during in vivo experiments. To advance our knowledge in overcoming potential adverse effects and optimize PPC transplantation, we have developed a novel ex vivo system. Harvested neural retina was placed directly on top of cultured retinal pigment epithelial (RPE) cells from a number of different sources. To mimic PPC transplantation into the subretinal space, hESC-derived PPCs were inserted between the retinal explant and underlying RPE. Explants cocultured with hESC-derived RPE maintained normal gross morphology and viability for up to 2 weeks, whereas the explants cultured on ARPE19 and RPE-J failed by 7 days. Furthermore, the proportion of PPCs expressing ribbon synapse-specific proteins BASSOON and RIBEYE was significantly higher when cocultured with hESC-derived RPE (20% and 10%, respectively), than when cocultured with ARPE19 (only 6% and 2%, respectively). In the presence of the synaptogenic factor thrombospondin-1 (TSP-1), the proportion of BASSOON-positive and RIBEYE-positive PPCs cocultured with hESC-derived RPE increased to ∼30% and 15%, respectively. These data demonstrate the utility of an ex vivo model system to define factors, such as TSP-1, which could influence integration efficiency in future in vivo experiments in models of retinal degeneration.
Collapse
Affiliation(s)
- Anat Yanai
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R J Laver
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ran R Liu
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem Cell Res 2015; 14:243-57. [PMID: 25752437 PMCID: PMC4434205 DOI: 10.1016/j.scr.2015.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/16/2022] Open
Abstract
Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment.
Collapse
Affiliation(s)
- Ben Mead
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK; School of Dentistry, University of Birmingham, B4 6NN, UK.
| | - Martin Berry
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Robert A H Scott
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Wendy Leadbeater
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Ben A Scheven
- School of Dentistry, University of Birmingham, B4 6NN, UK
| |
Collapse
|
13
|
Neuroprotective and antiapoptotic activity of lineage-negative bone marrow cells after intravitreal injection in a mouse model of acute retinal injury. Stem Cells Int 2015; 2015:620364. [PMID: 25810725 PMCID: PMC4354968 DOI: 10.1155/2015/620364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022] Open
Abstract
We investigated effects of bone marrow-derived, lineage-negative cell (Lin(-)BMC) transplantation in acute retinal injury. Lin(-)BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin(-)BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin(-)BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin(-)BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin(-)BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors.
Collapse
|
14
|
Emre E, Yüksel N, Duruksu G, Pirhan D, Subaşi C, Erman G, Karaöz E. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy 2015; 17:543-59. [PMID: 25618560 DOI: 10.1016/j.jcyt.2014.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS The purpose of this study was to investigate the neuroprotective effects of bone marrow bone marrow-derived and adipose tissue-derived mesenchymal stromal cells (MSCs) that were intravitreally transplanted in an experimental ocular hypertension (OHT) model. METHODS An OHT rat model was generated by means of intracameral injection of hyaluronic acid into the anterior chamber. MSCs labeled with green fluorescence protein were transplanted intravitreally 1 week after OHT induction. At the end of the second and fourth weeks, retinal ganglion cells were visualized with the use of a flat-mount retina method and were evaluated by means of immunofluorescence staining against green fluorescence protein, vimentin, CD105, and cytokines (interleukin [IL]-1Ra, prostaglandin E2 receptor, IL-6, transforming growth factor-β1, interferon-γ and tumor necrosis factor-α). RESULTS The retinal ganglion cell numbers per area were significantly improved in stem cell-treated OHT groups compared with that in the non-treated OHT group (P < 0.05). The results of immunohistochemical analyses indicated that a limited number of stem cells had integrated into the ganglion cell layer and the inner nuclear layer. The number of cells expressing proinflammatory cytokines (interferon-γ and tumor necrosis factor-α) decreased in the MSC-transferred group compared with that in the OHT group after 4 weeks (P < 0.01). On the other hand, IL-1Ra and prostaglandin E2 receptor expressions were increased in the rat bone marrow-derived MSC group but were more significant in the rat adipose tissue-derived MSC group (P < 0.01). CONCLUSIONS After intravitreal transplantation, MSCs showed a neuroprotective effect in the rat OHT model. Therefore, MSCs promise an alternative therapy approach for functional recovery in the treatment of glaucoma.
Collapse
Affiliation(s)
- Esra Emre
- Department of Ophthalmology, Çerkezköy State Hospital, Tekirdağ, Turkey.
| | - Nurşen Yüksel
- Department of Ophthalmology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Dilara Pirhan
- Department of Ophthalmology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Cansu Subaşi
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (Liv MedCell) Istanbul, Turkey
| | - Gülay Erman
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (Liv MedCell) Istanbul, Turkey
| |
Collapse
|
15
|
Rezanejad H, Soheili ZS, Haddad F, Matin MM, Samiei S, Manafi A, Ahmadieh H. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene. Cell Tissue Res 2014; 356:65-75. [PMID: 24562376 DOI: 10.1007/s00441-014-1795-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/08/2014] [Indexed: 12/31/2022]
Abstract
The neural retina is subjected to various degenerative conditions. Regenerative stem-cell-based therapy holds great promise for treating severe retinal degeneration diseases, although many drawbacks remain to be overcome. One important problem is to gain authentically differentiated cells for replacement. Paired box 6 protein (5a) (PAX6 (5a)) is a highly conserved master control gene that has an essential role in the development of the vertebrate visual system. Human adipose-tissue-derived stem cell (hADSC) isolation was performed by using fat tissues and was confirmed by the differentiation potential of the cells into adipocytes and osteocytes and by their surface marker profile. The coding region of the human PAX6 (5a) gene isoform was cloned and lentiviral particles were propagated in HEK293T. The differentiation of hADSCs into retinal cells was characterized by morphological characteristics, quantitative real-time reverse transcription plus the polymerase chain reaction (qPCR) and immunocytochemistry (ICC) for some retinal cell-specific and retinal pigmented epithelial (RPE) cell-specific markers. hADSCs were successfully isolated. Flow cytometric analysis of surface markers indicated the high purity (~97 %) of isolated hADSCs. After 30 h of post-transduction, cells gradually showed the characteristic morphology of neuronal cells and small axon-like processes emerged. qPCR and ICC confirmed the differentiation of some neural retinal cells and RPE cells. Thus, PAX6 (5a) transcription factor expression, together with medium supplemented with fibronectin, is able to induce the differentiation of hADSCs into retinal progenitors, RPE cells and photoreceptors.
Collapse
Affiliation(s)
- Habib Rezanejad
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,
| | | | | | | | | | | | | |
Collapse
|
16
|
Del Debbio CB, Peng X, Xiong H, Ahmad I. Adult ciliary epithelial stem cells generate functional neurons and differentiate into both early and late born retinal neurons under non-cell autonomous influences. BMC Neurosci 2013; 14:130. [PMID: 24148749 PMCID: PMC3856605 DOI: 10.1186/1471-2202-14-130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022] Open
Abstract
Background The neural stem cells discovered in the adult ciliary epithelium (CE) in higher vertebrates have emerged as an accessible source of retinal progenitors; these cells can self-renew and possess retinal potential. However, recent studies have cast doubt as to whether these cells could generate functional neurons and differentiate along the retinal lineage. Here, we have systematically examined the pan neural and retinal potential of CE stem cells. Results Molecular and cellular analysis was carried out to examine the plasticity of CE stem cells, obtained from mice expressing green fluorescent protein (GFP) under the influence of the promoter of the rod photoreceptor-specific gene, Nrl, using the neurospheres assay. Differentiation was induced by specific culture conditions and evaluated by both transcripts and protein levels of lineage-specific regulators and markers. Temporal pattern of their levels were examined to determine the expression of genes and proteins underlying the regulatory hierarchy of cells specific differentiation in vitro. Functional attributes of differentiation were examined by the presence of current profiles and pharmacological mobilization of intracellular calcium using whole cell recordings and Fura-based calcium imaging, respectively. We demonstrate that stem cells in adult CE not only have the capacity to generate functional neurons, acquiring the expression of sodium and potassium channels, but also respond to specific cues in culture and preferentially differentiate along the lineages of retinal ganglion cells (RGCs) and rod photoreceptors, the early and late born retinal neurons, respectively. The retinal differentiation of CE stem cells was characterized by the temporal acquisition of the expression of the regulators of RGCs and rod photoreceptors, followed by the display of cell type-specific mature markers and mobilization of intracellular calcium. Conclusions Our study demonstrates the bonafide retinal potential of adult CE stem cells and suggests that their plasticity could be harnessed for clinical purposes once barriers associated with any lineage conversion, i.e., low efficiency and fidelity is overcome through the identification of conducive culture conditions.
Collapse
Affiliation(s)
| | | | | | - Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Durham Research Center 1, Room 4044, 985840 Nebraska Medical Center, Omaha, NE 68198-5840, USA.
| |
Collapse
|
17
|
English D, Sharma NK, Sharma K, Anand A. Neural stem cells-trends and advances. J Cell Biochem 2013; 114:764-72. [PMID: 23225161 DOI: 10.1002/jcb.24436] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/23/2012] [Indexed: 12/12/2022]
Abstract
For many years, accepted dogma held that brain is a static organ with no possibility of regeneration of cells in injured or diseased human brain. However, recent preclinical reports have shown regenerative potential of neural stem cells using various injury models. This has resulted in renewed hope for those suffering from spinal cord injury and neural damage. As the potential of stem cell therapy gained impact, these claims, in particular, led to widespread enthusiasm that acute and chronic injury of the nervous system would soon be a problem of the past. The devastation caused by injury or diseases of the brain and spinal cord led to wide premature acceptance that "neural stem cells (NSCs)" derived from embryonic, fetal or adult sources would soon be effective in reversing neural and spinal trauma. However, neural therapy with stem cells has not been realized to its fullest extent. Although, discrete population of regenerative stem cells seems to be present in specific areas of human brain, the function of these cells is unclear. However, similar cells in animals seem to play important role in postnatal growth as well as recovery of neural tissue from injury, anoxia, or disease.
Collapse
Affiliation(s)
- Denis English
- Foundation for Florida Development and Research, Palmetto, Florida
| | | | | | | |
Collapse
|
18
|
Seiler MJ, Aramant RB. Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 2012; 31:661-87. [PMID: 22771454 PMCID: PMC3472113 DOI: 10.1016/j.preteyeres.2012.06.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/23/2012] [Indexed: 12/18/2022]
Abstract
Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a 'nursing' role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance - they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Department of Anatomy & Neurobiology, Reeve-Irvine Research Center, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, 1101 Gross Hall, 845 Health Science Rd., Irvine, CA 92697-4265, USA.
| | | |
Collapse
|
19
|
MRI tracking of FePro labeled fresh and cryopreserved long term in vitro expanded human cord blood AC133+ endothelial progenitor cells in rat glioma. PLoS One 2012; 7:e37577. [PMID: 22662174 PMCID: PMC3360770 DOI: 10.1371/journal.pone.0037577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/24/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Endothelial progenitors cells (EPCs) are important for the development of cell therapies for various diseases. However, the major obstacles in developing such therapies are low quantities of EPCs that can be generated from the patient and the lack of adequate non-invasive imaging approach for in vivo monitoring of transplanted cells. The objective of this project was to determine the ability of cord blood (CB) AC133+ EPCs to differentiate, in vitro and in vivo, toward mature endothelial cells (ECs) after long term in vitro expansion and cryopreservation and to use magnetic resonance imaging (MRI) to assess the in vivo migratory potential of ex vivo expanded and cryopreserved CB AC133+ EPCs in an orthotopic glioma rat model. MATERIALS, METHODS AND RESULTS The primary CB AC133+ EPC culture contained mainly EPCs and long term in vitro conditions facilitated the maintenance of these cells in a state of commitment toward endothelial lineage. At days 15-20 and 25-30 of the primary culture, the cells were labeled with FePro and cryopreserved for a few weeks. Cryopreserved cells were thawed and in vitro differentiated or i.v. administered to glioma bearing rats. Different groups of rats also received long-term cultured, magnetically labeled fresh EPCs and both groups of animals underwent MRI 7 days after i.v. administration of EPCs. Fluorescent microscopy showed that in vitro differentiation of EPCs was not affected by FePro labeling and cryopreservation. MRI analysis demonstrated that in vivo accumulation of previously cryopreserved transplanted cells resulted in significantly higher R2 and R2* values indicating a higher rate of migration and incorporation into tumor neovascularization of previously cryopreserved CB AC133+ EPCs to glioma sites, compared to non-cryopreserved cells. CONCLUSION Magnetically labeled CB EPCs can be in vitro expanded and cryopreserved for future use as MRI probes for monitoring the migration and incorporation to the sites of neovascularization.
Collapse
|
20
|
Wohl SG, Schmeer CW, Isenmann S. Neurogenic potential of stem/progenitor-like cells in the adult mammalian eye. Prog Retin Eye Res 2012; 31:213-42. [DOI: 10.1016/j.preteyeres.2012.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
|
21
|
Sanie-Jahromi F, Ahmadieh H, Soheili ZS, Davari M, Ghaderi S, Kanavi MR, Samiei S, Deezagi A, Pakravesh J, Bagheri A. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid. BMC Res Notes 2012; 5:182. [PMID: 22490806 PMCID: PMC3428660 DOI: 10.1186/1756-0500-5-182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers) during treatment of human retinal pigment epithelium (RPE) cells with amniotic fluid (AF), RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. RESULTS Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1) confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. CONCLUSION Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.
Collapse
|
22
|
Chen LF, FitzGibbon T, He JR, Yin ZQ. Localization and developmental expression patterns of CSPG-cs56 (aggrecan) in normal and dystrophic retinas in two rat strains. Exp Neurol 2012; 234:488-98. [PMID: 22306080 DOI: 10.1016/j.expneurol.2012.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Proteoglycans have a number of important functions in the central nervous system. Aggrecan (hyaluronan-binding proteoglycan, CSPG-cs56) is found in the extracellular matrix of cartilage as well as in the developing brain. We compared the postnatal distribution of CSPG-cs56 in Long Evans (LE) and Royal College of Surgeons (RCS) rat retinas to determine if this proteoglycan played a role in the development of dystrophic retinas. CSPG-cs56 expression was examined in rat retinas aged between birth (postnatal day 0, P0) and P150 using immunofluorescence and Western-blots. Immunofluorescence was quantified using ImageJ. GFAP staining was used to compare Müller cell labeling and the distribution of CSPG-cs56. Both rat strains showed a significant rise in total retinal CSPG-cs56 between P0 and P21; values peaked on P21 in LE rats and P14 in RCS rats. CSPG-cs56 then significantly decreased to lower levels (P35) in both strains before reaching significantly higher levels by P90-P150. CSPG-cs56 positive staining was present in the ganglion cell layer at birth and clear layering of the inner plexiform layer was seen between P7 and P21 due to dendritic staining of retinal ganglion cells. Staining was less intense and diffuse within the outer plexiform over a similar time-course. Light CSPG-cs56 labeling in the region of the outer segments was present at (P14) and became more intense as the retina approached maturity. CSPG-cs56 in the outer segments was the main contributor to the higher expression in older animals. Substantial differences in CSPG-cs56 labeling were not seen between LE and RCS rats. There was no evidence to suggest that Müller cells were the source of CSPG-cs56 in either rat strain, although their staining distributions had a degree of overlap. The lack of significant differences between LE and RCS rats indicates that CSPG-cs56 may not be involved in the degenerative process or the reorganization of the RCS rat retina. We suggest that the main role of CPSG-cs56 is to maintain retinal ganglion cell dendritic structure in the inner plexiform layer and is closely related to providing adequate support and flexibility for the photoreceptor outer segments, which is necessary to maintain their function.
Collapse
Affiliation(s)
- Li-Feng Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.
| | | | | | | |
Collapse
|
23
|
Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol 2011; 95:334-51. [DOI: 10.1016/j.pneurobio.2011.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
|
24
|
Abstract
Retinal degenerative disease has limited therapeutic options and the possibility of stem cell-mediated regenerative treatments is being actively explored for these blinding retinal conditions. The relative accessibility of this central nervous system tissue and the ability to visually monitor changes after transplantation make the retina and adjacent retinal pigment epithelium prime targets for pioneering stem cell therapeutics. Prior work conducted for several decades indicated the promise of cell transplantation for retinal disease, and new strategies that combine these established surgical approaches with stem cell-derived donor cells is ongoing. A variety of tissue-specific and pluripotent-derived donor cells are being advanced to replace lost or damaged retinal cells and/or to slow the disease processes by providing neuroprotective factors, with the ultimate aim of long-term improvement in visual function. Clinical trials are in the early stages, and data on safety and efficacy are widely anticipated. Positive outcomes from these stem cell-based clinical studies would radically change the way that blinding disorders are approached in the clinic.
Collapse
|
25
|
Singh T, Prabhakar S, Gupta A, Anand A. Recruitment of stem cells into the injured retina after laser injury. Stem Cells Dev 2011; 21:448-54. [PMID: 21561324 DOI: 10.1089/scd.2011.0002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Retinal degeneration is a devastating complication of diabetes and other disorders. Stem cell therapy for retinal degeneration has shown encouraging results but functional regeneration has not been yet achieved. Our study was undertaken to evaluate the localization of stem cells delivered to the retina by intravenous versus intravitreal infusion, because stem cell localization is a key factor in ultimate in vivo function. We used lineage-negative bone marrow-derived stem cells in a model wherein retina of mice was induced by precise and reproducible laser injury. Lin(-ve) bone marrow cells (BMCs) were labeled with a tracking dye and their homing capacity was analyzed at time points after infusion. We found that Lin(-ve) BMCs get incorporated into laser-injured retina when transplanted through either the intravitreal or intravenous route. The intravenous route resulted in optimal localization of donor cells at the site of injury. These cells incorporated into injured retina in a dose-dependent manner. The data presented in this study reflect the importance of dose and route for stem cell-based treatment designed to result in retinal regeneration.
Collapse
Affiliation(s)
- Tajinder Singh
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
26
|
Decembrini S, Cananzi M, Gualdoni S, Battersby A, Allen N, Pearson RA, Ali RR, De Coppi P, Sowden JC. Comparative analysis of the retinal potential of embryonic stem cells and amniotic fluid-derived stem cells. Stem Cells Dev 2010; 20:851-63. [PMID: 20939691 DOI: 10.1089/scd.2010.0291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Photoreceptors have recently been generated from mouse and human embryonic stem cells (ESCs), although ethics concerns impede their utilization for cell replacement therapy for retinal disease. Extra-embryonic tissues have received attention as alternative therapeutic sources of stem cells. Human and mouse amniotic fluid-derived stem cells (AFCs) have been reported to be multipotent and express embryonic and adult stem cell markers. Here, in vitro conditions that generate retinal cells from ESCs were used to analyze and compare the retinal potential of murine AFCs and ESCs. We show that AFCs express pluripotency markers (Nanog, Sox2, and Oct3/4) as well as retinal transcription factor genes (Et, Lhx2, Tll1, Six6, Otx2, Pax6, and Fgf15). AFCs from amniotic fluid of Fgf15.gfp, Nrl.gfp, and Crx.gfp embryos cultured in retinal proliferation and differentiation conditions failed to switch on these retinal transgenes. AFCs cultured in retinal-promoting conditions, effective on ESCs, showed reduced expression of retinal markers. Retinal co-cultures activated retinal genes in ESCs but not in AFCs, and migration assays in retinal explants showed limited migration of AFCs compared with ESCs. Unlike ESCs, AFCs do not express the early embryonic ectodermal gene Utf1 and Western analysis of AFCs identified only the B isoform of Oct3/4, rather than the isoform A present in ESCs. We conclude that AFCs have restricted potential and differ considerably from ESCs and retinal progenitor cells. Reprogramming to induce pluripotency or new differentiation protocols will be required to confer retinal potential to AFCs as expression of a subset of pluripotency and retinal markers is not sufficient.
Collapse
Affiliation(s)
- Sarah Decembrini
- UCL Institute of Child Health, Great Ormond Street Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dahlmann-Noor A, Vijay S, Jayaram H, Limb A, Khaw PT. Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve. Can J Ophthalmol 2010; 45:333-41. [PMID: 20648090 DOI: 10.3129/i10-077] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The 3 most common causes of visual impairment and legal blindness in developed countries (age-related macular degeneration, glaucoma, and diabetic retinopathy) share 1 end point: the loss of neural cells of the eye. Although recent treatment advances can slow down the progression of these conditions, many individuals still suffer irreversible loss of vision. Research is aimed at developing new treatment strategies to rescue damaged photoreceptors and retinal ganglion cells (RGC) and to replace lost cells by transplant. The neuroprotective and regenerative potential of stem and progenitor cells from a variety of sources has been explored in models of retinal disease and ganglion cell loss. Continuous intraocular delivery of neurotrophic factors via stem cells (SC) slows down photoreceptor cells and RGC loss in experimental models. Following intraocular transplantation, SC are capable of expressing proteins and of developing a morphology characteristic of photoreceptors or RGC. Recently, recovery of vision has been achieved for the first time in a rodent model of retinal dystrophy, using embryonic SC differentiated into photoreceptors prior to transplant. This indicates that clinically significant synapse formation and acquisition of the functional properties of retinal neurons, and restoration of vision, are distinct future possibilities.
Collapse
|
28
|
Abstract
Stem cell therapy is widely considered as a therapeutic approach for retinal degeneration. Retinal injury results in permanent visual disturbance or blindness. Repair of such damage by stem cells is one of the most feasible types of central nervous system repair. In this review, we consider how stem cells might be optimized for use as donor cells. We discuss the benefits of stem cells for transplantation in retinal degenerative disease. A wide range of stem cells from different sources is being investigated for the treatment of retinal degeneration. This study reviews the recent and old achievements about stem cells for retinal repair.
Collapse
Affiliation(s)
- M Safari
- Department of Anatomy, Semnan University of Medical Science, Semnan, Iran
| |
Collapse
|
29
|
Parameswaran S, Balasubramanian S, Babai N, Qiu F, Eudy JD, Thoreson WB, Ahmad I. Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells 2010; 28:695-703. [PMID: 20166150 DOI: 10.1002/stem.320] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The direct reprogramming of somatic cells to a pluripotent state holds significant implications for treating intractable degenerative diseases by ex vivo cell therapy. In addition, the reprogrammed cells can serve as a model for diseases and the discovery of drugs and genes. Here, we demonstrate that mouse fibroblast induced pluripotent stem cells (iPSCs) represent a renewable and robust source of retinal progenitors, capable of generating a wide range of retinal cell types that includes retinal ganglion cells (RGCs), cone, and rod photoreceptors. They respond to simulated microenvironment of early and late retinal histogenesis by differentiating into stage-specific retinal cell types through the recruitment of normal mechanisms. The depth of the retinal potential of iPSCs suggests that they may be used to formulate stem cell approaches to understand and treat a wide range of retinal degenerative diseases from glaucoma to age-related macular degeneration (AMD).
Collapse
|
30
|
Hasan SM, Vugler AA, Miljan EA, Sinden JD, Moss SE, Greenwood J. Immortalized human fetal retinal cells retain progenitor characteristics and represent a potential source for the treatment of retinal degenerative disease. Cell Transplant 2010; 19:1291-306. [PMID: 20447347 DOI: 10.3727/096368910x505477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human fetal retinal cells have been widely advocated for the development of cellular replacement therapies in patients with retinal dystrophies and age-related macular degeneration. A major limitation, however, is the lack of an abundant and renewable source of cells to meet therapeutic demand, although theoretically this may be addressed through the use of immortalized retinal progenitor cell lines. Here, we have used the temperature-sensitive tsA58 simian virus SV40 T antigen to conditionally immortalize human retinal progenitor cells isolated from retinal tissue at 10-12 weeks of gestation. We show that immortalized human fetal retinal cells retain their progenitor cell properties over many passages, and are comparable with nonimmortalized human fetal retinal cultures from the same gestational period with regard to expression of certain retinal genes. To evaluate the capacity of these cells to integrate into the diseased retina and to screen for potential tumorigenicity, cells were grafted into neonatal hooded Lister rats and RCS dystrophic rats. Both cell lines exhibited scarce integration into the host retina and failed to express markers of mature differentiated retinal cells. Moreover, although immortalized cells showed a greater propensity to survive, the cell lines demonstrated poor long-term survival. All grafts were infiltrated with host macrophage/microglial cells throughout their duration of survival. This study demonstrates that immortalized human fetal retinal progenitor cells retain their progenitor characteristics and may therefore have therapeutic potential in strategies that demand a renewable and consistent supply of donor cells for the treatment of degenerative retinal diseases.
Collapse
Affiliation(s)
- Shazeen M Hasan
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Retinal degenerative diseases are the leading cause of incurable blindness worldwide. Furthermore, existing pharmacological and surgical interventions are only partially effective in halting disease progression, thus adjunctive neuroprotective strategies are desperately needed to preserve vision. Stem cells appear to possess inherent neuroprotective abilities, at least in part by providing neurotrophic support to injured neurons. Advances in stem cell biology offer the hope of new therapies for a broad range of neurodegenerative conditions, including those of the retina. Experimental cell-mediated therapies also hint at the tantalizing possibility of achieving retinal neuronal replacement and regeneration, once cells are lost to the disease process. This article summarizes the latest advances in cell therapies for neuroprotection and regeneration in neurodegenerative pathologies of both the inner and outer retina.
Collapse
Affiliation(s)
- Natalie D Bull
- Cambridge Centre for Brain Repair, Cambridge, CB2 0PY, UK
| | | |
Collapse
|
32
|
Stem/progenitor cells: A potential source of retina-specific cells for retinal repair. Neurosci Res 2009; 65:215-21. [DOI: 10.1016/j.neures.2009.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/21/2009] [Accepted: 07/20/2009] [Indexed: 11/18/2022]
|
33
|
Johnson TV, Bull ND, Martin KR. Identification of barriers to retinal engraftment of transplanted stem cells. Invest Ophthalmol Vis Sci 2009; 51:960-70. [PMID: 19850833 DOI: 10.1167/iovs.09-3884] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Intraocular stem cell transplantation may be therapeutic for retinal neurodegenerative diseases such as glaucoma via neuronal replacement and/or neuroprotection. However, efficacy is hindered by extremely poor retinal graft integration. The purpose was to identify the major barrier to retinal integration of intravitreally transplanted stem cells, which was hypothesized to include the cellular and/or extracellular matrix (ECM) components of the inner limiting membrane (ILM). METHODS Mesenchymal stem cells (MSCs) were cocultured on the vitreal surface of retinal explants. Retinal MSC migration was compared between control explants and explants in which portions of the ILM were removed by mechanical peeling; the inner basal lamina was digested with collagenase; and glial cell reactivity was selectively modulated with alpha-aminoadipic acid (AAA). In vivo, the MSCs were transplanted after intravitreal AAA or saline injection into glaucomatous rat eyes. RESULTS Retinal MSC migration correlated positively with the amount of peeled ILM, whereas enzymatic digestion of the basal lamina was robust but did not enhance MSC entry. In contrast, AAA treatment suppressed glial cell reactivity and facilitated a >50-fold increase in MSC migration into retinal explants. In vivo analysis showed that AAA treatment led to a more than fourfold increase in retinal engraftment. CONCLUSIONS The results demonstrated that the ECM of the inner basal lamina is neither necessary nor sufficient to prevent migration of transplanted cells into the neural retina. In contrast, glial reactivity was associated with poor graft migration. Targeted disruption of glial reactivity dramatically improved the structural integration of intravitreally transplanted cells.
Collapse
Affiliation(s)
- Thomas V Johnson
- Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
34
|
Dutt K, Cao Y. Engineering retina from human retinal progenitors (cell lines). Tissue Eng Part A 2009; 15:1401-13. [PMID: 19113950 DOI: 10.1089/ten.tea.2007.0358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinal degeneration resulting in the loss of photoreceptors is the leading cause of blindness. Several therapeutic protocols are under consideration for treatment of this disease. Tissue replacement is one such strategy currently being explored. However, availability of tissues for transplant poses a major obstacle. Another strategy with great potential is the use of adult stem cells, which could be expanded in culture and then utilized to engineer retinal tissue. In this study, we have explored a spontaneously immortalized human retinal progenitor cell line for its potential in retinal engineering using rotary cultures to generate three-dimensional (3D) structures. Retinal progenitors cultured alone or cocultured with retinal pigment epithelial cells form aggregates. The aggregate size increases between days 1 and 10. The cells grown as a 3D culture rotary system, which promotes cell-cell interaction, retain a spectrum of differentiation capability. Photoreceptor differentiation in these cultures is confirmed by significant upregulation of rhodopsin and AaNat, an enzyme implicated in melatonin synthesis (immunohistochemistry and Western blot analysis). Photoreceptor induction and differentiation is further attested to by the upregulation of rod transcription factor Nrl, Nr(2)e(3), expression of interstitial retinal binding protein, and rhodopsin kinase by reverse transcription-polymerase chain reaction. Differentiation toward other cell lineages is confirmed by the expression of tyrosine hydroxylase in amacrine cells, thy 1.1 expression in ganglion cells and calbindin, and GNB3 expression in cone cells. The capability of retinal progenitors to give rise to several retinal cell types when grown as aggregated cells in rotary culture offers hope that progenitor stem cells under appropriate culture conditions will be valuable to engineer retinal constructs, which could be further tested for their transplant potential. The fidelity with which this multipotential cell line retains its capacity to differentiate into multiple cell types holds great promise for the use of tissue-specific adult stem cells for therapy.
Collapse
Affiliation(s)
- Kamla Dutt
- Department of Pathology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA.
| | | |
Collapse
|
35
|
Limb GA, Daniels JT, Cambrey AD, Secker GA, Shortt AJ, Lawrence JM, Khaw PT. Current Prospects for Adult Stem Cell–Based Therapies in Ocular Repair and Regeneration. Curr Eye Res 2009; 31:381-90. [PMID: 16714229 DOI: 10.1080/02713680600681210] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent advances in stem cell biology have led to the exploration of stem cell-based therapies to treat a wide range of human diseases. In the ophthalmic field, much hope has been placed on the potential use of these cells to restore sight, particularly in those conditions in which other established treatments have failed and in which visual function has been irreversibly damaged by disease or injury. At present, there are many limitations for the immediate use of embryonic stem cells to treat ocular disease, and as more evidence emerges that adult stem cells are present in the adult human eye, it is clear that these cells may have advantages to develop into feasible therapeutic treatments without the problems associated with embryonic research and immune rejection. Here we discuss the current prospects for the application of various adult ocular stem cells to human therapies for restoration of vision.
Collapse
Affiliation(s)
- G A Limb
- Ocular Repair and Regeneration Biology Unit, Departments of Cell Biology and Pathology, Institute of Ophthalmology, UCL and Moorfields Eye Hospital, 11 Bath Street, London, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Over the past few years a great deal of interest has been generated in using stem cells/progenitors to treat degenerative diseases that afflict different tissues, including retina. This interest is due to the defining properties of stem cells/progenitors, the ability of these cells to self-renew and generate all the basic cell types of the particular tissue to which they belong. In addition, the recent reports of plasticity of the adult tissue-specific stem cells/progenitors and directed differentiation of the embryonic cells (ES) has fueled the hope for cell and gene therapy using stem cells from heterologous sources. Will this approach work for treating retinal degeneration? Here, we review the current state of knowledge about obtaining retinal cells from heterologous sources, including ES cells.
Collapse
Affiliation(s)
- Ani M Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, 68198, USA
| | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Stem-cell research is being investigated for the treatment of retina diseases. Cell replacement strategies have the potential to improve vision in patients who were previously considered to be untreatable. This review summarizes progress within the field and obstacles which must be overcome to make stem-cell therapy a viable treatment for select retinal disease. RECENT FINDINGS Researchers have demonstrated that stem-cell transplants can survive, migrate, differentiate, and integrate within the retina. Stem cells from various developmental stages have been used in these experiments, including embryonic stem cells, neural stem cells, mesenchymal stem cells, retinal stem cells, and adult stem cells from the ciliary margin. Not only can these transplants adopt retina-like morphologies and phenotypes, but they have also shown evidence of synaptic reconnection and visual recovery in both animal and human studies. Still, work must be done to achieve higher yields of functioning retinal neurons and to promote better integration within the host retina. SUMMARY Although many obstacles remain, stem-cell-based therapy is a promising treatment to restore vision in patients with retina disease.
Collapse
|
38
|
In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem Biophys Res Commun 2009; 380:230-5. [DOI: 10.1016/j.bbrc.2009.01.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/12/2009] [Indexed: 01/14/2023]
|
39
|
Ciliary Neurotrophic Factor-Mediated Signaling Regulates Neuronal Versus Glial Differentiation of Retinal Stem Cells/Progenitors by Concentration-Dependent Recruitment of Mitogen-Activated Protein Kinase and Janus Kinase-Signal Transducer and Activator of. Stem Cells 2008; 26:2611-24. [DOI: 10.1634/stemcells.2008-0222] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Singhal S, Lawrence JM, Bhatia B, Ellis JS, Kwan AS, Macneil A, Luthert PJ, Fawcett JW, Perez MT, Khaw PT, Limb GA. Chondroitin sulfate proteoglycans and microglia prevent migration and integration of grafted Müller stem cells into degenerating retina. Stem Cells 2008; 26:1074-82. [PMID: 18218817 DOI: 10.1634/stemcells.2007-0898] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
At present, there are severe limitations to the successful migration and integration of stem cells transplanted into the degenerated retina to restore visual function. This study investigated the potential role of chondroitin sulfate proteoglycans (CSPGs) and microglia in the migration of human Müller glia with neural stem cell characteristics following subretinal injection into the Lister hooded (LH) and Royal College of Surgeons (RCS) rat retinae. Neonate LH rat retina showed minimal baseline microglial accumulation (CD68-positive cells) that increased significantly 2 weeks after transplantation (p < .001), particularly in the ganglion cell layer (GCL) and inner plexiform layer. In contrast, nontransplanted 5-week-old RCS rat retina showed considerable baseline microglial accumulation in the outer nuclear layer (ONL) and photoreceptor outer segment debris zone (DZ) that further increased (p < .05) throughout the retina 2 weeks after transplantation. Marked deposition of the N-terminal fragment of CSPGs, as well as neurocan and versican, was observed in the DZ of 5-week-old RCS rat retinae, which contrasted with the limited expression of these proteins in the GCL of the adult and neonate LH rat retinae. Staining for CSPGs and CD68 revealed colocalization of these two molecules in cells infiltrating the ONL and DZ of the degenerating RCS rat retina. Enhanced immune suppression with oral prednisolone and intraperitoneal injections of indomethacin caused a reduction in the number of microglia but did not facilitate Müller stem cell migration. However, injection of cells with chondroitinase ABC combined with enhanced immune suppression caused a dramatic increase in the migration of Müller stem cells into all the retinal cell layers. These observations suggest that both microglia and CSPGs constitute a barrier for stem cell migration following transplantation into experimental models of retinal degeneration and that control of matrix deposition and the innate microglial response to neural retina degeneration may need to be addressed when translating cell-based therapies to treat human retinal disease.
Collapse
Affiliation(s)
- Shweta Singhal
- Institute of Ophthalmology and Moorfields Eye Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhao X, Das AV, Bhattacharya S, Thoreson WB, Sierra JR, Mallya KB, Ahmad I. Derivation of neurons with functional properties from adult limbal epithelium: implications in autologous cell therapy for photoreceptor degeneration. Stem Cells 2008; 26:939-49. [PMID: 18203675 DOI: 10.1634/stemcells.2007-0727] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The limbal epithelium (LE), a circular and narrow epithelium that separates cornea from conjunctiva, harbors stem cells/progenitors in its basal layer that regenerate cornea. We have previously demonstrated that cells in the basal LE, when removed from their niche and cultured in reduced bond morphogenetic protein signaling, acquire properties of neural progenitors. Here, we demonstrate that LE-derived neural progenitors generate neurons with functional properties and can be directly differentiated along rod photoreceptor lineage in vitro and in vivo. These observations posit the LE as a potential source of neural progenitors for autologous cell therapy to treat photoreceptor degeneration in age-related macular degeneration and retinitis pigmentosa.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Morris AC, Scholz T, Fadool JM. Rod progenitor cells in the mature zebrafish retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 613:361-8. [PMID: 18188965 DOI: 10.1007/978-0-387-74904-4_42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The zebrafish is an excellent model organism in which to study the retina's response to photoreceptor degeneration and/or acute injury. While much has been learned about the retinal stem and progenitor cells that mediate the damage response, several questions remain that cannot be addressed by acute models of injury. The development of genetic models, such as the XOPS-mCFP transgenic line, should further efforts to understand the nature of the signals that promote rod progenitor proliferation and differentiation following photoreceptor loss. This in turn may help to refine future approaches in higher vertebrates aimed at enhancing retinal progenitor cell activity for therapeutic purposes.
Collapse
Affiliation(s)
- Ann C Morris
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | |
Collapse
|
43
|
Towards therapeutic application of ocular stem cells. Semin Cell Dev Biol 2007; 18:805-18. [DOI: 10.1016/j.semcdb.2007.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/12/2007] [Indexed: 12/18/2022]
|
44
|
Canola K, Angénieux B, Tekaya M, Quiambao A, Naash MI, Munier FL, Schorderet DF, Arsenijevic Y. Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis Sci 2007; 48:446-54. [PMID: 17197566 PMCID: PMC2823590 DOI: 10.1167/iovs.06-0190] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the potential of newborn retinal stem cells (RSCs) isolated from the radial glia population to integrate the retina, this study was conducted to investigate the fate of in vitro expanded RSCs transplanted into retinas devoid of photoreceptors (adult rd1 and old VPP mice and rhodopsin-mutated transgenic mice) or partially degenerated retina (adult VPP mice) retinas. METHODS Populations of RSCs and progenitor cells were isolated either from DBA2J newborn mice and labeled with the red lipophilic fluorescent dye (PKH26) or from GFP (green fluorescent protein) transgenic mice. After expansion in EGF+FGF2 (epidermal growth factor+fibroblast growth factor), cells were transplanted intravitreally or subretinally into the eyes of adult wild-type, transgenic mice undergoing slow (VPP strain) or rapid (rd1 strain) retinal degeneration. RESULTS Only limited migration and differentiation of the cells were observed in normal mice injected subretinally or in VPP and rd1 mice injected intravitreally. After subretinal injection in old VPP mice, transplanted cells massively migrated into the ganglion cell layer and, at 1 and 4 weeks after injection, harbored neuronal and glial markers expressed locally, such as beta-tubulin-III, NeuN, Brn3b, or glial fibrillary acidic protein (GFAP), with a marked preference for the glial phenotype. In adult VPP retinas, the grafted cells behaved similarly. Few grafted cells stayed in the degenerating outer nuclear layer (ONL). These cells were, in rare cases, positive for rhodopsin or recoverin, markers specific for photoreceptors and some bipolar cells. CONCLUSIONS These results show that the grafted cells preferentially integrate into the GCL and IPL and express ganglion cell or glial markers, thus exhibiting migratory and differentiation preferences when injected subretinally. It also appears that the retina, whether partially degenerated or already degenerated, does not provide signals to induce massive differentiation of RSCs into photoreceptors. This observation suggests that a predifferentiation of RSCs into photoreceptors before transplantation may be necessary to obtain graft integration in the ONL.
Collapse
Affiliation(s)
- Kriss Canola
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Brigitte Angénieux
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Meriem Tekaya
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander Quiambao
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Francis L. Munier
- Unit of Clinical Oculogenetics, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Hall CM, Kicic A, Lai CM, Rakoczy PE. Using stem cells to repair the degenerate retina. Stem cells in the context of retinal degenerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:381-8. [PMID: 17249600 DOI: 10.1007/0-387-32442-9_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Christine M Hall
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Australia
| | | | | | | |
Collapse
|
46
|
Abstract
BACKGROUND The origin, function and physiology of totipotent embryonic cells are configured to construct organs and create cross-talk between cells for the biological and neurophysiologic development of organisms. Adult stem cells are involved in regenerating tissues for renewal and damage repair. FINDINGS Adult stem cells have been isolated from adult tissue, umbilical cord blood and other non-embryonic sources, and can transform into many tissues and cell types in response to pathophysiological stimuli. Clinical applications of adult stem cells and progenitor cells have potential in the regeneration of blood cells, skin, bone, cartilage and heart muscle, and may have potential in degenerative diseases. Multi-pluripotent adult stem cells can change their phenotype in response to trans-differentiation or fusion and their therapeutic potential could include therapies regulated by pharmacological modulation, for example mobilising endogenous stem cells and directing them within a tissue to stimulate regeneration. Adult stem cells could also provide a vehicle for gene therapy, and genetically-engineered human adult stem cells have shown success in treatment of genetic disease. CONCLUSION Deriving embryonic stem cells from early human embryos raises ethical, legal, religious and political questions. The potential uses of stem cells for generating human tissues are the subject of ongoing public debate. Stem cells must be used in standardised and controlled conditions in order to guarantee the best safety conditions for the patients. One critical point will be to verify the risk of tumourigenicity; this issue may be more relevant to embryonic than adult stem cells.
Collapse
Affiliation(s)
- Augusto Pessina
- Department of Public Health, Microbiology, Virology, University of Milan, Italy.
| | | |
Collapse
|
47
|
Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A 2006; 103:13174-9. [PMID: 16938843 PMCID: PMC1559772 DOI: 10.1073/pnas.0603747103] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The well regulated activities of microglia and T cells specific to central nervous system (CNS) antigens can contribute to the protection of CNS neural cells and their renewal from adult neural stem/progenitor cells (aNPCs). Here we report that T cell-based vaccination of mice with a myelin-derived peptide, when combined with transplantation of aNPCs into the cerebrospinal fluid (CSF), synergistically promoted functional recovery after spinal cord injury. The synergistic effect was correlated with modulation of the nature and intensity of the local T cell and microglial response, expression of brain-derived neurotrophic factor and noggin protein, and appearance of newly formed neurons from endogenous precursor-cell pools. These results substantiate the contention that the local immune response plays a crucial role in recruitment of aNPCs to the lesion site, and suggest that similar immunological manipulations might also serve as a therapeutic means for controlled migration of stem/progenitor cells to other acutely injured CNS sites.
Collapse
Affiliation(s)
- Yaniv Ziv
- *Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel; and
| | - Hila Avidan
- *Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel; and
| | - Stefano Pluchino
- Neuroimmunology Unit (DIBIT), Department of Neurology and Neurophysiology, San Raffaele Hospital, Via Olgettina 58, 20132 Milano, Italy
| | - Gianvito Martino
- Neuroimmunology Unit (DIBIT), Department of Neurology and Neurophysiology, San Raffaele Hospital, Via Olgettina 58, 20132 Milano, Italy
| | - Michal Schwartz
- *Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Yao J, Sun X, Wang Y, Wang L. Muller glia induce retinal progenitor cells to differentiate into retinal ganglion cells. Neuroreport 2006; 17:1263-7. [PMID: 16951566 DOI: 10.1097/01.wnr.0000227991.23046.b7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retinal progenitor cells could differentiate into various retinal cells that made cell-replacement therapy possible. Here, we investigated the role of cellular microenvironment on their regulation and differentiation and found that the percentage of proliferating cells and the percentage of retinal ganglion cells produced from them increased, when retinal progenitor cells were cocultured with Muller glia. Muller glia conditioned medium had the similar results. It is speculated that rather than traditional supportive roles, Muller glia may have an active regulatory role inducing retinal progenitor cells to proliferate and differentiate into ganglion cells by secreting some diffusible and membrane-associated factors. Identification of Muller glia-derived factors will be made to elucidate the molecular mechanisms of neurogenesis.
Collapse
Affiliation(s)
- Jing Yao
- China-Australia Link Laboratory, Department of Ophthalmology, Eye & ENT Hospital, and Department of Anatomy and Embryo, Shanghai Medical College, Fudan University, Shanghai, PR China
| | | | | | | |
Collapse
|
49
|
Das AV, Mallya KB, Zhao X, Ahmad F, Bhattacharya S, Thoreson WB, Hegde GV, Ahmad I. Neural stem cell properties of Müller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 2006; 299:283-302. [PMID: 16949068 DOI: 10.1016/j.ydbio.2006.07.029] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/16/2006] [Accepted: 07/25/2006] [Indexed: 01/12/2023]
Abstract
The retina in adult mammals, unlike those in lower vertebrates such as fish and amphibians, is not known to support neurogenesis. However, when injured, the adult mammalian retina displays neurogenic changes, raising the possibility that neurogenic potential may be evolutionarily conserved and could be exploited for regenerative therapy. Here, we show that Müller cells, when retrospectively enriched from the normal retina, like their radial glial counterparts in the central nervous system (CNS), display cardinal features of neural stem cells (NSCs), i.e., they self-renew and generate all three basic cell types of the CNS. In addition, they possess the potential to generate retinal neurons, both in vitro and in vivo. We also provide direct evidence, by transplanting prospectively enriched injury-activated Müller cells into normal eye, that Müller cells have neurogenic potential and can generate retinal neurons, confirming a hypothesis, first proposed in lower vertebrates. This potential is likely due to the NSC nature of Müller cells that remains dormant under the constraint of non-neurogenic environment of the adult normal retina. Additionally, we demonstrate that the mechanism of activating the dormant stem cell properties in Müller cells involves Wnt and Notch pathways. Together, these results identify Müller cells as latent NSCs in the mammalian retina and hence, may serve as a potential target for cellular manipulation for treating retinal degeneration.
Collapse
Affiliation(s)
- Ani V Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5840, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Merhi-Soussi F, Angénieux B, Canola K, Kostic C, Tekaya M, Hornfeld D, Arsenijevic Y. High yield of cells committed to the photoreceptor fate from expanded mouse retinal stem cells. Stem Cells 2006; 24:2060-70. [PMID: 16644923 DOI: 10.1634/stemcells.2005-0311] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of the present work was to generate, from retinal stem cells (RSCs), a large number of cells committed toward the photoreceptor fate in order to provide an unlimited cell source for neurogenesis and transplantation studies. We expanded RSCs (at least 34 passages) sharing characteristics of radial glial cells and primed the cells in vitro with fibroblast growth factor (FGF)-2 for 5 days, after which cells were treated with the B27 supplement to induce cell differentiation and maturation. Upon differentiation, cells expressed cell type-specific markers corresponding to neurons and glia. We show by immunocytochemistry analysis that a subpopulation of differentiated cells was committed to the photoreceptor lineage given that these cells expressed the photoreceptor proteins recoverin, peripherin, and rhodopsin in a same ratio. Furthermore, cells infected during the differentiation procedure with a lentiviral vector expressing green fluorescent protein (GFP) under the control of either the rhodopsin promoter or the interphotoreceptor retinoid-binding protein (IRBP) promoter, expressed GFP. FGF-2 priming increased neuronal differentiation while decreasing glia generation. Reverse transcription-polymerase chain reaction analyses revealed that the differentiated cells expressed photoreceptor-specific genes such as Crx, rhodopsin, peripherin, IRBP, and phosphodiesterase-alpha. Quantification of the differentiated cells showed a robust differentiation into the photoreceptor lineage: Approximately 25%-35% of the total cells harbored photoreceptor markers. The generation of a significant number of nondifferentiated RSCs as well as differentiated photoreceptors will enable researchers to determine via transplantation studies which cells are the most adequate to integrate a degenerating retina.
Collapse
Affiliation(s)
- Faten Merhi-Soussi
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, 15 av. de France, 1004 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|