1
|
Yuan D, Ji X, Hao S, Gestrich JY, Duan W, Wang X, Xiang Y, Yang J, Hu P, Xu M, Liu L, Wei H. Lamina feedback neurons regulate the bandpass property of the flicker-induced orientation response in Drosophila. J Neurochem 2020; 156:59-75. [PMID: 32383496 DOI: 10.1111/jnc.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/28/2022]
Abstract
Natural scenes contain complex visual cues with specific features, including color, motion, flicker, and position. It is critical to understand how different visual features are processed at the early stages of visual perception to elicit appropriate cellular responses, and even behavioral output. Here, we studied the visual orientation response induced by flickering stripes in a novel behavioral paradigm in Drosophila melanogaster. We found that free walking flies exhibited bandpass orientation response to flickering stripes of different frequencies. The most sensitive frequency spectrum was confined to low frequencies of 2-4 Hz. Through genetic silencing, we showed that lamina L1 and L2 neurons, which receive visual inputs from R1 to R6 neurons, were the main components in mediating flicker-induced orientation behavior. Moreover, specific blocking of different types of lamina feedback neurons Lawf1, Lawf2, C2, C3, and T1 modulated orientation responses to flickering stripes of particular frequencies, suggesting that bandpass orientation response was generated through cooperative modulation of lamina feedback neurons. Furthermore, we found that lamina feedback neurons Lawf1 were glutamatergic. Thermal activation of Lawf1 neurons could suppress neural activities in L1 and L2 neurons, which could be blocked by the glutamate-gated chloride channel inhibitor picrotoxin (PTX). In summary, lamina monopolar neurons L1 and L2 are the primary components in mediating flicker-induced orientation response. Meanwhile, lamina feedback neurons cooperatively modulate the orientation response in a frequency-dependent way, which might be achieved through modulating neural activities of L1 and L2 neurons.
Collapse
Affiliation(s)
- Deliang Yuan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoxiao Ji
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Shun Hao
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Julia Yvonne Gestrich
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Wenlan Duan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xinwei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Yuanhang Xiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jihua Yang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Pengbo Hu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Mengbo Xu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
2
|
Visual modelling supports the potential for prey detection by means of diurnal active photolocation in a small cryptobenthic fish. Sci Rep 2019; 9:8089. [PMID: 31147614 PMCID: PMC6542814 DOI: 10.1038/s41598-019-44529-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/17/2019] [Indexed: 11/16/2022] Open
Abstract
Active sensing has been well documented in animals that use echolocation and electrolocation. Active photolocation, or active sensing using light, has received much less attention, and only in bioluminescent nocturnal species. However, evidence has suggested the diurnal triplefin Tripterygion delaisi uses controlled iris radiance, termed ocular sparks, for prey detection. While this form of diurnal active photolocation was behaviourally described, a study exploring the physical process would provide compelling support for this mechanism. In this paper, we investigate the conditions under which diurnal active photolocation could assist T. delaisi in detecting potential prey. In the field, we sampled gammarids (genus Cheirocratus) and characterized the spectral properties of their eyes, which possess strong directional reflectors. In the laboratory, we quantified ocular sparks size and their angle-dependent radiance. Combined with environmental light measurements and known properties of the visual system of T. delaisi, we modeled diurnal active photolocation under various scenarios. Our results corroborate that diurnal active photolocation should help T. delaisi detect gammarids at distances relevant to foraging, 4.5 cm under favourable conditions and up to 2.5 cm under average conditions. To determine the prevalence of diurnal active photolocation for micro-prey, we encourage further theoretical and empirical work.
Collapse
|
3
|
Warrington RE, Hart NS, Potter IC, Collin SP, Hemmi JM. Retinal temporal resolution and contrast sensitivity in the parasitic lamprey Mordacia mordax and its non-parasitic derivative Mordacia praecox. J Exp Biol 2017; 220:1245-1255. [PMID: 28108670 DOI: 10.1242/jeb.150383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
Abstract
Lampreys and hagfishes are the sole extant representatives of the early agnathan (jawless) vertebrates. We compared retinal function of fully metamorphosed, immature Mordacia mordax (which are about to commence parasitic feeding) with those of sexually mature individuals of its non-parasitic derivative Mpraecox We focused on elucidating the retinal adaptations to dim-light environments in these nocturnally active lampreys, using electroretinography to determine the temporal resolution (flicker fusion frequency, FFF) and temporal contrast sensitivity of enucleated eyecups at different temperatures and light intensities. FFF was significantly affected by temperature and light intensity. Critical flicker fusion frequency (cFFF, the highest FFF recorded) of M. praecox and M. mordax increased from 15.1 and 21.8 Hz at 9°C to 31.1 and 36.9 Hz at 24°C, respectively. Contrast sensitivity of both species increased by an order of magnitude between 9 and 24°C, but remained comparatively constant across all light intensities. Although FFF values for Mordacia spp. are relatively low, retinal responses showed a particularly high contrast sensitivity of 625 in M. praecox and 710 in M. mordax at 24°C. This suggests selective pressures favour low temporal resolution and high contrast sensitivity in both species, thereby enhancing the capture of photons and increasing sensitivity in their light-limited environments. FFF indicated all retinal photoreceptors exhibit the same temporal response. Although the slow response kinetics (i.e. low FFF) and saturation of the response at bright light intensities characterise the photoreceptors of both species as rod-like, it is unusual for such a photoreceptor to be functional under scotopic and photopic conditions.
Collapse
Affiliation(s)
- Rachael E Warrington
- School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia .,UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Ian C Potter
- Centre for Fish, Fisheries and Aquatic Ecosystems Research, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Shaun P Collin
- School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia.,UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jan M Hemmi
- School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia.,UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
4
|
Electrophysiological measures of temporal resolution, contrast sensitivity and spatial resolving power in sharks. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:197-210. [DOI: 10.1007/s00359-017-1154-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
|
5
|
Spectral sensitivity, luminous sensitivity, and temporal resolution of the visual systems in three sympatric temperate coastal shark species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:997-1013. [DOI: 10.1007/s00359-014-0950-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 01/04/2023]
|
6
|
Sabbah S, Hawryshyn CW. What has driven the evolution of multiple cone classes in visual systems: object contrast enhancement or light flicker elimination? BMC Biol 2013; 11:77. [PMID: 23826998 PMCID: PMC3720213 DOI: 10.1186/1741-7007-11-77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022] Open
Abstract
Background Two competing theories have been advanced to explain the evolution of multiple cone classes in vertebrate eyes. These two theories have important, but different, implications for our understanding of the design and tuning of vertebrate visual systems. The ‘contrast theory’ proposes that multiple cone classes evolved in shallow-water fish to maximize the visual contrast of objects against diverse backgrounds. The competing ‘flicker theory’ states that multiple cone classes evolved to eliminate the light flicker inherent in shallow-water environments through antagonistic neural interactions, thereby enhancing object detection. However, the selective pressures that have driven the evolution of multiple cone classes remain largely obscure. Results We show that two critical assumptions of the flicker theory are violated. We found that the amplitude and temporal frequency of flicker vary over the visible spectrum, precluding its cancellation by simple antagonistic interactions between the output signals of cones. Moreover, we found that the temporal frequency of flicker matches the frequency where sensitivity is maximal in a wide range of fish taxa, suggesting that the flicker may actually enhance the detection of objects. Finally, using modeling of the chromatic contrast between fish pattern and background under flickering illumination, we found that the spectral sensitivity of cones in a cichlid focal species is optimally tuned to maximize the visual contrast between fish pattern and background, instead of to produce a flicker-free visual signal. Conclusions The violation of its two critical assumptions substantially undermines support for the flicker theory as originally formulated. While this alone does not support the contrast theory, comparison of the contrast and flicker theories revealed that the visual system of our focal species was tuned as predicted by the contrast theory rather than by the flicker theory (or by some combination of the two). Thus, these findings challenge key assumptions of the flicker theory, leaving the contrast theory as the most parsimonious and tenable account of the evolution of multiple cone classes.
Collapse
Affiliation(s)
- Shai Sabbah
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
7
|
Pusch R, Kassing V, Riemer U, Wagner HJ, von der Emde G, Engelmann J. A grouped retina provides high temporal resolution in the weakly electric fish Gnathonemus petersii. ACTA ACUST UNITED AC 2012; 107:84-94. [PMID: 22771549 DOI: 10.1016/j.jphysparis.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/24/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022]
Abstract
Weakly electric fish orient, hunt and communicate by emitting electrical pulses, enabling them to discriminate objects, conspecifics and prey. In addition to the electrosensory modality - although dominating in importance in these fishes - other modalities, like vision, play important roles for survival. The visual system of Gnathonemus petersii, a member of the family mormyridae living in West African blackwater streams shows remarkable specializations: Cone photoreceptors are grouped in bundles within a light reflecting tapetum lucidum, while the rods are also bundled but located at the back within a light-scattering guanine layer. Such an organization does not improve light sensitivity nor does it provide high spatial resolution. Thus, the function of the grouped retinal arrangement for the visual performance of the fish remains unclear. Here we investigated the contrast sensitivity of the temporal transfer properties of the visual system of Gnathonemus. To do so, we analyzed visual evoked potentials in the optic tectum and tested the critical flicker fusion frequency in a behavioral paradigm. Results obtained in Gnathonemus are compared to results obtained with goldfish (Carassius auratus), revealing differences in the filter characteristics of their visual systems: While goldfish responds best to low frequencies, Gnathonemus responds best at higher frequencies. The visual system of goldfish shows characteristics of a low-pass filter while the visual system of Gnathonemus has characteristics of a band-pass filter. Furthermore we show that the visual system of Gnathonemus is more robust towards contrast reduction as compared to the goldfish. The grouped retina might enable Gnathonemus to see large, fast moving objects even under low contrast conditions. Due to the fact that the electric sense is a modality of limited range, it is tempting to speculate that the retinal specialization of Gnathonemus petersii might be advantageous for predator avoidance even when brightness differences are small.
Collapse
Affiliation(s)
- Roland Pusch
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Vanessa Kassing
- Bielefeld University, Faculty of Biology, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Ursula Riemer
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Hans-Joachim Wagner
- University of Tübingen, Institute of Anatomy, Österbergstraße 3, 72074 Tübingen, Germany
| | - Gerhard von der Emde
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Jacob Engelmann
- Bielefeld University, Faculty of Biology, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
8
|
Rubene D, Håstad O, Tauson R, Wall H, Odeen A. The presence of UV wavelengths improves the temporal resolution of the avian visual system. ACTA ACUST UNITED AC 2011; 213:3357-63. [PMID: 20833929 DOI: 10.1242/jeb.042424] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability to perceive rapid movement is an essential adaptation in birds, which are involved in rapid flight, pursuing prey and escaping predators. Nevertheless, the temporal resolution of the avian visual systems has been less well explored than spectral sensitivity. There are indications that birds are superior to humans in their ability to detect movement, as suggested by higher critical flicker frequencies (CFFs). It has also been implied, but not properly tested, that properties of CFF, as a function of light intensity, are affected by the spectral composition of light. This study measured CFF in the chicken, Gallus gallus L., using four different light stimuli - white, full-spectrum (white with addition of UV), yellow (590 nm) and UV (400 nm) - and four light intensity levels, adjusted to relative cone sensitivity. The results showed significantly higher CFF values for full-spectrum compared with white light, as well as a steeper rate of increase with intensity. The presence of UV wavelengths, previously demonstrated to affect mate choice and foraging, appears to be important also for detection of rapid movement. The yellow and UV light stimuli yielded rather similar CFFs, indicating no special role for the double cone in flicker detection.
Collapse
Affiliation(s)
- Diana Rubene
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, S-752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
9
|
Lindsey AE, Powers MK. Visual behavior of adult goldfish with regenerating retina. Vis Neurosci 2007; 24:247-55. [PMID: 17592671 DOI: 10.1017/s0952523806230207] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 08/11/2006] [Indexed: 11/06/2022]
Abstract
To determine whether regenerating neural pathways can support visual behavior, adult goldfish (Carassius auratus) were injected intraocularly with ouabain and tested for the presence of reflexive visual behaviors (dorsal light reflex and optokinetic nystagmus) and the ability to respond to visual stimuli in a classical conditioning paradigm. All visual behaviors were absent or greatly diminished until 8 to 10 weeks, when retinal layering had returned. At 10 weeks post-ouabain, reflexive behaviors to supra-threshold stimuli were near normal; however the ability to detect supra-threshold stimuli in the conditioning paradigm did not recover until 13 weeks. Absolute dark-adapted threshold and light-adapted spectral sensitivity measured at 13 to 17 weeks were abnormal: Dark-adapted threshold was elevated by 1.5 log units and light-adapted spectral sensitivity was markedly narrower than normal. No responses to 50% contrast sinusoidal gratings could be obtained through ouabain-treated eyes using the classical conditioning technique, even though responses through the untreated eye remained. Results demonstrate that: (a) visually mediated behaviors return in goldfish with ouabain-treated retinas; (b) the time course of recovery of reflexive responses in luminance and spatial domains parallels return of ERG function and of tectal activity; and (c) visual function that is mediated by regenerating retina appears not to be as sensitive as vision via normally developed retinal pathways.
Collapse
Affiliation(s)
- Amy E Lindsey
- Department of Psychology and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
10
|
Solessio E, Scheraga D, Engbretson GA, Knox BE, Barlow RB. Circadian Modulation of Temporal Properties of the Rod Pathway in LarvalXenopus. J Neurophysiol 2004; 92:2672-84. [PMID: 15486422 DOI: 10.1152/jn.00344.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian clocks are integral components of visual systems. They help adjust an animal's vision to diurnal changes in ambient illumination. To understand how circadian clocks may adapt visual sensitivity, we investigated the spatial and temporal properties of optomotor responses of young Xenopus laevis tadpoles (Nieuwkoop and Faber, developmental stage 48) using a modified 2-alternative preferential-viewing method. We maintained animals in constant darkness and measured temporal sensitivity during their subjective day and night. We found that their behavioral responses can be explained in terms of 2 mechanisms with different temporal properties. The more sensitive mechanism operates at low temporal frequencies and intermediate wavelengths (λmax= 520 nm), properties consistent with rod signals. Threshold for this mechanism is approximately 0.04 photoisomerizations rod−1s−1, consistent with single-photon detection. A less-sensitive mechanism responds to higher temporal frequencies (cutoff = 12 Hz) and has broad spectral sensitivity (370–720 nm), consistent with multiple classes of cone signals. This cone mechanism does not change, but the cutoff frequency of the more sensitive rod mechanism shifts from 0.35 Hz at night to 1.1 Hz during the subjective day, thereby enhancing the animal's sensitivity to dim rapidly changing stimuli. This day–night shift in rod temporal cutoff frequency cycles in complete darkness, characteristic of an endogenous circadian rhythm. The temporal properties of the behaviorally measured rod mechanism correspond closely with those of the electrophysiologically measured retinal response, indicating that the rod signals are modulated at the level of the outer retina.
Collapse
Affiliation(s)
- Eduardo Solessio
- Department of Ophthalmology and Center for Vision Research, Weiskotten Hall, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The general validity of both the Rovamo [Vision Res. 39 (1999) 533] and Barten (Contrast sensitivity of the human eye, SPIE Optical Engineering Press, 1999), modulation transfer function models for describing flicker sensitivity in vertebrates was examined using published data for goldfish, chickens, tree shrews, ground squirrels, cats, pigeons and humans. Both models adequately described the flicker response in each species at frequencies greater than approximately 1 Hz. At lower frequencies, response predictions differed between the two models and this was due, in part, to dissimilar definitions of the role played by lateral inhibition in the retina. Modelled flicker sensitivity for a matched retinal illuminance condition enabled a direct inter-species comparison of signal processing response times at the photoreceptor level. The modelled results also quantified differences between species in post-retinal signal processing capability. Finally, the relationship between flicker frequency response curves and the perception of temporal signals in real visual scenes was examined for each species. It is proposed that the area under the flicker sensitivity function may offer a single "figure of merit" for specifying overall sensitivity to time signals in a species' environment.
Collapse
Affiliation(s)
- John R Jarvis
- Silsoe Research Institute, Wrest Park, Silsoe, Beds. MK45 4HS, UK.
| | | | | |
Collapse
|
12
|
Abstract
The optomotor response (OMR) is a simple experimental paradigm that is widely used in the study of visual system functions. In the current paper we investigated how spatial and temporal properties of repetitive stimuli determine the OMR in zebrafish. The experiments showed that the OMR has the temporal characteristic of a low-pass filter when the spatial frequencies are low and of a band-pass filter when the spatial frequencies are high. These findings are discussed on the basis of inherent sampling constraints of any motion detector. We found some indications that the strength and direction of the OMR vary with the spatio-temporal frequency of the stimulus pattern as has previously been described for other species.
Collapse
Affiliation(s)
- Hans Maaswinkel
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | | |
Collapse
|
13
|
Jarvis JR, Taylor NR, Prescott NB, Meeks I, Wathes CM. Measuring and modelling the photopic flicker sensitivity of the chicken (Gallus g. domesticus). Vision Res 2002; 42:99-106. [PMID: 11804635 DOI: 10.1016/s0042-6989(01)00268-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The photopic flicker sensitivity of the chicken was determined using an operant conditioning psychophysical technique. The results show both high- and low-frequency fall-off in the sensitivity response, which peaked around 15 Hz. Flicker sensitivity was determined for a range of stimulus luminance levels, and directly compared to human flicker response measured under similar stimulus conditions. At five luminance levels (10, 100, 200, 500 and 1000 cd/m(2)), the overall chicken flicker sensitivity was found to be considerably lower than for humans, except at high frequencies. A greater degree of frequency tuning was also found in the chicken response. The critical flicker fusion values were either similar or slightly higher for chickens compared to humans (40.8, 50.4, 53.3, 58.2 and 57.4 Hz vs 39.2, 54.0, 54.0, 57.4 and 71.5 Hz respectively for humans and chickens for increasing stimulus luminance level). A recently proposed model for flicker sensitivity [Vision Research 39 (1999) 533], which incorporates low- and high-pass temporal filters in cascade, was found to be applicable to the chicken response. From this model, deductions were made concerning mechanisms controlling the transfer of temporal information.
Collapse
Affiliation(s)
- John R Jarvis
- Silsoe Research Institute, Wrest Park, Silsoe, Bedfordshire, MK45 4HS, UK
| | | | | | | | | |
Collapse
|
14
|
Hodos W, Ghim MM, Potocki A, Fields JN, Storm T. Contrast sensitivity in pigeons: a comparison of behavioral and pattern ERG methods. Doc Ophthalmol 2002; 104:107-18. [PMID: 11949804 DOI: 10.1023/a:1014427615636] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Contrast sensitivity (CS) is often used to assess spatial and temporal vision in animals. Conventional behavioral psychophysical techniques are both time and labor intensive, whereas measurement of CS functions by means of the pattern electroretinogram (PERG) is considerably more rapid and efficient. Are the two methods comparable, however? To answer this question, contrast-sensitivity functions were obtained using both the PERG and behavioral psychophysics in the same subjects, which were White Carneaux pigeons. The stimuli, in both methods, were phase-reversing, contrast-modulated sweeps of sinusoidal gratings. The PERG-CS functions were recorded via corneal electrodes and the behavioral data were collected using a modified staircase method that used moderate food deprivation and food reward. The results indicated that the PERG-CS functions had comparable bandwidth and peak spatial frequency to the behavioral CS functions. The PERG-CS functions, however, were lower on average than the behavioral curves by about 54%. The visual acuity of the two methods, as estimated from the high-frequency cutoff of the CS functions, differed by 37%. Both of these values are roughly consistent with the square root of 2 advantage of binocular viewing (behavioral method) over monocular viewing (PERG method). In addition, the peak spatial frequency showed a decrease of 0.125 c/deg with the PERG method and bandwidth was reduced by approximately 0.5 octave. These findings suggest that the PERG is an acceptable alternative to behavioral measurement of CS functions, especially in animal psychophysics, if one takes into account the underestimation of CS by the PERG method and the small changes in peak spatial frequency and bandwidth.
Collapse
Affiliation(s)
- William Hodos
- Department of Psychology, University of Maryland, College Park 20742-4411, USA.
| | | | | | | | | |
Collapse
|