1
|
Bae B, Lee D, Park M, Mu Y, Baek Y, Sim I, Shen C, Lee K. Stereoscopic artificial compound eyes for spatiotemporal perception in three-dimensional space. Sci Robot 2024; 9:eadl3606. [PMID: 38748779 DOI: 10.1126/scirobotics.adl3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/17/2024] [Indexed: 10/11/2024]
Abstract
Arthropods' eyes are effective biological vision systems for object tracking and wide field of view because of their structural uniqueness; however, unlike mammalian eyes, they can hardly acquire the depth information of a static object because of their monocular cues. Therefore, most arthropods rely on motion parallax to track the object in three-dimensional (3D) space. Uniquely, the praying mantis (Mantodea) uses both compound structured eyes and a form of stereopsis and is capable of achieving object recognition in 3D space. Here, by mimicking the vision system of the praying mantis using stereoscopically coupled artificial compound eyes, we demonstrated spatiotemporal object sensing and tracking in 3D space with a wide field of view. Furthermore, to achieve a fast response with minimal latency, data storage/transportation, and power consumption, we processed the visual information at the edge of the system using a synaptic device and a federated split learning algorithm. The designed and fabricated stereoscopic artificial compound eye provides energy-efficient and accurate spatiotemporal object sensing and optical flow tracking. It exhibits a root mean square error of 0.3 centimeter, consuming only approximately 4 millijoules for sensing and tracking. These results are more than 400 times lower than conventional complementary metal-oxide semiconductor-based imaging systems. Our biomimetic imager shows the potential of integrating nature's unique design using hardware and software codesigned technology toward capabilities of edge computing and sensing.
Collapse
Affiliation(s)
- Byungjoon Bae
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Doeon Lee
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Minseong Park
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Yujia Mu
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Yongmin Baek
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Inbo Sim
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Cong Shen
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Kyusang Lee
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Material Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
2
|
Fu R, Liu H, Zhang Y, Mao L, Zhu L, Jiang H, Zhang L, Liu X. Imidacloprid affects the visual behavior of adult zebrafish (Danio rerio) by mediating the expression of opsin and phototransduction genes and altering the metabolism of neurotransmitters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168572. [PMID: 37992846 DOI: 10.1016/j.scitotenv.2023.168572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Imidacloprid poses a significant threat to aquatic ecosystems. In this study, we investigated the visual toxicity of imidacloprid and the underlying molecular mechanisms in adult zebrafish. After exposure to imidacloprid at environmental relevant concentrations (10 and 100μg/L) for 21 days, the detectable contents of imidacloprid were 23.0 ± 0.80 and 121 ± 1.56 ng/mg in eyes of adult zebrafish, respectively. The visual behavior of adult zebrafish was impaired including a reduced ability to track smoothly visual stimuli and visually guided self-motion. The immunofluorescence experiment showed that the content of Rhodopsin (Rho) in the retina of zebrafish was changed significantly. The expression rhythm of genes played key roles in capturing photons in dim (rho) and bright (opn1mw3, opn1lw2 and opn1sw2) light, and in phototransduction (gnb3b, arr3a and rpe65a), was disrupted significantly throughout a 24-h period in adult zebrafish. Targeted metabolomics analysis showed that the content of 16 metabolites associated with neurotransmitter function changed significantly, and were enriched in top three metabolism pathways including Arginine biosynthesis, Alanine, aspartate and glutamate metabolism, and Tryptophan metabolism. These results indicated that imidacloprid exposure at environmentally relevant concentrations could cause optical toxicity through disturbing the expression of opsins and affecting the phototransduction in the retina of zebrafish adults.
Collapse
Affiliation(s)
- Ruiqiang Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongli Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Goulard R, Heinze S, Webb B. Emergent spatial goals in an integrative model of the insect central complex. PLoS Comput Biol 2023; 19:e1011480. [PMID: 38109465 PMCID: PMC10760860 DOI: 10.1371/journal.pcbi.1011480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The insect central complex appears to encode and process spatial information through vector manipulation. Here, we draw on recent insights into circuit structure to fuse previous models of sensory-guided navigation, path integration and vector memory. Specifically, we propose that the allocentric encoding of location provided by path integration creates a spatially stable anchor for converging sensory signals that is relevant in multiple behavioural contexts. The allocentric reference frame given by path integration transforms a goal direction into a goal location and we demonstrate through modelling that it can enhance approach of a sensory target in noisy, cluttered environments or with temporally sparse stimuli. We further show the same circuit can improve performance in the more complex navigational task of route following. The model suggests specific functional roles for circuit elements of the central complex that helps explain their high preservation across insect species.
Collapse
Affiliation(s)
- Roman Goulard
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
4
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. Visual feedback neurons fine-tune Drosophila male courtship via GABA-mediated inhibition. Curr Biol 2023; 33:3896-3910.e7. [PMID: 37673068 PMCID: PMC10529139 DOI: 10.1016/j.cub.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Many species of animals use vision to regulate their social behaviors. However, the molecular and circuit mechanisms underlying visually guided social interactions remain largely unknown. Here, we show that the Drosophila ortholog of the human GABAA-receptor-associated protein (GABARAP) is required in a class of visual feedback neurons, lamina tangential (Lat) cells, to fine-tune male courtship. GABARAP is a ubiquitin-like protein that maintains cell-surface levels of GABAA receptors. We demonstrate that knocking down GABARAP or GABAAreceptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the fly GABARAP protein and its human ortholog share a strong sequence identity, and the fly GABARAP function in Lat neurons can be rescued by its human ortholog. Using in vivo two-photon imaging and optogenetics, we reveal that Lat neurons are functionally connected to neural circuits that mediate visually guided courtship pursuits in males. Our work identifies a novel physiological function for GABARAP in regulating visually guided courtship pursuits in Drosophila males. Reduced GABAA signaling has been linked to social deficits observed in the autism spectrum and bipolar disorders. The functional similarity between the human and the fly GABARAP raises the possibility of a conserved role for this gene in regulating social behaviors across insects and mammals.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Yadipour M, Billah MA, Faruque IA. Optic flow enrichment via Drosophila head and retina motions to support inflight position regulation. J Theor Biol 2023; 562:111416. [PMID: 36681182 DOI: 10.1016/j.jtbi.2023.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Developing a functional description of the neural control circuits and visual feedback paths underlying insect flight behaviors is an active research area. Feedback controllers incorporating engineering models of the insect visual system outputs have described some flight behaviors, yet they do not explain how insects are able to stabilize their body position relative to nearby targets such as neighbors or forage sources, especially in challenging environments in which optic flow is poor. The insect experimental community is simultaneously recording a growing library of in-flight head and eye motions that may be linked to increased perception. This study develops a quantitative model of the optic flow experienced by a flying insect or robot during head yawing rotations (distinct from lateral peering motions in previous work) with a single other target in view. This study then applies a model of insect visuomotor feedback to show via analysis and simulation of five species that these head motions sufficiently enrich the optic flow and that the output feedback can provide relative position regulation relative to the single target (asymptotic stability). In the simplifying case of pure rotation relative to the body, theoretical analysis provides a stronger stability guarantee. The results are shown to be robust to anatomical neck angle limits and body vibrations, persist with more detailed Drosophila lateral-directional flight dynamics simulations, and generalize to recent retinal motion studies. Together, these results suggest that the optic flow enrichment provided by head or pseudopupil rotation could be used in an insect's neural processing circuit to enable position regulation.
Collapse
Affiliation(s)
- Mehdi Yadipour
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Md Arif Billah
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Imraan A Faruque
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
6
|
Honkanen A, Hensgen R, Kannan K, Adden A, Warrant E, Wcislo W, Heinze S. Parallel motion vision pathways in the brain of a tropical bee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01625-x. [PMID: 37017717 DOI: 10.1007/s00359-023-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
Spatial orientation is a prerequisite for most behaviors. In insects, the underlying neural computations take place in the central complex (CX), the brain's navigational center. In this region different streams of sensory information converge to enable context-dependent navigational decisions. Accordingly, a variety of CX input neurons deliver information about different navigation-relevant cues. In bees, direction encoding polarized light signals converge with translational optic flow signals that are suited to encode the flight speed of the animals. The continuous integration of speed and directions in the CX can be used to generate a vector memory of the bee's current position in space in relation to its nest, i.e., perform path integration. This process depends on specific, complex features of the optic flow encoding CX input neurons, but it is unknown how this information is derived from the visual periphery. Here, we thus aimed at gaining insight into how simple motion signals are reshaped upstream of the speed encoding CX input neurons to generate their complex features. Using electrophysiology and anatomical analyses of the halictic bees Megalopta genalis and Megalopta centralis, we identified a wide range of motion-sensitive neurons connecting the optic lobes with the central brain. While most neurons formed pathways with characteristics incompatible with CX speed neurons, we showed that one group of lobula projection neurons possess some physiological and anatomical features required to generate the visual responses of CX optic-flow encoding neurons. However, as these neurons cannot explain all features of CX speed cells, local interneurons of the central brain or alternative input cells from the optic lobe are additionally required to construct inputs with sufficient complexity to deliver speed signals suited for path integration in bees.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Ronja Hensgen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Kavitha Kannan
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- Neural Circuits and Evolution Lab, The Francis Crick Institute, London, UK
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, República de Panamá
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.
- NanoLund, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. GABA-mediated inhibition in visual feedback neurons fine-tunes Drosophila male courtship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525544. [PMID: 36747836 PMCID: PMC9900824 DOI: 10.1101/2023.01.25.525544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vision is critical for the regulation of mating behaviors in many species. Here, we discovered that the Drosophila ortholog of human GABA A -receptor-associated protein (GABARAP) is required to fine-tune male courtship by modulating the activity of visual feedback neurons, lamina tangential cells (Lat). GABARAP is a ubiquitin-like protein that regulates cell-surface levels of GABA A receptors. Knocking down GABARAP or GABA A receptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the human ortholog of Drosophila GABARAP restores function in Lat neurons. Using in vivo two-photon imaging and optogenetics, we show that Lat neurons are functionally connected to neural circuits that mediate visually-guided courtship pursuits in males. Our work reveals a novel physiological role for GABARAP in fine-tuning the activity of a visual circuit that tracks a mating partner during courtship.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
8
|
Skelton PSM, Finn A, Brinkworth RSA. Contrast independent biologically inspired translational optic flow estimation. BIOLOGICAL CYBERNETICS 2022; 116:635-660. [PMID: 36303043 PMCID: PMC9691503 DOI: 10.1007/s00422-022-00948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The visual systems of insects are relatively simple compared to humans. However, they enable navigation through complex environments where insects perform exceptional levels of obstacle avoidance. Biology uses two separable modes of optic flow to achieve this: rapid gaze fixation (rotational motion known as saccades); and the inter-saccadic translational motion. While the fundamental process of insect optic flow has been known since the 1950's, so too has its dependence on contrast. The surrounding visual pathways used to overcome environmental dependencies are less well known. Previous work has shown promise for low-speed rotational motion estimation, but a gap remained in the estimation of translational motion, in particular the estimation of the time to impact. To consistently estimate the time to impact during inter-saccadic translatory motion, the fundamental limitation of contrast dependence must be overcome. By adapting an elaborated rotational velocity estimator from literature to work for translational motion, this paper proposes a novel algorithm for overcoming the contrast dependence of time to impact estimation using nonlinear spatio-temporal feedforward filtering. By applying bioinspired processes, approximately 15 points per decade of statistical discrimination were achieved when estimating the time to impact to a target across 360 background, distance, and velocity combinations: a 17-fold increase over the fundamental process. These results show the contrast dependence of time to impact estimation can be overcome in a biologically plausible manner. This, combined with previous results for low-speed rotational motion estimation, allows for contrast invariant computational models designed on the principles found in the biological visual system, paving the way for future visually guided systems.
Collapse
Affiliation(s)
- Phillip S. M. Skelton
- Centre for Defence Engineering Research and Training, College of Science and Engineering, Flinders University, 1284 South Road, Tonsley, South Australia 5042 Australia
| | - Anthony Finn
- Science, Technology, Engineering, and Mathematics, University of South Australia, 1 Mawson Lakes Boulevard, Mawson Lakes, South Australia 5095 Australia
| | - Russell S. A. Brinkworth
- Centre for Defence Engineering Research and Training, College of Science and Engineering, Flinders University, 1284 South Road, Tonsley, South Australia 5042 Australia
| |
Collapse
|
9
|
Stöckl AL, Foster JJ. Night skies through animals' eyes-Quantifying night-time visual scenes and light pollution as viewed by animals. Front Cell Neurosci 2022; 16:984282. [PMID: 36274987 PMCID: PMC9582234 DOI: 10.3389/fncel.2022.984282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of animal species enjoy the benefits of being active at night, and have evolved the corresponding optical and neural adaptations to cope with the challenges of low light intensities. However, over the past century electric lighting has introduced direct and indirect light pollution into the full range of terrestrial habitats, changing nocturnal animals' visual worlds dramatically. To understand how these changes affect nocturnal behavior, we here propose an animal-centered analysis method based on environmental imaging. This approach incorporates the sensitivity and acuity limits of individual species, arriving at predictions of photon catch relative to noise thresholds, contrast distributions, and the orientation cues nocturnal species can extract from visual scenes. This analysis relies on just a limited number of visual system parameters known for each species. By accounting for light-adaptation in our analysis, we are able to make more realistic predictions of the information animals can extract from nocturnal visual scenes under different levels of light pollution. With this analysis method, we aim to provide context for the interpretation of behavioral findings, and to allow researchers to generate specific hypotheses for the behavior of nocturnal animals in observed light-polluted scenes.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, Universität Konstanz, Konstanz, Germany
| | - James Jonathan Foster
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Parkinson RH, Fecher C, Gray JR. Chronic exposure to insecticides impairs honeybee optomotor behaviour. FRONTIERS IN INSECT SCIENCE 2022; 2:936826. [PMID: 38468783 PMCID: PMC10926483 DOI: 10.3389/finsc.2022.936826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 03/13/2024]
Abstract
Honeybees use wide-field visual motion information to calculate the distance they have flown from the hive, and this information is communicated to conspecifics during the waggle dance. Seed treatment insecticides, including neonicotinoids and novel insecticides like sulfoxaflor, display detrimental effects on wild and managed bees, even when present at sublethal quantities. These effects include deficits in flight navigation and homing ability, and decreased survival of exposed worker bees. Neonicotinoid insecticides disrupt visual motion detection in the locust, resulting in impaired escape behaviors, but it had not previously been shown whether seed treatment insecticides disrupt wide-field motion detection in the honeybee. Here, we show that sublethal exposure to two commonly used insecticides, imidacloprid (a neonicotinoid) and sulfoxaflor, results in impaired optomotor behavior in the honeybee. This behavioral effect correlates with altered stress and detoxification gene expression in the brain. Exposure to sulfoxaflor led to sparse increases in neuronal apoptosis, localized primarily in the optic lobes, however there was no effect of imidacloprid. We propose that exposure to cholinergic insecticides disrupts the honeybee's ability to accurately encode wide-field visual motion, resulting in impaired optomotor behaviors. These findings provide a novel explanation for previously described effects of neonicotinoid insecticides on navigation and link these effects to sulfoxaflor for which there is a gap in scientific knowledge.
Collapse
Affiliation(s)
- Rachel H. Parkinson
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA, United States
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caroline Fecher
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA, United States
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - John R. Gray
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Zhang L, Zhan H, Liu X, Xing F, You Z. A wide-field and high-resolution lensless compound eye microsystem for real-time target motion perception. MICROSYSTEMS & NANOENGINEERING 2022; 8:83. [PMID: 35874173 PMCID: PMC9304386 DOI: 10.1038/s41378-022-00388-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Optical measurement systems suffer from a fundamental tradeoff between the field of view (FOV), the resolution and the update rate. A compound eye has the advantages of a wide FOV, high update rate and high sensitivity to motion, providing inspiration for breaking through the constraint and realizing high-performance optical systems. However, most existing studies on artificial compound eyes are limited by complex structure and low resolution, and they focus on imaging instead of precise measurement. Here, a high-performance lensless compound eye microsystem is developed to realize target motion perception through precise and fast orientation measurement. The microsystem splices multiple sub-FOVs formed by long-focal subeyes, images targets distributed in a panoramic range into a single multiplexing image sensor, and codes the subeye aperture array for distinguishing the targets from different sub-FOVs. A wide-field and high resolution are simultaneously realized in a simple and easy-to-manufacture microelectromechanical system (MEMS) aperture array. Moreover, based on the electronic rolling shutter technique of the image sensor, a hyperframe update rate is achieved by the precise measurement of multiple time-shifted spots of one target. The microsystem achieves an orientation measurement accuracy of 0.0023° (3σ) in the x direction and 0.0028° (3σ) in the y direction in a cone FOV of 120° with an update rate ~20 times higher than the frame rate. This study provides a promising approach for achieving optical measurements with comprehensive high performance and may have great significance in various applications, such as vision-controlled directional navigation and high-dynamic target tracking, formation and obstacle avoidance of unmanned aerial vehicles.
Collapse
Affiliation(s)
- Li Zhang
- Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, 100084 China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084 China
| | - Haiyang Zhan
- Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, 100084 China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084 China
| | - Xinyuan Liu
- Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, 100084 China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084 China
| | - Fei Xing
- Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, 100084 China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084 China
| | - Zheng You
- Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, 100084 China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084 China
| |
Collapse
|
12
|
Seed choice in ground beetles is driven by surface-derived hydrocarbons. Commun Biol 2022; 5:724. [PMID: 35864204 PMCID: PMC9304415 DOI: 10.1038/s42003-022-03678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
Ground beetles (Coleoptera: Carabidae) are among the most prevalent biological agents in temperate agroecosystems. Numerous species function as omnivorous predators, feeding on both pests and weed seeds, yet the sensory ecology of seed perception in omnivorous carabids remains poorly understood. Here, we explore the sensory mechanisms of seed detection and discrimination in four species of omnivorous carabids: Poecilus corvus, Pterostichus melanarius, Harpalus amputatus, and Amara littoralis. Sensory manipulations and multiple-choice seed feeding bioassays showed olfactory perception of seed volatiles as the primary mechanism used by omnivorous carabids to detect and distinguish among seeds of Brassica napus, Sinapis arvensis, and Thlaspi arvense (Brassicaceae). Seed preferences differed among carabid species tested, but the choice of desirable seed species was generally guided by the olfactory perception of long chain hydrocarbons derived from the seed coat surface. These olfactory seed cues were essential for seed detection and discrimination processes to unfold. Disabling the olfactory appendages (antennae and palps) of carabid beetles by ablation left them unable to make accurate seed choices compared to intact beetles. Ground beetles are generalist predators of various arable weed seeds. Sensory manipulations and multiple-choice feeding bioassays show that seed choice is stimulated by volatile chemicals derived from the epicuticular lipids on the seed coat.
Collapse
|
13
|
Exploring Compound Eyes in Adults of Four Coleopteran Species Using Synchrotron X-ray Phase-Contrast Microtomography (SR-PhC Micro-CT). Life (Basel) 2022; 12:life12050741. [PMID: 35629408 PMCID: PMC9145526 DOI: 10.3390/life12050741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022] Open
Abstract
Compound eyes in insects are primary visual receptors of surrounding environments. They show considerable design variations, from the apposition vision of most day-active species to the superposition vision of nocturnal insects, that sacrifice resolution to increase sensitivity and are able to overcome the challenges of vision during lightless hours or in dim habitats. In this study, Synchrotron radiation X-ray phase-contrast microtomography was used to describe the eye structure of four coleopteran species, showing species-specific habitat demands and different feeding habits, namely the saproxylic Clinidium canaliculatum (Costa, 1839) (Rhysodidae), the omnivorous Tenebrio molitor (Linnaeus, 1758) and Tribolium castaneum (Herbest, 1797) (Tenebrionidae), and the generalist predator Pterostichus melas italicus (Dejean, 1828) (Carabidae). Virtual sections and 3D volume renderings of the heads were performed to evaluate the application and limitations of this technique for studying the internal dioptrical and sensorial parts of eyes, and to avoid time-consuming methods such as ultrastructural analyses and classic histology. Morphological parameters such as the area of the corneal facet lens and cornea, interocular distance, facet density and corneal lens thickness were measured, and differences among the studied species were discussed concerning the differences in lifestyle and habitat preferences making different demands on the visual system. Our imaging results provide, for the first time, morphological descriptions of the compound eyes in these species, supplementing their ecological and behavioural traits.
Collapse
|
14
|
Grittner R, Baird E, Stöckl A. Spatial tuning of translational optic flow responses in hawkmoths of varying body size. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 208:279-296. [PMID: 34893928 PMCID: PMC8934765 DOI: 10.1007/s00359-021-01530-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022]
Abstract
To safely navigate their environment, flying insects rely on visual cues, such as optic flow. Which cues insects can extract from their environment depends closely on the spatial and temporal response properties of their visual system. These in turn can vary between individuals that differ in body size. How optic flow-based flight control depends on the spatial structure of visual cues, and how this relationship scales with body size, has previously been investigated in insects with apposition compound eyes. Here, we characterised the visual flight control response limits and their relationship to body size in an insect with superposition compound eyes: the hummingbird hawkmoth Macroglossum stellatarum. We used the hawkmoths’ centring response in a flight tunnel as a readout for their reception of translational optic flow stimuli of different spatial frequencies. We show that their responses cut off at different spatial frequencies when translational optic flow was presented on either one, or both tunnel walls. Combined with differences in flight speed, this suggests that their flight control was primarily limited by their temporal rather than spatial resolution. We also observed strong individual differences in flight performance, but no correlation between the spatial response cutoffs and body or eye size.
Collapse
Affiliation(s)
- Rebecca Grittner
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Emily Baird
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Anna Stöckl
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
15
|
Ali KA, Willenborg CJ. The biology of seed discrimination and its role in shaping the foraging ecology of carabids: A review. Ecol Evol 2021; 11:13702-13722. [PMID: 34707812 PMCID: PMC8525183 DOI: 10.1002/ece3.7898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
Species of carabid (ground) beetles are among the most important postdispersal weed seed predators in temperate arable lands. Field studies have shown that carabid beetles can remove upwards of 65%-90% of specific weed seeds shed in arable fields each year. Such data do not explain how and why carabid predators go after weed seeds, however. It remains to be proven that weed seed predation by carabids is a genuine ecological interaction driven by certain ecological factors or functional traits that determine interaction strength and power predation dynamics, bringing about therefore a natural regulation of weed populations. Along these lines, this review ties together the lines of evidence around weed seed predation by carabid predators. Chemoperception rather than vision seems to be the primary sensory mechanism guiding seed detection and seed selection decisions in carabid weed seed predators. Selection of weed seeds by carabid seed predators appears directed rather than random. Yet, the nature of the chemical cues mediating detection of different seed species and identification of the suitable seed type among them remains unknown. Selection of certain types of weed seeds cannot be predicted based on seed chemistry per se in all cases, however. Rather, seed selection decisions are ruled by sophisticated behavioral mechanisms comprising the assessment of both chemical and physical characteristics of the seed. The ultimate selection of certain weed seed types is determined by how the chemical and physical properties of the seed match with the functional traits of the predator in terms of seed handling ability. Seed density, in addition to chemical and physical seed traits, is also an important factor that is likely to shape seed selection decisions in carabid weed seed predators. Carabid responses to seed density are rather complex as they are influenced not only by seed numbers but also by trait-based suitability ranks of the different seed types available in the environment.
Collapse
Affiliation(s)
- Khaldoun A. Ali
- Plant Sciences DepartmentCollege of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonSKCanada
| | - Christian J. Willenborg
- Plant Sciences DepartmentCollege of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonSKCanada
| |
Collapse
|
16
|
Rigosi E, O'Carroll DC. Acute Application of Imidacloprid Alters the Sensitivity of Direction Selective Motion Detecting Neurons in an Insect Pollinator. Front Physiol 2021; 12:682489. [PMID: 34305640 PMCID: PMC8300694 DOI: 10.3389/fphys.2021.682489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cholinergic pesticides, such as the neonicotinoid imidacloprid, are the most important insecticides used for plant protection worldwide. In recent decades, concerns have been raised about side effects on non-target insect species, including altered foraging behavior and navigation. Although pollinators rely on visual cues to forage and navigate their environment, the effects of neonicotinoids on visual processing have been largely overlooked. To test the effect of acute treatment with imidacloprid at known concentrations in the brain, we developed a modified electrophysiological setup that allows recordings of visually evoked responses while perfusing the brain in vivo. We obtained long-lasting recordings from direction selective wide-field, motion sensitive neurons of the hoverfly pollinator, Eristalis tenax. Neurons were treated with imidacloprid (3.9 μM, 0.39 μM or a sham control treatment using the solvent (dimethylsulfoxide) only. Exposure to a high, yet sub-lethal concentration of imidacloprid significantly alters their physiological response to motion stimuli. We observed a general effect of imidacloprid (3.9 μM) increasing spontaneous activity, reducing contrast sensitivity and giving weaker directional tuning to wide-field moving stimuli, with likely implications for errors in flight control, hovering and routing. Our electrophysiological approach reveals the robustness of the fly visual pathway against cholinergic perturbance (i.e., at 0.39 μM) but also potential threatening effects of cholinergic pesticides (i.e., evident at 3.9 μM) for the visual motion detecting system of an important pollinator.
Collapse
Affiliation(s)
- Elisa Rigosi
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
17
|
Bigge R, Pfefferle M, Pfeiffer K, Stöckl A. Natural image statistics in the dorsal and ventral visual field match a switch in flight behaviour of a hawkmoth. Curr Biol 2021; 31:R280-R281. [PMID: 33756136 DOI: 10.1016/j.cub.2021.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many animals use visual cues to navigate their environment. To encode the large input ranges of natural signals optimally, their sensory systems have adapted to the stimulus statistics experienced in their natural habitats1. A striking example, shared across animal phyla, is the retinal tuning to the relative abundance of blue light from the sky, and green light from the ground, evident in the frequency of each photoreceptor type in the two retinal hemispheres2. By adhering only to specific regions of the visual field that contain the relevant information, as for the high-acuity dorsal regions in the eyes of male flies chasing females3, the neural investment can be further reduced. Regionalisation can even lead to activation of the appropriate visual pathway by target location, rather than by stimulus features. This has been shown in fruit flies, which increase their landing attempts when an expanding disc is presented in their frontal visual field, while lateral presentation increases obstacle avoidance responses4. We here report a similar switch in behavioural responses for extended visual scenes. Using a free-flight paradigm, we show that the hummingbird hawkmoth (Macroglossum stellatarum) responds with flight-control adjustments to translational optic-flow cues exclusively in their ventral and lateral visual fields, while identical stimuli presented dorsally elicit a novel directional flight response. This response split is predicted by our quantitative imaging data from natural visual scenes in a variety of habitats, which demonstrate higher magnitudes of translational optic flow in the ventral hemisphere, and the opposite distribution for contrast edges containing directional information.
Collapse
Affiliation(s)
- Ronja Bigge
- Chair of Zoology 2, Würzburg University, Am Hubland, 97074 Würzburg, Germany
| | | | - Keram Pfeiffer
- Chair of Zoology 2, Würzburg University, Am Hubland, 97074 Würzburg, Germany
| | - Anna Stöckl
- Chair of Zoology 2, Würzburg University, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
18
|
Wang H, Fu Q, Wang H, Baxter P, Peng J, Yue S. A bioinspired angular velocity decoding neural network model for visually guided flights. Neural Netw 2021; 136:180-193. [PMID: 33494035 DOI: 10.1016/j.neunet.2020.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022]
Abstract
Efficient and robust motion perception systems are important pre-requisites for achieving visually guided flights in future micro air vehicles. As a source of inspiration, the visual neural networks of flying insects such as honeybee and Drosophila provide ideal examples on which to base artificial motion perception models. In this paper, we have used this approach to develop a novel method that solves the fundamental problem of estimating angular velocity for visually guided flights. Compared with previous models, our elementary motion detector (EMD) based model uses a separate texture estimation pathway to effectively decode angular velocity, and demonstrates considerable independence from the spatial frequency and contrast of the gratings. Using the Unity development platform the model is further tested for tunnel centering and terrain following paradigms in order to reproduce the visually guided flight behaviors of honeybees. In a series of controlled trials, the virtual bee utilizes the proposed angular velocity control schemes to accurately navigate through a patterned tunnel, maintaining a suitable distance from the undulating textured terrain. The results are consistent with both neuron spike recordings and behavioral path recordings of real honeybees, thereby demonstrating the model's potential for implementation in micro air vehicles which have only visual sensors.
Collapse
Affiliation(s)
- Huatian Wang
- Computational Intelligence Laboratory (CIL), University of Lincoln, Lincoln, UK; Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou, China
| | - Qinbing Fu
- Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou, China; Computational Intelligence Laboratory (CIL), University of Lincoln, Lincoln, UK
| | - Hongxin Wang
- Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou, China; Computational Intelligence Laboratory (CIL), University of Lincoln, Lincoln, UK
| | - Paul Baxter
- Computational Intelligence Laboratory (CIL), University of Lincoln, Lincoln, UK
| | - Jigen Peng
- School of Mathematics and Information Science, Guangzhou University, Guangzhou, China; Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou, China.
| | - Shigang Yue
- Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou, China; Computational Intelligence Laboratory (CIL), University of Lincoln, Lincoln, UK.
| |
Collapse
|
19
|
Ma M, Li H, Gao X, Si W, Deng H, Zhang J, Zhong X, Wang K. Target orientation detection based on a neural network with a bionic bee-like compound eye. OPTICS EXPRESS 2020; 28:10794-10805. [PMID: 32403603 DOI: 10.1364/oe.388125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The compound eye of insects has many excellent characteristics. Directional navigation is one of the important features of compound eye, which is able to quickly and accurately determine the orientation of an objects. Therefore, bionic curved compound eye have great potential in detecting the orientation of the target. However, there is a serious non-linear relationship between the orientation of the target and the image obtained by the curved compound eye in wide field of view (FOV), and an effective model has not been established to detect the orientation of target. In this paper, a method for detecting the orientation of the target is proposed, which combines a virtual cylinder target with a neural network. To verify the feasibility of the method, a fiber-optic compound eye that is inspired by the structure of the bee's compound eye and that fully utilizes the transmission characteristics and flexibility of optical fibers is developed. A verification experiment shows that the proposed method is able to realize quantitative detection of orientations using a prototype of the fiber-optic compound eye. The average errors between the ground truth and the predicted values of the horizontal and elevation angles of a target are 0.5951 ° and 0.6748°, respectively. This approach has great potential for target tracking, obstacle avoidance by unmanned aerial vehicles, and directional navigation control.
Collapse
|
20
|
|
21
|
Abstract
Preference for spatial locations to maximize favorable outcomes and minimize aversive experiences helps animals survive and adapt to the changing environment. Both visual and non-visual cues play a critical role in spatial navigation and memory of a place supports and guides these strategies. Here we present the neural, genetic and behavioral processes involved in place memory formation using Drosophila melanogaster with a focus on non-visual cue based spatial memories. The work presented here highlights the work done by Dr. Troy Zars and his colleagues with an emphasis on role of biogenic amines in learning, cell biological mechanisms of neural systems and behavioral plasticity of place conditioning.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Psychology, College of Science, California State University-East Bay, Hayward, CA, USA
| | - Holly LaFerriere
- Department of Biology, Bemidji State University, Bemidji, MN, USA
| |
Collapse
|
22
|
Makarova AA, Meyer-Rochow VB, Polilov AA. Morphology and scaling of compound eyes in the smallest beetles (Coleoptera: Ptiliidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 48:83-97. [PMID: 30625373 DOI: 10.1016/j.asd.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The coleopteran family Ptiliidae (featherwing beetles) includes some of the smallest insects known with most of the representatives of this family measuring less than 1 mm in body length. A small body size largely determines the morphology, physiology, and biology of an organism and affects the organization of complex sense organs. Information on the organization of the compound eyes of Ptiliidae is scarce. Using scanning electron microscopy we analyzed the eyes of representatives of all subfamilies and tribes and provide a detailed description of the eye ultrastructure of four species (Nephanes titan, Porophila mystacea, Nanosella sp. and Acrotrichis grandicollis) using transmission electron microscopy. The results are compared with available data on larger species of related groups of Staphyliniformia and scale quantitative analyses are performed. The eyes of Ptiliidae consist of 15-50 ommatidia 6-13 μm in diameter and all conform to the apposition acone type of eye with fused rhabdoms of banded organization. Each ommatidium has the typical cellular arrangement present also in the eyes of larger staphyliniform beetles, but strongly curved lenses, short cones, reduced pigment cells, a high density of pigment granules and certain modifications of the rhabdom seem typical of ptiliid eyes. Allometric analyses show that as body size decreases, the number of facets drops more steeply than their average size does.
Collapse
Affiliation(s)
| | - V Benno Meyer-Rochow
- Department of Ecology and Genetics, Oulu University, Oulu, Finland; Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Alexey A Polilov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Viet Nam
| |
Collapse
|
23
|
Creamer MS, Mano O, Clark DA. Visual Control of Walking Speed in Drosophila. Neuron 2018; 100:1460-1473.e6. [PMID: 30415994 PMCID: PMC6405217 DOI: 10.1016/j.neuron.2018.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 10/27/2022]
Abstract
An animal's self-motion generates optic flow across its retina, and it can use this visual signal to regulate its orientation and speed through the world. While orientation control has been studied extensively in Drosophila and other insects, much less is known about the visual cues and circuits that regulate translational speed. Here, we show that flies regulate walking speed with an algorithm that is tuned to the speed of visual motion, causing them to slow when visual objects are nearby. This regulation does not depend strongly on the spatial structure or the direction of visual stimuli, making it algorithmically distinct from the classic computation that controls orientation. Despite the different algorithms, the visual circuits that regulate walking speed overlap with those that regulate orientation. Taken together, our findings suggest that walking speed is controlled by a hierarchical computation that combines multiple motion detectors with distinct tunings. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Dahake A, Stöckl AL, Foster JJ, Sane SP, Kelber A. The roles of vision and antennal mechanoreception in hawkmoth flight control. eLife 2018; 7:37606. [PMID: 30526849 PMCID: PMC6303104 DOI: 10.7554/elife.37606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/08/2018] [Indexed: 01/28/2023] Open
Abstract
Flying animals need continual sensory feedback about their body position and orientation for flight control. The visual system provides essential but slow feedback. In contrast, mechanosensory channels can provide feedback at much shorter timescales. How the contributions from these two senses are integrated remains an open question in most insect groups. In Diptera, fast mechanosensory feedback is provided by organs called halteres and is crucial for the control of rapid flight manoeuvres, while vision controls manoeuvres in lower temporal frequency bands. Here, we have investigated the visual-mechanosensory integration in the hawkmoth Macroglossum stellatarum. They represent a large group of insects that use Johnston’s organs in their antennae to provide mechanosensory feedback on perturbations in body position. Our experiments show that antennal mechanosensory feedback specifically mediates fast flight manoeuvres, but not slow ones. Moreover, we did not observe compensatory interactions between antennal and visual feedback.
Collapse
Affiliation(s)
- Ajinkya Dahake
- Vision Group, Lund University, Lund, Sweden.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | | | | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
25
|
Buatois A, Flumian C, Schultheiss P, Avarguès-Weber A, Giurfa M. Transfer of Visual Learning Between a Virtual and a Real Environment in Honey Bees: The Role of Active Vision. Front Behav Neurosci 2018; 12:139. [PMID: 30057530 PMCID: PMC6053632 DOI: 10.3389/fnbeh.2018.00139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
To study visual learning in honey bees, we developed a virtual reality (VR) system in which the movements of a tethered bee walking stationary on a spherical treadmill update the visual panorama presented in front of it (closed-loop conditions), thus creating an experience of immersion within a virtual environment. In parallel, we developed a small Y-maze with interchangeable end-boxes, which allowed replacing repeatedly a freely walking bee into the starting point of the maze for repeated decision recording. Using conditioning and transfer experiments between the VR setup and the Y-maze, we studied the extent to which movement freedom and active vision are crucial for learning a simple color discrimination. Approximately 57% of the bees learned the visual discrimination in both conditions. Transfer from VR to the maze improved significantly the bees’ performances: 75% of bees having chosen the CS+ continued doing so and 100% of bees having chosen the CS− reverted their choice in favor of the CS+. In contrast, no improvement was seen for these two groups of bees during the reciprocal transfer from the Y-maze to VR. In this case, bees exhibited inconsistent choices in the VR setup. The asymmetric transfer between contexts indicates that the information learned in each environment may be different despite the similar learning success. Moreover, it shows that reducing the possibility of active vision and movement freedom in the passage from the maze to the VR impairs the expression of visual learning while increasing them in the reciprocal transfer improves it. Our results underline the active nature of visual processing in bees and allow discussing the developments required for immersive VR experiences in insects.
Collapse
Affiliation(s)
- Alexis Buatois
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Clara Flumian
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Patrick Schultheiss
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Aurore Avarguès-Weber
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| |
Collapse
|
26
|
White TE. Jewelled spiders manipulate colour-lure geometry to deceive prey. Biol Lett 2017; 13:rsbl.2017.0027. [PMID: 28356411 DOI: 10.1098/rsbl.2017.0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/06/2017] [Indexed: 11/12/2022] Open
Abstract
Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata, whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally 'static' signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception.
Collapse
Affiliation(s)
- Thomas E White
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
27
|
Reynolds AM, Reynolds DR, Sane SP, Hu G, Chapman JW. Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0392. [PMID: 27528782 PMCID: PMC4992716 DOI: 10.1098/rstb.2015.0392] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 11/17/2022] Open
Abstract
High-flying insect migrants have been shown to display sophisticated flight orientations that can, for example, maximize distance travelled by exploiting tailwinds, and reduce drift from seasonally optimal directions. Here, we provide a comprehensive overview of the theoretical and empirical evidence for the mechanisms underlying the selection and maintenance of the observed flight headings, and the detection of wind direction and speed, for insects flying hundreds of metres above the ground. Different mechanisms may be used—visual perception of the apparent ground movement or mechanosensory cues maintained by intrinsic features of the wind—depending on circumstances (e.g. day or night migrations). In addition to putative turbulence-induced velocity, acceleration and temperature cues, we present a new mathematical analysis which shows that ‘jerks’ (the time-derivative of accelerations) can provide indicators of wind direction at altitude. The adaptive benefits of the different orientation strategies are briefly discussed, and we place these new findings for insects within a wider context by comparisons with the latest research on other flying and swimming organisms. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.
Collapse
Affiliation(s)
- Andy M Reynolds
- Computational and Systems Biology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK Department of Agroecology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560 065, Karnataka, India
| | - Gao Hu
- Department of Agroecology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jason W Chapman
- Department of Agroecology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9EZ, UK Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
28
|
Holveck MJ, Grégoire A, Guerreiro R, Staszewski V, Boulinier T, Gomez D, Doutrelant C. Kittiwake eggs viewed by conspecifics and predators: implications for colour signal evolution. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Abstract
Tiger beetles pursue prey by adjusting their heading according to a time-delayed proportional control law that minimizes the error angle (Haselsteiner et al 2014 J. R. Soc. Interface 11 20140216). This control law can be further interpreted in terms of mechanical actuation: to catch prey, tiger beetles exert a sideways force by biasing their tripod gait in proportion to the error angle measured half a stride earlier. The proportional gain was found to be nearly optimal in the sense that it minimizes the time to point directly toward the prey. For a time-delayed linear proportional controller, the optimal gain, k, is inversely proportional to the time delay, τ, and satisfies [Formula: see text]. Here we present evidence that tiger beetles adjust their control gain during their pursuit of prey. Our analysis shows two critical distances: one corresponding to the beetle's final approach to the prey, and the second, less expected, occurring at a distance around 10 cm for a prey size of 4.5 mm. The beetle initiates its chase using a sub-critical gain and increases the gain to the optimal value once the prey is within this critical distance. Insects use a variety of methods to detect distance, often involving different visual cues. Here we examine two such methods: one based on motion parallax and the other based on the prey's elevation angle. We show that, in order for the motion parallax method to explain the observed data, the beetle needs to correct for the ratio of the prey's sideways velocity relative to its own. On the other hand, the simpler method based on the elevation angle can detect both the distance and the prey's size. Moreover we find that the transition distance corresponds to the accuracy required to distinguish small prey from large predators.
Collapse
Affiliation(s)
- R M Noest
- Department of Physics, Cornell University, Ithaca, NY 14853, United States of America
| | | |
Collapse
|
30
|
Avarguès-Weber A, Mota T. Advances and limitations of visual conditioning protocols in harnessed bees. ACTA ACUST UNITED AC 2016; 110:107-118. [PMID: 27998810 DOI: 10.1016/j.jphysparis.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Theo Mota
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Metzen MG, Krahe R, Chacron MJ. Burst Firing in the Electrosensory System of Gymnotiform Weakly Electric Fish: Mechanisms and Functional Roles. Front Comput Neurosci 2016; 10:81. [PMID: 27531978 PMCID: PMC4969294 DOI: 10.3389/fncom.2016.00081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/20/2016] [Indexed: 11/13/2022] Open
Abstract
Neurons across sensory systems and organisms often display complex patterns of action potentials in response to sensory input. One example of such a pattern is the tendency of neurons to fire packets of action potentials (i.e., a burst) followed by quiescence. While it is well known that multiple mechanisms can generate bursts of action potentials at both the single-neuron and the network level, the functional role of burst firing in sensory processing is not so well understood to date. Here we provide a comprehensive review of the known mechanisms and functions of burst firing in processing of electrosensory stimuli in gymnotiform weakly electric fish. We also present new evidence from existing data showing that bursts and isolated spikes provide distinct information about stimulus variance. It is likely that these functional roles will be generally applicable to other systems and species.
Collapse
Affiliation(s)
- Michael G Metzen
- Department of Physiology, McGill University Montreal, QC, Canada
| | - Rüdiger Krahe
- Department of Biology, McGill University Montreal, QC, Canada
| | | |
Collapse
|
32
|
Abstract
Substantial work exists in the robotics literature on the mechanical design, modeling, gait generation and implementation of undulatory robotic prototypes. However, there appears to have been relatively limited work on closing the control loop for such robotic locomotors using sensory information from on-board exteroceptive sensors, in order to realize more complex undulatory behaviors. In this paper we consider a biologically inspired sensor-based “centering” behavior for undulatory robots traversing corridor-like environments. Such behaviors have been observed and studied in bees, and robotic analogs were originally developed for non-holonomic mobile robots. Adaptation to the significantly more complex dynamics of undulatory locomotors highlights a number of issues related to the use of sensors (possibly distributed over the elongated body of the mechanism) for the generation of reactive undulatory behaviors and also related to biomimetic neuromuscular control and to the formation control of multi-undulatory swarms. These issues are explored in simulation by means of computational tools specifically geared towards undulatory locomotion in robotics and biology. Moreover, a series of undulatory robotic prototypes has been developed, which are able to propel themselves on a variety of hard and granular substrates, by means of both head-to-tail (“eel-like”) and tail-to-head (“polychaete-like”) undulatory waves. The undulatory centering behavior is demonstrated experimentally in several layouts of corridor-like environments using these robotic prototypes equipped with infrared distance sensors.
Collapse
Affiliation(s)
- Michael Sfakiotakis
- Institute of Computer Science-FORTH, Vassilika Vouton P.O. Box 1385, GR-71110 Heraklion, Greece,
| | - Dimitris P. Tsakiris
- Institute of Computer Science-FORTH, Vassilika Vouton P.O. Box 1385, GR-71110 Heraklion, Greece,
| |
Collapse
|
33
|
Webb B, Wystrach A. Neural mechanisms of insect navigation. CURRENT OPINION IN INSECT SCIENCE 2016; 15:27-39. [PMID: 27436729 DOI: 10.1016/j.cois.2016.02.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 06/06/2023]
Abstract
We know more about the ethology of insect navigation than the neural substrates. Few studies have shown direct effects of brain manipulation on navigational behaviour; or measure brain responses that clearly relate to the animal's current location or spatial target, independently of specific sensory cues. This is partly due to the methodological problems of obtaining neural data in a naturally behaving animal. However, substantial indirect evidence, such as comparative anatomy and knowledge of the neural circuits that provide relevant sensory inputs provide converging arguments for the role of some specific brain areas: the mushroom bodies; and the central complex. Finally, modelling can help bridge the gap by relating the computational requirements of a given navigational task to the type of computation offered by different brain areas.
Collapse
Affiliation(s)
- Barbara Webb
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh EH8 9AB, UK.
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique, Universite Paul Sabatier, Toulouse, France
| |
Collapse
|
34
|
Cope AJ, Sabo C, Gurney K, Vasilaki E, Marshall JAR. A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee. PLoS Comput Biol 2016; 12:e1004887. [PMID: 27148968 PMCID: PMC4858260 DOI: 10.1371/journal.pcbi.1004887] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer.
Collapse
Affiliation(s)
- Alex J. Cope
- Department of Computer Science, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Sheffield Robotics, Sheffield, South Yorkshire, United Kingdom
- * E-mail:
| | - Chelsea Sabo
- Department of Computer Science, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Sheffield Robotics, Sheffield, South Yorkshire, United Kingdom
| | - Kevin Gurney
- Sheffield Robotics, Sheffield, South Yorkshire, United Kingdom
- Department of Psychology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Sheffield Robotics, Sheffield, South Yorkshire, United Kingdom
| | - James A. R. Marshall
- Department of Computer Science, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Sheffield Robotics, Sheffield, South Yorkshire, United Kingdom
| |
Collapse
|
35
|
Altshuler DL, Bahlman JW, Dakin R, Gaede AH, Goller B, Lentink D, Segre PS, Skandalis DA. The biophysics of bird flight: functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2015-0103] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bird flight is a remarkable adaptation that has allowed the approximately 10 000 extant species to colonize all terrestrial habitats on earth including high elevations, polar regions, distant islands, arid deserts, and many others. Birds exhibit numerous physiological and biomechanical adaptations for flight. Although bird flight is often studied at the level of aerodynamics, morphology, wingbeat kinematics, muscle activity, or sensory guidance independently, in reality these systems are naturally integrated. There has been an abundance of new studies in these mechanistic aspects of avian biology but comparatively less recent work on the physiological ecology of avian flight. Here we review research at the interface of the systems used in flight control and discuss several common themes. Modulation of aerodynamic forces to respond to different challenges is driven by three primary mechanisms: wing velocity about the shoulder, shape within the wing, and angle of attack. For birds that flap, the distinction between velocity and shape modulation synthesizes diverse studies in morphology, wing motion, and motor control. Recently developed tools for studying bird flight are influencing multiple areas of investigation, and in particular the role of sensory systems in flight control. How sensory information is transformed into motor commands in the avian brain remains, however, a largely unexplored frontier.
Collapse
Affiliation(s)
- Douglas L. Altshuler
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph W. Bahlman
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Roslyn Dakin
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrea H. Gaede
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Benjamin Goller
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Paolo S. Segre
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dimitri A. Skandalis
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
36
|
Kuo WK, Kuo GF, Lin SY, Yu HH. Fabrication and characterization of artificial miniaturized insect compound eyes for imaging. BIOINSPIRATION & BIOMIMETICS 2015; 10:056010. [PMID: 26414303 DOI: 10.1088/1748-3190/10/5/056010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polystyrene (PS) microspheres are synthesized by dispersion polymerization, and a close-packed two-dimensional (2D) array of the PS microspheres is formed by the self-assembly method through dip drawing under magnetic stirring. This array is then used to fabricate a 2D polydimethylsiloxane concave mold by soft lithography. The mold is employed to produce convex polymethylmethacrylate-based compound eye-replicating films of different hemispherical heights by thermopressing. The optical properties of the ommatidia on these biomimetic compound eye-replicating films are investigated, and the films are used with a charge-coupled device camera to construct a biomimetic visual system. The visual distance and field of view of this system are measured. The film with the greatest hemispherical height results in the biomimetic visual system with the highest visual distance and the widest field of view. In addition, it is found that the quality of the optical images is not dependent on the hemispherical height of the biomimetic films. The ability of the biomimetic visual system to detect moving object in real time is also studied.
Collapse
Affiliation(s)
- Wen-Kai Kuo
- Institute of Electro-Optical and Materials Science
| | | | | | | |
Collapse
|
37
|
|
38
|
Honkanen A, Takalo J, Heimonen K, Vähäsöyrinki M, Weckström M. Cockroach optomotor responses below single photon level. ACTA ACUST UNITED AC 2015; 217:4262-8. [PMID: 25472974 DOI: 10.1242/jeb.112425] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reliable vision in dim light depends on the efficient capture of photons. Moreover, visually guided behaviour requires reliable signals from the photoreceptors to generate appropriate motor reactions. Here, we show that at behavioural low-light threshold, cockroach photoreceptors respond to moving gratings with single-photon absorption events known as 'quantum bumps' at or below the rate of 0.1 s(-1). By performing behavioural experiments and intracellular recordings from photoreceptors under identical stimulus conditions, we demonstrate that continuous modulation of the photoreceptor membrane potential is not necessary to elicit visually guided behaviour. The results indicate that in cockroach motion detection, massive temporal and spatial pooling takes place throughout the eye under dim conditions, involving currently unknown neural processing algorithms. The extremely high night-vision capability of the cockroach visual system provides a roadmap for bio-mimetic imaging design.
Collapse
Affiliation(s)
- Anna Honkanen
- Department of Physics, University of Oulu, Oulu, FI-90014, Finland Biocenter Oulu, University of Oulu, Oulu, FI-90014, Finland
| | - Jouni Takalo
- Department of Physics, University of Oulu, Oulu, FI-90014, Finland
| | - Kyösti Heimonen
- Department of Physics, University of Oulu, Oulu, FI-90014, Finland
| | | | - Matti Weckström
- Department of Physics, University of Oulu, Oulu, FI-90014, Finland
| |
Collapse
|
39
|
|
40
|
Portugues R, Haesemeyer M, Blum ML, Engert F. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process. ACTA ACUST UNITED AC 2015; 218:1433-43. [PMID: 25792753 PMCID: PMC4436576 DOI: 10.1242/jeb.118299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/05/2015] [Indexed: 11/20/2022]
Abstract
Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (<10 mm s(-1)) and then plateaus for higher values. Typical latencies are >1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models.
Collapse
Affiliation(s)
- Ruben Portugues
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Martinsried 82152, Germany
| | - Martin Haesemeyer
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Mirella L Blum
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Cook RG, Qadri MA, Keller AM. The Analysis of Visual Cognition in Birds: Implications for Evolution, Mechanism, and Representation. PSYCHOLOGY OF LEARNING AND MOTIVATION 2015. [DOI: 10.1016/bs.plm.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Van De Poll MN, Zajaczkowski EL, Taylor GJ, Srinivasan MV, van Swinderen B. Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees. J Exp Biol 2015; 218:3448-60. [DOI: 10.1242/jeb.125138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/30/2015] [Indexed: 01/14/2023]
Abstract
Closed-loop paradigms provide an effective approach to studying visual choice behaviour and attention in small animals. Different flying and walking paradigms have been developed to investigate behavioural and neuronal responses to competing stimuli in insects such as bees and flies. However, the variety of stimulus choices that can be presented over one experiment is often limited. Current choice paradigms are mostly constrained as single binary choice scenarios that are influenced by the linear structure of classical conditioning paradigms. Here, we present a novel behavioural choice paradigm that allows animals to explore a closed geometry of interconnected binary choices by repeatedly selecting among competing objects, thereby revealing stimulus preferences in an historical context. We employed our novel paradigm to investigate visual flicker preferences in honeybees (Apis mellifera), and found significant preferences for 20-25Hz flicker and avoidance of higher (50-100Hz) and lower (2-4Hz) flicker frequencies. Similar results were found when bees were presented with three simultaneous choices instead of two, and when they were given the chance to select previously rejected choices. Our results show that honeybees can discriminate among different flicker frequencies, and that their visual preferences are persistent even under different experimental conditions. Interestingly, avoided stimuli were more attractive if they were novel, suggesting that novelty salience can override innate preferences. Our recursive virtual reality environment provides a new approach to studying visual discrimination and choice behaviour in behaving animals.
Collapse
Affiliation(s)
| | - Esmi L. Zajaczkowski
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gavin J. Taylor
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Biology, Lund University, S-2232, Skåne, Sweden
| | - Mandyam V. Srinivasan
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
43
|
Abstract
Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.
Collapse
|
44
|
Das S, Biswas S, Panigrahi BK, Kundu S, Basu D. A spatially informative optic flow model of bee colony with saccadic flight strategy for global optimization. IEEE TRANSACTIONS ON CYBERNETICS 2014; 44:1884-1897. [PMID: 25222729 DOI: 10.1109/tcyb.2014.2298916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper presents a novel search metaheuristic inspired from the physical interpretation of the optic flow of information in honeybees about the spatial surroundings that help them orient themselves and navigate through search space while foraging. The interpreted behavior combined with the minimal foraging is simulated by the artificial bee colony algorithm to develop a robust search technique that exhibits elevated performance in multidimensional objective space. Through detailed experimental study and rigorous analysis, we highlight the statistical superiority enjoyed by our algorithm over a wide variety of functions as compared to some highly competitive state-of-the-art methods.
Collapse
|
45
|
Avarguès-Weber A, Chittka L. Observational conditioning in flower choice copying by bumblebees (Bombus terrestris): influence of observer distance and demonstrator movement. PLoS One 2014; 9:e88415. [PMID: 24516654 PMCID: PMC3917909 DOI: 10.1371/journal.pone.0088415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/08/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bumblebees use information provided inadvertently by conspecifics when deciding between different flower foraging options. Such social learning might be explained by relatively simple associative learning mechanism: the bee may learn to associate conspecifics with nectar or pollen reward through previous experience of foraging jointly. However, in some studies, observers were guided by choices of 'demonstrators' viewed through a screen, so no reward was given to the observers at the time of seeing other bees' flowers choice and no demonstrator bee was present at the moment of decision. This behaviour, referred to observational conditioning, implies an additional associative step as the positive value of conspecific is transferred to the associated flower. Here we explore the role of demonstrator movement, and the distance between observers and demonstrators that is required for observation conditioning to take place. METHODOLOGY/PRINCIPAL FINDINGS We identify the conditions under which observational conditioning occurs in the widespread European species Bombus terrestris. The presence of artificial demonstrator bees leads to a significant change in individual colour preference toward the indicated colour if demonstrators were moving and observation distance was limited (15 cm), suggesting that observational conditioning could only influence relatively short-range foraging decisions. In addition, the movement of demonstrators is a crucial factor for observational conditioning, either due to the more life-like appearance of moving artificial bees or an enhanced detectability of moving demonstrators, and an increased efficiency at directing attention to the indicated flower colour. CONCLUSION Bumblebees possess the capacity to learn the quality of a flower by distal observation of other foragers' choices. This confirms that social learning in bees involves more advanced processes than simple associative learning, and indicates that observational conditioning might be widespread in pollinating insects, raising intriguing questions for the underlying mechanisms as well as the spread of social information in pollinator-plant interactions.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University London, London, United Kingdom
| | - Lars Chittka
- Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University London, London, United Kingdom
| |
Collapse
|
46
|
Widespread sensitivity to looming stimuli and small moving objects in the central complex of an insect brain. J Neurosci 2013; 33:8122-33. [PMID: 23658153 DOI: 10.1523/jneurosci.5390-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In many situations animals are confronted with approaching objects. Depending on whether the approach represents a potential threat or is intended during a goal-oriented approach, the adequate behavioral strategies differ. In all of these cases the visual system experiences an expanding or looming shape. The neuronal machinery mediating looming elicited behavioral responses has been studied most comprehensively in insects but is still far from being fully understood. It is particularly unknown how insects adjust their behavior to objects approaching from different directions. A brain structure that is thought to play an important role in spatial orientation in insects is the central complex (CC). We investigated whether CC neurons process information about approaching objects on a collision course. We recorded intracellularly from CC neurons in the locust Schistocerca gregaria during visual stimulation via lateral LCD screens. Many neurons in the locust CC, including columnar and tangential neurons, were sensitive to looming stimuli. Some of the neurons also responded to small moving targets. Several cell types showed binocular responses to looming objects, and some neurons were excited or inhibited depending on which eye was stimulated. These neurons may, therefore, detect the gross azimuthal direction of approaching objects and may mediate directional components of escape or steering movements.
Collapse
|
47
|
Hofmann V, Sanguinetti-Scheck JI, Künzel S, Geurten B, Gómez-Sena L, Engelmann J. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish. J Exp Biol 2013; 216:2487-500. [DOI: 10.1242/jeb.082420] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.
Collapse
Affiliation(s)
- Volker Hofmann
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Juan I. Sanguinetti-Scheck
- Universidad de la Republica, Facultad de Ciencias, Laboratorio de Neurociencias, Igua 4225, Montevideo, Uruguay
| | - Silke Künzel
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Bart Geurten
- Göttingen University, Abt. Zelluläre Neurobiologie, Schwann-Schleiden Forschungszentrum, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Leonel Gómez-Sena
- Universidad de la Republica, Facultad de Ciencias, Laboratorio de Neurociencias, Igua 4225, Montevideo, Uruguay
| | - Jacob Engelmann
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
48
|
Bursts and isolated spikes code for opposite movement directions in midbrain electrosensory neurons. PLoS One 2012; 7:e40339. [PMID: 22768279 PMCID: PMC3386997 DOI: 10.1371/journal.pone.0040339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/04/2012] [Indexed: 01/01/2023] Open
Abstract
Directional selectivity, in which neurons respond strongly to an object moving in a given direction but weakly or not at all to the same object moving in the opposite direction, is a crucial computation that is thought to provide a neural correlate of motion perception. However, directional selectivity has been traditionally quantified by using the full spike train, which does not take into account particular action potential patterns. We investigated how different action potential patterns, namely bursts (i.e. packets of action potentials followed by quiescence) and isolated spikes, contribute to movement direction coding in a mathematical model of midbrain electrosensory neurons. We found that bursts and isolated spikes could be selectively elicited when the same object moved in opposite directions. In particular, it was possible to find parameter values for which our model neuron did not display directional selectivity when the full spike train was considered but displayed strong directional selectivity when bursts or isolated spikes were instead considered. Further analysis of our model revealed that an intrinsic burst mechanism based on subthreshold T-type calcium channels was not required to observe parameter regimes for which bursts and isolated spikes code for opposite movement directions. However, this burst mechanism enhanced the range of parameter values for which such regimes were observed. Experimental recordings from midbrain neurons confirmed our modeling prediction that bursts and isolated spikes can indeed code for opposite movement directions. Finally, we quantified the performance of a plausible neural circuit and found that it could respond more or less selectively to isolated spikes for a wide range of parameter values when compared with an interspike interval threshold. Our results thus show for the first time that different action potential patterns can differentially encode movement and that traditional measures of directional selectivity need to be revised in such cases.
Collapse
|
49
|
Willis MA, Avondet JL, Zheng E. The role of vision in odor-plume tracking by walking and flying insects. ACTA ACUST UNITED AC 2012; 214:4121-32. [PMID: 22116754 DOI: 10.1242/jeb.036954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The walking paths of male cockroaches, Periplaneta americana, tracking point-source plumes of female pheromone often appear similar in structure to those observed from flying male moths. Flying moths use visual-flow-field feedback of their movements to control steering and speed over the ground and to detect the wind speed and direction while tracking plumes of odors. Walking insects are also known to use flow field cues to steer their trajectories. Can the upwind steering we observe in plume-tracking walking male cockroaches be explained by visual-flow-field feedback, as in flying moths? To answer this question, we experimentally occluded the compound eyes and ocelli of virgin P. americana males, separately and in combination, and challenged them with different wind and odor environments in our laboratory wind tunnel. They were observed responding to: (1) still air and no odor, (2) wind and no odor, (3) a wind-borne point-source pheromone plume and (4) a wide pheromone plume in wind. If walking cockroaches require visual cues to control their steering with respect to their environment, we would expect their tracks to be less directed and more variable if they cannot see. Instead, we found few statistically significant differences among behaviors exhibited by intact control cockroaches or those with their eyes occluded, under any of our environmental conditions. Working towards our goal of a comprehensive understanding of chemo-orientation in insects, we then challenged flying and walking male moths to track pheromone plumes with and without visual feedback. Neither walking nor flying moths performed as well as walking cockroaches when there was no visual information available.
Collapse
Affiliation(s)
- Mark A Willis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
50
|
Miller SM, Ngo TT, van Swinderen B. Attentional switching in humans and flies: rivalry in large and miniature brains. Front Hum Neurosci 2012; 5:188. [PMID: 22279432 PMCID: PMC3260559 DOI: 10.3389/fnhum.2011.00188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/23/2011] [Indexed: 01/31/2023] Open
Abstract
Human perception, and consequently behavior, is driven by attention dynamics. In the special case of rivalry, where attention alternates between competing percepts, such dynamics can be measured and their determinants investigated. A recent study in the fruit fly, Drosophila melanogaster, now shows that the origins of attentional rivalry may be quite ancient. Furthermore, individual variation exists in the rate of attentional rivalry in both humans and flies, and in humans this is under substantial genetic influence. In the pathophysiological realm, slowing of rivalry rate is associated with the heritable psychiatric condition, bipolar disorder. Fly rivalry may therefore prove a powerful model to examine genetic and molecular influences on rivalry rate, and may even shed light on human cognitive and behavioral dysfunction.
Collapse
Affiliation(s)
- Steven Mark Miller
- Perceptual and Clinical Neuroscience Group, Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash UniversityMelbourne, VIC, Australia
| | - Trung Thanh Ngo
- Perceptual and Clinical Neuroscience Group, Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash UniversityMelbourne, VIC, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|