1
|
Sievers K, Neumann P, Sušac L, Da Vela S, Graewert M, Trowitzsch S, Svergun D, Tampé R, Ficner R. Structural and functional insights into tRNA recognition by human tRNA guanine transglycosylase. Structure 2024; 32:316-327.e5. [PMID: 38181786 DOI: 10.1016/j.str.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
Eukaryotic tRNA guanine transglycosylase (TGT) is an RNA-modifying enzyme which catalyzes the base exchange of the genetically encoded guanine 34 of tRNAsAsp,Asn,His,Tyr for queuine, a hypermodified 7-deazaguanine derivative. Eukaryotic TGT is a heterodimer comprised of a catalytic and a non-catalytic subunit. While binding of the tRNA anticodon loop to the active site is structurally well understood, the contribution of the non-catalytic subunit to tRNA binding remained enigmatic, as no complex structure with a complete tRNA was available. Here, we report a cryo-EM structure of eukaryotic TGT in complex with a complete tRNA, revealing the crucial role of the non-catalytic subunit in tRNA binding. We decipher the functional significance of these additional tRNA-binding sites, analyze solution state conformation, flexibility, and disorder of apo TGT, and examine conformational transitions upon tRNA binding.
Collapse
Affiliation(s)
- Katharina Sievers
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Lukas Sušac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
2
|
Sarid L, Sun J, Chittrakanwong J, Trebicz-Geffen M, Ye J, Dedon PC, Ankri S. Queuine Salvaging in the Human Parasite Entamoeba histolytica. Cells 2022; 11:2509. [PMID: 36010587 PMCID: PMC9406330 DOI: 10.3390/cells11162509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Queuosine (Q) is a naturally occurring modified nucleoside that occurs in the first position of transfer RNA anticodons such as Asp, Asn, His, and Tyr. As eukaryotes lack pathways to synthesize queuine, the Q nucleobase, they must obtain it from their diet or gut microbiota. Previously, we described the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica and characterized the enzyme EhTGT responsible for queuine incorporation into tRNA. At present, it is unknown how E. histolytica salvages queuine from gut bacteria. We used liquid chromatography-mass spectrometry (LC-MS) and N-acryloyl-3-aminophenylboronic acid (APB) PAGE analysis to demonstrate that E. histolytica trophozoites can salvage queuine from Q or E. coli K12 but not from the modified E. coli QueC strain, which cannot produce queuine. We then examined the role of EhDUF2419, a protein with homology to DNA glycosylase, as a queuine salvage enzyme in E. histolytica. We found that glutathione S-transferase (GST)-EhDUF2419 catalyzed the conversion of Q into queuine. Trophozoites silenced for EhDUF2419 expression are impaired in their ability to form Q-tRNA from Q or from E. coli. We also observed that Q or E. coli K12 partially protects control trophozoites from oxidative stress (OS), but not siEhDUF2419 trophozoites. Overall, our data reveal that EhDUF2419 is central for the direct salvaging of queuine from bacteria and for the resistance of the parasite to OS.
Collapse
Affiliation(s)
- Lotem Sarid
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jurairat Chittrakanwong
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jun Ye
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
3
|
Pushkarev SV, Vinnik VA, Shapovalova IV, Švedas VK, Nilov DK. Modeling the Structure of Human tRNA-Guanine Transglycosylase in Complex with 7-Methylguanine and Revealing the Factors that Determine the Enzyme Interaction with Inhibitors. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:443-449. [PMID: 35790378 DOI: 10.1134/s0006297922050054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
tRNA-guanine transglycosylase, an enzyme catalyzing replacement of guanine with queuine in human tRNA and participating in the translation mechanism, is involved in the development of cancer. However, information on the small-molecule inhibitors that can suppress activity of this enzyme is very limited. Molecular dynamics simulations were used to determine the amino acid residues that provide efficient binding of inhibitors in the active site of tRNA-guanine transglycosylase. It was demonstrated using 7-methylguanine molecule as a probe that the ability of the inhibitor to adopt a charged state in the environment of hydrogen bond acceptors Asp105 and Asp159 plays a key role in complex formation. Formation of the hydrogen bonds and hydrophobic contacts with Gln202, Gly229, Phe109, and Met259 residues are also important. It has been predicted that introduction of the substituents would have a different effect on the ability to inhibit tRNA-guanine transglycosylase, as well as the DNA repair protein poly(ADP-ribose) polymerase 1, which can contribute to the development of more efficient and selective compounds.
Collapse
Affiliation(s)
- Sergey V Pushkarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valeriia A Vinnik
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina V Shapovalova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vytas K Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry K Nilov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Sarid L, Ankri S. Are Metabolites From the Gut Microbiota Capable of Regulating Epigenetic Mechanisms in the Human Parasite Entamoeba histolytica? Front Cell Dev Biol 2022; 10:841586. [PMID: 35300430 PMCID: PMC8921869 DOI: 10.3389/fcell.2022.841586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica inhabits the human gut. It has to adapt to a complex environment that consists of the host microbiota, nutritional stress, oxidative stress, and nitrosative stress. Adaptation to this complex environment is vital for the survival of this parasite. Studies have shown that the host microbiota shapes virulence and stress adaptation in E. histolytica. Increasing evidence suggests that metabolites from the microbiota mediate communication between the parasite and microbiota. In this review, we discuss the bacterial metabolites that regulate epigenetic processes in E. histolytica and the implications that this knowledge may have for the development of new anti-amebic strategies.
Collapse
Affiliation(s)
- Lotem Sarid
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
5
|
Sievers K, Welp L, Urlaub H, Ficner R. Structural and functional insights into human tRNA guanine transgylcosylase. RNA Biol 2021; 18:382-396. [PMID: 34241577 DOI: 10.1080/15476286.2021.1950980] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The eukaryotic tRNA guanine transglycosylase (TGT) is an RNA modifying enzyme incorporating queuine, a hypermodified guanine derivative, into the tRNAsAsp,Asn,His,Tyr. While both subunits of the functional heterodimer have been crystallized individually, much of our understanding of its dimer interface or recognition of a target RNA has been inferred from its more thoroughly studied bacterial homolog. However, since bacterial TGT, by incorporating queuine precursor preQ1, deviates not only in function, but as a homodimer, also in its subunit architecture, any inferences regarding the subunit association of the eukaryotic heterodimer or the significance of its unique catalytically inactive subunit are based on unstable footing. Here, we report the crystal structure of human TGT in its heterodimeric form and in complex with a 25-mer stem loop RNA, enabling detailed analysis of its dimer interface and interaction with a minimal substrate RNA. Based on a model of bound tRNA, we addressed a potential functional role of the catalytically inactive subunit QTRT2 by UV-crosslinking and mutagenesis experiments, identifying the two-stranded βEβF-sheet of the QTRT2 subunit as an additional RNA-binding motif.
Collapse
Affiliation(s)
- Katharina Sievers
- Department of Molecular Structural Biology, University of Göttingen, Göttingen, Germany
| | - Luisa Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (Mbexc), University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Fergus C, Al-Qasem M, Cotter M, McDonnell CM, Sorrentino E, Chevot F, Hokamp K, Senge MO, Southern JM, Connon SJ, Kelly VP. The human tRNA-guanine transglycosylase displays promiscuous nucleobase preference but strict tRNA specificity. Nucleic Acids Res 2021; 49:4877-4890. [PMID: 34009357 PMCID: PMC8136771 DOI: 10.1093/nar/gkab289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
Base-modification can occur throughout a transfer RNA molecule; however, elaboration is particularly prevalent at position 34 of the anticodon loop (the wobble position), where it functions to influence protein translation. Previously, we demonstrated that the queuosine modification at position 34 can be substituted with an artificial analogue via the queuine tRNA ribosyltransferase enzyme to induce disease recovery in an animal model of multiple sclerosis. Here, we demonstrate that the human enzyme can recognize a very broad range of artificial 7-deazaguanine derivatives for transfer RNA incorporation. By contrast, the enzyme displays strict specificity for transfer RNA species decoding the dual synonymous NAU/C codons, determined using a novel enzyme-RNA capture-release method. Our data highlight the broad scope and therapeutic potential of exploiting the queuosine incorporation pathway to intentionally engineer chemical diversity into the transfer RNA anticodon.
Collapse
Affiliation(s)
- Claire Fergus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mashael Al-Qasem
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Michelle Cotter
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Ciara M McDonnell
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Emiliano Sorrentino
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Franciane Chevot
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Karsten Hokamp
- School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Mathias O Senge
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - John M Southern
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
7
|
Shee PK, Yan H, Walker KD. Intermolecular Amine Transfer to Enantioenriched trans-3-Phenylglycidates by an α/β-Aminomutase to Access Both anti-Phenylserine Isomers. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prakash K. Shee
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Honggao Yan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kevin D. Walker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Nitta K, Carratore FD, Breitling R, Takano E, Putri SP, Fukusaki E. Multi-Omics Analysis of the Effect of cAMP on Actinorhodin Production in Streptomyces coelicolor. Front Bioeng Biotechnol 2020; 8:595552. [PMID: 33251203 PMCID: PMC7674942 DOI: 10.3389/fbioe.2020.595552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) has been known to play an important role in regulating morphological development and antibiotic production in Streptomyces coelicolor. However, the functional connection between cAMP levels and antibiotic production and the mechanism by which cAMP regulates antibiotic production remain unclear. In this study, metabolomics- and transcriptomics-based multi-omics analysis was applied to S. coelicolor strains that either produce the secondary metabolite actinorhodin (Act) or lack most secondary metabolite biosynthesis pathways including Act. Comparative multi-omics analysis of the two strains revealed that intracellular and extracellular cAMP abundance was strongly correlated with actinorhodin production. Notably, supplementation of cAMP improved cell growth and antibiotic production. Further multi-omics analysis of cAMP-supplemented S. coelicolor cultures showed an increase of guanine and the expression level of purine metabolism genes. Based on this phenomenon, supplementation with 7-methylguanine, a competitive inhibitor of reactions utilizing guanine, with or without additional cAMP supplementation, was performed. This experiment revealed that the reactions inhibited by 7-methylguanine are mediating the positive effect on growth and antibiotic production, which may occur downstream of cAMP supplementation.
Collapse
Affiliation(s)
- Katsuaki Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Francesco Del Carratore
- Department of Chemistry, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Rainer Breitling
- Department of Chemistry, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Eriko Takano
- Department of Chemistry, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Sastia P Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Busby KN, Devaraj NK. Enzymatic covalent labeling of RNA with RNA transglycosylation at guanosine (RNA-TAG). Methods Enzymol 2020; 641:373-399. [PMID: 32713531 DOI: 10.1016/bs.mie.2020.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Technologies for the labeling, detection, and manipulation of biomolecules have drastically improved our understanding of cell biology. As the myriad of functional roles for RNA in the cell are increasingly recognized, such tools to enable further investigation of RNA are the subject of much interest. RNA-TAG is an enzymatic method for site-specific, covalent labeling of RNA. This methodology makes use of a bacterial tRNA modifying enzyme, tRNA guanine transglycosylase, to incorporate modified substrate analogs into a target RNA, resulting in highly efficient and site-specific RNA labeling. In this chapter, we introduce the underlying principles of the RNA labeling reaction, discuss various applications of RNA-TAG, and present protocols for labeling specific RNA transcripts using this system.
Collapse
Affiliation(s)
- Kayla N Busby
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States.
| |
Collapse
|
10
|
Alqasem MA, Fergus C, Southern JM, Connon SJ, Kelly VP. The eukaryotic tRNA-guanine transglycosylase enzyme inserts queuine into tRNA via a sequential bi-bi mechanism. Chem Commun (Camb) 2020; 56:3915-3918. [PMID: 32149287 DOI: 10.1039/c9cc09887a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Eukaryotic tRNA-guanine transglycosylase (TGT) - an enzyme recently recognised to be of potential therapeutic importance - catalyses base-exchange of guanine for queuine at the wobble position of tRNAs associated with 4 amino acids via a distinct mechanism to that reported for its eubacterial homologue. The presence of queuine is unequivocally required as a trigger for reaction between the enzyme and tRNA and exhibits cooperativity not seen using guanine as a substrate.
Collapse
Affiliation(s)
- Mashael A Alqasem
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | | | | | | | | |
Collapse
|
11
|
Crystal Structure of the Human tRNA Guanine Transglycosylase Catalytic Subunit QTRT1. Biomolecules 2018; 8:biom8030081. [PMID: 30149595 PMCID: PMC6165067 DOI: 10.3390/biom8030081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022] Open
Abstract
RNA modifications have been implicated in diverse and important roles in all kingdoms of life with over 100 of them present on tRNAs. A prominent modification at the wobble base of four tRNAs is the 7-deaza-guanine derivative queuine which substitutes the guanine at position 34. This exchange is catalyzed by members of the enzyme class of tRNA guanine transglycosylases (TGTs). These enzymes incorporate guanine substituents into tRNAAsp, tRNAAsn tRNAHis, and tRNATyr in all kingdoms of life. In contrast to the homodimeric bacterial TGT, the active eukaryotic TGT is a heterodimer in solution, comprised of a catalytic QTRT1 subunit and a noncatalytic QTRT2 subunit. Bacterial TGT enzymes, that incorporate a queuine precursor, have been identified or proposed as virulence factors for infections by pathogens in humans and therefore are valuable targets for drug design. To date no structure of a eukaryotic catalytic subunit is reported, and differences to its bacterial counterpart have to be deducted from sequence analysis and models. Here we report the first crystal structure of a eukaryotic QTRT1 subunit and compare it to known structures of the bacterial TGT and murine QTRT2. Furthermore, we were able to determine the crystal structure of QTRT1 in complex with the queuine substrate.
Collapse
|
12
|
Hohn C, Härtsch A, Ehrmann FR, Pfaffeneder T, Trapp N, Dumele O, Klebe G, Diederich F. An Immucillin-Based Transition-State-Analogous Inhibitor of tRNA-Guanine Transglycosylase (TGT). Chemistry 2016; 22:6750-4. [PMID: 26991861 DOI: 10.1002/chem.201600883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 11/06/2022]
Abstract
Shigellosis is one of the most severe diarrheal diseases worldwide without any efficient treatment so far. The enzyme tRNA-guanine transglycosylase (TGT) has been identified as a promising target for small-molecule drug design. Herein, we report a transition-state analogue, a small, immucillin-derived inhibitor, as a new lead structure with a novel mode of action. The complex inhibitor synthesis was accomplished in 18 steps with an overall yield of 3 %. A co-crystal structure of the inhibitor bound to Z. mobilis TGT confirmed the predicted conformation of the immucillin derivative in the enzyme active site.
Collapse
Affiliation(s)
- Christoph Hohn
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Adrian Härtsch
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Frederik Rainer Ehrmann
- Institut für Pharmazeutische Chemie, Philipps Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Toni Pfaffeneder
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Oliver Dumele
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany.
| | - François Diederich
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Parimelzaghan A, Anbarasu A, Ramaiah S. Gene Network Analysis of Metallo Beta Lactamase Family Proteins Indicates the Role of Gene Partners in Antibiotic Resistance and Reveals Important Drug Targets. J Cell Biochem 2015; 117:1330-9. [PMID: 26517410 DOI: 10.1002/jcb.25422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022]
Abstract
Metallo Beta (β) Lactamases (MBL) are metal dependent bacterial enzymes that hydrolyze the β-lactam antibiotics. In recent years, MBL have received considerable attention because it inactivates most of the β-lactam antibiotics. Increase in dissemination of MBL encoding antibiotic resistance genes in pathogenic bacteria often results in unsuccessful treatments. Gene interaction network of MBL provides a complete understanding on the molecular basis of MBL mediated antibiotic resistance. In our present study, we have constructed the MBL network of 37 proteins with 751 functional partners from pathogenic bacterial spp. We found 12 highly interconnecting clusters. Among the 37 MBL proteins considered in the present study, 22 MBL proteins are from B3 subclass, 14 are from B1 subclass and only one is from B2 subclass. Global topological parameters are used to calculate and compare the probability of interactions in MBL proteins. Our results indicate that the proteins associated within the network have a strong influence in antibiotic resistance mechanism. Interestingly, several drug targets are identified from the constructed network. We believe that our results would be helpful for researchers exploring MBL-mediated antibiotic resistant mechanisms.
Collapse
Affiliation(s)
- Anitha Parimelzaghan
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
14
|
Xue Q, Wei Z, Sun W, Cui F, Yu S, Zhou Q, Liu J. 2-Keto-D-gluconate-yielding membrane-bound D-glucose dehydrogenase from Arthrobacter globiformis C224: purification and characterization. Molecules 2015; 20:846-62. [PMID: 25580683 PMCID: PMC6272208 DOI: 10.3390/molecules20010846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/04/2015] [Indexed: 12/05/2022] Open
Abstract
Glucose dehydrogenase (GlcDH) is the rate-limiting catalyst for microbial conversion of glucose to the important organic acid 2-ketogluconic acid (2KGlcA). In this study, a d-glucose dehydrogenase was purified from the industrial 2KGlcA producer Arthrobacter globiformis C224. After four purification steps, the GlcDH was successfully purified over 180 folds and specific activity of 88.1 U/mg. A single protein band of 87 kDa was detected by SDS-PAGE. The purified GlcDH had the broad substrate specificity with the Km values for d-glucose, d-xylose, d-galactose and maltose of 0.21 mM, 0.34 mM, 0.46 mM and 0.59 mM, respectively. The kinetic studies proved that A. globiformis GlcDH followed the ping-pong kinetic mechanism. The GlcDH showed an optimum catalytic activity at pH 5.0 and 45 °C with the stable activity at temperature of 20–40 °C and pH of 6.0–7.0. Organic solvents, metal ions or EDTA could significantly influence the GlcDH activity to different degrees.
Collapse
Affiliation(s)
- Qing Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhuan Wei
- Parchn Sodium Isovitamin C Co. Ltd, Dexing 334221, China.
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Silian Yu
- Parchn Sodium Isovitamin C Co. Ltd, Dexing 334221, China.
| | - Qiang Zhou
- Parchn Sodium Isovitamin C Co. Ltd, Dexing 334221, China.
| | - Jingze Liu
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China.
| |
Collapse
|
15
|
Barandun LJ, Ehrmann FR, Zimmerli D, Immekus F, Giroud M, Grünenfelder C, Schweizer WB, Bernet B, Betz M, Heine A, Klebe G, Diederich F. Replacement of Water Molecules in a Phosphate Binding Site by Furanoside-Appendedlin-Benzoguanine Ligands of tRNA-Guanine Transglycosylase (TGT). Chemistry 2014; 21:126-35. [DOI: 10.1002/chem.201405764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 11/09/2022]
|
16
|
Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland. ACTA ACUST UNITED AC 2013; 21:174-85. [PMID: 24315934 DOI: 10.1016/j.chembiol.2013.10.015] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022]
Abstract
Nature combines existing biochemical building blocks, at times with subtlety of purpose. RNA modifications are a prime example of this, where standard RNA nucleosides are decorated with chemical groups and building blocks that we recall from our basic biochemistry lectures. The result: a wealth of chemical diversity whose full biological relevance has remained elusive despite being public knowledge for some time. Here, we highlight several modifications that, because of their chemical intricacy, rely on seemingly unrelated pathways to provide cofactors for their synthesis. Besides their immediate role in affecting RNA function, modifications may act as sensors and transducers of information that connect a cell's metabolic state to its translational output, carefully orchestrating a delicate balance between metabolic rate and protein synthesis at a system's level.
Collapse
|
17
|
Biela I, Tidten-Luksch N, Immekus F, Glinca S, Nguyen TXP, Gerber HD, Heine A, Klebe G, Reuter K. Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor. PLoS One 2013; 8:e64240. [PMID: 23704982 PMCID: PMC3660597 DOI: 10.1371/journal.pone.0064240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
Bacterial tRNA-guanine transglycosylase (Tgt) catalyses the exchange of the genetically encoded guanine at the wobble position of tRNAs(His,Tyr,Asp,Asn) by the premodified base preQ1, which is further converted to queuine at the tRNA level. As eucaryotes are not able to synthesise queuine de novo but acquire it through their diet, eucaryotic Tgt directly inserts the hypermodified base into the wobble position of the tRNAs mentioned above. Bacterial Tgt is required for the efficient pathogenicity of Shigella sp, the causative agent of bacillary dysentery and, hence, it constitutes a putative target for the rational design of anti-Shigellosis compounds. Since mammalian Tgt is known to be indirectly essential to the conversion of phenylalanine to tyrosine, it is necessary to create substances which only inhibit bacterial but not eucaryotic Tgt. Therefore, it seems of utmost importance to study selectivity-determining features within both types of proteins. Homology models of Caenorhabditis elegans Tgt and human Tgt suggest that the replacement of Cys158 and Val233 in bacterial Tgt (Zymomonas mobilis Tgt numbering) by valine and accordingly glycine in eucaryotic Tgt largely accounts for the different substrate specificities. In the present study we have created mutated variants of Z. mobilis Tgt in order to investigate the impact of a Cys158Val and a Val233Gly exchange on catalytic activity and substrate specificity. Using enzyme kinetics and X-ray crystallography, we gained evidence that the Cys158Val mutation reduces the affinity to preQ1 while leaving the affinity to guanine unaffected. The Val233Gly exchange leads to an enlarged substrate binding pocket, that is necessary to accommodate queuine in a conformation compatible with the intermediately covalently bound tRNA molecule. Contrary to our expectations, we found that a priori queuine is recognised by the binding pocket of bacterial Tgt without, however, being used as a substrate.
Collapse
Affiliation(s)
- Inna Biela
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Naomi Tidten-Luksch
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Immekus
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Serghei Glinca
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | - Hans-Dieter Gerber
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
18
|
Thomas CE, Chen YC, Garcia GA. Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases. Biochem Biophys Res Commun 2011; 410:34-9. [PMID: 21640076 PMCID: PMC3124622 DOI: 10.1016/j.bbrc.2011.05.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 11/16/2022]
Abstract
tRNA-guanine transglycosylases (TGTs) are responsible for incorporating 7-deazaguanine-modified bases into certain tRNAs in eubacteria (preQ(1)), eukarya (queuine) and archaea (preQ(0)). In each kingdom, the specific modified base is different. We have found that the eubacterial and eukaryal TGTs have evolved to be quite specific for their cognate heterocyclic base and that Cys145 (Escherichia coli) is important in recognizing the amino methyl side chain of preQ(1) (Chen et al., Nuc. Acids Res. 39 (2011) 2834 [15]). A series of mutants of the E. coli TGT have been constructed to probe the role of three other active site amino acids in the differential recognition of heterocyclic substrates. These mutants have also been used to probe the differential inhibition of E. coli versus human TGTs by pteridines. The results indicate that mutation of these active site amino acids can "open up" the active site, allowing for the binding of competitive pteridine inhibitors. However, even the "best" of these mutants still does not recognize queuine at concentrations up to 50μM, suggesting that other changes are necessary to adapt the eubacterial TGT to incorporate queuine into RNA. The pteridine inhibition results are consistent with an earlier hypothesis that pteridines may regulate eukaryal TGT activity (Jacobson et al., Nuc. Acids Res. 9 (1981) 2351 [8]).
Collapse
Affiliation(s)
- C. Eric Thomas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065
| | - Yi-Chen Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065
| | - George A. Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065
| |
Collapse
|
19
|
Chen YC, Brooks AF, Goodenough-Lashua DM, Kittendorf JD, Showalter HD, Garcia GA. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases. Nucleic Acids Res 2010; 39:2834-44. [PMID: 21131277 PMCID: PMC3074131 DOI: 10.1093/nar/gkq1188] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The enzyme tRNA-guanine transglycosylase (TGT) is involved in the queuosine modification of tRNAs in eukarya and eubacteria and in the archaeosine modification of tRNAs in archaea. However, the different classes of TGTs utilize different heterocyclic substrates (and tRNA in the case of archaea). Based on the X-ray structural analyses, an earlier study [Stengl et al. (2005) Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism. Chembiochem, 6, 1926–1939] has made a compelling case for the divergent evolution of the eubacterial and archaeal TGTs. The X-ray structure of the eukaryal class of TGTs is not known. We performed sequence homology and phylogenetic analyses, and carried out enzyme kinetics studies with the wild-type and mutant TGTs from Escherichia coli and human using various heterocyclic substrates that we synthesized. Observations with the Cys145Val (E. coli) and the corresponding Val161Cys (human) TGTs are consistent with the idea that the Cys145 evolved in eubacterial TGTs to recognize preQ1 but not queuine, whereas the eukaryal equivalent, Val161, evolved for increased recognition of queuine and a concomitantly decreased recognition of preQ1. Both the phylogenetic and kinetic analyses support the conclusion that all TGTs have divergently evolved to specifically recognize their cognate heterocyclic substrates.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | | | | | | | | | | |
Collapse
|
20
|
Garcia GA, Chervin SM, Kittendorf JD. Identification of the rate-determining step of tRNA-guanine transglycosylase from Escherichia coli. Biochemistry 2009; 48:11243-51. [PMID: 19874048 DOI: 10.1021/bi901501a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The modified RNA base queuine [7-(4,5-cis-dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanine] is present in tRNA because of a unique base-exchange process catalyzed by tRNA-guanine transglycosylase (TGT). Previous studies have suggested the intermediacy of a covalent TGT-RNA complex. To exist on the reaction pathway, this covalent complex must be both chemically and kinetically competent. Chemical competence has been demonstrated by the crystal structure studies of Xie et al. [(2003) Nat. Struct. Biol. 10, 781-788]; however, evidence of kinetic competence had not yet been established. The studies reported here unequivocally demonstrate that the TGT-RNA covalent complex is kinetically capable of occurring on the TGT reaction pathway. These studies further suggest that dissociation of product RNA from the enzyme is overall rate-limiting in the steady state. Interestingly, studies comparing RNA with a 2'-deoxyriboside at the site of modification suggest a role for the 2'-hydroxyl group in stabilizing the growing negative charge on the nucleophilic aspartate (264) as the glycosidic bond to the aspartate is broken during the breakdown of the covalent complex.
Collapse
Affiliation(s)
- George A Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA.
| | | | | |
Collapse
|
21
|
Ritschel T, Atmanene C, Reuter K, Van Dorsselaer A, Sanglier-Cianferani S, Klebe G. An Integrative Approach Combining Noncovalent Mass Spectrometry, Enzyme Kinetics and X-ray Crystallography to Decipher Tgt Protein-Protein and Protein-RNA Interaction. J Mol Biol 2009; 393:833-47. [DOI: 10.1016/j.jmb.2009.07.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/06/2009] [Accepted: 07/14/2009] [Indexed: 11/29/2022]
|
22
|
Ritschel T, Hoertner S, Heine A, Diederich F, Klebe G. Crystal structure analysis and in silico pKa calculations suggest strong pKa shifts of ligands as driving force for high-affinity binding to TGT. Chembiochem 2009; 10:716-27. [PMID: 19199329 DOI: 10.1002/cbic.200800782] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel ligand series is presented to inhibit tRNA-guanine transglycosylase (TGT), a protein with a significant role in the pathogenicity mechanism of Shigella flexneri, the causative agent of Shigellosis. The enzyme exchanges guanine in the wobble position of tRNA(Asn,Asp,His,Tyr) against a modified base. To prevent the base-exchange reaction, several series of inhibitors have already been designed, synthesized, and tested. One aim of previous studies was to address a hydrophobic pocket with different side chains attached to the parent skeletons. Disappointingly, no significant increase in binding affinity could be observed that could be explained by the disruption of a conserved water cluster. The ligand series examined in this study are based on the known scaffold lin-benzoguanine. Different side chains were introduced leading to 2-amino-lin-benzoguanines, which address a different pocket of the protein and avoid disruption of the water cluster. With the introduction of an amino group in the 2-position, a dramatic increase in binding affinity can be experienced. To explain this significant gain in binding affinity, Poisson-Boltzmann calculations were performed to explore pK(a) changes of ligand functional groups upon protein binding, they can differ significantly on going from aqueous solution to protein environment. For all complexes, a permanent protonation of the newly designed ligands is suggested, leading to a charge-assisted hydrogen bond in the protein-ligand complex. This increased strength in hydrogen bonding takes beneficial effect on binding affinity of the ligands, resulting in low-nanomolar binders. Crystal structures and docking emphasize the importance of the newly created charge-assisted hydrogen bond. A detailed analysis of the crystal structures in complex with substituted 2-amino-lin-benzoguanines indicate pronounced disorder of the attached side chains addressing the ribose 33 binding pocket. Docking suggests multiple orientations of these side chains. Obviously, an entropic advantage of the residual mobility experienced by these ligands in the bound state is beneficial and reveals an overall improved protein binding.
Collapse
Affiliation(s)
- Tina Ritschel
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, Marburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Glutamate versus glutamine exchange swaps substrate selectivity in tRNA-guanine transglycosylase: insight into the regulation of substrate selectivity by kinetic and crystallographic studies. J Mol Biol 2007; 374:764-76. [PMID: 17949745 DOI: 10.1016/j.jmb.2007.09.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/17/2007] [Accepted: 09/21/2007] [Indexed: 11/22/2022]
Abstract
Bacterial tRNA-guanine transglycosylase (Tgt) catalyses the exchange of guanine in the wobble position of particular tRNAs by the modified base preQ(1). In vitro, however, the enzyme is also able to insert the immediate biosynthetic precursor, preQ(0), into those tRNAs. This substrate promiscuity is based on a peptide switch in the active site, gated by the general acid/base Glu235. The switch alters the properties of the binding pocket to allow either the accommodation of guanine or preQ(1). The peptide conformer recognising guanine, however, is also able to bind preQ(0). To investigate selectivity regulation, kinetic data for Zymomonas mobilis Tgt were recorded. They show that selectivity in favour of the actual substrate preQ(1) over preQ(0) is not achieved by a difference in affinity but via a higher turnover rate. Moreover, a Tgt(Glu235Gln) variant was constructed. The mutation was intended to stabilise the peptide switch in the conformation favouring guanine and preQ(0) binding. Kinetic characterisation of the mutated enzyme revealed that the Glu235Gln exchange has, with respect to all substrate bases, no significant influence on k(cat). In contrast, K(M)(preQ(1)) is drastically increased, while K(M)(preQ(0)) seems to be decreased. Hence, regarding k(cat)/K(M) as an indicator for catalytic efficiency, selectivity of Tgt in favour of preQ(1) is abolished or even inverted in favour of preQ(0) for Tgt(Glu235Gln). Crystal structures of the mutated enzyme confirm that the mutation strongly favours the binding pocket conformation required for the accommodation of guanine and preQ(0). The way this is achieved, however, significantly differs from that predicted based on crystal structures of wild-type Tgt.
Collapse
|
24
|
Chervin SM, Kittendorf JD, Garcia GA. Probing the intermediacy of covalent RNA enzyme complexes in RNA modification enzymes. Methods Enzymol 2007; 425:121-37. [PMID: 17673081 PMCID: PMC2800168 DOI: 10.1016/s0076-6879(07)25005-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Within the large and diverse group of RNA-modifying enzymes, a number of enzymes seem to form stable covalent linkages to their respective RNA substrates. A complete understanding of the chemical and kinetic mechanisms of these enzymes, some of which have identified pathological roles, is lacking. As part of our ongoing work studying the posttranscriptional modification of tRNA with queuine, we wish to understand fully the chemical and kinetic mechanisms involved in this key transglycosylation reaction. In our previous investigations, we have used a gel mobility-shift assay to characterize an apparent covalent enzyme-RNA intermediate believed to be operative in the catalytic pathway. However, the simple observation of a covalent complex is not sufficient to prove intermediacy. To be a true intermediate, the complex must be both chemically and kinetically competent. As a case study for the proof of intermediacy, we report the use of this gel-shift assay under mildly denaturing conditions to probe the kinetic competency of the covalent association between RNA and the tRNA modifying enzyme tRNA-guanine transglycosylase (TGT).
Collapse
Affiliation(s)
- Stephanie M Chervin
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
25
|
Hurt JK, Olgen S, Garcia GA. Site-specific modification of Shigella flexneri virF mRNA by tRNA-guanine transglycosylase in vitro. Nucleic Acids Res 2007; 35:4905-13. [PMID: 17626052 PMCID: PMC1950534 DOI: 10.1093/nar/gkm473] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 05/15/2007] [Accepted: 05/29/2007] [Indexed: 11/18/2022] Open
Abstract
Shigella flexneri is an enteropathogen responsible for severe dysentery in humans. VirF is a key transcriptional regulator that activates the expression of the downstream virulence factors required for cellular invasion and cell-to-cell spread of this pathogen. There are several environmental factors that induce the translation of VirF including temperature, pH, osmolarity and post-transcriptional RNA modification. Durand and colleagues (vacC, a virulence-associated chromosomal locus of Shigella flexneri, is homologous to tgt, a gene encoding tRNA-guanine transglycosylase of Escherichia coli K-12. J. Bacteriol., 176, 4627-4634) have demonstrated a correlation between VirF and tRNA-guanine transglycosylase (TGT), which catalyzes the exchange of the hypermodified base queuine for the guanine in the wobble position of certain tRNAs. They characterized tgt- mutant S. flexneri strains in which the translation of VirF is markedly reduced and the bacteria are unable to invade host cells. Although the function of TGT is to modify tRNA, we report that the virF mRNA is recognized by the Escherichia coli TGT (99% identity to the S. flexneri TGT) in vitro. Further, we show that this recognition results in the site-specific modification of a single base in the virF mRNA. In the context of previous reports that small molecule binding motifs ('riboswitches') in mRNAs modulate mRNA conformation and translation, our observations suggest that TGT may modulate the translation of VirF by base modification of the VirF encoding mRNA.
Collapse
Affiliation(s)
- Julie K. Hurt
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065 and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, TR-06100, Ankara, Turkey
| | - Sureyya Olgen
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065 and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, TR-06100, Ankara, Turkey
| | - George A. Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065 and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, TR-06100, Ankara, Turkey
| |
Collapse
|
26
|
Stengl B, Meyer EA, Heine A, Brenk R, Diederich F, Klebe G. Crystal Structures of tRNA-guanine Transglycosylase (TGT) in Complex with Novel and Potent Inhibitors Unravel Pronounced Induced-fit Adaptations and Suggest Dimer Formation Upon Substrate Binding. J Mol Biol 2007; 370:492-511. [PMID: 17524419 DOI: 10.1016/j.jmb.2007.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 11/30/2022]
Abstract
The bacterial tRNA-guanine transglycosylase (TGT) is a tRNA modifying enzyme catalyzing the exchange of guanine 34 by the modified base preQ1. The enzyme is involved in the infection pathway of Shigella, causing bacterial dysentery. As no crystal structure of the Shigella enzyme is available the homologous Zymomonas mobilis TGT was used for structure-based drug design resulting in new, potent, lin-benzoguanine-based inhibitors. Thorough kinetic studies show size-dependent inhibition of these compounds resulting in either a competitive or non-competitive blocking of the base exchange reaction in the low micromolar range. Four crystal structures of TGT-inhibitor complexes were determined with a resolution of 1.58-2.1 A. These structures give insight into the structural flexibility of TGT necessary to perform catalysis. In three of the structures molecular rearrangements are observed that match with conformational changes also noticed upon tRNA substrate binding. Several water molecules are involved in these rearrangement processes. Two of them demonstrate the structural and catalytic importance of water molecules during TGT base exchange reaction. In the fourth crystal structure the inhibitor unexpectedly interferes with protein contact formation and crystal packing. In all presently known TGT crystal structures the enzyme forms tightly associated homodimers internally related by crystallographic symmetry. Upon binding of the fourth inhibitor the dimer interface, however, becomes partially disordered. This result prompted further analyses to investigate the relevance of dimer formation for the functional protein. Consultation of the available TGT structures and sequences from different species revealed structural and functional conservation across the contacting residues. This suggests that bacterial and eukaryotic TGT could possibly act as homodimers in catalysis. It is hypothesized that one unit of the dimer performs the catalytic reaction whereas the second is required to recognize and properly orient the bound tRNA for the catalytic reaction.
Collapse
Affiliation(s)
- Bernhard Stengl
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Dhariwal A, Mavrov V, Schroeder I. Production of lactobionic acid with process integrated electrochemical enzyme regeneration and optimisation of process variables using response surface methods (RSM). ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Meyer E, Donati N, Guillot M, Schweizer W, Diederich F, Stengl B, Brenk R, Reuter K, Klebe G. Synthesis, Biological Evaluation, and Crystallographic Studies of Extended Guanine-Based (lin-Benzoguanine) Inhibitors for tRNA-Guanine Transglycosylase (TGT). Helv Chim Acta 2006. [DOI: 10.1002/hlca.200690062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Todorov KA, Garcia GA. Role of aspartate 143 in Escherichia coli tRNA-guanine transglycosylase: alteration of heterocyclic substrate specificity. Biochemistry 2006; 45:617-25. [PMID: 16401090 PMCID: PMC2533737 DOI: 10.1021/bi051863d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
tRNA-guanine transglycosylase (TGT) is a key enzyme involved in the post-transcriptional modification of certain tRNAs in their anticodon wobble positions with queuine. To maintain the correct Watson-Crick base pairing properties of the wobble base (and hence proper translation of the genetic code), TGT must recognize its heterocyclic substrate with high specificity. The X-ray crystal structure of a eubacterial TGT bound to preQ1 [Romier, C., et al. (1996) EMBO J. 15, 2850-2857] suggested that aspartate 143 (Escherichia coli TGT numbering) was involved in heterocyclic substrate recognition. Subsequent mutagenic and computational modeling studies from our lab [Todorov, K. A., et al. (2005) Biophys. J. 89 (3), 1965-1977] provided experimental evidence supporting this hypothesis. Herein, we report further studies probing the differential heterocyclic substrate recognition properties of the aspartate 143 mutant TGTs. Our results are consistent with one of the mutants exhibiting an inversion of substrate recognition preference (xanthine vs guanine) relative to that of the wild type, as evidenced by Km values. This confirms the key role of aspartate 143 in maintaining the anticodon identities of the queuine-containing tRNAs and suggests that TGT mutants could be developed that would alter the tRNA wobble base base pairing properties.
Collapse
Affiliation(s)
- Katherine Abold Todorov
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | |
Collapse
|
30
|
Stengl B, Reuter K, Klebe G. Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism. Chembiochem 2006; 6:1926-39. [PMID: 16206323 DOI: 10.1002/cbic.200500063] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transfer RNA-guanine transglycosylases (TGTs) are evolutionarily ancient enzymes, present in all kingdoms of life, catalyzing guanine exchange within their cognate tRNAs by modified 7-deazaguanine bases. Although distinct bases are incorporated into tRNA at different positions in a kingdom-specific manner, the catalytic subunits of TGTs are structurally well conserved. This review provides insight into the sequential steps along the reaction pathway, substrate specificity, and conformational adaptions of the binding pockets by comparison of TGT crystal structures in complex with RNA substrates of a eubacterial and an archaebacterial species. Substrate-binding modes indicate an evolutionarily conserved base-exchange mechanism with a conserved aspartate serving as a nucleophile through covalent binding to C1' of the guanosine ribose moiety in an intermediate state. A second conserved aspartate seems to control the spatial rearrangement of the ribose ring along the reaction pathway and supposedly operates as a general acid/base. Water molecules inside the binding pocket accommodating interaction sites subsequently occupied by polar atoms of substrates help to elucidate substrate-recognition and substrate-specificity features. This emphasizes the role of water molecules as general probes to map binding-site properties for structure-based drug design. Additionally, substrate-bound crystal structures allow the extraction of valuable information about the classification of the TGT superfamily into a subdivision of presumably homologous superfamilies adopting the triose-phosphate isomerase type barrel fold with a standard phosphate-binding motif.
Collapse
Affiliation(s)
- Bernhard Stengl
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | |
Collapse
|
31
|
Todorov KA, Tan XJ, Nonekowski ST, Garcia GA, Carlson HA. The role of aspartic acid 143 in E. coli tRNA-guanine transglycosylase: insights from mutagenesis studies and computational modeling. Biophys J 2005; 89:1965-77. [PMID: 15951383 PMCID: PMC1366699 DOI: 10.1529/biophysj.105.059576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
tRNA guanine transglycosylase (TGT) is a tRNA-modifying enzyme which catalyzes the posttranscriptional exchange of guanine in position 34 of tRNA(Y,H,N,D) with the modified base queuine in eukaryotes or its precursor, preQ(1) base, in eubacteria. Thus, TGT must recognize the guanine in tRNA and the free base queuine or preQ(1) to catalyze this exchange. The crystal structure of Zymomonas mobilis TGT with preQ(1) bound suggests that a key aspartate is critically involved in substrate recognition. To explore this, a series of site-directed mutants of D143 in Escherichia coli TGT were made and characterized to investigate heterocyclic substrate recognition. Our data confirm that D143 has significant impact on K(M) of guanine; however, the trend in the K(M) data (D143A < D143N < D143S < D143T) is unexpected. Computational studies were used to further elucidate the interactions between guanine and the D143 mutants. A homology model of E. coli TGT was created, and the role of D143 was investigated by molecular dynamic simulations of guanine bound to the wild-type and D143-mutant TGTs. To validate the model systems against our kinetic data, free energies of binding were fit using the linear interaction energy (LIE) method. This is a unique application of the LIE method because the same ligand is bound to several mutant proteins rather than one protein binding several ligands. The atomic detail gained from the simulations provided a better understanding of the binding affinities of guanine with the mutant TGTs, revealing that water molecules enter the active site and hydrogen bond to the ligand and compensate for lost protein-ligand interactions. The trend of binding affinity for wild-type > D143A > D143N > D143S > D143T appears to be directly related to the degree of hydrogen bonding available to guanine in the binding site.
Collapse
Affiliation(s)
- Katherine Abold Todorov
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | | | | | | | |
Collapse
|
32
|
Garcia GA, Kittendorf JD. Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem 2005; 33:229-51. [PMID: 15888313 PMCID: PMC2802272 DOI: 10.1016/j.bioorg.2005.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/11/2005] [Accepted: 01/11/2005] [Indexed: 11/22/2022]
Abstract
The vast majority of the ca. 100 chemically distinct modified nucleosides in RNA appear to arise via the chemical transformation of a genetically encoded nucleoside. Two notable exceptions are queuosine and pseudouridine, which are incorporated into tRNA via transglycosylation. Transglycosylation is an extremely efficient process for incorporating highly modified bases such as queuine into RNA. Transglycosylation is also a requisite process for "isomerizing" an N-nucleoside into a C-nucleoside as is the case for pseudouridine formation. Finally, transglycosylation is an attractive possibility for certain RNA editing events (e.g., pyrimidine to purine conversions) that cannot occur via the known, more straightforward enzymatic reactions (e.g., deaminations). This review discusses what is known about the mechanisms of transglycosylation for the queuine and pseudouridine RNA modifications and will speculate about a potential role for transglycosylation in certain RNA editing events.
Collapse
Affiliation(s)
- George A. Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | | |
Collapse
|
33
|
Kittendorf JD, Sgraja T, Reuter K, Klebe G, Garcia GA. An essential role for aspartate 264 in catalysis by tRNA-guanine transglycosylase from Escherichia coli. J Biol Chem 2003; 278:42369-76. [PMID: 12909636 DOI: 10.1074/jbc.m304323200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tRNA-guanine transglycosylase (TGT) catalyzes a post-transcriptional base-exchange reaction involved in the incorporation of the modified base queuine (Q) into the wobble position of certain tRNAs. Catalysis by TGT occurs through a double-displacement mechanism that involves the formation of a covalent enzyme-RNA intermediate (Kittendorf, J. D., Barcomb, L. M., Nonekowski, S. T., and Garcia, G. A. (2001) Biochemistry 40, 14123-14133). The TGT chemical mechanism requires the protonation of the displaced guanine and the deprotonation of the incoming heterocyclic base. Based on its position in the active site, it is likely that aspartate 264 is involved in these proton transfer events. To investigate this possibility, site-directed mutagenesis was employed to convert aspartate 264 to alanine, asparagine, glutamate, glutamine, lysine, and histidine. Biochemical characterization of these TGT mutants revealed that only the conservative glutamate mutant retained catalytic activity, with Km values for both tRNA and guanine 3-fold greater than those for wild-type, whereas the kcat was depressed by an order of magnitude. Furthermore, of these six TGT mutants, only the TGT(D264E) was capable of forming a TGT.RNA covalent intermediate; however, unlike wild-type TGT, only hydroxylamine is capable of cleaving the TGT(D264E).RNA covalent complex. In an effort to better understand the unique biochemical properties of the D264E TGT mutant, we solved the crystal structure of the Zymomonas mobilis TGT with the analogous mutation (D280E). The results of these studies support two roles for aspartate 264 in catalysis by TGT, protonation of the leaving guanine and deprotonation of the incoming preQ1.
Collapse
Affiliation(s)
- Jeffrey D Kittendorf
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Chuirch Street, Ann Arbor, MI 48109-1065, USA
| | | | | | | | | |
Collapse
|