1
|
Tralau T, Oelgeschläger M, Kugler J, Bloch D, Braeuning A, Burgdorf T, Marx-Stoelting P, Ritz V, Schmeisser S, Trubiroha A, Zellmer S, Luch A, Schönfelder G, Solecki R, Hensel A. A prospective whole-mixture approach to assess risk of the food and chemical exposome. ACTA ACUST UNITED AC 2021; 2:463-468. [PMID: 37117676 DOI: 10.1038/s43016-021-00316-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/07/2021] [Indexed: 12/22/2022]
Abstract
Many widely used chemicals result in ubiquitous human exposure from multiple sources, including diet. Legislation mainly deals with the toxicological evaluation of single substances owing to a methodological and conceptual lack of alternatives, and does so within defined silos subject to over 40 distinct regulations in the EU alone. Furthermore, much of the research and many of the initiatives concerned with the assessment and evaluation of chemical mixtures and their potential effects on human health rely on retrospective analysis. Here we propose an approach for the prospective identification, assessment and regulation of mixtures relevant to human health. We address two distinct aspects of toxicology-which chemicals actually do occur together, and how potential mixture-related health hazards can be predicted-with an adapted concept of the exposome and large-scale hazard screens. The proactive use of the likelihood of co-exposure, together with the new approach of methods-based testing, may be a timely and feasible way of identifying those substances and mixtures where hazards may have been overlooked and regulatory action is needed. Ideally, we would generate co-exposure patterns for specific consumer groups, depending on lifestyle and dietary habits, to assess the specific risk of identified mixtures.
Collapse
|
2
|
Shmarakov IO, Lee YJ, Jiang H, Blaner WS. Constitutive androstane receptor mediates PCB-induced disruption of retinoid homeostasis. Toxicol Appl Pharmacol 2019; 381:114731. [PMID: 31449830 DOI: 10.1016/j.taap.2019.114731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022]
Abstract
Environmental exposure to polychlorinated biphenyls (PCBs) is associated with an increased risk of incidence of metabolic disease, however the molecular mechanisms underlying this phenomenon are not fully understood. Our study provides new insights into molecular interactions between PCBs and retinoids (vitamin A and its metabolites) by defining a role for constitutive androstane receptor (CAR) in the disruption of retinoid homeostasis by non-coplanar 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153). Administration of four weekly 50 mg/kg doses of PCB153 to C57BL/6 male mice resulted in a significant decline in the tissue concentrations of retinyl esters, retinol and all-trans-retinoic acid (atRA), while no decline in hepatic and adipose tissue retinoid levels were detected in Car-null littermates. Our data imply that disrupted retinoid homeostasis occurs as a consequence of PCB153-induced activation of CAR, and raise the possibility that CAR signaling can affect atRA homeostasis in vivo. A strong correlation between the changes in retinoid metabolism and extensive upregulation of hepatic CAR-driven Cyp2b10 expression implicates this CYP isoform as contributing to retinoid homeostasis disruption via atRA oxidation during PCB153 exposure. In response to PCB153-induced CAR activation and disruption of retinoid homeostasis, expression of hepatic Pepck, Cd36 and adipose tissue Pparγ, Cd36, Adipoq, and Rbp4 were altered; however, this was reversed by administration of exogenous dietary retinoids (300 IU daily for 4 weeks). Our study establishes that PCB153 exposure enables a significant disruption of retinoid homeostasis in a CAR-dependent manner. We propose that this contributes to the obesogenic properties of PCB153 and may contribute to the predisposition to the metabolic disease.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | - Yun Jee Lee
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Hongfeng Jiang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
3
|
Brankovič J, Jovanovski S, Jevnikar P, Hofmeister A, Reininger-Gutmann B, Jan J, Grošelj M, Osredkar J, Uršič M, Fazarinc G, Pogačnik A, Vrecl M. Alterations in geometry, biomechanics, and mineral composition of juvenile rat femur induced by nonplanar PCB-155 and/or planar PCB-169. ENVIRONMENTAL TOXICOLOGY 2017; 32:1135-1146. [PMID: 27393578 DOI: 10.1002/tox.22309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 06/02/2016] [Accepted: 06/11/2016] [Indexed: 05/20/2023]
Abstract
Exposure to widespread lipophilic and bioaccumulative polychlorinated biphenyls (PCBs) induces diverse biochemical and toxicological responses in various organs, including the bone. The aim of this study was to evaluate the changes in growth rate, geometry, serum, and bone biochemical parameters and biomechanics of juvenile rat femur induced by lactational exposure to nonplanar PCB-155 and planar PCB-169 individually and in combination. Fifteen lactating Wistar rats were divided into four groups (PCB-169, PCB-155, PCB-155+169, and control), and PCBs were administered intraperitoneally at different time points after delivery. Femurs from 22-day-old offspring were analyzed by microCT, three-point bending test and inductively coupled plasma-mass spectrometry (ICP-MS) to obtain data on bone geometry, biomechanics and mineral composition. The serum levels of calcium, phosphate and alkaline phosphatase were also determined. Lactational exposure to planar PCB-169 resulted in shorter and thinner femurs, reduced endosteal and periosteal perimeters, smaller total cross-sectional and medullary areas, and lowered serum bone marker levels and calcium levels in the bone, while femur mechanical properties were not significantly altered. The changes observed in the combination exposure (PCB-155+169) group were similar to those observed in the PCB-169 group but were less pronounced. In summary, our results demonstrate that alterations in lactationally exposed offspring were primarily induced by planar PCB-169. The milder outcome in the combined group suggested that the PCB-169-mediated toxic effects on the bone might be reduced by a nonplanar PCB-155 congener. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1135-1146, 2017.
Collapse
Affiliation(s)
- Jana Brankovič
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, Ljubljana, 1000, Slovenia
| | - Sašo Jovanovski
- Department of Prosthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, 1000, Slovenia
- Department of Prosthodontics, Faculty of Dental Medicine, University of St. Cyril and Methodius, Vodnjanska 17, Skopje, 1000, Macedonia
| | - Peter Jevnikar
- Department of Prosthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, 1000, Slovenia
| | - Alexander Hofmeister
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, Graz, 8036, Austria
| | - Birgit Reininger-Gutmann
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, Graz, 8036, Austria
| | - Janja Jan
- Department of Dental Diseases and Normal Dental Morphology, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, 1000, Slovenia
| | - Maja Grošelj
- Department of Dental Diseases and Normal Dental Morphology, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, 1000, Slovenia
| | - Joško Osredkar
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia
| | - Matjaž Uršič
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, Ljubljana, 1000, Slovenia
| | - Gregor Fazarinc
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, Ljubljana, 1000, Slovenia
| | - Azra Pogačnik
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, Ljubljana, 1000, Slovenia
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, Ljubljana, 1000, Slovenia
| |
Collapse
|
4
|
Augustowska K, Magnowska Z, Kapiszewska M, Gregoraszczuk EL. Is the natural PCDD/PCDF mixture toxic for human placental JEG-3 cell line? The action of the toxicants on hormonal profile, CYP1A1 activity, DNA damage and cell apoptosis. Hum Exp Toxicol 2016; 26:407-17. [PMID: 17623765 DOI: 10.1177/0960327107073119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study was conducted to define the action of a mixture obtained by the extraction and purification of real fly ash, on specific toxicity endpoints, such as hormonal secretion, CYP1A1 expression, DNA damage and cell apoptosis. JEG-3 cell line was exposed in vitro to different doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or Polychlorinated dibenzo-p-dioxin/Polychlorinated dibenzo-P-furan (PCDD/PCDF) mixture. Both TCDD and the mixture decreased hCG secretion, while inhibition of progesterone levels was noted only under the influence of TCDD. The changes in hormone production were not due to the action on cell viability. There were time-dependent differences in CYP1A1 expression in cells exposed to TCDD and PCDD/PCDF mixture. Both TCDD and PCDD/PCDF mixture did not induce the DNA damage, as evaluated by the comet assay. Significantly lower DNA migration from the head of comet into the comet tail was noted after the removal of reagents. The highest efficiency of this process was noted 4 h after the TCDD and 24 h after the PCDD/PCDF mixture removal. These results suggest that the DNA adducts and/or DNA—DNA cross-links were formed. Neither TCDD nor PCDD/PCDF mixture had any effect on cell apoptosis assessed by caspase-3 activity and Hoechst 33258. Taken together, these findings clearly indicate a weaker action of the mixture when compared with TCDD. However, in both cases, their action was not due to the induction of the DNA damage and subsequent cell apoptosis but due to a direct influence of these toxicants on placental hormone production. Human & Experimental Toxicology ( 2007) 26, 407—417
Collapse
Affiliation(s)
- Katarzyna Augustowska
- Department of Physiology and Toxicology of Reproduction, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-306 Krakow, Poland
| | | | | | | |
Collapse
|
5
|
Tavakoly Sany SB, Hashim R, Salleh A, Rezayi M, Karlen DJ, Razavizadeh BBM, Abouzari-Lotf E. Dioxin risk assessment: mechanisms of action and possible toxicity in human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19434-50. [PMID: 26514567 DOI: 10.1007/s11356-015-5597-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/08/2015] [Indexed: 05/11/2023]
Abstract
Dioxin-like compounds (DLCs) have been classified by the World Health Organization (WHO) as one of the most persistent toxic chemical substances in the environment, and they are associated with several occupational activities and industrial accidents around the world. Since the end of the 1970s, these toxic chemicals have been banned because of their human toxicity potential, long half-life, wide dispersion, and they bioaccumulate in the food web. This review serves as a primer for environmental health professionals to provide guidance on short-term risk assessment of dioxin and to identify key findings for health and exposure assessment based on policies of different agencies. It also presents possible health effects of dioxins, mechanisms of action, toxic equivalency factors (TEFs), and dose-response characterization. Key studies related to toxicity values of dioxin-like compounds and their possible human health risk were identified through PubMed and supplemented with relevant studies characterized by reviewing the reference lists in the review articles and primary literature. Existing data decreases the scope of analyses and models in relevant studies to a manageable size by focusing on the set of important studies related to the perspective of developing toxicity values of DLCs.
Collapse
Affiliation(s)
| | - Rosli Hashim
- Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aishah Salleh
- Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Majid Rezayi
- Chemistry Department, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - David J Karlen
- Environmental Protection Commission of Hillsborough County, 3629 Queen Palm Drive, Tampa, FL, 33619-1309, USA
| | - Bi Bi Marzieh Razavizadeh
- Department of Food Chemistry, Research Institute of Food Science and Technology, P.O. Box: 91735-147, Mashhad, Iran
| | - Ebrahim Abouzari-Lotf
- Advanced Materials Research Group, Institute of Hydrogen Economy, Universiti Teknologi Malaysia, International Campus, 54100, Kuala Lumpur, Malaysia
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Shmarakov IO. Retinoid-xenobiotic interactions: the Ying and the Yang. Hepatobiliary Surg Nutr 2015; 4:243-67. [PMID: 26311625 DOI: 10.3978/j.issn.2304-3881.2015.05.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/13/2015] [Indexed: 12/20/2022]
Abstract
The literature provides compelling evidence pointing to tight metabolic interactions between retinoids and xenobiotics. These are extensive and important for understanding xenobiotic actions in the body. Within the body, retinoids affect xenobiotic metabolism and actions and conversely, xenobiotics affect retinoid metabolism and actions. This article summarizes data that establish the importance of retinoid-dependent metabolic pathways for sustaining the body's responses to xenobiotic exposure, including the roles of all-trans- and 9-cis-retinoic acid for protecting mammals from harmful xenobiotic effects and for ensuring xenobiotic elimination from the body. This review will also consider molecular mechanisms underlying xenobiotic toxicity focusing on how this may contribute to retinoid deficiency and disruption of normal retinoid homeostasis. Special attention is paid to xenobiotic molecular targets (nuclear receptors, regulatory proteins, enzymes, and transporters) which affect retinoid metabolism and signaling.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Biochemistry and Biotechnology, Chernivtsi National University, Chernivtsi, Ukraine
| |
Collapse
|
7
|
Sany SBT, Hashim R, Rezayi M, Rahman MA, Razavizadeh BBM, Abouzari-lotf E, Karlen DJ. Integrated ecological risk assessment of dioxin compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11193-11208. [PMID: 25953606 DOI: 10.1007/s11356-015-4511-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Current ecological risk assessment (ERA) schemes focus mainly on bioaccumulation and toxicity of pollutants in individual organisms. Ecological models are tools mainly used to assess ecological risks of pollutants to ecosystems, communities, and populations. Their main advantage is the relatively direct integration of the species sensitivity to organic pollutants, the fate and mechanism of action in the environment of toxicants, and life-history features of the individual organism of concern. To promote scientific consensus on ERA schemes, this review is intended to provide a guideline on short-term ERA involving dioxin chemicals and to identify key findings for exposure assessment based on policies of different agencies. It also presents possible adverse effects of dioxins on ecosystems, toxicity equivalence methodology, environmental fate and transport modeling, and development of stressor-response profiles for dioxin-like chemicals.
Collapse
|
8
|
Esteban J, Elabbas LE, Borg D, Herlin M, Åkesson A, Barber X, Hamscher G, Nau H, Bowers WJ, Nakai JS, Viluksela M, Håkansson H. Gestational and lactational exposure to the polychlorinated biphenyl mixture Aroclor 1254 modulates retinoid homeostasis in rat offspring. Toxicol Lett 2014; 229:41-51. [PMID: 24887809 DOI: 10.1016/j.toxlet.2014.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/26/2023]
Abstract
Polychlorinated biphenyls (PCBs) induce a broad spectrum of biochemical and toxic effects in mammals including alterations of the vital retinoid (vitamin A) system. The aim of this study was to characterize alterations of tissue retinoid levels in rat offspring and their dams following gestational and lactational exposure to the PCB mixture Aroclor 1254 (A1254) and to assess the interrelationship of these changes with other established sensitive biochemical and toxicological endpoints. Sprague-Dawley rat dams were exposed orally to 0 or 15 mg/kg body weight/day of A1254 from gestational day 1 to postnatal day (PND) 23. Livers, kidneys and serum were collected from the offspring on PNDs 35, 77 and 350. Tissue and serum retinoid levels, hepatic cytochrome P450 (CYP) enzymes and serum thyroid hormones were analyzed. A multivariate regression between A1254 treatment, hepatic retinoid levels, hepatic CYP enzymes activities, thyroid hormone levels and body/liver weights was performed using an orthogonal partial least-squares (PLS) analysis. The contribution of dioxin-like (DL) components of A1254 to the observed effects was also estimated using the toxic equivalency (TEQ) concept. In both male and female offspring short-term alterations in tissue retinoid levels occurred at PND35, i.e. decreased levels of hepatic retinol and retinoic acid (RA) metabolite 9-cis-4-oxo-13,14-dihydro-RA with concurrent increases in hepatic and renal all-trans-RA levels. Long-term changes consisted of decreased hepatic retinyl palmitate and increased renal retinol levels that were apparent until PND350. Retinoid system alterations were associated with altered CYP enzyme activities and serum thyroid hormone levels as well as body and liver weights in both offspring and dams. The estimated DL activity was within an order of magnitude of the theoretical TEQ for different endpoints, indicating significant involvement of DL congeners in the observed effects. This study shows that tissue retinoid levels are affected both short- and long-term by developmental A1254 exposure and are associated with alterations of other established endpoints of toxicological concern.
Collapse
Affiliation(s)
- Javier Esteban
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche (Alicante), Spain
| | - Lubna E Elabbas
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Borg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Herlin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xavier Barber
- Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Alicante), Spain
| | - Gerd Hamscher
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine, Hannover, Germany
| | - Heinz Nau
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine, Hannover, Germany
| | - Wayne J Bowers
- Neurotoxicology Laboratory, Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Canada; Neuroscience Department, Carleton University, Ottawa, Canada
| | - Jamie S Nakai
- Neurotoxicology Laboratory, Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Canada
| | - Matti Viluksela
- Department of Environmental Health, THL - National Institute for Health and Welfare, Kuopio, Finland; Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Elabbas LE, Esteban J, Barber X, Hamscher G, Nau H, Bowers WJ, Nakai JS, Herlin M, Åkesson A, Viluksela M, Borg D, Håkansson H. In utero and lactational exposure to a mixture of environmental contaminants detected in Canadian Arctic human populations alters retinoid levels in rat offspring with low margins of exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:223-245. [PMID: 24588224 DOI: 10.1080/15287394.2013.861776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Arctic inhabitants are highly exposed to persistent organic pollutants (POP), which may produce adverse health effects. This study characterized alterations in tissue retinoid (vitamin A) levels in rat offspring and their dams following in utero and lactational exposure to the Northern Contaminant Mixture (NCM), a mixture of 27 contaminants including polychlorinated biphenyls (PCB), organochlorine (OC) pesticides, and methylmercury (MeHg), present in maternal blood of the Canadian Arctic Inuit population. Further, effect levels for retinoid system alterations and other endpoints were compared to the Arctic Inuit population exposure and their interrelationships were assessed. Sprague-Dawley rat dams were dosed with NCM from gestational day 1 to postnatal day (PND) 23. Livers, kidneys and serum were obtained from offspring on PND35, PND77, and PND350 and their dams on PND30 for analysis of tissue retinoid levels, hepatic cytochrome P-450 (CYP) enzymes, and serum thyroid hormones. Benchmark doses were established for all endpoints, and a partial least-squares regression analysis was performed for NCM treatment, hepatic retinoid levels, CYP enzyme induction, and thyroid hormone levels, as well as body and liver weights. Hepatic retinoid levels were sensitive endpoints, with the most pronounced effects at PND35 though still apparent at PND350. The effects on tissue retinoid levels and changes in CYP enzyme activities, body and liver weights, and thyroid hormone levels were associated and likely driven by dioxin-like compounds in the mixture. Low margins of exposure were observed for all retinoid endpoints at PND35. These findings are important for health risk assessment of Canadian Arctic populations and further support the use of retinoid system analyses in testing of endocrine-system-modulating compounds.
Collapse
Affiliation(s)
- Lubna E Elabbas
- a Institute of Environmental Medicine , Karolinska Institutet , Stockholm , Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu Q, Rise ML, Spitsbergen JM, Hori TS, Mieritz M, Geis S, McGraw JE, Goetz G, Larson J, Hutz RJ, Carvan MJ. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:356-68. [PMID: 23892422 PMCID: PMC3791104 DOI: 10.1016/j.aquatox.2013.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 05/23/2023]
Abstract
The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ngTCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ngTCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down-regulated gene among each group based on microarray data, and their QPCR validations are consistent with microarray data for the 10 and 100 ppb TCDD treatment groups after 28 days exposure (p<0.05). In addition, in the 100 ppb group at 28 days, expression of complement component C3-1 and trypsin-1 precursor have a more than 10-fold induction from the microarray experiments, and their QPCR validations are consistent and showed significant induction in the 100 ppb group at 28 days (p<0.05). Overall, lesion in nasal epithelium is a novel and significant result in this study, and TCDD-responsive rainbow trout transcripts identified in the present study may lead to the development of new molecular biomarkers for assessing the potential impacts of environmental TCDD on rainbow trout populations.
Collapse
Affiliation(s)
- Qing Liu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211, USA
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204, USA
| | - Matthew L. Rise
- Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Jan M. Spitsbergen
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331, USA
| | - Tiago S. Hori
- Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Mark Mieritz
- Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706, USA
| | - Steven Geis
- Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706, USA
| | - Joseph E. McGraw
- School of Pharmacy, Concordia University Wisconsin, 12800 North Lake Shore Drive, Mequon, WI 53097, USA
| | - Giles Goetz
- School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Seattle WA 98195, USA
| | - Jeremy Larson
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211, USA
| | - Reinhold J. Hutz
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211, USA
| | - Michael J. Carvan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211, USA
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204, USA
| |
Collapse
|
11
|
Long M, Bonefeld-Jørgensen EC. Dioxin-like activity in environmental and human samples from Greenland and Denmark. CHEMOSPHERE 2012; 89:919-28. [PMID: 22858370 DOI: 10.1016/j.chemosphere.2012.06.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/03/2012] [Accepted: 06/30/2012] [Indexed: 05/20/2023]
Abstract
Dioxins and dioxin-like (DL) compounds are some of the most toxic chemicals being highly persistent in the environment. The toxicological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Compounds of diverse structure and lipophility can bind and activate AhR. The AhR transactivation bioassay is utilized in an array of projects to study the AhR-mediated activities of individual chemicals and mixtures and for epidemiological purposes. This review summarizes a series of studies regarding the DL-activity of single compounds and complex compound mixtures in the environment and humans. We found that some pesticides, plasticizers and phytoestrogens can activate the AhR, and the combined effect of compounds with no or weak AhR potency cannot be ignored. The significant DL-activity in the wastewater effluent indicates the treatment is not sufficient to prevent contamination of surface waters with dioxins. Our results from human studies suggest that the serum DL-activity reflect the complex mixture of persistent organic pollutants (POPs). Greenlandic Inuit had lower serum DL-activity level compared to Europeans, probably due to long distance from the dioxin sources and UV degradation of the high potent dioxin and/or the inhibitory effect of the high level of non-DL POPs. Selective bioaccumulation of PCBs in the food chain may contribute to the negative correlation between serum POPs and DL-activity observed in Greenlandic Inuit. Hence the AhR transactivation bioassay provides a cost-effective and integrated screening tool for measurement of the DL-activity in human, environmental and commercial samples.
Collapse
Affiliation(s)
- Manhai Long
- Cellular & Molecular Toxicology, Centre of Arctic Health, Department of public Health, Arhus University, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
12
|
Krüger T, Long M, Ghisari M, Bonefeld-Jørgensen EC. The combined effect of persistent organic pollutants in the serum POP mixture in Greenlandic Inuit: xenoestrogenic, xenoandrogenic and dioxin-like transactivities. Biomarkers 2012; 17:692-705. [PMID: 23030067 DOI: 10.3109/1354750x.2012.700950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Greenlandic Inuit have high body burden of persistent organic pollutants (POPs). We analyzed the combined effect of the actual lipophilic serum POP mixture on estrogen-, androgen- and aryl hydrocarbon-receptor functions as effect biomarkers, and the associations between the effect biomarkers and serum POPs, and lifestyle characteristics. The serum POPs were extracted from 232 Inuit from Ittoqqortoormiit, Narsaq and Qeqertarsuaq. The POP-related receptor transactivities correlated negatively to the POP levels and were associated to the lifestyle characteristics. The POP-related receptor transactivities can be used as effect biomarkers. The serum POPs have hormone disruptive potentials.
Collapse
Affiliation(s)
- Tanja Krüger
- Department of Public Health, Centre for Arctic Health & Cellular and Molecular Toxicology, Aarhus University, Aarhus C, Denmark
| | | | | | | |
Collapse
|
13
|
Bonefeld-Jorgensen EC, Long M, Bossi R, Ayotte P, Asmund G, Krüger T, Ghisari M, Mulvad G, Kern P, Nzulumiki P, Dewailly E. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: a case control study. Environ Health 2011; 10:88. [PMID: 21978366 PMCID: PMC3203030 DOI: 10.1186/1476-069x-10-88] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/06/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer for women in the western world. From very few cases an extraordinary increase in BC was observed in the Inuit population of Greenland and Canada although still lower than in western populations. Previous data suggest that exposure to persistent organic pollutants (POPs) might contribute to the risk of BC. Rat studies showed that perfluorinated compounds (PFCs) cause significantly increase in mammary fibroadenomas. This study aimed at evaluating the association between serum levels of POPs/PFCs in Greenlandic Inuit BC cases and their controls, and whether the combined POP related effect on nuclear hormone receptors affect BC risk. METHODS Thirty-one BC cases and 115 controls were sampled during 2000-2003 from various Greenlandic districts. The serum levels of POPs, PFCs, some metals and the combined serum POP related effect on estrogen- (ER), androgen- (AR) and Ah-receptor (AhR) transactivity were determined. Independent student t-test was used to compare the differences and the odds ratios were estimated by unconditional logistic regression models. RESULTS We observed for the very first time a significant association between serum PFC levels and the risk of BC. The BC cases also showed a significantly higher concentration of polychlorinated biphenyls at the highest quartile. Also for the combined serum POP induced agonistic AR transactivity significant association to BC risk was found, and cases elicited a higher frequency of samples with significant POP related hormone-like agonistic ER transactivity. The AhR toxic equivalent was lowest in cases. CONCLUSIONS The level of serum POPs, particularly PFCs, might be risk factors in the development of BC in Inuit. Hormone disruption by the combined serum POP related xenoestrogenic and xenoandrogenic activities may contribute to the risk of developing breast cancer in Inuit. Further investigations are needed to document these study conclusions.
Collapse
Affiliation(s)
- Eva C Bonefeld-Jorgensen
- Centre for Arctic Environmental Medicine, Department of Public Health, Aarhus University, Denmark
| | - Manhai Long
- Centre for Arctic Environmental Medicine, Department of Public Health, Aarhus University, Denmark
| | - Rossana Bossi
- National Environmental Research Institute, Aarhus University, Denmark
| | - Pierre Ayotte
- Institut National de Santé Publique du Québec, Québec, QC, Canada
| | - Gert Asmund
- National Environmental Research Institute, Aarhus University, Denmark
| | - Tanja Krüger
- Centre for Arctic Environmental Medicine, Department of Public Health, Aarhus University, Denmark
| | - Mandana Ghisari
- Centre for Arctic Environmental Medicine, Department of Public Health, Aarhus University, Denmark
| | | | - Peder Kern
- Dronning Ingrids Hospital, Nuuk Greenland
| | | | - Eric Dewailly
- Institut National de Santé Publique du Québec, Québec, QC, Canada
| |
Collapse
|
14
|
Wang Y, Lu C, Sheng Z, Liu G, Fu Z, Zhu B, Peng S. Enhanced hepatotoxicity induced by repeated exposure to polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin in combination in male rats. J Environ Sci (China) 2011; 23:119-124. [PMID: 21476350 DOI: 10.1016/s1001-0742(10)60382-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are among persistent polyhalogenated aromatic hydrocarbons that exist as complex mixtures in the environment worldwide. The present study was attempted to investigate the hepatotoxicity following repeated exposure to TCDD and PCBs in combination in male rats, and to reveal the involvement of potential mechanisms. Male Sprague-Dawley rats were exposed to TCDD (10 microg/kg) and Aroclor 1254 (10 mg/kg, a representative mixture of PCBs) alone or in combination by intragastric administration. After 12-day exposure, all treatments produced significant hepatotoxicity as characterized by changes of plasma biochemistry and histopathological changes. These effects were more prominent in the combined group. Furthermore, all treatments induced hepatic cytochrome P450 1A1 (CYP1A1) expression, and the maximal level of CYP1A1 expression was observed in the combined group, as in the case of the most severe hepatotoxicity evoked by the combined exposure. These findings indicated that the hepatotoxicity induced by TCDD and Aroclor 1254 might be ascribed to the high expression of hepatic CYP1A1. The present study demonstrates the enhanced hepatotoxicity after exposure to TCDD and PCBs in combination in rats.
Collapse
Affiliation(s)
- Yimei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Søfteland L, Eide I, Olsvik PA. Factorial design applied for multiple endpoint toxicity evaluation in Atlantic salmon (Salmo salar L.) hepatocytes. Toxicol In Vitro 2009; 23:1455-64. [DOI: 10.1016/j.tiv.2009.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 06/13/2009] [Accepted: 07/07/2009] [Indexed: 11/24/2022]
|
16
|
Lu CF, Wang YM, Peng SQ, Zou LB, Tan DH, Liu G, Fu Z, Wang QX, Zhao J. Combined effects of repeated administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin and polychlorinated biphenyls on kidneys of male rats. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:767-776. [PMID: 19373505 DOI: 10.1007/s00244-009-9323-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/30/2009] [Indexed: 05/26/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are persistent environmental contaminants that exist as complex mixtures in the environment, but the possible interactions of TCDD and PCBs have not been systematically investigated. The main objective of this study was to investigate the combined nephrotoxic effects of TCDD and PCBs on rats and to reveal the potential interactions between TCDD and PCBs. Male Sprague-Dawley rats were intragastrically administered TCDD (10 microg/kg), PCBs (Aroclor 1254, 10 mg/kg), or the combination (10 microg/kg TCDD + 10 mg/kg Aroclor 1254). After 12 consecutive days of exposure, all treatments induced nephrotoxicity, as evidenced by significant increases in the levels of serum creatinine and blood urea nitrogen, changes of kidney histopathology, and significant renal oxidative stress. Most of these effects were more remarkable in the combined-exposure group. Furthermore, all treatments induced renal cytochrome P450 1A1 (CYP1A1) protein expression, and the induction was more conspicuous in the combined-exposure group. These findings suggested that the nephrotoxicity induced by TCDD and PCBs in the present study might be attributable to the high expression of CYP1A1. In addition, the result of the two-way analysis of variance revealed that the combined effects of TCDD and PCBs were complicated, being additive, synergistic, or antagonistic depending on the selection of toxicity end points under the present experimental condition. This study demonstrates that combined exposure to TCDD and PCBs induced significant nephrotoxicity in rats, and there were complicated interactions between the two pollutants on the nephrotoxicity.
Collapse
Affiliation(s)
- Chun-Feng Lu
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Gregoraszczuk EL, Ptak A, Karniewska M, Ropstad E. Action of defined mixtures of PCBs, p,p′-DDT and its metabolite p,p′-DDE, on co-culture of porcine theca and granulosa cells: Steroid secretion, cell proliferation and apoptosis. Reprod Toxicol 2008; 26:170-4. [DOI: 10.1016/j.reprotox.2008.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 06/11/2008] [Accepted: 07/10/2008] [Indexed: 11/24/2022]
|
19
|
Chu I, Bowers WJ, Caldwell D, Nakai J, Wade MG, Yagminas A, Li N, Moir D, El Abbas L, Håkansson H, Gill S, Mueller R, Pulido O. Toxicological effects of in utero and lactational exposure of rats to a mixture of environmental contaminants detected in Canadian Arctic human populations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:93-108. [PMID: 18080900 DOI: 10.1080/15287390701612811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
As part of the program to investigate mixture effects of environmental pollutants, this study describes clinical, biochemical, and histopathological effects in rats perinatally exposed to a mixture of persistent organochlorine pollutants and methylmercury that simulates the blood contaminant profile of humans residing in the Canadian Arctic. Groups of pregnant rats were administered orally 0, 0.05, 0.5, or 5 mg/kg body weight (bw)/d of a reconstituted mixture of organochlorine pollutants (referred to as mixture hereafter) from gestational day (GD) 1 to postnatal day (PND) 23. Positive and vehicle controls were given Aroclor 1254 (Aroclor hereafter, 15 mg/kg bw) and corn oil (vehicle), respectively. After parturition, the pups were colled to 8 per litter on PND 4, and killed on PND 35, 77, or 350, when tissues were collected for analysis. Gestational and lactational exposure of rats to mixture up to 5 mg/kg bw produced adverse effects in the offspring, including growth suppression, decreased spleen and thymic weights, increased serum cholesterol and liver microsomal enzyme activities, lower liver retinoid levels, and histological changes in the liver, thyroid, and spleen. Histological changes in the liver consisted of hepatic inflammation, vacuolation, and hypertrophy, while alterations in the thyroid were characterized by hypertrophy and hyperplasia of follicles. The hepatic and thyroidal effects were mild even at the highest dose. The spleen showed a dose-dependent atrophy in the lymphoid nodules and periarteriolar lymphatic sheath regions. Aroclor produced effects similar to those seen in the highest mixture group. In summary, this study demonstrates that exposure to the reconstituted mixture at 5 mg/kg bw produced growth suppression, changes in organ weights, and biochemical and histopathological changes in liver, thyroid, and spleen. This study also demonstrated that the blood level in rats given the 5-mg/kg dose, where most of the effects were observed, is 100-fold higher than the blood level in the 0.05-mg/kg group, which is comparable to that found in humans living in the Canadian Arctic region.
Collapse
Affiliation(s)
- Ih Chu
- Environmental and Occupational Toxicology Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Long M, Deutch B, Bonefeld-Jorgensen EC. AhR transcriptional activity in serum of Inuits across Greenlandic districts. Environ Health 2007; 6:32. [PMID: 17956617 PMCID: PMC2173889 DOI: 10.1186/1476-069x-6-32] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 10/23/2007] [Indexed: 05/04/2023]
Abstract
BACKGROUND Human exposure to lipophilic persistent organic pollutants (POPs) including polychlorinated dibenzo-p-dioxins/furans (PCDDs/PCDFs), polychlorinated biphenyls (PCBs) and organochlorine pesticide is ubiquitous. The individual is exposed to a complex mixture of POPs being life-long beginning during critical developmental windows. Exposure to POPs elicits a number of species- and tissue-specific toxic responses, many of which involve the aryl hydrocarbon receptor (AhR). The aim of this study was to compare the actual level of integrated AhR transcriptional activity in the lipophilic serum fraction containing the actual POP mixture among Inuits from different districts in Greenland, and to evaluate whether the AhR transactivity is correlated to the bio-accumulated POPs and/or lifestyle factors. METHODS The study included 357 serum samples from the Greenlandic districts: Nuuk and Sisimiut (South West Coast), Qaanaaq (North Coast) and Tasiilaq (East Coast). The bio-accumulated serum POPs were extracted by ethanol: hexane and clean-up on Florisil columns. Effects of the serum extract on the AhR transactivity was determined using the Hepa 1.12cR mouse hepatoma cell line carrying an AhR-luciferase reporter gene, and the data was evaluated for possible association to the serum levels of 14 PCB congeners, 10 organochlorine pesticide residues and/or lifestyle factors. RESULTS In total 85% of the Inuit samples elicited agonistic AhR transactivity in a district dependent pattern. The median level of the AhR-TCDD equivalent (AhR-TEQ) of the separate genders was similar in the different districts. For the combined data the order of the median AhR-TEQ was Tasiilaq > Nuuk > or = Sisimiut > Qaanaaq possibly being related to the different composition of POPs. In overall, the AhR transactivity was inversely correlated to the levels of sum POPs, age and/or intake of marine food. CONCLUSION i) We observed that the proportion of dioxin like (DL) compounds in the POP mixture was the dominating factor affecting the level of serum AhR transcriptional activity even at very high level of non DL-PCBs; ii) The inverse association between the integrated serum AhR transactivity and sum of POPs might be explained by the higher level of compounds antagonizing the AhR function probably due to selective POP bioaccumulation in the food chain.
Collapse
Affiliation(s)
- Manhai Long
- Unit of Cellular and Molecular Toxicology, Department of Environmental and Occupational Medicine, Institute of Public Health, University of Aarhus, Denmark
| | - Bente Deutch
- Centre for Arctic Environmental Medicine, Department of Environmental and Occupational Medicine, Institute of Public Health, University of Aarhus, Denmark
| | - Eva C Bonefeld-Jorgensen
- Unit of Cellular and Molecular Toxicology, Department of Environmental and Occupational Medicine, Institute of Public Health, University of Aarhus, Denmark
| |
Collapse
|
21
|
Murphy KA, Quadro L, White LA. The Intersection Between the Aryl Hydrocarbon Receptor (AhR)‐ and Retinoic Acid‐Signaling Pathways. VITAMIN A 2007; 75:33-67. [PMID: 17368311 DOI: 10.1016/s0083-6729(06)75002-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Data from a variety of animal and cell culture model systems have demonstrated an interaction between the aryl hydrocarbon receptor (AhR)- and retinoic acid (RA)-signaling pathways. The AhR(1) was originally identified as the receptor for the polycyclic aromatic hydrocarbon family of environmental contaminants; however, recent data indicate that the AhR binds to a variety of endogenous and exogenous compounds, including some synthetic retinoids. In addition, activation of the AhR pathway alters the function of nuclear hormone-signaling pathways, including the estrogen, thyroid, and RA pathways. Activation of the AhR pathway through exposure to environmental compounds results in significant changes in RA synthesis, catabolism, transport, and excretion. Some effects on retinoid homeostasis mediated by the AhR pathway may result from the interactions of these two pathways at the level of activating or repressing the expression of specific genes. This chapter will review these two pathways, the evidence demonstrating a link between them, and the data indicating the molecular basis of the interactions between these two pathways.
Collapse
Affiliation(s)
- Kyle A Murphy
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | |
Collapse
|
22
|
McCarty LS, Borgert CJ. Review of the toxicity of chemical mixtures containing at least one organochlorine. Regul Toxicol Pharmacol 2006; 45:104-18. [PMID: 16701931 DOI: 10.1016/j.yrtph.2006.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Indexed: 11/24/2022]
Abstract
An analysis of current research on mixture toxicity was conducted by critically reviewing published journal articles. The scope was limited to complex mixtures (more than two components) where at least one component was a chlorinated organic chemical. Although the basics of dose-response are widely accepted for mixtures, a number of technical issues, including dose metrics and the unquantified influence of toxicity modifying factors, confound data interpretation and restrict the ability to establish reliable determinations of the presence, nature, and extent of additivity. Lack of knowledge about dose level influences and species-specific variations contribute further interpretational limitations. Within this context, available data indicates that most tested mixtures are near or below simple dose/concentration additivity. Exceptions (both positive and negative) tend to occur when tested mixtures have only a few components or where sensitive whole organism or sub-organismal changes are used as the response metric. Available information does not routinely identify the presence of chlorine as a marker either of a particular type of toxicity or consistently greater potency. The most profound difficulty is the problem of clearly defining when and why similarity and dissimilarity of toxic action is expected for a particular mixture. This impediment largely results from the lack of a generally accepted, technical classification for mode/mechanism of toxic action coupled with the lack of a generally accepted classification scheme for mode/mechanism of toxicity interactions.
Collapse
Affiliation(s)
- L S McCarty
- L.S. McCarty Scientific Research & Consulting, 94 Oakhaven Drive, Markham, Ont., Canada L6C 1X8.
| | | |
Collapse
|
23
|
Johansson M, Johansson N, Lund BO. Xenobiotics and the glucocorticoid receptor: additive antagonistic effects on tyrosine aminotransferase activity in rat hepatoma cells. Basic Clin Pharmacol Toxicol 2005; 96:309-15. [PMID: 15755314 DOI: 10.1111/j.1742-7843.2005.pto960406.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methylsulfonyl-PCBs (MeSO2-PCBs) and some fungicides were studied for their functional effects on the glucocorticoid signal transduction in the Reuber rat hepatoma H-II-E-C3 cell line. 4-Substituted MeSO2-PCBs, tolylfluanid and ketoconazole displayed antagonistic effects on dexamethasone-induced tyrosine aminotransferase specific activity (IC50 ranging from 0.7-5.1 microM), but no agonist activity. These substances also had affinity to the mouse glucocorticoid receptor in competition binding studies, indicating that the inhibition of the middle cerebral artery occlusion-activity is indeed mediated by receptor binding. Thus, substances with a structural resemblance with a methyl sulfonyl group, such as the fungicide tolylfluanid, may inhibit glucocorticoid receptor-regulated gene transcription. In co-exposure experiments with three substances, multivariate modelling showed that the inhibitory effect of 4-MeSO2-2,5,6,2',4'-pentachlorobiphenyl (4-MeSO2-CB91), 4-MeSO2-2,3,6,2',4',5'-hexachlorobiphenyl (4-MeSO2-CB149) and tolylfluanid on tyrosine aminotransferase activity was close to additive. Thus, co-exposure to such different chemicals as persistent organic pollutants and pesticides may affect cells additively. Chemical interference with the glucocorticoid hormone system therefore deserves further attention in vivo.
Collapse
Affiliation(s)
- Maria Johansson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
24
|
Chu I, Bowers WJ, Caldwell D, Nakai J, Pulido O, Yagminas A, Wade MG, Moir D, Gill S, Mueller R. Toxicological Effects of Gestational and Lactational Exposure to a Mixture of Persistent Organochlorines in Rats: Systemic Effects. Toxicol Sci 2005; 88:645-55. [PMID: 16177236 DOI: 10.1093/toxsci/kfi335] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A large multi-disciplinary study was conducted to investigate the systemic, neurodevelopmental, neurochemical, endocrine, and molecular pathological effects of a mixture of reconstituted persistent organochlorine pollutants (POP) based on the blood profiles of Canadians residing in the Great Lakes/St. Lawrence region. This report outlines the overall study design and describes the systemic effects in rat offspring perinatally exposed to the POP mixture. Maternal rats were administered orally 0, 0.013, 0.13, 1.3, or 13 mg/kg bw/day of the mixture from gestational day (GD) 1 to postnatal day (PND) 23. Positive and negative controls were given Aroclor 1254 (15 mg/kg bw/day) and corn oil (vehicle), respectively. The rat pups were reared, culled to 8 per litter, and killed on postnatal days 35, 70, and 350, at which time tissues were collected for analysis. Exposure to high doses of the mixture elicited clinical, biochemical, and pathological changes and high mortality rates in rat offspring. Aroclor 1254 produced similar effects but a lower mortality than was seen in POP mixture groups. Biochemical changes consisted of increased liver microsomal activities and elevated serum cholesterol. Hepatomegaly was observed in the highest dose group of the mixture and in the positive control. Liver, thymus, and spleen were the target organs of action. Microscopic changes in the liver consisted of vacuolation and hypertrophy, and those in the thymus were characterized by reduced cortical and medullary volume. The spleen showed a treatment-related reduction in lymphocyte density and lymphoid areas. This study demonstrates that exposure to the POP mixture up to 13 mg/kg/day perinatally produced growth suppression, elevated serum cholesterol, increased liver microsomal enzyme activities, and immunopathological changes in the thymus and spleen, and lethality. Most of the effects were seen at dose levels much higher than expected human exposure.
Collapse
Affiliation(s)
- Ih Chu
- Environmental and Occupational Toxicology Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wade MG, Foster WG, Younglai EV, McMahon A, Leingartner K, Yagminas A, Blakey D, Fournier M, Desaulniers D, Hughes CL. Effects of subchronic exposure to a complex mixture of persistent contaminants in male rats: systemic, immune, and reproductive effects. Toxicol Sci 2002; 67:131-43. [PMID: 11961226 DOI: 10.1093/toxsci/67.1.131] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human populations throughout the world are exposed daily to low levels of environmental contaminants. The consequences of potential interactions of these compounds to human endocrine, reproductive, and immune function remain unknown. The current study examines the effects of subchronic oral exposure to a complex mixture of ubiquitous persistent environmental contaminants that have been quantified in human reproductive tissues. The dosing solution used in this study contained organochlorines (2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD], polychlorinated biphenyls [PCBs],p,p'-dichlorodiphenoxydichloroethylene [p,p'-DDE],p,p-dichlorodiphenoxytrichloroethane [p,p'-DDT], dieldrin, endosulfan, methoxychlor, hexachlorobenzene, and other chlorinated benzenes, hexachlorocyclohexane, mirex and heptachlor) as well as metals (lead and cadmium). Each chemical was included in the mixture at the minimum risk level (MRL) or tolerable daily intake (TDI) as determined by the U.S. EPA or ATSDR or, for TCDD, at the no observable effect level (NOEL) used to calculate the TDI. Sexually mature male rats were exposed to this complex mixture at 1, 10, 100, and 1000 times the estimated safe levels daily for 70 days. On day 71, all animals were sacrificed and a variety of physiological systems assessed for toxic effects. Evidence of hepatotoxicity was seen in the significant enlargement of the liver in the 1000x group, reduced serum LDH activity (100x), and increased serum cholesterol and protein levels (both 1000x). Hepatic EROD activities were elevated in animals exposed to10x and above. The mixture caused decreased proliferation of splenic T cells at the highest dose and had a biphasic effect on natural killer cell lytic activity with an initial increase in activity at 1x followed by a decrease to below control levels in response to 1000x. No treatment-related effects were seen on bone marrow micronuclei, daily sperm production, serum LH, FSH, or prolactin levels or weights of most organs of the reproductive tract. The weights of the whole epididymis and of the caput epididymis were significantly decreased at 10x and higher doses, although no effect was seen on cauda epididymal weight. The sperm content of the cauda epididymis was increased at the 1x level but not significantly different from control at higher dose levels. A slight, but significant, increase in the relative numbers of spermatids was seen in the animals from the 1000x group with a trend towards reduced proportion of diploid cells at the same dose. Only minor, nondose related changes were seen in parameters related to condensation of chromatin, as determined by flow cytometry, in epididymal sperm. We conclude that the mixture induced effects on the liver and kidney and on general metabolism at high doses but caused only minor effects on immune function, reproductive hormone levels, or general indices of reproductive function measures. These data suggest that additive or synergistic effects of exposure to contaminants resulting in residue levels representative of contemporary human tissue levels are unlikely to result in adverse effects on immune function or reproductive physiology in male rats.
Collapse
Affiliation(s)
- Michael G Wade
- Growth and Development Section, Environmental and Occupational Toxicology Section, Safe Environments Directorate, Health Canada, Environmental Health Centre, Tunney's Pasture, Ottawa, Ontario, Canada K1A 0L2.
| | | | | | | | | | | | | | | | | | | |
Collapse
|