1
|
Gao X, Yan J, Wang C, Yang P, Lu J, Ji Y. Formation of brominated and nitrated byproducts during unactivated peroxymonosulfate oxidation of phenol. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134265. [PMID: 38608590 DOI: 10.1016/j.jhazmat.2024.134265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Brominated and nitrated byproducts generated from bromide (Br-) and nitrite (NO2-), respectively, by sulfate radical (SO4•-) oxidation have raised increasing concern. However, little is known about the concurrent generation of brominated and nitrated byproducts in the unactivated peroxymonosulfate (PMS) oxidation process. This study revealed that Br- can facilitate the transformation of NO2- to nitrated byproducts during unactivated PMS oxidation of phenol. In the co-existence of 0.1 mM Br- and 0.5 mM NO2-, the total yield of identified nitrated byproducts reached 2.316 μM in 20 min, while none was found with NO2- alone. Nitryl bromide (BrNO2) as the primary nitrating agent was formed via the reaction of NO2- with free bromine in situ generated through the oxidation of Br- by PMS. BrNO2 rapidly reacted with phenol or bromophenols, generating highly toxic nitrophenols or nitrated bromophenols, respectively. Increasing NO2- concentration led to more nitrated byproducts but less brominated byproducts. This study advances our understanding of the transformation of Br- and NO2- in the unactivated PMS oxidation process. It also provides important insights into the potentially underestimated environmental risks when PMS is applied to degrade organic contaminants under realistic environments, particularly when Br- and NO2- co-exist.
Collapse
Affiliation(s)
- Xu Gao
- School of Biological and Environmental Engineering, Chaohu University, Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Hefei 238000, China; Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Yan
- School of Biological and Environmental Engineering, Chaohu University, Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Hefei 238000, China
| | - Chunyu Wang
- School of Biological and Environmental Engineering, Chaohu University, Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Hefei 238000, China
| | - Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Luo Z, Zhou W, Jiang Y, Minakata D, Spinney R, Dionysiou DD, Liu J, Xiao R. Bimolecular versus Trimolecular Reaction Pathways for H 2O 2 with Hypochlorous Species and Implications for Wastewater Reclamation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:847-858. [PMID: 38153291 DOI: 10.1021/acs.est.3c06375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The benchmark advanced oxidation technology (AOT) that uses UV/H2O2 integrated with hypochlorous species exhibits great potential in removing micropollutants and enhancing wastewater treatability for reclamation purposes. Although efforts have been made to study the reactions of H2O2 with hypochlorous species, there exist great discrepancies in the order of reaction kinetics, the rate constants, and the molecule-level mechanisms. This results in an excessive use of hypochlorous reagents and system underperformance during treatment processes. Herein, the titled reaction was investigated systematically through complementary experimental and theoretical approaches. Stopped-flow spectroscopic measurements revealed a combination of bi- and trimolecular reaction kinetics. The bimolecular pathway dominates at low H2O2 concentrations, while the trimolecular pathway dominates at high H2O2 concentrations. Both reactions were simulated using direct dynamics trajectories, and the pathways identified in the trajectories were further validated by high-level quantum chemistry calculations. The theoretical results not only supported the spectroscopic data but also elucidated the molecule-level mechanisms and helped to address the origin of the discrepancies. In addition, the impact of the environmental matrix was evaluated by using two waters with discrete characteristics, namely municipal wastewater and ammonium-rich wastewater. Municipal wastewater had a negligible matrix effect on the reaction kinetics of H2O2 and the hypochlorous species, making it a highly suitable candidate for this integration technique. The obtained in-depth reaction mechanistic insights will enable the development of a viable and economical technology for safe water reuse.
Collapse
Affiliation(s)
- Zonghao Luo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Queens, New York 11367, United States
| | - Ying Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Daisuke Minakata
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Queens, New York 11367, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
3
|
Aka RJN, Wu S, Mohotti D, Bashir MA, Nasir A. Evaluation of a liquid-phase plasma discharge process for ammonia oxidation in wastewater: Process optimization and kinetic modeling. WATER RESEARCH 2022; 224:119107. [PMID: 36122445 DOI: 10.1016/j.watres.2022.119107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Removing ammonia-nitrogen (NH3N) from wastewater is of paramount importance for wastewater treatment. In this study, a novel continuous liquid plasma process (CLPD) was evaluated to remove NH3N from synthetic wastewater. The Box-Behnken experimental design was used to optimize the main process parameters, including the initial NH3N concentration (50-200 mg/L), power input (150-300 W), and gas-flow rate (1.5-2.5 L/min), for efficient NH3N removal from wastewater. The gas-flow rate and power input were found to be significant factors affecting the removal efficiency of NH3N, whereas the initial concentration of NH3N played a vital role in determining the energy efficiency of the process. Under the optimal conditions of an initial NH3N concentration of 200 mg/L, applied power of 223 W, and gas-flow rate of 2.4 L/min, 98.91% of NH3N could be removed with a N2 selectivity of 92.91%, and the corresponding energy efficiency was 0.527 g/kWh after 2 hrs of treatment. A small fraction of undesirable NO3--N (7.05 mg/L) and NO2--N (2.83 mg/L) were also produced. Kinetic modeling revealed that NH3N degradation by the CLPD followed a pseudo-first-order reaction model, with a rate constant (k) of 0.03522 min-1. Optical emission spectroscopy (OES) was used to gather information about the active chemical species produced during the plasma discharge. The obtained spectra revealed the presence of several highly oxidative radicals, including ‧OH, ‧O, and ‧O2+. These results demonstrate the potential of liquid phase plasma discharge as a highly efficient technology for removing ammonia from aqueous solutions.
Collapse
Affiliation(s)
| | - Sarah Wu
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, United States.
| | - Dinithi Mohotti
- Environmental Science Program, University of Idaho, Moscow, ID 83844, United States
| | - Muhammad Aamir Bashir
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, United States; Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, United States
| | - Alia Nasir
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, United States
| |
Collapse
|
4
|
Trichloroisocyanuric acid and NaNO2 mediated nitration of indoles under acid-free and Vilsmeier–Haack conditions: synthesis and kinetic study. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
5
|
Bhooshan M, Rajanna KC, Govardhan D, Venkanna P, Satish Kumar M. Kinetics and mechanism of trichloroisocyanuric acid/NaNO2‐triggered nitration of aromatic compounds under acid‐free and Vilsmeier‐Haack conditions. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- M. Bhooshan
- Department of ChemistryOsmania University Hyderabad India
| | - K. C. Rajanna
- Department of ChemistryOsmania University Hyderabad India
| | - D. Govardhan
- Department of ChemistryOsmania University Hyderabad India
| | - P. Venkanna
- Department of ChemistryOsmania University Hyderabad India
| | | |
Collapse
|
6
|
Sant’Anna RTP, Faria RB. Kinetics and Mechanism of the Chlorate–Nitrous Acid Reaction. Inorg Chem 2017; 56:11160-11167. [DOI: 10.1021/acs.inorgchem.7b01477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rafaela T. P. Sant’Anna
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149,
CT, Bloco A, 21941-909 Rio de Janeiro, Brazil
| | - Roberto B. Faria
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149,
CT, Bloco A, 21941-909 Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Abstract
The experiments were performed in a lab-scale countercurrent spraying reactor to study the NOxremoval from simulated gas stream by cyclic scrubbing using NaClO solution. The effects of NaClO concentration, initial solution pH, coexisting gases (5% CO2and 13% O2), NOxconcentration, SO2concentration, and absorbent temperature on NOxremoval efficiency were investigated in regard to marine exhaust gas. When NaClO concentration was higher than 0.05 M and initial solution pH was below 8, NOxremoval efficiency was relatively stable and it was higher than 60%. The coexisting CO2(5%) had little effect on NOxremoval efficiency, but the outlet CO2concentration decreased slowly with the initial pH increasing from 6 to 8. A complete removal of SO2and NO could be achieved simultaneously at 293 K, initial pH of 6, and NaClO concentration of 0.05 M, while the outlet NO2concentration increased slightly with the increase of inlet SO2concentration. NOxremoval efficiency increased slightly with the increase of absorbent temperature. The relevant reaction mechanisms for the oxidation and absorption of NO with NaClO were also discussed. The results indicated that it was of great potential for NOxremoval from marine exhaust gas by wet scrubbing using NaClO solution.
Collapse
|
8
|
Xie Y, Wang Y, Giammar DE. Impact of chlorine disinfectants on dissolution of the lead corrosion product PbO2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7082-7088. [PMID: 20715864 DOI: 10.1021/es1016763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plattnerite (β-PbO(2)) is a corrosion product that develops on lead pipes that have been in contact with free chlorine present as a residual disinfectant. The reductive dissolution of PbO(2) can cause elevated lead concentrations in tap water when the residual disinfectant is switched from free chlorine to monochloramine. The objectives of this study were to quantify plattnerite dissolution rates in the presence of chlorine disinfectants, gain insights into dissolution mechanisms, and measure plattnerite's equilibrium solubility in the presence of free chlorine. The effects of free chlorine and monochloramine on the dissolution rates of plattnerite were quantified in completely mixed continuous-flow reactors at relevant pH and dissolved inorganic carbon conditions. Plattnerite dissolution rates decreased in the following order: no disinfectant > monochloramine > chlorine, which was consistent with the trend in the redox potential. Compared with experiments without disinfectant, monochloramine inhibited plattnerite dissolution in continuous-flow experiments. Although free chlorine maintained steady-state lead concentrations below the action level of 15 μg/L in flow-through experiments, in batch experiments lead concentrations exceeded the action level for longer residence times and approached an equilibrium value that was several orders of magnitude higher than that predicted from available thermodynamic data.
Collapse
Affiliation(s)
- Yanjiao Xie
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
9
|
Squadrito GL, Postlethwait EM, Matalon S. Elucidating mechanisms of chlorine toxicity: reaction kinetics, thermodynamics, and physiological implications. Am J Physiol Lung Cell Mol Physiol 2010; 299:L289-300. [PMID: 20525917 PMCID: PMC2951076 DOI: 10.1152/ajplung.00077.2010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/02/2010] [Indexed: 12/18/2022] Open
Abstract
Industrial and transport accidents, accidental releases during recreational swimming pool water treatment, household accidents due to mixing bleach with acidic cleaners, and, in recent years, usage of chlorine during war and in acts of terror, all contribute to the general and elevated state of alert with regard to chlorine gas. We here describe chemical and physical properties of Cl(2) that are relevant to its chemical reactivity with biological molecules, including water-soluble small-molecular-weight antioxidants, amino acid residues in proteins, and amino-phospholipids such as phosphatidylethanolamine and phosphatidylserine that are present in the lining fluid layers covering the airways and alveolar spaces. We further conduct a Cl(2) penetration analysis to assess how far Cl(2) can penetrate the surface of the lung before it reacts with water or biological substrate molecules. Our results strongly suggest that Cl(2) will predominantly react directly with biological molecules in the lung epithelial lining fluid, such as low-molecular-weight antioxidants, and that the hydrolysis of Cl(2) to HOCl (and HCl) can be important only when these biological molecules have been depleted by direct chemical reaction with Cl(2). The results from this theoretical analysis are then used for the assessment of the potential benefits of adjuvant antioxidant therapy in the mitigation of lung injury due to inhalation of Cl(2) and are compared with recent experimental results.
Collapse
Affiliation(s)
- Giuseppe L Squadrito
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294-0022, USA.
| | | | | |
Collapse
|
10
|
Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review. WATER RESEARCH 2008; 42:13-51. [PMID: 17915284 DOI: 10.1016/j.watres.2007.07.025] [Citation(s) in RCA: 1066] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/13/2007] [Accepted: 07/18/2007] [Indexed: 05/17/2023]
Abstract
Numerous inorganic and organic micropollutants can undergo reactions with chlorine. However, for certain compounds, the expected chlorine reactivity is low and only small modifications in the parent compound's structure are expected under typical water treatment conditions. To better understand/predict chlorine reactions with micropollutants, the kinetic and mechanistic information on chlorine reactivity available in literature was critically reviewed. For most micropollutants, HOCl is the major reactive chlorine species during chlorination processes. In the case of inorganic compounds, a fast reaction of ammonia, halides (Br(-) and I(-)), SO(3)(2-), CN(-), NO(2)(-), As(III) and Fe(II) with HOCl is reported (10(3)-10(9)M(-1)s(-1)) whereas low chlorine reaction rates with Mn(II) were shown in homogeneous systems. Chlorine reactivity usually results from an initial electrophilic attack of HOCl on inorganic compounds. In the case of organic compounds, second-order rate constants for chlorination vary over 10 orders of magnitude (i.e. <0.1-10(9)M(-1)s(-1)). Oxidation, addition and electrophilic substitution reactions with organic compounds are possible pathways. However, from a kinetic point of view, usually only electrophilic attack is significant. Chlorine reactivity limited to particular sites (mainly amines, reduced sulfur moieties or activated aromatic systems) is commonly observed during chlorination processes and small modifications in the parent compound's structure are expected for the primary attack. Linear structure-activity relationships can be used to make predictions/estimates of the reactivity of functional groups based on structural analogy. Furthermore, comparison of chlorine to ozone reactivity towards aromatic compounds (electrophilic attack) shows a good correlation, with chlorine rate constants being about four orders of magnitude smaller than those for ozone.
Collapse
Affiliation(s)
- Marie Deborde
- Department of Water Resources and Drinking Water, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | |
Collapse
|
11
|
Peroxynitrite: In vivo and In vitro synthesis and oxidant degradative action on biological systems regarding biomolecular injury and inflammatory processes. CHEMICAL PAPERS 2007. [DOI: 10.2478/s11696-007-0058-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThis review summarizes all significant data regarding peroxynitrite chemistry, the ways of its synthetic preparation as well as the degradative action of this species on biomolecules, in particular glycosaminoglycans, among which the hyaluronan degradation by peroxynitrite has recently been the subject of greater interest than ever before. The complex chemical behavior of a peroxynitrite molecule is strongly influenced by a few factors; conformational structural forms, active intermediates release, presence of CO2 and trace transition metals, different reaction conditions, as well as the rules of kinetics. Special attention was focused on monitoring of the kinetics of the degradative action of peroxynitrite in or without the presence of residual hydrogen peroxide on high-molar-mass hyaluronan.
Collapse
|
12
|
Adewuyi YG, Owusu SO. Ultrasound-Induced Aqueous Removal of Nitric Oxide from Flue Gases: Effects of Sulfur Dioxide, Chloride, and Chemical Oxidant. J Phys Chem A 2006; 110:11098-107. [PMID: 16986843 DOI: 10.1021/jp0631634] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of sulfur dioxide (SO(2)), sodium chloride (NaCl), and peroxymonosulfate or oxone (2KHSO(5).KHSO(4).K(2)SO(4) with active ingredient, HSO(5)(-)) on the sonochemical removal of nitric oxide (NO) have been studied in a bubble column reactor. The initial concentration of NO studied ranged from about 500 to 1040 ppm. NaCl in the concentration range of 0.01-0.5 M was used as the electrolyte to study the effect of ionic strength. At the low NaCl concentration (0.01 M), the percent fractional removal of NO with initial concentration of 1040 ppm was enhanced significantly, while as the NaCl concentration increased, the positive effects were less pronounced. The presence of approximately 2520 ppm SO(2) in combination with 0.01 M NaCl further enhanced NO removal. However, with a NO initial concentration of 490 ppm, the addition of NaCl was detrimental to NO removal at all NaCl concentration levels. The combinative effect of sonication and chemical oxidation using 0.005-0.05 M oxone was also studied. While the lower concentrations of HSO(5)(-) enhanced NO removal efficiency, higher concentrations were detrimental depending on the initial concentration of NO. It was also demonstrated that in the presence of ultrasound, the smallest concentration of oxone was needed to obtain optimal fractional conversion of NO.
Collapse
Affiliation(s)
- Yusuf G Adewuyi
- Department of Chemical Engineering, North Carolina A and T State University, Greensboro, North Carolina 27411, USA.
| | | |
Collapse
|
13
|
Jiang L, Liu Z, Tang J, Zhang L, Shi K, Tian Z, Liu P, Sun L, Tian Z. Three-dimensional micro-fabrication on copper and nickel. J Electroanal Chem (Lausanne) 2005. [DOI: 10.1016/j.jelechem.2004.11.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|