1
|
Yessentayeva K, Reinhard A, Berzhanova R, Mukasheva T, Urich T, Mikolasch A. Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support. Appl Microbiol Biotechnol 2024; 108:189. [PMID: 38305872 PMCID: PMC10837267 DOI: 10.1007/s00253-024-13010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.
Collapse
Affiliation(s)
- Kuralay Yessentayeva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Anne Reinhard
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Ramza Berzhanova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Tim Urich
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Annett Mikolasch
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| |
Collapse
|
2
|
Zühlke MK, Schlüter R, Mikolasch A, Henning AK, Giersberg M, Lalk M, Kunze G, Schweder T, Urich T, Schauer F. Biotransformation of bisphenol A analogues by the biphenyl-degrading bacterium Cupriavidusbasilensis - a structure-biotransformation relationship. Appl Microbiol Biotechnol 2020; 104:3569-3583. [PMID: 32125477 PMCID: PMC8282568 DOI: 10.1007/s00253-020-10406-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
Abstract
Comparative analyses determined the relationship between the structure of bisphenol A (BPA) as well as of seven bisphenol analogues (bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bisphenol F (BPF), bisphenol Z (BPZ), bisphenol AP (BPAP), bisphenol PH (BPPH)) and their biotransformability by the biphenyl-degrading bacterium Cupriavidus basilensis SBUG 290. All bisphenols were substrates for bacterial transformation with conversion rates ranging from 6 to 98% within 216 h and 36 different metabolites were characterized. Transformation by biphenyl-grown cells comprised four different pathways: (a) formation of ortho-hydroxylated bisphenols, hydroxylating either one or both phenols of the compounds; (b) ring fission; (c) transamination followed by acetylation or dimerization; and (d) oxidation of ring substituents, such as methyl groups and aromatic ring systems, present on the 3-position. However, the microbial attack of bisphenols by C. basilensis was limited to the phenol rings and its substituents, while substituents on the carbon bridge connecting the rings were not oxidized. All bisphenol analogues with modifications at the carbon bridge could be oxidized up to ring cleavage, while substituents at the 3-position of the phenol ring other than hydroxyl groups did not allow this reaction. Replacing one methyl group at the carbon bridge of BPA by a hydrophobic aromatic or alicyclic ring system inhibited both dimerization and transamination followed by acetylation. While most of the bisphenol analogues exhibited estrogenic activity, four biotransformation products tested were not estrogenically active.
Collapse
Affiliation(s)
- Marie-Katherin Zühlke
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
- Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, Walter-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Rabea Schlüter
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany.
| | - Annett Mikolasch
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Ann-Kristin Henning
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Martin Giersberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, Walter-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Frieder Schauer
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| |
Collapse
|
3
|
Diversity and degradative capabilities of bacteria and fungi isolated from oil-contaminated and hydrocarbon-polluted soils in Kazakhstan. Appl Microbiol Biotechnol 2019; 103:7261-7274. [PMID: 31346684 DOI: 10.1007/s00253-019-10032-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 01/03/2023]
Abstract
Bacteria and fungi were isolated from eight different soil samples from different regions in Kazakhstan contaminated with oil or salt or aromatic compounds. For the isolation of the organisms, we used, on the one hand, typical hydrocarbons such as the well utilizable aliphatic alkane tetradecane, the hardly degradable multiple-branched alkane pristane, and the biaromatic compound biphenyl as enrichment substrates. On the other hand, we also used oxygenated derivatives of alicyclic and monoaromatic hydrocarbons, such as cyclohexanone and p-tert-amylphenol, which are known as problematic pollutants. Seventy-nine bacterial and fungal strains were isolated, and 32 of them that were clearly able to metabolize some of these substrates, as tested by HPLC-UV/Vis and GC-MS analyses, were characterized taxonomically by DNA sequencing. Sixty-two percent of the 32 isolated strains from 14 different genera belong to well-described hydrocarbon degraders like some Rhodococci as well as Acinetobacter, Pseudomonas, Fusarium, Candida, and Yarrowia species. However, species of the bacterial genus Curtobacterium, the yeast genera Lodderomyces and Pseudozyma, as well as the filamentous fungal genera Purpureocillium and Sarocladium, which have rarely been described as hydrocarbon degrading, were isolated and shown to be efficient tetradecane degraders, mostly via monoterminal oxidation. Pristane was exclusively degraded by Rhodococcus isolates. Candida parapsilosis, Fusarium oxysporum, Fusarium solani, and Rhodotorula mucilaginosa degraded cyclohexanone, and in doing so accumulate ε-caprolactone or hexanedioic acid as metabolites. Biphenyl was transformed by Pseudomonas/Stenotrophomonas isolates. When p-tert-amylphenol was used as growth substrate, none of the isolated strains were able to use it.
Collapse
|
4
|
Stable-Isotope Probing-Enabled Cultivation of the Indigenous Bacterium Ralstonia sp. Strain M1, Capable of Degrading Phenanthrene and Biphenyl in Industrial Wastewater. Appl Environ Microbiol 2019; 85:AEM.00511-19. [PMID: 31053587 DOI: 10.1128/aem.00511-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
To identify and obtain the indigenous degraders metabolizing phenanthrene (PHE) and biphenyl (BP) from the complex microbial community within industrial wastewater, DNA-based stable-isotope probing (DNA-SIP) and cultivation-based methods were applied in the present study. DNA-SIP results showed that two bacterial taxa (Vogesella and Alicyclobacillus) were considered the key biodegraders responsible for PHE biodegradation only, whereas Bacillus and Cupriavidus were involved in BP degradation. Vogesella and Alicyclobacillus have not been linked with PHE degradation previously. Additionally, DNA-SIP helped reveal the taxonomic identity of Ralstonia-like degraders involved in both PHE and BP degradation. To target the separation of functional Ralstonia-like degraders from the wastewater, we modified the traditional cultivation medium and culture conditions. Finally, an indigenous PHE- and BP-degrading strain, Ralstonia pickettii M1, was isolated via a cultivation-dependent method, and its role in PHE and BP degradation was confirmed by enrichment of the 16S rRNA gene and distinctive dioxygenase genes in the DNA-SIP experiment. Our study has successfully established a program for the application of DNA-SIP in the isolation of the active functional degraders from an environment. It also deepens our insight into the diversity of indigenous PHE- and BP-degrading communities.IMPORTANCE The comprehensive treatment of wastewater in industrial parks suffers from the presence of multiple persistent organic pollutants (POPs), such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), which reduce the activity of activated sludge and are difficult to eliminate. Characterizing and applying active bacterial degraders metabolizing multiple POPs therefore helps to reveal the mechanisms of synergistic metabolism and to improve wastewater treatment efficiency in industrial parks. To date, SIP studies have successfully investigated the biodegradation of PAHs or PCBs in real-world habitats. DNA-SIP facilitates the isolation of target microorganisms that pose environmental concerns. Here, an indigenous phenanthrene (PHE)- and biphenyl (BP)-degrading strain in wastewater, Ralstonia pickettii M1, was isolated via a cultivation-dependent method, and its role in PHE and BP degradation was confirmed by DNA-SIP. Our study provides a routine protocol for the application of DNA-SIP in the isolation of the active functional degraders from an environment.
Collapse
|
5
|
Jiang L, Luo C, Zhang D, Song M, Sun Y, Zhang G. Biphenyl-Metabolizing Microbial Community and a Functional Operon Revealed in E-Waste-Contaminated Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8558-8567. [PMID: 29733586 DOI: 10.1021/acs.est.7b06647] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Primitive electronic waste (e-waste) recycling activities release massive amounts of persistent organic pollutants (POPs) and heavy metals into surrounding soils, posing a major threat to the ecosystem and human health. Microbes capable of metabolizing POPs play important roles in POPs remediation in soils, but their phylotypes and functions remain unclear. Polychlorinated biphenyls (PCBs), one of the main pollutants in e-waste contaminated soils, have drawn increasing attention due to their high persistence, toxicity, and bioaccumulation. In the present study, we employed the culture-independent method of DNA stable-isotope probing to identify active biphenyl and PCB degraders in e-waste-contaminated soil. A total of 19 rare operational taxonomic units and three dominant bacterial genera ( Ralstonia, Cupriavidus, and uncultured bacterium DA101) were enriched in the 13C heavy DNA fraction, confirming their functions in PCBs metabolism. Additionally, a 13.8 kb bph operon was amplified, containing a bphA gene labeled by 13C that was concentrated in the heavy DNA fraction. The tetranucleotide signature characteristics of the bph operon suggest that it originated from Ralstonia. The bph operon may be shared by horizontal gene transfer because it contains a transposon gene and is found in various bacterial species. This study gives us a deeper understanding of PCB-degrading mechanisms and provides a potential resource for the bioremediation of PCBs-contaminated soils.
Collapse
Affiliation(s)
- Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Mengke Song
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Yingtao Sun
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
6
|
Mikolasch A, Reinhard A, Alimbetova A, Omirbekova A, Pasler L, Schumann P, Kabisch J, Mukasheva T, Schauer F. From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects. J Basic Microbiol 2016; 56:1252-1273. [PMID: 27624187 DOI: 10.1002/jobm.201600300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/06/2016] [Indexed: 12/30/2022]
Abstract
Heavy contamination of soils by crude oil is omnipresent in areas of oil recovery and exploitation. Bioremediation by indigenous plants in cooperation with hydrocarbon degrading microorganisms is an economically and ecologically feasible means to reclaim contaminated soils. To study the effects of indigenous soil bacteria capable of utilizing oil hydrocarbons on biomass production of plants growing in oil-contaminated soils eight bacterial strains were isolated from contaminated soils in Kazakhstan and characterized for their abilities to degrade oil components. Four of them, identified as species of Gordonia and Rhodococcus turned out to be effective degraders. They produced a variety of organic acids from oil components, of which 59 were identified and 7 of them are hitherto unknown acidic oil metabolites. One of them, Rhodococcus erythropolis SBUG 2054, utilized more than 140 oil components. Inoculating barley seeds together with different combinations of these bacterial strains restored normal growth of the plants on contaminated soils, demonstrating the power of this approach for bioremediation. Furthermore, we suggest that the plant promoting effect of these bacteria is not only due to the elimination of toxic oil hydrocarbons but possibly also to the accumulation of a variety of organic acids which modulate the barley's rhizosphere environment.
Collapse
Affiliation(s)
- Annett Mikolasch
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Anne Reinhard
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Anna Alimbetova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anel Omirbekova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Lisa Pasler
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Johannes Kabisch
- Institute of Biochemistry, University Greifswald, 17487, Greifswald, Germany
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Frieder Schauer
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Hofmann K, Kreisel H, Kordon K, Preuss F, Kües U, Schauer F. The key role of lignin decomposing fungi in the decay of roofs thatched with water reed. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1181-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Microbial Community Profile and Water Quality in a Protected Area of the Caatinga Biome. PLoS One 2016; 11:e0148296. [PMID: 26881432 PMCID: PMC4755664 DOI: 10.1371/journal.pone.0148296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
The Caatinga is a semi-arid biome in northeast Brazil. The Paraguaçú River is located in the Caatinga biome, and part of its course is protected by the National Park of Chapada Diamantina (PNCD). In this study we evaluated the effect of PNCD protection on the water quality and microbial community diversity of this river by analyzing water samples obtained from points located inside and outside the PNCD in both wet and dry seasons. Results of water quality analysis showed higher levels of silicate, ammonia, particulate organic carbon, and nitrite in samples from the unprotected area compared with those from protected areas. Pyrosequencing of the 16S rRNA genes revealed that Burkholderiales was abundant in samples from all three sites during both seasons and was represented primarily by the genus Polynucleobacter and members of the Comamonadaceae family (e.g., genus Limnohabitans). During the dry season, the unprotected area showed a higher abundance of Flavobacterium sp. and Arthrobacter sp., which are frequently associated with the presence and/or degradation of arsenic and pesticide compounds. In addition, genes that appear to be related to agricultural impacts on the environment, as well as those involved in arsenic and cadmium resistance, copper homeostasis, and propanediol utilization, were detected in the unprotected areas by metagenomic sequencing. Although PNCD protection improves water quality, agricultural activities around the park may affect water quality within the park and may account for the presence of bacteria capable of pesticide degradation and assimilation, evidencing possible anthropogenic impacts on the Caatinga.
Collapse
|
9
|
Draft Genome Sequence of Ralstonia sp. MD27, a Poly(3-Hydroxybutyrate)-Degrading Bacterium, Isolated from Compost. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01170-15. [PMID: 26450738 PMCID: PMC4599097 DOI: 10.1128/genomea.01170-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ralstonia sp. strain MD27, a novel biopolymer-degrading betaproteobacterium, was isolated from compost samples. This organism has been shown to utilize the biopolymer poly(3-hydroxybutyrate) [P(3HB)] as a carbon source for growth. We report the draft genome sequence of MD27 with an estimated total sequence length of 5.9 Mb.
Collapse
|
10
|
Brack C, Mikolasch A, Schlueter R, Otto A, Becher D, Wegner U, Albrecht D, Riedel K, Schauer F. Antibacterial metabolites and bacteriolytic enzymes produced by Bacillus pumilus during bacteriolysis of Arthrobacter citreus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:290-304. [PMID: 25678259 DOI: 10.1007/s10126-015-9614-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
The marine isolate Bacillus pumilus SBUG 1800 is able to lyse living cells of Arthrobacter citreus on solid media as well as pasteurized A. citreus cells in liquid mineral salt medium. The cultivation of B. pumilus in the presence of pasteurized A. citreus is accompanied by an enhanced production of 2,5-diketopiperazines (DKPs). DKPs inhibit bacterial growth, but do not seem to cause bacteriolysis. This study shows that B. pumilus also lyses living cells of A. citreus in co-culture experiments as an intraguild predator, even if the inoculum of B. pumilus is low. In order to characterize the bacteriolytic process, more precisely changes in the extracellular metabolome and proteome have been analyzed under different culture conditions. Besides the known DKPs, a number of different pumilacidins and bacteriolytic enzymes are produced. Two lipopeptides with [M + H](+) = 1008 and [M + H](+) = 1022 were detected and are proposed to be pumilacidin H and I. While the lipopeptides lyse living bacterial cells in lysis test assays, a set of extracellular enzymes degrades the dead cell material. Two of the cell wall hydrolases involved have been identified as N-acetylmuramoyl-L-alanine amidase and beta-N-acetylglucosaminidase. These findings together with electron microscopic and cell growth monitoring during co-culture experiments give a detailed view on the bacteriolytic process.
Collapse
Affiliation(s)
- Christiane Brack
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Friedrich-Ludwig Jahn-Str. 15, 17487, Greifswald, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mikolasch A, Omirbekova A, Schumann P, Reinhard A, Sheikhany H, Berzhanova R, Mukasheva T, Schauer F. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan. Appl Microbiol Biotechnol 2015; 99:4071-84. [PMID: 25592733 DOI: 10.1007/s00253-014-6320-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12-C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand.
Collapse
Affiliation(s)
- Annett Mikolasch
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487, Greifswald, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Biotransformation of 4-sec-butylphenol by Gram-positive bacteria of the genera Mycobacterium and Nocardia including modifications on the alkyl chain and the hydroxyl group. Appl Microbiol Biotechnol 2013; 97:8329-39. [PMID: 23912120 DOI: 10.1007/s00253-013-5127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
The environmental pollutant 4-sec-butylphenol (4-sec-BP) which possesses estrogenic properties was transformed by the aerobic Gram-positive bacteria Mycobacterium neoaurum and Nocardia cyriacigeorgica into three main products (P1-P3) which were isolated and structurally characterized in detail. Two of them were products of a process resembling anaerobic metabolism of alkylphenols based on modifications of the alkyl side chain of 4-sec-BP. The first product (P1) was identified as 4-(2-hydroxy-1-methylpropyl)-phenol. The second product P2 was isolated as a mixture of at least four structures which could be identified as I 4-sec-butylidenecyclohexa-2,5-dienone; II 4-(1-methylenepropyl)-phenol; III 4-(1-methylpropenyl)-phenol; and IV 4-(1-methylallyl)-phenol. In contrast to P1 and P2, the third product (P3) resulted from a modification of the hydroxyl group of 4-sec-BP. This product was only formed by M. neoaurum and was identified as the glucoside conjugate 4-sec-butylphenol-α-D-glucopyranoside. Since in general, fungi synthesize sugar conjugates to detoxify hazardous pollutants, the formation of this conjugate is a peculiarity of M. neoaurum. Thus, altogether, six products were formed from 4-sec-BP and different transformation pathways are introduced. The hydroxylating and glucosylating capacity of the characterized bacteria open up applications in environmental protection.
Collapse
|
13
|
Hussain S, Devers-Lamrani M, Spor A, Rouard N, Porcherot M, Beguet J, Martin-Laurent F. Mapping field spatial distribution patterns of isoproturon-mineralizing activity over a three-year winter wheat/rape seed/barley rotation. CHEMOSPHERE 2013; 90:2499-2511. [PMID: 23246724 DOI: 10.1016/j.chemosphere.2012.10.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 06/01/2023]
Abstract
The temporal and spatial variability of the activity of soil microorganisms able to mineralize the herbicide isoproturon (IPU) pesticide was investigated over a three-year long crop rotation between 2008 and 2010. Isoproturon mineralization was higher in 2008, when winter wheat was treated with this herbicide, than in 2009 and 2010, when rape seed and barley were treated with different herbicides. Under laboratory conditions, we showed that isoproturon mineralization was not promoted by sulfonylurea herbicide applied on barley crop in 2010. IPU mineralization was shown to be highly variable at the field scale in years 2009 and 2010. Principal component analyses and analyses of similarities revealed that soil pH and equivalent humidity, and to a lesser extent soil organic matter content and cation exchange capacity (CEC) were the main drivers of isoproturon-mineralizing activity variance. Using a rather simple model that yields the rate of isoproturon mineralization as a function of soil pH and equivalent humidity, we explained up to 85% of the variance observed. Mapping field-scale distribution of isoproturon mineralization over the three-year survey indicated higher variability in 2009 and in 2010 as compared to 2008, suggesting that isoproturon treatment applied to winter wheat promoted isoproturon mineralization activity and reduced its spatial variability. Field-scale distribution of isoproturon mineralization showed important similarity to the distribution of soil pH, equivalent humidity and to a lesser extent to soil organic matter and cation exchange capacity (CEC) thereby confirming our model.
Collapse
Affiliation(s)
- S Hussain
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - M Devers-Lamrani
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - A Spor
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - N Rouard
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - M Porcherot
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - J Beguet
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - F Martin-Laurent
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France.
| |
Collapse
|
14
|
Al-Zuhair S, El-Naas MH. PHENOL BIODEGRADATION BYRALSTONIA PICKETTIIEXTRACTED FROM PETROLEUM REFINERY OIL SLUDGE. CHEM ENG COMMUN 2012. [DOI: 10.1080/00986445.2012.668593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Hahn V, Sünwoldt K, Mikolasch A, Schauer F. Two different primary oxidation mechanisms during biotransformation of thymol by gram-positive bacteria of the genera Nocardia and Mycobacterium. Appl Microbiol Biotechnol 2012; 97:1289-97. [DOI: 10.1007/s00253-012-4293-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/29/2022]
|
16
|
Herter S, Mikolasch A, Schauer F. Identification of phenylalkane derivatives when Mycobacterium neoaurum and Rhodococcus erythropolis were cultured in the presence of various phenylalkanes. Appl Microbiol Biotechnol 2011; 93:343-55. [DOI: 10.1007/s00253-011-3415-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
|
17
|
Comparative analysis of tertiary alcohol esterase activity in bacterial strains isolated from enrichment cultures and from screening strain libraries. Appl Microbiol Biotechnol 2011; 90:929-39. [DOI: 10.1007/s00253-011-3124-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/07/2011] [Accepted: 01/08/2011] [Indexed: 11/26/2022]
|
18
|
Nhi-Cong LT, Mikolasch A, Awe S, Sheikhany H, Klenk HP, Schauer F. Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica
isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J Basic Microbiol 2010; 50:241-53. [DOI: 10.1002/jobm.200900358] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Derivatization of bioactive carbazoles by the biphenyl-degrading bacterium Ralstonia sp. strain SBUG 290. Appl Microbiol Biotechnol 2009; 83:67-75. [DOI: 10.1007/s00253-008-1853-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/29/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
|
20
|
Herrera M, Burkitt J, Epstein S, Jones M, Moore P, Sykes J. Ralstonia pickettiiSepticemia in a Dog with Immune-Mediated Thrombocytopenia. J Vet Intern Med 2009; 23:182-5. [DOI: 10.1111/j.1939-1676.2008.0222.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Waldau D, Methling K, Mikolasch A, Schauer F. Characterization of new oxidation products of 9H-carbazole and structure related compounds by biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 2009; 81:1023-31. [DOI: 10.1007/s00253-008-1723-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 11/27/2022]
|
22
|
Kirschner A, Altenbuchner J, Bornscheuer UT. Design of a secondary alcohol degradation pathway from Pseudomonas fluorescens DSM 50106 in an engineered Escherichia coli. Appl Microbiol Biotechnol 2007; 75:1095-101. [PMID: 17347816 DOI: 10.1007/s00253-007-0902-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 02/18/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
The genes encoding an alcohol dehydrogenase, Baeyer-Villiger monooxygenase and an esterase from P. fluorescens DSM 50106, which seemed to be metabolically connected based on the sequence of the corresponding open reading frames, were cloned into one vector (pABE) and functionally expressed in Escherichia coli. Overall expression levels were quite low, however, using whole cells of E. coli JM109 pABE expressing the three recombinant enzymes, conversion of secondary alcohols (C(n)) to the corresponding primary alcohols (C(n-2)) and acetic acid via ketone and ester was possible. In this way, 2-decanol was almost completely converted within 20 h at 30 degrees C. Thus, it could be shown that the three enzymes are metabolically connected and that they are most probably involved in alkane degradation via sub-terminal oxidation of the acyclic aliphatic hydrocarbons.
Collapse
Affiliation(s)
- Anett Kirschner
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | | | | |
Collapse
|
23
|
Mikolasch A, Hammer E, Schauer F. Synthesis of imidazol-2-yl amino acids by using cells from alkane-oxidizing bacteria. Appl Environ Microbiol 2003; 69:1670-9. [PMID: 12620858 PMCID: PMC150088 DOI: 10.1128/aem.69.3.1670-1679.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sixty-one strains of alkane-oxidizing bacteria were tested for their ability to oxidize N-(2-hexylamino-4-phenylimidazol-1-yl)-acetamide to imidazol-2-yl amino acids applicable for pharmaceutical purposes. After growth with n-alkane, 15 strains formed different imidazol-2-yl amino acids identified by chemical structure analysis (mass and nuclear magnetic resonance spectrometry). High yields of imidazol-2-yl amino acids were produced by the strains Gordonia rubropertincta SBUG 105, Gordonia terrae SBUG 253, Nocardia asteroides SBUG 175, Rhodococcus erythropolis SBUG 251, and Rhodococcus erythropolis SBUG 254. Biotransformation occurred via oxidation of the alkyl side chain and produced 1-acetylamino-4-phenylimidazol-2-yl-6-aminohexanoic acid and the butanoic acid derivative. In addition, the acetylamino group of these products and of the substrate was transformed to an amino group. The product pattern as well as the transformation pathway of N-(2-hexylamino-4-phenylimidazol-1-yl)-acetamide differed in the various strains used.
Collapse
Affiliation(s)
- Annett Mikolasch
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, F.-L.-Jahn-Strasse 15, 17487 Greifswald, Germany.
| | | | | |
Collapse
|
24
|
Becher D, Specht M, Hammer E, Francke W, Schauer F. Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp. strain SBUG 290. Appl Environ Microbiol 2000; 66:4528-31. [PMID: 11010910 PMCID: PMC92336 DOI: 10.1128/aem.66.10.4528-4531.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of the gram-negative bacterium Ralstonia sp. strain SBUG 290 grown in the presence of biphenyl are able to cooxidize dibenzofuran which has been 1,2-hydroxylated. Meta cleavage of the 1, 2-dihydroxydibenzofuran between carbon atoms 1 and 9b produced 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid, which was degraded completely via salicylic acid. The presence of these intermediates indicates a degradation mechanism for dibenzofuran via lateral dioxygenation by Ralstonia sp. strain SBUG 290.
Collapse
Affiliation(s)
- D Becher
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany.
| | | | | | | | | |
Collapse
|