1
|
Siniakova TS, Raikov AV, Kudryasheva NS. Water-Soluble Polymer Polyethylene Glycol: Effect on the Bioluminescent Reaction of the Marine Coelenterate Obelia and Coelenteramide-Containing Fluorescent Protein. Int J Mol Sci 2023; 24:ijms24076345. [PMID: 37047313 PMCID: PMC10094403 DOI: 10.3390/ijms24076345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The current paper considers the effects of a water-soluble polymer (polyethylene glycol (PEG)) on the bioluminescent reaction of the photoprotein obelin from the marine coelenterate Obelia longissima and the product of this bioluminescent reaction: a coelenteramide-containing fluorescent protein (CCFP). We varied PEG concentrations (0–1.44 mg/mL) and molecular weights (1000, 8000, and 35,000 a.u.). The presence of PEG significantly increased the bioluminescent intensity of obelin but decreased the photoluminescence intensity of CCFP; the effects did not depend on the PEG concentration or the molecular weight. The photoluminescence spectra of CCFP did not change, while the bioluminescence spectra changed in the course of the bioluminescent reaction. The changes can be explained by different rigidity of the media in the polymer solutions affecting the stability of the photoprotein complex and the efficiency of the proton transfer in the bioluminescent reaction. The results predict and explain the change in the luminescence intensity and color of the marine coelenterates in the presence of water-soluble polymers. The CCFP appeared to be a proper tool for the toxicity monitoring of water-soluble polymers (e.g., PEGs).
Collapse
Affiliation(s)
| | - Alexander V. Raikov
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
- Correspondence: n ; Tel.: +7-391-249-42-42
| |
Collapse
|
2
|
Kolesnik OV, Rozhko TV, Kudryasheva NS. Marine Bacteria under Low-Intensity Radioactive Exposure: Model Experiments. Int J Mol Sci 2022; 24:ijms24010410. [PMID: 36613854 PMCID: PMC9820739 DOI: 10.3390/ijms24010410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Radioactive contaminants create problems all over world, involving marine ecosystems, with their ecological importance increasing in the future. The review focuses on bioeffects of a series of alpha and beta emitting radioisotopes (americium-241, uranium-(235 + 238), thorium-232, and tritium) and gamma radiation. Low-intensity exposures are under special consideration. Great attention has been paid to luminous marine bacteria as representatives of marine microorganisms and a conventional bioassay system. This bioassay uses bacterial bioluminescence intensity as the main testing physiological parameter; currently, it is widely applied due to its simplicity and sensitivity. Dependences of the bacterial luminescence response on the exposure time and irradiation intensity were reviewed, and applicability of hormetic or threshold models was discussed. A number of aspects of molecular intracellular processes under exposure to low-intensity radiation were analyzed: (a) changes in the rates of enzymatic processes in bacteria with the bioluminescent system of coupled enzymatic reactions of NADH:FMN-oxidoreductase and bacterial luciferase taken as an example; (b) consumption of an intracellular reducer, NADH; (c) active role of reactive oxygen species; (d) repairing of the DNA damage. The results presented confirm the function of humic substances as natural radioprotectors.
Collapse
Affiliation(s)
- Olga V. Kolesnik
- Institute of Biophysics SB RAS, Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, 660036 Krasnoyarsk, Russia
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Tatiana V. Rozhko
- FSBEI HE V.F. Voino-Yasenetsky KrasSMU MOH, 660022 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, 660036 Krasnoyarsk, Russia
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Correspondence:
| |
Collapse
|
3
|
Yakimov AS, Denisov IA, Bukatin AS, Lukyanenko KA, Belousov KI, Kukhtevich IV, Esimbekova EN, Evstrapov AA, Belobrov PI. Droplet Microfluidic Device for Chemoenzymatic Sensing. MICROMACHINES 2022; 13:1146. [PMID: 35888963 PMCID: PMC9325247 DOI: 10.3390/mi13071146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The rapid detection of pollutants in water can be performed with enzymatic probes, the catalytic light-emitting activity of which decreases in the presence of many types of pollutants. Herein, we present a microfluidic system for continuous chemoenzymatic biosensing that generates emulsion droplets containing two enzymes of the bacterial bioluminescent system (luciferase and NAD(P)H:FMN-oxidoreductase) with substrates required for the reaction. The developed chip generates "water-in-oil" emulsion droplets with a volume of 0.1 μL and a frequency of up to 12 drops per minute as well as provides the efficient mixing of reagents in droplets and their distancing. The bioluminescent signal from each individual droplet was measured by a photomultiplier tube with a signal-to-noise ratio of up to 3000/1. The intensity of the luminescence depended on the concentration of the copper sulfate with the limit of its detection of 5 μM. It was shown that bioluminescent enzymatic reactions could be carried out in droplet reactors in dispersed streams. The parameters and limitations required for the bioluminescent reaction to proceed were also studied. Hereby, chemoenzymatic sensing capabilities powered by a droplet microfluidics manipulation technique may serve as the basis for early-warning online water pollution systems.
Collapse
Affiliation(s)
- Anton S. Yakimov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Ivan A. Denisov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia;
- Laboratory of Bioluminescent Biotechnologies, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Anton S. Bukatin
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint Petersburg, Russia; (A.S.B.); (K.I.B.)
- Institute for Analytical Instrumentation RAS, 194021 Saint Petersburg, Russia;
| | - Kirill A. Lukyanenko
- Laboratory of Bioluminescent Biotechnologies, Siberian Federal University, 660041 Krasnoyarsk, Russia;
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Kirill I. Belousov
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint Petersburg, Russia; (A.S.B.); (K.I.B.)
| | - Igor V. Kukhtevich
- Institute of Silicate Chemistry of RAS, 199034 Saint Petersburg, Russia;
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elena N. Esimbekova
- Institute of Biophysics SB RAS, 660036 Krasnoyarsk, Russia;
- Department of Biophysics, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | | | - Peter I. Belobrov
- Department of Biophysics, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| |
Collapse
|
4
|
Esimbekova EN, Torgashina IG, Kalyabina VP, Kratasyuk VA. Enzymatic Biotesting: Scientific Basis and Application. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Denisov I, Lukyanenko K, Yakimov A, Kukhtevich I, Esimbekova E, Belobrov P. Disposable luciferase-based microfluidic chip for rapid assay of water pollution. LUMINESCENCE 2018; 33:1054-1061. [DOI: 10.1002/bio.3508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | - Elena Esimbekova
- Siberian Federal University; Krasnoyarsk Russia
- Institute of Biophysics SB RAS Federal Research Center'Krasnoyarsk Science Center SB RAS’; Krasnoyarsk Russia
| | | |
Collapse
|
6
|
Kudryasheva NS, Rozhko TV. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 142:68-77. [PMID: 25644753 DOI: 10.1016/j.jenvrad.2015.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure.
Collapse
Affiliation(s)
- N S Kudryasheva
- Institute of Biophysics SB RAS, Akademgorodok 50, 660036, Krasnoyarsk, Russia; Siberian Federal University, Svobodny 79, 660041, Krasnoyarsk, Russia.
| | - T V Rozhko
- Siberian Federal University, Svobodny 79, 660041, Krasnoyarsk, Russia; Krasnoyarsk State Medical Academy, P. Zheleznyaka 1, 660022, Krasnoyarsk, Russia
| |
Collapse
|
7
|
Kudryasheva NS, Tarasova AS. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:155-167. [PMID: 25146119 DOI: 10.1007/s11356-014-3459-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The paper considers mechanisms of detoxification of pollutant solutions by water-soluble humic substances (HSs), natural detoxifying agents. The problems and perspectives of bioassay application for toxicity monitoring of complex solutions are discussed from ecological point of view. Bioluminescence assays based on marine bacteria and their enzymes are of special attention here; they were shown to be convenient tools to study the detoxifying effects on cellular and biochemical levels. The advantages of bioluminescent enzymatic assay for monitoring both integral and oxidative toxicities in complex solutions of model pollutants and HS were demonstrated. The efficiencies of detoxification of the solutions of organic oxidizers and salts of metals (including radioactive ones) by HS were analyzed. The dependencies of detoxification efficiency on time of exposure to HS and HS concentrations were demonstrated. Antioxidant properties of HS were considered in detail. The detoxifying effects of HS were shown to be complex and regarded as 'external' (binding and redox processes in solutions outside the organisms) and/or 'internal' organismal processes. The paper demonstrates that the HS can stimulate a protective response of bacterial cells as a result of (1) changes of rates of biochemical reactions and (2) stabilization of mucous layers outside the cell walls. Acceleration of auto-oxidation of NADH, endogenous reducer, by HS was suggested as a reason for toxicity increase in the presence of HS due to abatement of reduction ability of intracellular media.
Collapse
Affiliation(s)
- N S Kudryasheva
- Institute of Biophysics SB RAS, Krasnoyarsk, Russia, 660036,
| | | |
Collapse
|
8
|
Application of enzyme bioluminescence in ecology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:67-109. [PMID: 25084995 DOI: 10.1007/978-3-662-43385-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
: This review examines the general principles of bioluminescent enzymatic toxicity bioassays and describes the applications of these methods and the implementation in commercial biosensors. Bioluminescent enzyme system technology (BEST) has been proposed in the bacterial coupled enzyme system, wherein NADH:FMN-oxidoreductase-luciferase substitutes for living organisms. BEST was introduced to facilitate and accelerate the development of cost-competitive enzymatic systems for use in biosensors for medical, environmental, and industrial applications. For widespread use of BEST, the multicomponent reagent "Enzymolum" has been developed, which contains the bacterial luciferase, NADH:FMN-oxidoreductase, and their substrates, co-immobilized in starch or gelatin gel. Enzymolum is the central part of Portable Laboratory for Toxicity Detection (PLTD), which consists of a biodetector module, a sampling module, a sample preparation module, and a reagent module. PLTD instantly signals chemical-biological hazards and allows us to detect a wide range of toxic substances. Enzymolum can be integrated as a biological module into the portable biodetector-biosensor originally constructed for personal use. Based on the example of Enzymolum and the algorithm for creating new enzyme biotests with tailored characteristics, a new approach was demonstrated in biotechnological design and construction. The examples of biotechnological design of various bioluminescent methods for ecological monitoring were provided. Possible applications of enzyme bioassays are seen in the examples for medical diagnostics, assessment of the effect of physical load on sportsmen, analysis of food additives, and in practical courses for higher educational institutions and schools. The advantages of enzymatic assays are their rapidity (the period of time required does not exceed 3-5 min), high sensitivity, simplicity and safety of procedure, and possibility of automation of ecological monitoring; the required luminometer is easily available.
Collapse
|
9
|
Wang W, Lampi MA, Huang XD, Gerhardt K, Dixon DG, Greenberg BM. Assessment of mixture toxicity of copper, cadmium, and phenanthrenequinone to the marine bacterium Vibrio fischeri. ENVIRONMENTAL TOXICOLOGY 2009; 24:166-177. [PMID: 18561304 DOI: 10.1002/tox.20411] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transition metals and polycyclic aromatic hydrocarbons (PAHs) are cocontaminants at many sites. Contaminants in mixtures are known to interact with biological systems in ways that can greatly alter the toxicity of individual compounds. The toxicities (individually and as mixtures) of copper (Cu), a redox-active metal; cadmium (Cd), a nonredox active metal; and phenanthrenequinone (PHQ), a redox-active oxygenated PAH, were examined using the bioluminescent bacterium Vibrio fischeri. We found that the cotoxicity of Cu/PHQ was dependent on the ratio of concentrations of each chemical in the mixture. Different interaction types (synergism, antagonism, and additivity) were observed with different combinations of these toxicants. The interaction types changed from antagonism at a low Cu to PHQ ratio (1:4), to additive at an intermediate Cu to PHQ ratio (2:3), to synergistic at higher Cu to PHQ ratios (3:2 and 4:1). In contrast to Cu/PHQ mixtures, the cotoxicity of Cd/PHQ did not change at different mixture ratios and was found for the most part to be additive. For the individual chemicals and their mixtures, reactive oxygen species (ROS) production was observed in V. fischeri, suggesting that individual and mixture toxicity of Cu, Cd, and PHQ to V. fischeri involves ROS-related mechanisms. This study shows that mixture ratios can alter individual chemical toxicity, and should be taken into account in risk assessment.
Collapse
Affiliation(s)
- Wenxi Wang
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Vetrova E, Esimbekova E, Remmel N, Kotova S, Beloskov N, Kratasyuk V, Gitelson I. A bioluminescent signal system: detection of chemical toxicants in water. LUMINESCENCE 2007; 22:206-14. [PMID: 17603816 DOI: 10.1002/bio.951] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Prototype technologies of a bioluminescent signal system (BSS) based on the luminous bacterium Photobacterium phosphoreum and three enzymatic bioluminescence systems have been proposed for detecting and signalling the presence of toxicants in water systems. A number of pesticides, mostly known as poisonous substances, similar in their structures and physicochemical properties, have been taken as model compounds of chemical agents. The effect of toxicants (organophosphates, derivatives of dithiocarbamide acid, and pyrethroid preparations) on the bioluminescence of the four systems has been analysed. EC(50) and EC(80) have been determined and compared to the maximum permissible concentration for each of the analysed substances. The triple-enzyme systems with ADH and trypsin have been shown to be more sensitive to organophosphorous compounds (0.13-11 mg/L), while the triple-enzyme system with trypsin is highly sensitive to lipotropic poison, a derivative of dithiocarbamine acid (0.03 mg/L). Sensitivities of the triple-enzyme systems to pyrethroid preparations are similar to those of luminous bacteria (0.9-5 mg/L). The results can be used to construct an alarm-test bioluminescence system for detecting chemical toxicants, based on intact bacteria or enzyme systems.
Collapse
Affiliation(s)
- E Vetrova
- Institute of Biophysics, Akademgorodok, 660036 Krasnoyarsk, Russia
| | | | | | | | | | | | | |
Collapse
|
11
|
Fedorova E, Kudryasheva N, Kuznetsov A, Mogil'naya O, Stom D. Bioluminescent monitoring of detoxification processes: activity of humic substances in quinone solutions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 88:131-6. [PMID: 17716903 DOI: 10.1016/j.jphotobiol.2007.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/12/2007] [Accepted: 05/19/2007] [Indexed: 10/23/2022]
Abstract
This study deals with application of bioluminescent assay systems to evaluate the detoxifying effect of humic substances (HS) on the solutions of organic oxidizers - quinones. A series of homologous quinones with different redox characteristics: 1,4-benzoquinone, tetrafluoro-1,4-benzoquinone, methyl-1,4-benzoquinone, tetramethyl-1,4-benzoquinone, and 1,4-naphtoquinone, was used. Bioluminescent bacteria Photobacterium phosphoreum, and NADH:FMN-oxidoreductase-luciferase enzyme system isolated from these bacteria were used as assay systems. The toxicity was compared in the presence and in the absence of HS. Variation of complexity of bioassays (in vivo or in vitro) combined with spectrometric and microscopic methods, provides insight into the process of detoxification in quinone solutions. Two ways of HS effect were studied: the reduction activity of HS and intensification of self-protection of bacterial cells on HS addition.
Collapse
Affiliation(s)
- Elena Fedorova
- Institute of Biophysics SB RAS, Akademgorodok 50, Krasnoyarsk, Russia
| | | | | | | | | |
Collapse
|
12
|
Kudryasheva NS. Bioluminescence and exogenous compounds: physico-chemical basis for bioluminescent assay. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 83:77-86. [PMID: 16413195 DOI: 10.1016/j.jphotobiol.2005.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/28/2005] [Accepted: 10/27/2005] [Indexed: 11/28/2022]
Abstract
Bioluminescent systems are convenient objects to study mechanisms of influence of exogenous molecules on living organisms. Classification of physical and physico-chemical mechanisms of the effects of luminous bacteria Photobacterium leiognathi on bioluminescent reactions is suggested. Five mechanisms are discussed: (1) change of electron-excited states' population and energy transfer, (2) change of efficiency of S-T conversion in the presence of external heavy atom, (3) change of rates of coupled reactions, (4) interactions with enzymes and variation of enzymatic activity, (5) nonspecific effects of electron acceptors. Effects of various groups of chemical compounds are discussed according to the classification suggested. The compounds are: a series of fluorescent dyes, organic oxidizers, organic and inorganic heavy-atom containing compounds, and metallic salts. Applications of fluorescence time-resolved and steady-state techniques, as well as bioluminescence kinetics study, are discussed. The patterns of exogenous compounds' influence form a physico-chemical basis for bioluminescent ecological assay.
Collapse
|
13
|
Fedorova ES, Kudryasheva NS, Kuznetsov AM, Stom DI, Belyi AV, Sizykh AG. Detoxication of Solutions of Organic Oxidants by Humic Substances: Bioluminescence Monitoring. DOKL BIOCHEM BIOPHYS 2005; 403:300-2. [PMID: 16229147 DOI: 10.1007/s10628-005-0097-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- E S Fedorova
- Krasnoyarsk State University, Svobodnyi pr 79, Krasnoyarsk, 660004 Russia
| | | | | | | | | | | |
Collapse
|
14
|
Kudryasheva N, Vetrova E, Kuznetsov A, Kratasyuk V, Stom D. Bioluminescence assays: effects of quinones and phenols. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2002; 53:221-225. [PMID: 12568457 DOI: 10.1006/eesa.2002.2214] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The influence of a series of quinones and phenols on bacteria bioluminescence systems was investigated. Three bioluminescence systems used in ecological monitoring were compared: (1) water-soluble; (2) immobilized in starch gel coupled enzyme systems: NADH:FMN-oxidoreductase-luciferase; (3) luminescent bacteria. Bioluminescence inhibition constants of quinones and phenols and bioluminescence induction periods were compared. These kinetic parameters are proportional to quinone concentrations and depend on the quinone redox potential. Different effects of the substances are related to structure and properties of the bioluminescence systems. The set of bioluminescence assays for quinones and phenols monitoring should include two bioluminescence systems: 1 (or 2) and 3.
Collapse
Affiliation(s)
- N Kudryasheva
- Institute of Biophysics, Russian Academy of Sciences Siberian Branch, Krasnoyarsk, Russia.
| | | | | | | | | |
Collapse
|
15
|
Kratasyuk VA, Esimbekova EN, Gladyshev MI, Khromichek EB, Kuznetsov AM, Ivanova EA. The use of bioluminescent biotests for study of natural and laboratory aquatic ecosystems. CHEMOSPHERE 2001; 42:909-915. [PMID: 11272913 DOI: 10.1016/s0045-6535(00)00177-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A set of bioluminescent tests was developed to monitor water quality in natural and laboratory ecosystems. It consisted of four bioluminescent systems: luminous bacteria, coupled enzyme system NADH:FMN-oxidoreductase-luciferase and triplet enzyme systems with alcohol dehydrogenase and trypsin. The set of biotests was applied for a small forest pond (Siberia, Russia), laboratory microecosystems polluted with benzoquinone and a batch culture of blue-green algae. Thereby effects of natural water compared to those of models of heavy pollution and "bloom" of blue-greens on the bioluminescent tests were revealed. The set of biotests was not affected by a natural seasonal variability of water quality in the unpolluted pond, but responded to the heavy pollution and the "bloom" of blue-greens. The set of biotests could be recommended as the alarm test to control the acute toxicity of natural water bodies.
Collapse
|