1
|
Sivodia C, Sinha A. Valorization of nano-scrap carbon iron filings as heterogeneous electro-Fenton catalyst for the removal of anticancer drug: insight into degradation mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35970-y. [PMID: 39885070 DOI: 10.1007/s11356-025-35970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
This study employs mechanically synthesized nano-scrap carbon iron filings (nSCIF) as a cost-effective and sustainable catalyst in heterogeneous electro-Fenton process. The catalytic behaviour of nSCIF was studied for the oxidation of cytarabine (CBN) under the influence of various experimental parameters such as pH, catalyst dose and applied current density. The highest removal efficiency (~ 99%) was achieved in 90 min of reaction at pH 3, 0.4 g L-1 of nSCIF dose and applied current density of 40 mA cm-2. Being a solid catalyst, nSCIF enhances the production of •OH radicals and promotes the cathodic regeneration of iron species (Fe3+ to Fe2+). The mineralization efficiency reached 78% within 3 h of reaction time. The daughter products generated during the reaction were identified through mass spectrometry analysis where eight major transformation productions were identified. The degradation of CBN was mainly contributed by the oxidation of aromatic ring. These findings corroborate the potential of utilizing industrial waste in the electrocatalytic oxidation of persistent pollutant.
Collapse
Affiliation(s)
- Charulata Sivodia
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
2
|
Mustafa D, Ibrahim B, Erten A. Adsorptive removal of anticarcinogen pazopanib from aqueous solutions using activated carbon: isotherm, kinetic and thermodynamic studies. Sci Rep 2024; 14:17765. [PMID: 39085425 PMCID: PMC11291750 DOI: 10.1038/s41598-024-68666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Pazopanib, which is dangerous for aquatic environments due to its toxic and bioaccumulation potential, has been detected at different concentrations in oncology hospital wastewater, sewage, and surface waters. This study aimed to remove pazopanib from wastewater by activated carbon adsorption technique. The effect of the main variables such as initial concentration, pH of pazopanib solution, adsorbent dose, contact time of the phases, and temperature on the adsorption process was evaluated and the optimum adsorption conditions were determined. The experimental data were applied to Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich adsorption isotherm models to describe the adsorption behavior. The experimental data were applied to pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic models to describe the adsorption kinetics. Isotherms were established in the 20-50 °C temperature range to study the adsorption equilibrium. According to the results, the highest removal efficiency of pazopanib (95.87%) was obtained at initial concentration (100 mg L-1), adsorbent dose (0.30 g L-1), temperature (20 °C), contact time (120 min) and pH (7.0). The adsorption kinetics was well described by the pseudo-second-order kinetic model (R2 = 0.9998) and the adsorption isotherm by the Langmuir model (R2 = 0.9999). In thermodynamic studies, the negative values of standard enthalpy (ΔH°), standard free enthalpy (ΔG°), and free entropy (ΔS°) indicate that the adsorption process is spontaneous and favorable, i.e. the disorder is reduced. These results indicate that the developed adsorption process can be efficiently and spontaneously applied for the removal of pazopanib from aqueous solutions.
Collapse
Affiliation(s)
- Degirmenci Mustafa
- Tepecik Training and Research Hospital, Medical Oncology Department, Health Sciences University, Izmir, Turkey.
| | - Bulduk Ibrahim
- Department of Chemical Engineering, Faculty of Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Akbel Erten
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Usak University, Usak, Turkey
| |
Collapse
|
3
|
Lorenz S, Suaifan G, Kümmerer K. Designing benign molecules: The influence of O-acetylated glucosamine-substituents on the environmental biodegradability of fluoroquinolones. CHEMOSPHERE 2022; 309:136724. [PMID: 36208803 DOI: 10.1016/j.chemosphere.2022.136724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics are detected worldwide in the aquatic environment, with continuously rising concentrations. Antibiotics in the environment have the potential to damage ecosystems and contribute to the development of resistance. Whilst a few antibiotics, such as some β-lactams, are eliminated by effluent treatment, others, such as fluoroquinolones, are not or just partially removed and enter the environment. Therefore, approaches are needed to tackle those problems at the compound level. Benign by design (BbD), an important part of green pharmacy, has the goal to integrate environmental fate and end-of-use considerations at the very beginning, i.e., into the design of active pharmaceutical ingredients. Hence, pharmaceuticals should be designed to be sufficiently active and stable during storage and usage but should degrade after excretion into the environment, so that they cannot cause any adverse effects. Fluoroquinolones (FQs) are important broad-spectrum antibiotics. They are known to be persistent in the environment and to be neither inactivated nor degraded or even mineralized during sewage treatment. The addition of new substituents via amidation, like glucosamine moieties, at the carboxylic group of FQs, led to better antimicrobial activity compared to its parent compounds against various microorganisms. To investigate if the addition of sugar moieties could improve the overall environmental biodegradability of FQs, eight novel quinolone and fluoroquinolone analogs conjugated with 1,3,4,6-Tetra-O-acetyl-β-d-glucosamine and 2-deoxy-d-glucopyranose have been investigated regarding their ready biodegradability (OECD 301D/F) and their degradation pathways have been analyzed. According to the OECD 301D test, none of the substances could be classified as readily biodegradable. However, the O-acetyl analogs did undergo a partial degradation of the O-acetyl glucosamine moiety, via stepwise deacetylation and the degradation of the whole glucosamine moiety. The degradation resulted in Fluoroquinolone-3-carboxamide derivatives. Those insights could be further used as input for fragment-based design of benign APIs that will degrade once they reached the environment.
Collapse
Affiliation(s)
- Stefanie Lorenz
- Institute of Sustainable Chemistry, Leuphana University Lüneburg, 21335, Lüneburg, Germany
| | - Ghadeer Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University Lüneburg, 21335, Lüneburg, Germany.
| |
Collapse
|
4
|
Li C, Kan C, Meng X, Liu M, Shang Q, Yang Y, Wang Y, Cui X. Self-Assembly 2D Ti 3C 2/g-C 3N 4 MXene Heterojunction for Highly Efficient Photocatalytic Degradation of Tetracycline in Visible Wavelength Range. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4015. [PMID: 36432301 PMCID: PMC9699115 DOI: 10.3390/nano12224015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
An ultrathin 2D Ti3C2/g-C3N4 MXene (2D-TC/CN) heterojunction was synthesized, using a facile self-assembly method; the perfect microscopic-morphology and the lattice structure presented in the sample with a 2 wt% content of Ti3C2 were observed by the field-emission scanning electron microscopy (SEM) and transmission electron microscope (TEM). The optimized sample (2-TC/CN) exhibited excellent performance in degrading the tetracycline (TC), and the degradation rate reached 93.93% in the conditions of 20 mg/L, 50 mL of tetracycline within 60 min. Except for the increased specific-surface area, investigated by UV-vis diffuse reflectance spectra (UV-vis DRS) and X-ray photoelectron microscopy (XPS) valence spectra, the significantly enhanced photocatalytic activity of the 2-TC/CN could also be ascribed to the formation of Ti-N bonds between Ti3C2 and g-C3N4 nanosheets, which reduced the width of the band gap through adjusting the position of the valence band, thus resulting in the broadened light-absorption. Furthermore, the facilitated electron transmission was also proved by time-resolved photoluminescence (TRPL) and electrochemical impedance spectroscopy (EIS), which is effective in improving the quantum efficiency of photo-generated electrons. In addition, the resulting radical-capture experiment suggested that superoxide radicals have the greatest influence on photodegradation performance, with the photodegradation rate of TC reducing from 93.16% to 32.08% after the capture of superoxide radicals, which can be attributed to the production of superoxide radicals only, by the 2-TC/CN composites with a high conduction-band value (-0.62 eV). These facilely designed 2D Ti3C2/g-C3N4 composites possess great application potential for the photodegradation of tetracycline and other antibiotics.
Collapse
|
5
|
Cabral AMTDPV, Fernandes ACG, Joaquim NAM, Veiga F, Sofio SPC, Paiva I, Esteso MA, Rodrigo MM, Valente AJM, Ribeiro ACF. Complexation of 5-Fluorouracil with β-Cyclodextrin and Sodium Dodecyl Sulfate: A Useful Tool for Encapsulating and Removing This Polluting Drug. TOXICS 2022; 10:toxics10060300. [PMID: 35736908 PMCID: PMC9228719 DOI: 10.3390/toxics10060300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
The formation of complexes of the drug 5-fluorouracil (5-FU) with β-cyclodextrin (β-CD) and sodium dodecyl sulphate (SDS) was studied through experimental measurements of the ternary mutual diffusion coefficients (D11, D22, D12, and D21) for the systems {5-FU (component 1) + β-CD (component 2) + water} and {5-FU (component 1) + SDS (component 2) + water} at 298.15 K and at concentrations up to 0.05 mol dm−3 by using the Taylor dispersion method, with the objective of removing this polluting drug from the residual systems in which it was present. The results found showed that a coupled diffusion of 5-FU occurred with both β-CD and SDS, as indicated by the nonzero values of the cross-diffusion coefficients, D12 and D21, as a consequence of the complex formation between 5-FU and the β-CD or SDS species. That is, 5-FU was solubilized (encapsulated) by both carriers, although to a greater extent with SDS (K = 20.0 (±0.5) mol−1 dm3) than with β-CD (K = 10.0 (±0.5) mol−1 dm3). Values of 0.107 and 0.190 were determined for the maximum fraction of 5-FU solubilized with β-CD and SDS (at concentrations above its CMC), respectively. This meant that SDS was more efficient at encapsulating and thus removing the 5-FU drug.
Collapse
Affiliation(s)
- Ana M. T. D. P. V. Cabral
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.T.D.P.V.C.); (N.A.M.J.); (F.V.)
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Ana C. G. Fernandes
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Neuza A. M. Joaquim
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.T.D.P.V.C.); (N.A.M.J.); (F.V.)
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.T.D.P.V.C.); (N.A.M.J.); (F.V.)
| | - Sara P. C. Sofio
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Isabel Paiva
- Centre of Geography and Spatial Planning, Department of Geography and Tourism, University of Coimbra, 3004-530 Coimbra, Portugal;
| | - Miguel A. Esteso
- Universidad Católica de Ávila, Calle los Canteros s/n, 05005 Ávila, Spain
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain;
- Correspondence: (M.A.E.); (A.C.F.R.)
| | - M. Melia Rodrigo
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain;
| | - Artur J. M. Valente
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Ana C. F. Ribeiro
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
- Correspondence: (M.A.E.); (A.C.F.R.)
| |
Collapse
|
6
|
Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front Microbiol 2022; 13:869332. [PMID: 35558129 PMCID: PMC9087044 DOI: 10.3389/fmicb.2022.869332] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of emerging contaminants in the environment, such as pharmaceuticals, is a growing global concern. The excessive use of medication globally, together with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems, has caused these compounds to present a severe environmental problem. In recent years, the increase in their availability, access and use of drugs has caused concentrations in water bodies to rise substantially. Considered as emerging contaminants, pharmaceuticals represent a challenge in the field of environmental remediation; therefore, alternative add-on systems for traditional wastewater treatment plants are continuously being developed to mitigate their impact and reduce their effects on the environment and human health. In this review, we describe the current status and impact of pharmaceutical compounds as emerging contaminants, focusing on their presence in water bodies, and analyzing the development of bioremediation systems, especially mycoremediation, for the removal of these pharmaceutical compounds with a special focus on fungal technologies.
Collapse
Affiliation(s)
- Maite Ortúzar
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Finland and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland.,Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe, Saarbrücken, Germany.,University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Winnipeg, MB, Canada
| | - Darío Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Jesús González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Elisabet Aranda
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Cristóvão M, Bernardo J, Bento-Silva A, Ressureição M, Bronze M, Crespo J, Pereira V. Treatment of anticancer drugs in a real wastewater effluent using nanofiltration: A pilot scale study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Domingo-Echaburu S, Lopez de Torre-Querejazu A, Valcárcel Y, Orive G, Lertxundi U. Hazardous drugs (NIOSH's list-group 1) in healthcare settings: Also a hazard for the environment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152954. [PMID: 35007598 DOI: 10.1016/j.scitotenv.2022.152954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Healthcare workers can be exposed to dangerous drugs during their daily practice. The National Institute for Occupational Safety and Health (NIOSH) considers "hazardous drugs" as those that had shown one or more of the following characteristic in studies with animals, humans or in vitro systems: carcinogenicity, teratogenicity or other toxicity for development, reproductive toxicity, organ toxicity at low doses, or genotoxicity. In the actual list (draft list 2020), drugs classified in group 1 are those with carcinogenic effects. Moreover, the global human and veterinary cancer is expected to grow, so antineoplastic drug consumption may consequently grow, leading to an increase of anticancer pharmaceuticals in the environment. Not all drugs pertaining to group 1 can be classified as "antineoplastic" or "cytostatic". Since most of the research on environment presence and ecotoxicological effects of pharmaceuticals has been focused on this therapeutic class, other carcinogenic drugs belonging to different therapeutic groups may have been omitted in previous studies. In this study we aim to review the presence in the environment of the hazardous drugs (NIOSH group 1) and their possible environmental impact. Of the 90 drugs considered, there is evidence of presence in the environment for 19. Drugs with more studies reporting positive detections are: the antibiotic chloramphenicol (55), the alkylating agents cyclophosphamide (39) and ifosfamide (30), and the estrogen receptor modulator tamoxifen (18). Although the original purpose of the NIOSH list and related documents is to provide guidance to healthcare professionals in order to adequately protect them from the hazards posed by these drugs in healthcare settings, we believe they can be useful for environmentalists too. Absence of data regarding the potential of environmental risk of certain hazardous drugs might tell us which drugs ought to be prioritized in the future.
Collapse
Affiliation(s)
- S Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Nafarroa Hiribidea 16, 20500 Arrasate, Gipuzkoa, Spain
| | - A Lopez de Torre-Querejazu
- Pharmacy Service, Araba Integrated Health Care Organization, Vitoria-Gasteiz, Alava, Spain; Bioaraba, Clinical Pharmacy Research Group, Vitoria-Gasteiz, Spain
| | - Y Valcárcel
- Health and Environment Risk Assessment Group, (RiSAMA), University Rey Juan Carlos, Avda Tulipán sn, Móstoles, Madrid, Spain; Department of Medical Specialties and Public Health, Faculty of Health Sciences, Rey Juan Carlos University, Avda. Atenas s/n, 28922 Alcorcón, Madrid, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - U Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|
9
|
Fabric Phase Sorptive Extraction for the Determination of Anthracyclines in Sewage. SEPARATIONS 2022. [DOI: 10.3390/separations9030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anthracyclines are a group of antineoplastic compounds used to treat acute leukemia and other cancers, and they are excreted after consumption by patients. These chemicals are often found in sewage at very low concentration levels. For this reason, the development of sensitive analytical methodologies capable of determining them at low concentrations is of prime importance. A simple, fast and sensitive analytical method using fabric phase sorptive extraction (FPSE) followed by ultra-high performance liquid chromatography with fluorescence detection (UHPLC-FD) has been developed and validated for the extraction of anthracyclines from sewage samples. FPSE is a green, cheap, simple, selective and rapid sample preparation technique. The different parameters that affect the performance of the FPSE process, including extraction time, eluting solvent, elution time and pH, were optimized. The developed method showed satisfactory reproducibility, with intraday and interday RSD values lower than 15% for all the compounds and limits of detection between 0.1–0.15 µg·L−1. The unique combination of sample preparation by this micro-extraction technique with fluorescence detector have resulted in the satisfactory extraction of highly polar anthracyclines, without any noticeable matrix effect, a very common shortcoming of exhaustive sample preparation technique such as solid phase extraction (SPE) and mass spectrometry.
Collapse
|
10
|
Sajedi F, Moghaddas J. Synthetic wastewater treatment of anticancer agents using synthesized hydrophilic silica aerogels. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ferdows Sajedi
- Transport Phenomena Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| | - Jafarsadegh Moghaddas
- Transport Phenomena Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
11
|
Cristóvão MB, Bento-Silva A, Bronze MR, Crespo JG, Pereira VJ. Detection of anticancer drugs in wastewater effluents: Grab versus passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147477. [PMID: 33971591 DOI: 10.1016/j.scitotenv.2021.147477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of six anticancer drugs was evaluated in wastewater effluents. Several grab samples from wastewater effluent were collected throughout a year. Capecitabine, cyclophosphamide and ifosfamide were detected at concentrations ranging from 8 to 46 ng·L-1. Capecitabine was detected in all the sampling events whereas cyclophosphamide and ifosfamide were detected less frequently. Additionally, the suitability of using pharmaceutical-polar organic chemical integrative samplers (POCIS) to monitor the target drugs in wastewater effluents was assessed. Capecitabine, ifosfamide and cyclophosphamide were detected with POCIS and showed a linear uptake over 15 days. The sampling rates, determined in situ, were used to estimate time-weighted average concentrations. A good correlation was found between the concentration of capecitabine detected with POCIS deployed during five days (32 ± 1 ng·L-1) and the average concentrations obtained in grab samples. The use of passive samplers has advantages over grab samples: easier analysis, less time and costs associated with the analytical method. Passive samplers also provide a time-weighted information about the concentration of pollutants in the aquatic environment. However, information may be lost when the concentration of the target compounds in wastewater effluents is low and the passive samplers are deployed for a short time.
Collapse
Affiliation(s)
- Maria B Cristóvão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | | | - Maria R Bronze
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João G Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa J Pereira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
12
|
Corominas L, Gimeno P, Constantino C, Daldorph P, Comas J. Can source control of pharmaceuticals decrease the investment needs in urban wastewater infrastructure? JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124375. [PMID: 33213978 DOI: 10.1016/j.jhazmat.2020.124375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The source control of pharmaceuticals involves influencing the everyday consumption volume and compound choice. This paper evaluates how source control contributes to protecting the environmental health and decreasing the investment needs in urban wastewater infrastructure. Different levels of reduction in diclofenac consumption (as recommended by the European Medicines Agency) compensated by equivalent increases in naproxen consumption (a less environmentally harmful compound) are evaluated. The different loads of compounds are fed into a microcontaminant fate and transport model of the Llobregat river basin (Spain) to assess the investment needs in tertiary treatment to reach diclofenac and naproxen concentrations below environmental quality standards. The results show that, despite the implementation of source control measures, tertiary treatment upgrades are still required in every scenario evaluated. Even though source control of pharmaceuticals decreases the investment needs in urban wastewater infrastructure, apparent concentrations reductions (i.e. statistically significant differences relative to the reference situation) are only observed in drastic substitutions of diclofenac by naproxen (a reduction in the total diclofenac consumption by 73% and a corresponding increase in naproxen consumption). The results also show that Spain is on good track with regards to the substitution of diclofenac by naproxen (among the top 5 in Europe), and this paper shows how positive this substitution can be for the environment.
Collapse
Affiliation(s)
- Lluís Corominas
- ICRA, Catalan Institute for Water Research, Carrer Emili Grahit 101, E-17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - Pau Gimeno
- ICRA, Catalan Institute for Water Research, Carrer Emili Grahit 101, E-17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Carlos Constantino
- Atkins, (The Hub) 500 Park Avenue, Aztec West, Almondsbury, Bristol BS32 4RZ, UK
| | - Peter Daldorph
- Atkins, (The Hub) 500 Park Avenue, Aztec West, Almondsbury, Bristol BS32 4RZ, UK
| | - Joaquim Comas
- ICRA, Catalan Institute for Water Research, Carrer Emili Grahit 101, E-17003 Girona, Spain; Universitat de Girona, Girona, Spain; Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, E-17003 Girona, Spain
| |
Collapse
|
13
|
Mathematical Modelling of Biosensing Platforms Applied for Environmental Monitoring. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9030050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, mathematical modelling has known an overwhelming integration in different scientific fields. In general, modelling is used to obtain new insights and achieve more quantitative and qualitative information about systems by programming language, manipulating matrices, creating algorithms and tracing functions and data. Researchers have been inspired by these techniques to explore several methods to solve many problems with high precision. In this direction, simulation and modelling have been employed for the development of sensitive and selective detection tools in different fields including environmental control. Emerging pollutants such as pesticides, heavy metals and pharmaceuticals are contaminating water resources, thus threatening wildlife. As a consequence, various biosensors using modelling have been reported in the literature for efficient environmental monitoring. In this review paper, the recent biosensors inspired by modelling and applied for environmental monitoring will be overviewed. Moreover, the level of success and the analytical performances of each modelling-biosensor will be discussed. Finally, current challenges in this field will be highlighted.
Collapse
|
14
|
Janssens R, Hainaut R, Gillard J, Dailly H, Luis P. Performance of a Slurry Photocatalytic Membrane Reactor for the Treatment of Real Secondary Wastewater Effluent Polluted by Anticancer Drugs. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raphael Janssens
- Materials Process Engineering (iMMC-IMAP), Universite catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| | - Robin Hainaut
- Materials Process Engineering (iMMC-IMAP), Universite catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| | - Juline Gillard
- Materials Process Engineering (iMMC-IMAP), Universite catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| | - Helene Dailly
- Earth and Life Institute (ELI), Universite catholique de Louvain, Place Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium
| | - Patricia Luis
- Materials Process Engineering (iMMC-IMAP), Universite catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
de Oliveira Klein M, Serrano SV, Santos-Neto Á, da Cruz C, Brunetti IA, Lebre D, Gimenez MP, Reis RM, Silveira HCS. Detection of anti-cancer drugs and metabolites in the effluents from a large Brazilian cancer hospital and an evaluation of ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115857. [PMID: 33139101 DOI: 10.1016/j.envpol.2020.115857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/05/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The use of chemotherapy agents has been growing worldwide, due to the increase number of cancer cases. In several countries, mainly in Europe countries, these drugs have been detected in hospitals and municipal wastewaters. In Brazil this issue is poorly explored. The main goal of this study was to assess the presence of three anti-cancer drugs, 5-fluorouracil (5-FU), gemcitabine (GEM) and cyclophosphamide (CP), and two metabolites, alpha-fluoro-beta-alanine (3-NH2-F) and 2'-deoxy-2',2'-difluorouridine (2-DOH-DiF), in effluents from a large cancer hospital, in the municipal wastewater treatment plant (WWTP) influent and effluent, and also to evaluate toxicity of the mixtures of these compounds by ecotoxicological testing in zebrafish. The sample collections were performed in Barretos Cancer Hospital of the large cancer center in Brazil. After each collection, the samples were filtered for subsequent Liquid Chromatography Mass Spectrometry analysis. The presence of CP, GEM, and both metabolites (3-NH2-F and 2-DOH-DiF) were detected in the hospital wastewater and the WWTP influent. Three drugs, GEM, 2-DOH-DiF and CP, were detected in the WWTP effluent. Two drugs were detected below the limit of quantification, 2-DOH-DiF: <LOQ (above 1400 ng L-1) and CP: <LOQ (above 300 ng L-1), and GEM was quantified at 420 ng L-1. Furthermore, 2-DOH-DiF (116,000 ng L-1) was detected at the highest level in the hospital wastewater. There were no zebrafish deaths at any of the concentrations of the compounds used. However, we observed histological changes, including aneurysms and edema in the gills and areas of necrosis of the liver. In summary, we found higher concentrations of CP, GEM and both metabolites (3-NH2-F and 2-DOH-DiF) were detected for the first time. There is currently no legislation regarding the discharge of anti-cancer drugs in effluents in Brazil. This study is first to focus on effluents from specific treatments from a large cancer hospital located in small city in Brazil.
Collapse
Affiliation(s)
- Mariana de Oliveira Klein
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Sergio V Serrano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil; Barretos School of Health Sciences-FACISB, Barretos, São Paulo, 14785-002, Brazil
| | - Álvaro Santos-Neto
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Claudinei da Cruz
- University Center of the Barretos Educational Foundation (UNIFEB), Barretos, São Paulo, Brazil
| | - Isabella Alves Brunetti
- University Center of the Barretos Educational Foundation (UNIFEB), Barretos, São Paulo, Brazil
| | - Daniel Lebre
- Center for Applied Mass Spectrometry, Sao Paulo, Brazil
| | | | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil; Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil; University of Cuiabá, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
16
|
Supported Ionic Liquids for the Efficient Removal of Acetylsalicylic Acid from Aqueous Solutions. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Cristóvão MB, Janssens R, Yadav A, Pandey S, Luis P, Van der Bruggen B, Dubey KK, Mandal MK, Crespo JG, Pereira VJ. Predicted concentrations of anticancer drugs in the aquatic environment: What should we monitor and where should we treat? JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122330. [PMID: 32172069 DOI: 10.1016/j.jhazmat.2020.122330] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Anticancer drugs have been detected in the aquatic environment, they have a potent mechanism of action and their consumption is expected to drastically increase in the future. Consequently, it is crucial to routinely monitor the occurrence of anticancer drugs and to develop effective treatment options to avoid their release into the environment. Prior to implementing a monitoring program, it is important to define which anticancer drugs are more prone to be found in the surface waters. In this study the consumption of anticancer drugs in the Lisbon region (Portugal), Belgium and Haryana state (India) were used to estimate the concentrations that can be expected in surface waters. Moreover, one important aspect is to define the major entry route of anticancer drugs in the aquatic environment: is it hospital or household effluents? The results disclosed in this study showed that in Belgium and Lisbon, 94 % of the total amount of anticancer drugs were delivered to outpatients, indicating that household effluents are the primary input source of these drugs and thus, upgrading the treatment in the domestic wastewater facilities should be the focus.
Collapse
Affiliation(s)
- M B Cristóvão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; LAQV-REQUIMTE/Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - R Janssens
- Materials and Process Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - A Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - S Pandey
- National Institute of Technology Durgapur, M.G. Avenue, Durgapur, West Bengal, India
| | - P Luis
- Materials and Process Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | | | - K K Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - M K Mandal
- National Institute of Technology Durgapur, M.G. Avenue, Durgapur, West Bengal, India
| | - J G Crespo
- LAQV-REQUIMTE/Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - V J Pereira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
18
|
Santana-Viera S, Tuček J, Torres-Padrón ME, Sosa-Ferrera Z, Santana-Rodríguez JJ, Halko R. Cytostatic compounds in sludge and sediment: extraction and determination by a combination of microwave-assisted extraction and UHPLC-MS/MS. Anal Bioanal Chem 2020; 412:3639-3651. [PMID: 32291518 DOI: 10.1007/s00216-020-02600-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Cytostatic compounds are an important group of micro-pollutants since they are used to kill cells or stop cell division. For this reason, they are also considered mutagenic. Several cytostatic compounds have been detected in hospital effluents, in the influents and effluents of wastewater treatment plants and even in river water. However, their detection in solid matrices is very scarce. In this work, we have developed a new procedure based on microwave-assisted extraction (MAE) for the extraction of cytostatic compounds from sludge and sediment before determination by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). To develop this procedure, we have chosen a group of eight widely used cytostatic compounds and carried out a systematic experimental design to optimize the extraction conditions. Under these optimal conditions, the studied cytostatic compounds are extracted with good sensitivity, with recoveries ranging from 65 to 122% in sludge and recoveries varying between 49 and 109% in sediment, with the exception of etoposide, which has a lower recovery from these types of samples. The limits of detection were from 0.42 to 79.8 ng g-1 in sludge and from 0.10 to 87.5 ng g-1 in sediment. Intraday and interday relative standard deviations (RSDs) were below 15% and 18%, respectively, in both matrices at the tested concentrations. The total procedure was applied to samples of sludge taken from the main wastewater treatment plant (WWTP) of the island of Gran Canaria (Spain) and for sediment samples obtained close to the marine outfalls of different wastewater treatment plants for the same island. Graphical abstract.
Collapse
Affiliation(s)
- Sergio Santana-Viera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Jozef Tuček
- Faculty of Natural Sciences, Department of Analytical Chemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - María Esther Torres-Padrón
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
| | - Radoslav Halko
- Faculty of Natural Sciences, Department of Analytical Chemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| |
Collapse
|
19
|
Janssens R, Cristóvão BM, Bronze MR, Crespo JG, Pereira VJ, Luis P. Photocatalysis Using UV-A and UV-C Light Sources for Advanced Oxidation of Anti-Cancer Drugs Spiked in Laboratory-Grade Water and Synthetic Urine. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Raphael Janssens
- Materials & Process Engineering (iMMC-IMAP), Université catholique de Louvain, Place Sainte Barbe 2 Louvain-la-Neuve 1348, Belgium
| | - Beatriz M. Cristóvão
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Maria R. Bronze
- iMED, Faculdade de Farmácia Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Joao G. Crespo
- LAQV-REQUIMTE/Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Vanessa J. Pereira
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2775-412, Portugal
| | - Patricia Luis
- Materials & Process Engineering (iMMC-IMAP), Université catholique de Louvain, Place Sainte Barbe 2 Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
20
|
|
21
|
Mendes A. Greener treatments: the NHS carbon footprint. Br J Community Nurs 2019; 24:248-249. [PMID: 31059305 DOI: 10.12968/bjcn.2019.24.5.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Aysha Mendes
- Freelance journalist specialising in psychology and healthcare
| |
Collapse
|
22
|
Mohammed G, Khraibah N, Bashammakh A, El-Shahawi M. Electrochemical sensor for trace determination of timolol maleate drug in real samples and drug residues using Nafion/carboxylated-MWCNTs nanocomposite modified glassy carbon electrode. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Olalla A, Negreira N, López de Alda M, Barceló D, Valcárcel Y. A case study to identify priority cytostatic contaminants in hospital effluents. CHEMOSPHERE 2018; 190:417-430. [PMID: 29024886 DOI: 10.1016/j.chemosphere.2017.09.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 05/24/2023]
Abstract
This study analyses the presence of 17 cytostatic agents from seven different groups, based on their different mechanisms of action, in the effluent from a medium-sized hospital located in eastern Spain. Analysis of the compounds found in the effluents studied involved solidphase extraction (SPE) coupled on-line to a high performance liquid chromatograph tandem mass spectrometer (HPLC-MS/MS). The environmental risk of the compounds studied was then assessed by calculating the hazard quotient (HQ), combining the measured environmental concentrations (MECs) with dose-response data based on the predicted no effect concentrations (PNECs). In addition, the environmental hazard associated was evaluated in accordance with their intrinsic characteristics by calculating the PBT (Persistence Bioaccumulation Toxicity) index. The results of this study showed the presence of seven of the 17 compounds analysed in a range of between 25 and 4761 ng/L. The highest concentrations corresponded to ifosfamide (58-4761 ng/L), methotrexate (394-4756 ng/L) and cyclophosphamide (46-3000 ng/L). Assessment of the environmental hazard showed that the three hormonal agents (tamoxifen and its metabolites endoxifen and hydroxytamoxifen) exhibited a maximum PBT value of 9 due to their inherent harm to the environment resulting from their characteristics of persistence, bioaccumulation and toxicity. A combined evaluation of the risk and environmental hazard showed that three of the 17 compounds studied, namely, ifosfamide, imatinib and irinotecan, all of which exhibited HQ values higher than 10 and PBT indices of 6, indicative of a particularly high potential to harm the environment, deserve special attention.
Collapse
Affiliation(s)
- A Olalla
- Research Group in Environmental Toxicology and Risk Assessment (TAyER), Rey Juan Carlos University, Avda Tulipán. s/n, 28933 Móstoles, Madrid, Spain.
| | - N Negreira
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; International Iberian Nanotechnology Laboratory (INL), Avda, Mestre José Veiga s/n, 4715 Braga, Portugal
| | - M López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Y Valcárcel
- Research Group in Environmental Toxicology and Risk Assessment (TAyER), Rey Juan Carlos University, Avda Tulipán. s/n, 28933 Móstoles, Madrid, Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology, Faculty of Health Sciences, Rey Juan Carlos University, Avda. Atenas, s/n, 28922 Alcorcón, Madrid, Spain.
| |
Collapse
|
24
|
Janssens R, Mandal MK, Dubey KK, Luis P. Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: Towards cytostatic drug elimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:612-626. [PMID: 28494286 DOI: 10.1016/j.scitotenv.2017.03.253] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The potential of photocatalytic membrane reactors (PMR) to degrade cytostatic drugs is presented in this work as an emerging technology for wastewater treatment. Cytostatic drugs are pharmaceutical compounds (PhCs) commonly used in cancer treatment. Such compounds and their metabolites, as well as their degraded by-products have genotoxic and mutagenic effects. A major challenge of cytostatic removal stands in the fact that most drugs are delivered to ambulant patients leading to diluted concentration in the municipal waste. Therefore safe strategies should be developed in order to collect and degrade the micro-pollutants using appropriate treatment technologies. Degradation of cytostatic compounds can be achieved with different conventional processes such as chemical oxidation, photolysis or photocatalysis but the treatment performances obtained are lower than the ones observed with slurry PMRs. Therefore the reasons why slurry PMRs may be considered as the next generation technology will be discussed in this work together with the limitations related to the mechanical abrasion of polymeric and ceramic membranes, catalyst suspension and interferences with the water matrix. Furthermore key recommendations are presented in order to develop a renewable energy powered water treatment based on long lifetime materials.
Collapse
Affiliation(s)
- Raphael Janssens
- Materials & Process Engineering (iMMC-IMAP), Université catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium.
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, National Institute of Technology Durgapur, M.G. Avenue, Durgapur, West Bengal 713209, India
| | - Kashyap Kumar Dubey
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India
| | - Patricia Luis
- Materials & Process Engineering (iMMC-IMAP), Université catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
25
|
Santos MSF, Franquet-Griell H, Lacorte S, Madeira LM, Alves A. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs. CHEMOSPHERE 2017; 184:1250-1260. [PMID: 28672724 DOI: 10.1016/j.chemosphere.2017.06.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PECb> 10 ng L-1 and/or PECc> 1 ng L-1). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects.
Collapse
Affiliation(s)
- Mónica S F Santos
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Helena Franquet-Griell
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Luis M Madeira
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
26
|
Crawford SE, Hartung T, Hollert H, Mathes B, van Ravenzwaay B, Steger-Hartmann T, Studer C, Krug HF. Green Toxicology: a strategy for sustainable chemical and material development. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:16. [PMID: 28435767 PMCID: PMC5380705 DOI: 10.1186/s12302-017-0115-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 05/04/2023]
Abstract
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.
Collapse
Affiliation(s)
- Sarah E. Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas Hartung
- John Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA
- CAAT-Europe, University of Konstanz, Universitaetsstrasse 10, 78467 Constance, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Björn Mathes
- DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt, Germany
| | | | | | - Christoph Studer
- Federal Office of Public Health, Schwarzenburgstraße 157, 3003 Bern, Switzerland
| | - Harald F. Krug
- Empa, Materials Science and Technology, Lerchenfeld-straße 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
27
|
Escudero-Oñate C, Ferrando-Climent L, Rodríguez-Mozaz S, Santos LHMLM. Occurrence and Risks of Contrast Agents, Cytostatics, and Antibiotics in Hospital Effluents. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2017. [DOI: 10.1007/698_2017_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Bashammakh AS. Differential Pulse-Adsorptive Cathodic Stripping Voltammetric Determination of Sulfadiazine Drug in Pharmaceutical Formulations and Drug Residue in Wastewater at a Hanging Mercury Dropping Electrode. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-016-2195-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Talmaciu MM, Bodoki E, Oprean R. Global chemical reactivity parameters for several chiral beta-blockers from the Density Functional Theory viewpoint. ACTA ACUST UNITED AC 2016; 89:513-518. [PMID: 27857521 PMCID: PMC5111492 DOI: 10.15386/cjmed-610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
Background and aim Beta-adrenergic antagonists have been established as first line treatment in the medical management of hypertension, acute coronary syndrome and other cardiovascular diseases, as well as for the prevention of initial episodes of gastrointestinal bleeding in patients with cirrhosis and esophageal varices, glaucoma, and have recently become the main form of treatment of infantile hemangiomas. The aim of the present study is to calculate for 14 beta-blockers several quantum chemical descriptors in order to interpret various molecular properties such as electronic structure, conformation, reactivity, in the interest of determining how such descriptors could have an impact on our understanding of the experimental observations and describing various aspects of chemical binding of beta-blockers in terms of these descriptors. Methods The 2D chemical structures of the beta-blockers (14 molecules with one stereogenic center) were cleaned in 3D, their geometry was preoptimized using the software MOPAC2012, by PM6 method, and then further refined using standard settings in MOE; HOMO and LUMO descriptors were calculated using semi-empirical molecular orbital methods AM1, MNDO and PM3, for the lowest energy conformers and the quantum chemical descriptors (HLG, electronegativity, chemical potential, hardness and softness, electrophilicity) were then calculated. Results According to HOMO-LUMO gap and the chemical hardness the most stable compounds are alprenolol, bisoprolol and esmolol. The softness values calculated for the study molecules revolve around 0.100. Propranolol, sotalol and timolol have among the highest electrophilicity index of the studied beta-blocker molecules. Results obtained from calculations showed that acebutolol, atenolol, timolol and sotalol have the highest values for the electronegativity index. Conclusions The future aim is to determine whether it is possible to find a valid correlation between these descriptors and the physicochemical behavior of the molecules from this class. The HLG could be correlated to the experimentally recorded electrochemical properties of the molecules. HOMO could be correlated to the observed oxidation potential, since the required voltage is related to the energy of the HOMO, because only the electron from this orbital is involved in the oxidation process.
Collapse
Affiliation(s)
- Mona Maria Talmaciu
- Analytical Chemistry and Instrumental Analysis Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ede Bodoki
- Analytical Chemistry and Instrumental Analysis Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Oprean
- Analytical Chemistry and Instrumental Analysis Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
30
|
Elersek T, Milavec S, Korošec M, Brezovsek P, Negreira N, Zonja B, de Alda ML, Barceló D, Heath E, Ščančar J, Filipič M. Toxicity of the mixture of selected antineoplastic drugs against aquatic primary producers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14780-14790. [PMID: 26755176 DOI: 10.1007/s11356-015-6005-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
The residues of antineoplastic drugs are considered as new and emerging pollutants in aquatic environments. Recent experiments showed relatively high toxicity of 5-fluorouracil (5-FU), imatinib mesylate (IM), etoposide (ET) and cisplatin (CP) that are currently among most widely used antineoplastic drugs, against phytoplankton species. In this study, we investigated the toxic potential of the mixture of 5-FU + IM + ET against green alga Pseudokirchneriella subcapitata and cyanobacterium Synechococcus leopoliensis, and the stability and sorption of these drugs to algal cells. Toxic potential of the mixture was predicted by the concepts of 'concentration addition' and 'independent action' and compared to the experimentally determined toxicity. In both test species, the measured toxicity of the mixture was at effects concentrations EC10-EC50 higher than the predicted, whereas at higher effect concentration (EC90), it was lower. In general, P. subcapitata was more sensitive than S. leopoliensis. The stability studies of the tested drugs during the experiment showed that 5-FU, IM and CP are relatively stable, whereas in the cultures exposed to ET, two transformation products with the same mass as ET but different retention time were detected. The measurements of the cell-linked concentrations of the tested compounds after 72 h exposure indicated that except for CP (1.9 % of the initial concentration), these drugs are not adsorbed or absorbed by algal cells. The results of this study showed that in alga and cyanobacteria exposure to the mixture of 5-FU + ET + IM, in particular at low effect concentration range, caused additive or synergistic effect on growth inhibition, and they suggest that single compound toxicity data are not sufficient for the proper toxicity prediction for aquatic primary producers.
Collapse
Affiliation(s)
- Tina Elersek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Sara Milavec
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Maša Korošec
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Polona Brezovsek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- Ecological Engineering Institute, Ljubljanska ulica 9, 2000, Maribor, Slovenia
| | - Noelia Negreira
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Bozo Zonja
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Miren López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ester Heath
- Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Janez Ščančar
- Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| |
Collapse
|
31
|
Novak M, Žegura B, Baebler Š, Štern A, Rotter A, Stare K, Filipič M. Influence of selected anti-cancer drugs on the induction of DNA double-strand breaks and changes in gene expression in human hepatoma HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14751-14761. [PMID: 26392091 DOI: 10.1007/s11356-015-5420-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
In chemotherapy, various anti-cancer drugs with different mechanisms of action are used and may represent different risk of undesirable delayed side effects in treated patients as well as in occupationally exposed populations. The aim of the present study was to evaluate genotoxic potential of four widely used anti-cancer drugs with different mechanisms of action: 5-fluorouracil (5-FU), cisplatin (CDDP) and etoposide (ET) that cause cell death by targeting DNA function and imatinib mesylate (IM) that inhibits targeted protein kinases in cancer cells in an experimental model with human hepatoma HepG2 cells. After 24 h of exposure all four anti-cancer drugs at non-cytotoxic concentrations induced significant increase in formation of DNA double strand breaks (DSBs), with IM being the least effective. The analysis of the changes in the expression of genes involved in the response to DNA damage (CDKN1A, GADD45A, MDM2), apoptosis (BAX, BCL2) and oncogenesis (MYC, JUN) showed that 5-FU, CDDP and ET upregulated the genes involved in DNA damage response, while the anti-apoptotic gene BCL2 and oncogene MYC were downregulated. On the contrary, IM did not change the mRNA level of the studied genes, showing different mechanism of action that probably does not involve direct interaction with DNA processing. Genotoxic effects of the tested anti-cancer drugs were observed at their therapeutic concentrations that may consequently lead to increased risk for development of delayed adverse effects in patients. In addition, considering the genotoxic mechanism of action of 5-FU, CDDP and ET an increased risk can also not be excluded in occupationally exposed populations. The results also indicate that exposure to 5-FU, CDDP and ET represent a higher risk for delayed effects such as cancer, reproductive effects and heritable disease than exposure to IM.
Collapse
Affiliation(s)
- Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- Ecological Engineering Institute, Maribor, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Katja Stare
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
32
|
Cytostatic drugs in environmental samples: An update on the extraction and determination procedures. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Česen M, Eleršek T, Novak M, Žegura B, Kosjek T, Filipič M, Heath E. Ecotoxicity and genotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and their mixtures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:192-201. [PMID: 26735164 DOI: 10.1016/j.envpol.2015.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/24/2023]
Abstract
Cyclophosphamide (CP) and ifosfamide (IF) are commonly used cytostatic drugs that repress cell division by interaction with DNA. The present study investigates the ecotoxicity and genotoxicity of CP, IF, their human metabolites/transformation products (TPs) carboxy-cyclophosphamide (CPCOOH), keto-cyclophosphamide (ketoCP) and N-dechloroethyl-cyclophosphamide (NdCP) as individual compounds and as mixture. The two parent compounds (CP and IF), at concentrations up to 320 mg L(-1), were non-toxic towards the alga Pseudokirchneriella subcapitata and cyanobacterium Synecococcus leopoliensis. Further ecotoxicity studies of metabolites/TPs and a mixture of parent compounds and metabolites/TPs performed in cyanobacteria S. leopoliensis, showed that only CPCOOH (EC50 = 17.1 mg L(-1)) was toxic. The measured toxicity (EC50 = 11.5 mg L(-1)) of the mixture was lower from the toxicity predicted by concentration addition model (EC50 = 21.1 mg L(-1)) indicating potentiating effects of the CPCOOH toxicity. The SOS/umuC assay with Salmonella typhimurium revealed genotoxic activity of CP, CPCOOH and the mixture in the presence of S9 metabolic activation. Only CPCOOH was genotoxic also in the absence of metabolic activation indicating that this compound is a direct acting genotoxin. This finding is of particular importance as in the environment such compounds can directly affect DNA of non-target organisms and also explains toxicity of CPCOOH against cyanobacteria S. leopoliensis. The degradation study with UV irradiation of samples containing CP and IF showed efficient degradation of both compounds and remained non-toxic towards S. leopoliensis, suggesting that no stable TPs with adverse effects were formed. To our knowledge, this is the first study describing the ecotoxicity and genotoxicity of the commonly used cytostatics CP and IF, their known metabolites/TPs and their mixture. The results indicate the importance of toxicological evaluation and monitoring of drug metabolites as they may be for certain aquatic species more hazardous than parent compounds.
Collapse
Affiliation(s)
- Marjeta Česen
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Tina Eleršek
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Matjaž Novak
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia; National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Tina Kosjek
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Metka Filipič
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
34
|
Bigtan MH, Mahanpoor K, Shafie H. Preparation and Application of a Nano α-Fe2O3/SAPO-34 Photocatalyst for Removal of the Anti-cancer Drug Doxorubicin using the Taguchi Approach. OPEN CHEM 2016. [DOI: 10.1515/chem-2016-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe synthesis of α-Fe2O3/SAPO-34 nano photocatalyst was the first step of this study. The α-Fe2O3 nanocatalyst was synthesized applying forced hydrolysis and reflux condensation followed by solid-state dispersion that was used for supporting α-Fe2O3 on SAPO-34. The next step was a characterization of the catalyst that was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). Then, for optimizing the operational parameters in Doxorubicin’s degradation process the effect of Doxorubicin concentration, the amount of α-Fe2O3/SAPO-34 nano photocatalyst, the pH, and H2O2 concentration was studied via the Taguchi method. The AL9 orthogonal array was adjusted and nine crucial runs were conducted. For calculating Signal/Noise ratio, each run was repeated three times. As the results showed, the concentration of Doxorubicin is the most effective parameter. Optimized conditions for removing the anti-cancer drug (based on Signal/Noise ratio) were Doxorubicin concentration (20 ppm), H2O2 concentration (3 mol/L), catalyst amount (50 mg/L) and pH = 8.
Collapse
Affiliation(s)
| | - Kazem Mahanpoor
- 1Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Hadi Shafie
- 1Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
35
|
Rastogi T, Leder C, Kümmerer K. Re-Designing of Existing Pharmaceuticals for Environmental Biodegradability: A Tiered Approach with β-Blocker Propranolol as an Example. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11756-11763. [PMID: 26291878 DOI: 10.1021/acs.est.5b03051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Worldwide, contamination of aquatic systems with micropollutants, including pharmaceuticals, is one of the challenges for sustainable management of water resources. Although micropollutants are present at low concentrations, many of them raise considerable toxicological concerns, particularly when present as components of complex mixtures. Recent research has shown that this problem cannot be sustainably solved with advanced effluent treatment. Therefore, an alternative that might overcome these environmental problems is the design of new pharmaceutical molecules or the redesign of existing pharmaceutical molecules that present the functionality needed for their application and have improved environmental biodegradability. Such redesigning can be performed by small molecular changes in the drug molecule with intact drug moiety which could incorporate the additional attribute such as biodegradability while retaining its pharmacological potency. This proof of concept study provides an approach for the rational redesign of a given pharmaceutical (Propranolol as an example). New derivatives with small molecular changes as compared to propranolol molecule were generated by a nontargeted photolysis process. Generated derivatives with intact drug moieties (an aromatic ring and a β-ethanolamine moiety) were further screened for aerobic biodegradability and pharmacological potency. The feasibility of the approach of redesigning an existing pharmaceutical through nontargeted generation of new derivatives with intact drug moiety and through subsequent screening was demonstrated in this study. Application of such approaches in turn might contribute to the protection of water resources in a truly sustainable manner.
Collapse
Affiliation(s)
- Tushar Rastogi
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg , C13, DE-21335 Lüneburg, Germany
| | - Christoph Leder
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg , C13, DE-21335 Lüneburg, Germany
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg , C13, DE-21335 Lüneburg, Germany
| |
Collapse
|
36
|
Česen M, Kosjek T, Laimou-Geraniou M, Kompare B, Širok B, Lambropolou D, Heath E. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:465-73. [PMID: 25981944 DOI: 10.1016/j.scitotenv.2015.04.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 05/21/2023]
Abstract
Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%.
Collapse
Affiliation(s)
- Marjeta Česen
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Maria Laimou-Geraniou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Boris Kompare
- Department of Environmental Civil Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Hajdrihova 28, 1000 Ljubljana, Slovenia
| | - Brane Širok
- Laboratory for Hydraulic Machines, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, Slovenia
| | - Dimitra Lambropolou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ester Heath
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
37
|
Hussain I, ALOthman ZA, Alwarthan AA, Sanagi MM, Ali I. Chiral xenobiotics bioaccumulations and environmental health prospectives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:490. [PMID: 26148690 DOI: 10.1007/s10661-015-4704-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
The chiral xenobiotics are very dangerous for all of us due to the different enantioselective toxicities of the enantiomers. Besides, these have different enantioselective bioaccumulations and behaviors in our body and other organisms. It is of urgent need to understand the enantioselective bioaccumulations, toxicities, and the health hazards of the chiral xenobiotics. The present article describes the classification, sources of contamination, distribution, enantioselective bioaccumulation, and the toxicities of the chiral xenobiotics. Besides, the efforts are also made to discuss the prevention and remedial measures of the havoc of the chiral xenobiotics. The challenges of the chiral xenobiotics have also been highlighted. Finally, future prospectives are also discussed.
Collapse
Affiliation(s)
- Iqbal Hussain
- Department of General Studies, Jubail Industrial College, P.O. Box 10099, Jubail Industrial City, 31961, Kingdom of Saudi Arabia
| | | | | | | | | |
Collapse
|
38
|
Rather JA, Jain R. Stripping voltammetric detection of nephrotoxic drug cefitizoxime in wastewater. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ancr.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Lutterbeck CA, Machado ÊL, Kümmerer K. Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2 processes. CHEMOSPHERE 2015; 120:538-46. [PMID: 25303738 DOI: 10.1016/j.chemosphere.2014.08.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 05/21/2023]
Abstract
Anticancer drugs are harmful substances that can have carcinogenic, mutagenic, teratogenic, genotoxic, and cytotoxic effects even at low concentrations. More than 50 years after its introduction, the alkylating agent cyclophosphamide (CP) is still one of the most consumed anticancer drug worldwide. CP has been detected in water bodies in several studies and is known as being persistent in the aquatic environment. As the traditional water and wastewater treatment technologies are not able to remove CP from the water, different treatment options such as advanced oxidation processes (AOPs) are under discussion to eliminate these compounds. The present study investigated the degradation of CP by three different AOPs: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The light source was a Hg medium-pressure lamp. Prescreening tests were carried out and afterwards experiments based on the optimized conditions were performed. The primary elimination of the parent compounds and the detection of transformation products (TPs) were monitored with LC-UV-MS/MS analysis, whereas the degree of mineralization was monitored by measuring the dissolved organic carbon (DOC). Ecotoxicological assays were carried out with the luminescent bacteria Vibrio fischeri. CP was completely degraded in all treatments and UV/Fe(2+)/H2O2 was the fastest process, followed by UV/H2O2 and UV/TiO2. All the reactions obeyed pseudo-first order kinetics. Considering the mineralization UV/Fe(2+)/H2O2 and UV/TiO2 were the most efficient process with mineralization degrees higher than 85%, whereas UV/H2O2 achieved 72.5% of DOC removal. Five transformation products were formed during the reactions and identified. None of them showed significant toxicity against V. fischeri.
Collapse
Affiliation(s)
- Carlos Alexandre Lutterbeck
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany; Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul - UNISC, Av. Independência, 2293, CEP 96815-900 Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Ênio Leandro Machado
- Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul - UNISC, Av. Independência, 2293, CEP 96815-900 Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany.
| |
Collapse
|
40
|
Negreira N, de Alda ML, Barceló D. Cytostatic drugs and metabolites in municipal and hospital wastewaters in Spain: filtration, occurrence, and environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:68-77. [PMID: 25124055 DOI: 10.1016/j.scitotenv.2014.07.101] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
Concerns about cytostatic anticancer drugs in the environment are increasing, mainly due to the lack of knowledge about the fate and impact of these cytotoxic compounds in the water cycle. In this context, the present work investigated the occurrence of 13 cytostatics and 4 metabolites in wastewater samples from various wastewater treatment plants (WWTPs) and from a large hospital from Spain. The target compounds belong to five different classes according to the Anatomical Therapeutic Classification (ATC), namely, alkylating agents, antimetabolites, plant alkaloids and other natural products, cytotoxic antibiotics and related substances, and other antineoplastic agents. Some of them have been classified as carcinogens in humans by the International Agency for Research on Cancer (IARC). These compounds were determined by an automated on line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) method. Results showed the presence of methotrexate (MET), ifosfamide (IF), cyclophosphamide (CP), irinotecan (IRI), doxorubicin (DOX), capecitabine (CAP), tamoxifen (TAM) and the metabolites endoxifen (OH-D-TAM), hydroxytamoxifen (OH-TAM) and hydroxypaclitaxel (OH-PAC) at levels ranging from 2 ng L(-1) (for MET) to 180 ng L(-1) (for TAM). Some of these compounds were found to be efficiently removed after wastewater treatment, e.g. MET, DOX and IRI, whereas other compounds, such as TAM, CP and IF remained largely unaltered. The behaviour of the target compounds during the common filtration step of the water samples was also investigated with the finding that some compounds are strongly adsorbed to nylon filters, while cellulose acetate appears as the best choice for the filter material. The aquatic environmental risk associated to the detected compounds was also assessed. To the best of the authors' knowledge, this is the first report of the presence of the metabolites OH-D-TAM and OH-TAM in the water cycle.
Collapse
Affiliation(s)
- Noelia Negreira
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Miren López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
41
|
Rastogi T, Leder C, Kümmerer K. Designing green derivatives of β-blocker Metoprolol: a tiered approach for green and sustainable pharmacy and chemistry. CHEMOSPHERE 2014; 111:493-499. [PMID: 24997957 DOI: 10.1016/j.chemosphere.2014.03.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
The presences of micro-pollutants (active pharmaceutical ingredients, APIs) are increasingly seen as a challenge of the sustainable management of water resources worldwide due to ineffective effluent treatment and other measures for their input prevention. Therefore, novel approaches are needed like designing greener pharmaceuticals, i.e. better biodegradability in the environment. This study addresses a tiered approach of implementing green and sustainable chemistry principles for theoretically designing better biodegradable and pharmacologically improved pharmaceuticals. Photodegradation process coupled with LC-MS(n) analysis and in silico tools such as quantitative structure-activity relationships (QSAR) analysis and molecular docking proved to be a very significant approach for the preliminary stages of designing chemical structures that would fit into the "benign by design" concept in the direction of green and sustainable pharmacy. Metoprolol (MTL) was used as an example, which itself is not readily biodegradable under conditions found in sewage treatment and the aquatic environment. The study provides the theoretical design of new derivatives of MTL which might have the same or improved pharmacological activity and are more degradable in the environment than MTL. However, the in silico toxicity prediction by QSAR of those photo-TPs indicated few of them might be possibly mutagenic and require further testing. This novel approach of theoretically designing 'green' pharmaceuticals can be considered as a step forward towards the green and sustainable pharmacy field. However, more knowledge and further experience have to be collected on the full scope, opportunities and limitations of this approach.
Collapse
Affiliation(s)
- Tushar Rastogi
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| | - Christoph Leder
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| |
Collapse
|
42
|
Brezovšek P, Eleršek T, Filipič M. Toxicities of four anti-neoplastic drugs and their binary mixtures tested on the green alga Pseudokirchneriella subcapitata and the cyanobacterium Synechococcus leopoliensis. WATER RESEARCH 2014; 52:168-77. [PMID: 24472702 DOI: 10.1016/j.watres.2014.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/29/2013] [Accepted: 01/02/2014] [Indexed: 05/17/2023]
Abstract
The residues of anti-neoplastic drugs are new and emerging pollutants in aquatic environments. This is not only because of their increasing use, but also because due to their mechanisms of action, they belong to a group of particularly dangerous compounds. However, information on their ecotoxicological properties is very limited. We tested the toxicities of four anti-neoplastic drugs with different mechanisms of action (5-fluorouracil [5-FU], cisplatin [CDDP], etoposide [ET], and imatinib mesylate [IM]), and some of their binary mixtures, against two phytoplankton species: the alga Pseudokirchneriella subcapitata, and the cyanobacterium Synechococcus leopoliensis. These four drugs showed different toxic potential, and the two species examined also showed differences in their susceptibilities towards the tested drugs and their mixtures. With P. subcapitata, the most toxic of these drugs was 5-FU (EC50, 0.13 mg/L), followed by CDDP (EC50, 1.52 mg/L), IM (EC50, 2.29 mg/L), and the least toxic, ET (EC50, 30.43 mg/L). With S. leopoliensis, the most toxic was CDDP (EC50, 0.67 mg/L), followed by 5-FU (EC50, 1.20 mg/L) and IM (EC50, 5.36 mg/L), while ET was not toxic up to 351 mg/L. The toxicities of the binary mixtures tested (5-FU + CDDP, 5-FU + IM, CDDP + ET) were predicted by the concepts of 'concentration addition' and 'independent action', and are compared to the experimentally determined toxicities. The measured toxicity of 5-FU + CDDP with P. subcapitata and S. leopoliensis was higher than that predicted, while the measured toxicity of CDDP + ET with both species was lower than that predicted. The measured toxicity of 5-FU + IM with P. subcapitata was higher, and with S. leopoliensis was lower, than that predicted. These data show that these mixtures can have compound-specific and species-specific synergistic or antagonistic effects, and they suggest that single compound toxicity data are not sufficient for the prediction of the aquatic toxicities of such anticancer drug mixtures.
Collapse
Affiliation(s)
- Polona Brezovšek
- Ecological Engineering Institute, Ljubljanska 9, 2000 Maribor, Slovenia
| | - Tina Eleršek
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Metka Filipič
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
43
|
Booker V, Halsall C, Llewellyn N, Johnson A, Williams R. Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 473-474:159-70. [PMID: 24369294 DOI: 10.1016/j.scitotenv.2013.11.145] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/29/2013] [Accepted: 11/29/2013] [Indexed: 05/21/2023]
Abstract
Anticancer drugs routinely used in chemotherapy enter wastewater through the excretion of the non-metabolised drug following administration to patients. This study considers the consumption and subsequent behaviour and occurrence of these chemicals in aquatic systems, with the aim of prioritising a selection of these drugs which are likely to persist in the environment and hence be considered for environmental screening programmes. Accurate consumption data were compiled from a hospital survey in NW England and combined with urinary excretion rates derived from clinical studies. Physical-chemical property data were compiled along with likely chemical fate and persistence during and after wastewater treatment. A shortlist of 15 chemicals (from 65) was prioritised based on their consumption, persistency and likelihood of occurrence in surface waters and supported by observational studies where possible. The ecological impact of these 'prioritised' chemicals is uncertain as the measured concentrations in surface waters generally fall below standard toxicity thresholds. Nonetheless, this prioritised sub-list should prove useful for developing environmental screening programmes.
Collapse
Affiliation(s)
- Victoria Booker
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Neville Llewellyn
- Centre of Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Andrew Johnson
- Centre of Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8B, UK
| | - Richard Williams
- Centre of Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8B, UK
| |
Collapse
|
44
|
Malkhasian AYS, Izadifard M, Achari G, Langford CH. Photocatalytic degradation of agricultural antibiotics using a UV-LED light source. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:35-40. [PMID: 24138466 DOI: 10.1080/03601234.2013.836871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
With a view to developing a UV-LED photocatalytic reactor for small and remote water systems, the degradation of three representative agriculturally produced contaminants, two antibiotics and an endocrine disruptor hormone, was evaluated in a bench 365 nm LED photoreactor using a slurry of the well-known Degussa P25® (TiO2) as photocatalyst. Use of an additional electron capture additives O2 and H2O2 was also assessed. Loss of the parent organic compounds was tracked by HPLC or UV absorbance and mineralization, where feasible, was studied with TOC analysis with conventional instrumentation. In all cases, degradation is significant with moderate light dose. Lab data suggest log reduction with light delivery less than 2.2 kWhr per cubic meter light delivery.
Collapse
|
45
|
Johnson AC, Oldenkamp R, Dumont E, Sumpter JP. Predicting concentrations of the cytostatic drugs cyclophosphamide, carboplatin, 5-fluorouracil, and capecitabine throughout the sewage effluents and surface waters of Europe. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1954-1961. [PMID: 23893496 DOI: 10.1002/etc.2311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/08/2013] [Accepted: 05/10/2013] [Indexed: 06/02/2023]
Abstract
The present study evaluated the potential environmental concentrations of 4 cytostatic (also known as cytotoxic) drugs in rivers. The antimetabolite 5-fluorouracil (5FU) and its pro-drug capecitabine were examined based on their very high use rates, cyclophosphamide (CP) for its persistence, and carboplatin for its association with the metal element platinum. The study combined drug consumption information across European countries, excretion, national water use, and sewage removal rates to derive sewage effluent values across the continent. Results showed considerable variation in the popularity of individual cytostatic drugs across Europe, including a 28-fold difference in 5FU use and 15-fold difference in CP use. Such variations could have a major effect on the detection of these compounds in effluent or river water. Overall, capecitabine and CP had higher predicted levels in effluent than 5FU or carboplatin. Predicted effluent values were compared with measurements in the literature, and many non-detects could be explained by insufficient limits of detection. Linking the geographic based water resources model GWAVA with this information allowed water concentrations throughout 1.2 million km of European rivers to be predicted. The 90th percentile (worst case) prediction indicated that, with the exception of capecitabine, more than 99% of Europe's rivers (by length) would have concentrations below 1 ng/L for these cytostatic drugs. For capecitabine, 2.2% of river length could exceed 1 ng/L.
Collapse
Affiliation(s)
- Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom.
| | | | | | | |
Collapse
|
46
|
Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D. Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Anal Bioanal Chem 2013; 405:5937-52. [DOI: 10.1007/s00216-013-6794-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/12/2013] [Accepted: 01/25/2013] [Indexed: 12/18/2022]
|
47
|
Radhapyari K, Kotoky P, Khan R. Detection of anticancer drug tamoxifen using biosensor based on polyaniline probe modified with horseradish peroxidase. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:583-7. [DOI: 10.1016/j.msec.2012.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/21/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
48
|
Besse JP, Latour JF, Garric J. Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? ENVIRONMENT INTERNATIONAL 2012; 39:73-86. [PMID: 22208745 DOI: 10.1016/j.envint.2011.10.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
This study considers the implications and research needs arising from anticancer (also referred to as antineoplastic) drugs being released into the aquatic environment, for the entire therapeutic classes used: cytotoxic, cytostatic and endocrine therapy drugs. A categorization approach, based on French consumption amounts, allowed to highlight parent molecules and several metabolites on which further occurrence and ecotoxicological studies should be conducted. Investigations of consumption trends at a national and a local scale show an increase in the use of anticancer drugs between 2004 and 2008, thus leading to increased levels released in the environment. It therefore appears necessary to continue surveying their presence in surface waters and in wastewater treatment plant (WWTP) effluents. Furthermore, due to the rise of anticancer home treatments, most of the prescribed molecules are now available in town pharmacies. Consequently, hospital effluents are no longer the main expected entry route of anticancer drugs into the aquatic environment. Concerning ecotoxicological risks, current knowledge remains insufficient to support a definitive conclusion. Risk posed by cytotoxic molecules is still not well documented and it is not possible to conclude on their long-term effects on non-target organisms. To date, ecotoxicological effects have been assessed using standardized or in vitro assays. Such tests however may not be suitable for anticancer drugs, and further work should focus on full-life cycle or even multigenerational tests. Environmental significance (i.e. occurrence and effects) of cytostatics (protein kinases inhibitors and monoclonal antibodies), if any, is not documented. Protein kinases inhibitors, in particular, deserve further investigation due to their universal mode of action. Finally, concerning endocrine therapy drugs, molecules such as antiestrogen Tamoxifen and its active metabolites, could be of concern. Overall, to accurately assess the ecotoxicological risk of anticancer drugs, we discuss the need to break away from tests on isolated molecules and to test effects of mixtures at the low ng.l(-1) range.
Collapse
Affiliation(s)
- Jean-Philippe Besse
- Cemagref, UR Milieux Aquatiques Ecologie et Pollution (MAEP), Laboratoire d'écotoxicologie/Laboratoire d'analyses physico-chimiques des milieux aquatiques, 3 bis quai Chauveau, CP 220, F-69226 Lyon, France.
| | | | | |
Collapse
|
49
|
Valcárcel Y, González Alonso S, Rodríguez-Gil JL, Gil A, Catalá M. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. CHEMOSPHERE 2011; 84:1336-1348. [PMID: 21641628 DOI: 10.1016/j.chemosphere.2011.05.014] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/05/2011] [Accepted: 05/07/2011] [Indexed: 05/30/2023]
Abstract
Concentrations of pharmaceutically active compounds (PhACs) in the order of ng L(-1) to μg L(-1) have been reported worldwide in waste, fluvial and even drinking water, raising concern about the efficacy of the currently employed waste water treatments in the elimination of this kind of compounds. Despite ranking 29th in terms of population, Spain is currently the 8th country on pharmaceutical prescription with an expense of 14×10(9) euros in 2008. In this context, the aim of this study was to determine the presence of 33 pharmaceutically active compounds in specific points of the main rivers of the Madrid Region (MR) as well as tap water samples from the metropolitan area of Madrid. Additionally, a screening level risk characterization by means of the Hazard Quotient (HQ) method was applied. A total of 25 pharmaceutical compounds and metabolites were detected in the 10 sampling points downstream the outlet of the major STPs of the MR. The highest concentrations were detected for the anticonvulsant carbamazepine and the stimulant caffeine. Concentrations for most of the analyzed compounds exceed levels previously reported in the literature. Moreover, we report the highest concentration of the cytostatic ifosfamide, detected for the first time in Spain in surface water. Preliminary risk characterization shows that a total of 16 compounds represent at least a low potential hazard based on their scored HQs, with five of them present in a concentration that exceeds the predicted no effect concentration (PNEC). Toxic Units calculation indicates that for all the selected sampling points high hazard is anticipated from the presence of the analyzed compounds in the measured concentrations (TUs>10). Caffeine and cotinine were detected in all (10) the analyzed tap water samples. Carbamazepine and nicotine were detected in six and venlafaxine in two samples. No studies venlafaxine in drinking water have been reported. These results clearly pinpoint the need for water quality monitoring and research in urban rivers, as well as the need for improved water treatment techniques able to eliminate this kind of compounds from the effluent waters as well as from drinking water sources.
Collapse
Affiliation(s)
- Y Valcárcel
- Department of Preventive Medicine, Public Health, Immunology and Medical Microbiology, Faculty of Health Sciences, Rey Juan Carlos University, Avda Atenas s/n, E-28922 Alcorcón, Madrid, Spain.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Glufosfamide (β-D-glucose-isophosphoramide mustard, D-19575) belongs to the oxazaphosphorine class. Glufosfamide is a novel glucose conjugate of ifosfamide in which isophosphoramide mustard, the alkylating metabolite of ifosfamide, is glycosidically linked to the β-D-glucose molecule. Glufosfamide represents an attractive new agent for cancer therapy. Its mode of action on normal and pathological cells is still under experimental and clinical investigations. An assessment of the anticancer potential of glufosfamide is of key importance in therapy. The researchers reviewed the current knowledge available on glufosfamide tested in the preclinical studies/clinical trials, based on a collection of the original papers and conference abstracts published and relevant articles searched in the SCOPUS and MEDLINE database and websites.
Collapse
|