1
|
Xing P, Liu H, Xiao W, Zhang G, Zhang C, Liao Z, Li T, Yang J. The fusion gene LRP1-SNRNP25 drives invasion and migration by activating the pJNK/37LRP/MMP2 signaling pathway in osteosarcoma. Cell Death Discov 2024; 10:198. [PMID: 38678020 PMCID: PMC11055890 DOI: 10.1038/s41420-024-01962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Through transcriptome sequencing, we previously identified a new osteosarcoma-specific, frequent fusion gene, LRP1-SNRNP25, and found that it played an important role in tumor cell invasion and migration. However, the specific mechanism remains unclear. In this article, whole-genome sequencing further confirmed that the LRP1-SNRNP25 fusion gene is formed by fusion of LRP1 exon 8 and SNRNP25 exon 2. In vitro, scratch and Transwell assays demonstrated that the migration and invasion abilities of LRP1-SNRNP25-overexpressing osteosarcoma cells were significantly increased. To explore the molecular mechanism of the LRP1-SNRNP25 fusion in affecting osteosarcoma cell migration and invasion, we evaluated the migration and invasion-related molecular signaling pathways by western blotting. Some migration- and invasion-related genes, including pJNK and MMP2, were upregulated. Coimmunoprecipitation-mass spectrometry showed that 37LRP can interact with pJNK. Western blotting confirmed that LRP1-SNRNP25 overexpression upregulates 37LRP protein expression. Immunofluorescence staining showed the intracellular colocalization of LRP1-SNRNP25 with pJNK and 37LRP proteins and that LRP1-SNRNP25 expression increased the pJNK and 37LRP levels. Coimmunoprecipitation (co-IP) confirmed that LRP1-SNRNP25 interacted with pJNK and 37LRP proteins. The pJNK inhibitor SP600125 dose-dependently decreased the pJNK/37LRP/MMP2 levels. After siRNA-mediated 37LRP knockdown, the MMP2 protein level decreased. These two experiments proved the upstream/downstream relationship among pJNK, 37LRP, and MMP2, with pJNK the farthest upstream and MMP2 the farthest downstream. These results proved that the LRP1-SNRNP25 fusion gene exerts biological effects through the pJNK/37LRP/MMP2 signaling pathway. In vivo, LRP1-SNRNP25 promoted osteosarcoma cell growth. Tumor growth was significantly inhibited after SP600125 treatment. Immunohistochemical analysis showed that the pJNK, MMP2, and Ki-67 protein levels were significantly increased in tumor tissues of LRP1-SNRNP25-overexpressing cell-injected nude mice. Furthermore, lung and liver metastasis were more prevalent in these mice. In a word, LRP1-SNRNP25 promotes invasion, migration, and metastasis via pJNK/37LRP/MMP2 pathway. LRP1-SNRNP25 is a potential therapeutic target for LRP1-SNRNP25-positive osteosarcoma.
Collapse
Affiliation(s)
- Peipei Xing
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Haotian Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Wanyi Xiao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Gengpu Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Ting Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China.
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China.
| |
Collapse
|
2
|
Kurdoğlu M, Kurdoğlu Z, Küçükaydın Z, Erten R, Bulut G, Özen S. Laminin receptor 1 expression in premalignant and malignant squamous lesions of the cervix. Biotech Histochem 2024; 99:174-181. [PMID: 38736402 DOI: 10.1080/10520295.2024.2346912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Laminin receptor 1 (LAMR) may have a role in the progression of premalignant squamous epithelial lesions to cervical cancer. Therefore, we aimed to investigate the expression of laminin receptor 1 (LAMR) in normal, premalignant, and malignant tissues of the uterine cervix. Paraffin blocks of 129 specimens with the diagnoses of normal cervical tissue (n = 33), cervical intraepithelial neoplasia (CIN) 1 (n = 30), CIN 2 (n = 14), CIN 3 (n = 28), and squamous cell carcinoma (n = 24) were immunohistochemically stained with LAMR antibody and its expression percentage, pattern, and intensity in these tissues were assessed. Compared to the other groups, the nonstaining with LAMR was highest in low grade squamous intraepithelial lesion (LSIL) (p < 0.0001). LAMR expression, which was positive in less than 50% of cells with weak staining, increased significantly between normal cervical epithelium and high-grade squamous intraepithelial lesion (HSIL) or invasive carcinoma, as well as between LSIL and HSIL (p < 0.0001). Between LSIL and invasive carcinoma, a significant increment was also observed for weak staining in less than 50% of cells (p < 0.001). LAMR expression, which was positive in more than 50% of cells with strong staining, was significantly higher in normal cervical tissue compared to the other groups (p < 0.0001). Disease progression related gradual increment of LAMR expression from normal cervical epithelium or LSIL towards HSIL or cervical cancer reveals that LAMR may play an important role in the transition from premalignant to malignant state in cervical lesions.
Collapse
Affiliation(s)
- Mertihan Kurdoğlu
- Department of Obstetrics and Gynecology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Zehra Kurdoğlu
- Department of Obstetrics and Gynecology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Zehra Küçükaydın
- Department of Obstetrics and Gynecology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Remzi Erten
- Department of Pathology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Gülay Bulut
- Department of Pathology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Süleyman Özen
- Department of Pathology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| |
Collapse
|
3
|
Pampeno C, Hurtado A, Opp S, Meruelo D. Channeling the Natural Properties of Sindbis Alphavirus for Targeted Tumor Therapy. Int J Mol Sci 2023; 24:14948. [PMID: 37834397 PMCID: PMC10573789 DOI: 10.3390/ijms241914948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Sindbis alphavirus vectors offer a promising platform for cancer therapy, serving as valuable models for alphavirus-based treatment. This review emphasizes key studies that support the targeted delivery of Sindbis vectors to tumor cells, highlighting their effectiveness in expressing tumor-associated antigens and immunomodulating proteins. Among the various alphavirus vectors developed for cancer therapy, Sindbis-vector-based imaging studies have been particularly extensive. Imaging modalities that enable the in vivo localization of Sindbis vectors within lymph nodes and tumors are discussed. The correlation between laminin receptor expression, tumorigenesis, and Sindbis virus infection is examined. Additionally, we present alternative entry receptors for Sindbis and related alphaviruses, such as Semliki Forest virus and Venezuelan equine encephalitis virus. The review also discusses cancer treatments that are based on the alphavirus vector expression of anti-tumor agents, including tumor-associated antigens, cytokines, checkpoint inhibitors, and costimulatory immune molecules.
Collapse
Affiliation(s)
| | | | | | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
4
|
Li R, Dong F, Zhang L, Ni X, Lin G. Role of adipocytokines in endometrial cancer progression. Front Pharmacol 2022; 13:1090227. [PMID: 36578551 PMCID: PMC9791063 DOI: 10.3389/fphar.2022.1090227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is considered a significant barrier to increasing life expectancy and remains one of the most common malignant cancers among women in many countries worldwide. The increasing mortality rates are potentially proportional to the increasing obesity incidence. Adipose tissue secretes numerous adipocytokines, which may play important roles in endometrial cancer progression. In this scenario, we describe the role of adipocytokines in cell proliferation, cell invasion, cell adhesion, inflammation, angiogenesis, and anti-apoptotic action. A better understanding of the mechanisms of these adipocytokines may open up new therapeutic avenues for women with endometrial cancer. In the future, larger prospective studies focusing on adipocytokines and specific inhibitors should be directed at preventing the rapidly increasing prevalence of gynecological malignancies.
Collapse
Affiliation(s)
- Ran Li
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Fang Dong
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Ling Zhang
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Xiuqin Ni
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Guozhi Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital to Shandong First Medical University, Taian, China,*Correspondence: Guozhi Lin,
| |
Collapse
|
5
|
Lee DH, Paik ES, Cho YJ, Lee YY, Lee B, Lee EJ, Choi JJ, Choi CH, Lee S, Choi JW, Lee JW. Changes in subcellular localization of Lysyl-tRNA synthetase and the 67-kDa laminin receptor in epithelial ovarian cancer metastases. Cancer Biomark 2022; 35:99-109. [DOI: 10.3233/cbm-210077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Although lysyl-tRNA synthetase (KARS1) is predominantly located in the cytosol, it is also present in the plasma membrane where it stabilizes the 67-kDa laminin receptor (67LR). This physical interaction is strongly increased under metastatic conditions. However, the dynamic interaction of these two proteins and the turnover of KARS1 in the plasma membrane has not previously been investigated. OBJECTIVE: Our objective in this study was to identify the membranous location of KARS1 and 67LR and investigate if this changes with the developmental stage of epithelial ovarian cancer (EOC) and treatment with the inhibitor BC-K01. In addition, we evaluated the therapeutic efficacy of BC-K01 in combination with paclitaxel, as the latter is frequently used to treat patients with EOC. METHODS: Overall survival and prognostic significance were determined in EOC patients according to KARS1 and 67LR expression levels as determined by immunohistochemistry. Changes in the location and expression of KARS1 and 67LR were investigated in vitro after BC-K01 treatment. The effects of this compound on tumor growth and apoptosis were evaluated both in vitro and in vivo. RESULTS: EOC patients with high KARS1 and high 67LR expression had lower progression-free survival rates than those with low expression levels of these two markers. BC-K01 reduced cell viability and increased apoptosis in combination with paclitaxel in EOC cell xenograft mouse models. BC-K01 decreased membranous KARS1 expression, causing a reduction in 67LR membrane expression in EOC cell lines. BC-K01 significantly decreased in vivo tumor weight and number of nodules, especially when used in combination with paclitaxel. CONCLUSIONS: Co-localization of KARS1 and 67LR in the plasma membrane contributes to EOC progression. Inhibition of the KARS1-67LR interaction by BC-K01 suppresses metastasis in EOC.
Collapse
Affiliation(s)
- Dae Hoon Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - E. Sun Paik
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Yoo-Young Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bada Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Eui Jin Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chel-Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sangmin Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Bhowmick S, Saha A, AlFaris NA, ALTamimi JZ, ALOthman ZA, Aldayel TS, Wabaidur SM, Islam MA. Structure-based identification of galectin-1 selective modulators in dietary food polyphenols: a pharmacoinformatics approach. Mol Divers 2021; 26:1697-1714. [PMID: 34482478 PMCID: PMC9209356 DOI: 10.1007/s11030-021-10297-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
Abstract In this study, a set of dietary polyphenols was comprehensively studied for the selective identification of the potential inhibitors/modulators for galectin-1. Galectin-1 is a potent prognostic indicator of tumor progression and a highly regarded therapeutic target for various pathological conditions. This indicator is composed of a highly conserved carbohydrate recognition domain (CRD) that accounts for the binding affinity of β-galactosides. Although some small molecules have been identified as galectin-1 inhibitors/modulators, there are limited studies on the identification of novel compounds against this attractive therapeutic target. The extensive computational techniques include potential drug binding site recognition on galectin-1, binding affinity predictions of ~ 500 polyphenols, molecular docking, and dynamic simulations of galectin-1 with selective dietary polyphenol modulators, followed by the estimation of binding free energy for the identification of dietary polyphenol-based galectin-1 modulators. Initially, a deep neural network-based algorithm was utilized for the prediction of the druggable binding site and binding affinity. Thereafter, the intermolecular interactions of the polyphenol compounds with galectin-1 were critically explored through the extra-precision docking technique. Further, the stability of the interaction was evaluated through the conventional atomistic 100 ns dynamic simulation study. The docking analyses indicated the high interaction affinity of different amino acids at the CRD region of galectin-1 with the proposed five polyphenols. Strong and consistent interaction stability was suggested from the simulation trajectories of the selected dietary polyphenol under the dynamic conditions. Also, the conserved residue (His44, Asn46, Arg48, Val59, Asn61, Trp68, Glu71, and Arg73) associations suggest high affinity and selectivity of polyphenols toward galectin-1 protein. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.
| | - Nora Abdullah AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jozaa Zaidan ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Saikh Mohammad Wabaidur
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
7
|
Boutas I, Kontogeorgi A, Dimitrakakis C, Kalantaridou SN. The expression of Galectin-3 in endometrial cancer: a systematic review of the literature. Mol Biol Rep 2021; 48:5699-5705. [PMID: 34241773 DOI: 10.1007/s11033-021-06536-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Galectin-3 is part of a protein group called lectins and acts as a multifunctional glycoprotein due to its expression location. Galectin-3 is expressed by different human tissues. It plays a significant role in carcinogenesis and the selection of tumor-related physiological and pathological activities. Galectin-3 has been utilized through the years as a diagnostic and prognostic marker for various types of cancers. METHODS AND RESULTS This review describes the outcomes of some studies on the matter that were selected appropriately through a review of the existing literature. These studies examined the levels of Galectin-3 expression in endometrial carcinomas, the outcomes, and the prognosis of these carcinomas. Two of the studies concluded that high expression of Galectin-3 is associated with a tumor's histological grade, type and depth. This enhanced nuclear Galectin-3 expression might assist in progression to atypia and neoplasia. The other three on the contrary concluded that malignant tumors had a decreased expression of Galectin-3 and that Galectin-3 played a suppressive role in tumor growth. CONCLUSIONS The part Galectin-3 might potentially have in metastasis of cancers and the offering of a better prognosis for patients is of high importance. To date, there is minimal literature regarding the effects of Galectin-3 and more research is required.
Collapse
Affiliation(s)
- Ioannis Boutas
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462, Athens, Greece.
| | - Adamantia Kontogeorgi
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462, Athens, Greece
| | - Constantine Dimitrakakis
- 1st Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kaposdistrian University of Athens, Athens, Greece
| | - Sophia N Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462, Athens, Greece
| |
Collapse
|
8
|
Corrado A, Aceto R, Silvestri R, Dell'Anno I, Ricci B, Miglietta S, Romei C, Giovannoni R, Poliseno L, Evangelista M, Vitiello M, Cipollini M, Garritano S, Giusti L, Zallocco L, Elisei R, Landi S, Gemignani F. Pro64His (rs4644) Polymorphism Within Galectin-3 Is a Risk Factor of Differentiated Thyroid Carcinoma and Affects the Transcriptome of Thyrocytes Engineered via CRISPR/Cas9 System. Thyroid 2021; 31:1056-1066. [PMID: 33308024 DOI: 10.1089/thy.2020.0366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Galectin-3 (LGALS3) is an important glycoprotein involved in the malignant transformation of thyrocytes acting in the extracellular matrix, cytoplasm, and nucleus where it regulates TTF-1 and TCF4 transcription factors. Within LGALS3 gene, a common single-nucleotide polymorphism (SNP) (c.191C>A, p.Pro64His; rs4644) encoding for the variant Proline to Histidine at codon 64 has been extensively studied. However, data on rs4644 in the context of thyroid cancer are lacking. Thus, the aim of the present work was to evaluate the role of the rs4644 SNP as risk factor for differentiated thyroid cancer (DTC) and to determine the effect on the transcriptome in thyrocytes. Methods: A case/control association study in 1223 controls and 1142 unrelated consecutive DTC patients was carried out to evaluate the association between rs4644-P64H and the risk of DTC. We used the nonmalignant cell line Nthy-Ori (rs4644-C/A) and the CRISPR/Cas9 technique to generate isogenic cells carrying either the rs4644-A/A or rs4644-C/C homozygosis. Then, the transcriptome of the derivative and unmodified parental cells was analyzed by RNA-seq. Genes differentially expressed were validated by quantitative reverse transcription PCR and further tested in the parental Nthy-Ori cells after LGALS3 gene silencing, to investigate whether the expression of target genes was dependent on galectin-3 levels. Results: rs4644 AA genotype was associated with a reduced risk of DTC (compared with CC, ORadj = 0.66; 95% confidence interval = 0.46-0.93; Pass = 0.02). We found that rs4644 affects galectin-3 as a transcriptional coregulator. Among 34 genes affected by rs4644, HES1, HSPA6, SPC24, and NHS were of particular interest since their expression was rs4644-dependent (CC>AA for the first and AA>CC for the others), also in 574 thyroid tissues of Genotype-Tissue Expression (GTEx) biobank. Moreover, the expression of these genes was regulated by LGALS3-silencing. Using the proximity ligation assay in Nthy-Ori cells, we found that the TTF-1 interaction was genotype dependent. Conclusions: Our data show that in thyroid, rs4644 is a trans-expression quantitative trait locus that can modify the transcriptional expression of downstream genes, through the modulation of TTF-1.
Collapse
Affiliation(s)
- Alda Corrado
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Romina Aceto
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
- Humanitas Clinical and Research Centre-IRCCS, Milan, Italy
| | - Roberto Silvestri
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Irene Dell'Anno
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Benedetta Ricci
- Fondazione I.R.C.C.S., Istituto Neurologico Carlo Besta, Milan, Italy
| | - Simona Miglietta
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Laura Poliseno
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy
| | | | | | - Monica Cipollini
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Sonia Garritano
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Lorenzo Zallocco
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Landi
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
9
|
Kusuhara S, Igawa S, Ichinoe M, Nagashio R, Kuchitsu Y, Hiyoshi Y, Shiomi K, Murakumo Y, Saegusa M, Satoh Y, Sato Y, Naoki K. Prognostic significance of galectin-3 expression in patients with resected NSCLC treated with platinum-based adjuvant chemotherapy. Thorac Cancer 2021; 12:1570-1578. [PMID: 33793071 PMCID: PMC8107024 DOI: 10.1111/1759-7714.13945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Galectin-3 (GAL3), a protein encoded by the LGALS3 gene, plays diverse roles in cancer initiation, progression, and drug resistance. Accordingly, high GAL3 expression in tumor cells is associated with poor prognosis in non-small cell lung cancer (NSCLC). However, the prognostic impact of GAL3 expression on patients with resected NSCLC receiving platinum-based adjuvant chemotherapy (AC) remains unclear. This study aimed to determine the prognostic significance of GAL3 expression in NSCLC patients receiving platinum-based AC. METHODS The study included 111 patients with completely resected stages II and IIIA NSCLC who were receiving platinum-based AC. GAL3 expression in cancer cells was evaluated immunohistochemically according to H-score ("histo score), with a score of ≥170 considered as high expression. The correlation of GAL3 expression with clinicopathological characteristics and survival was subsequently evaluated. RESULTS In survival analysis, GAL3 expression was significantly associated with recurrence-free survival (RFS) and overall survival (OS). In multivariate analysis, GAL3 expression was an independent predictive factor of RFS rather than OS. CONCLUSIONS GAL3 expression is a reliable biomarker to predict the prognosis of completely resected NSCLC patients receiving platinum-based AC.
Collapse
Affiliation(s)
- Seiichiro Kusuhara
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Satoshi Igawa
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Masaaki Ichinoe
- Department of Pathology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Ryo Nagashio
- Department of Pathology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Yuki Kuchitsu
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Yasuhiro Hiyoshi
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Kazu Shiomi
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Yoshiki Murakumo
- Department of Pathology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Makoto Saegusa
- Department of Pathology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Yukitoshi Satoh
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Katsuhiko Naoki
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Sagamihara, Japan
| |
Collapse
|
10
|
Lee S, Kwon NH, Seo B, Lee JY, Cho HY, Kim K, Kim HS, Jung K, Jeon YH, Kim S, Suh YG. Discovery of novel potent migrastatic Thiazolo[5,4-b]pyridines targeting Lysyl-tRNA synthetase (KRS) for treatment of Cancer metastasis. Eur J Med Chem 2021; 218:113405. [PMID: 33831781 DOI: 10.1016/j.ejmech.2021.113405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
Recently, non-canonical roles of Lysyl-tRNA Synthetase (KRS), which is associated with cell migration and cancer metastasis, have been reported. Therefore, KRS has emerged as a promising target for the treatment of cell migration-related diseases, especially cancer metastasis, although the satisfying chemical inhibitors targeting KRS have not yet been identified. Here, we report the discovery of novel, mechanistically unique, and potent cell migration inhibitors targeting KRS, including the chemical and biological studies on the most effective N,N-dialkylthiazolo [5,4-b]pyridin-2-amine (SL-1910). SL-1910 exhibited highly potent migration inhibition (EC50 = 81 nM against the mutant KRS-overexpressed MDA-MB-231 cells) and was superior to the previously reported KRS inhibitor (migration inhibitory EC50 = 8.5 μM against H226 cells). The KRS protein binding study via fluorescence-based binding titration and KRS protein 2D-NMR mapping study, in vitro concentration-dependent cell migration inhibition, and in vivo anti-metastatic activity of SL-1910, which consists of a new scaffold, have been reported in this study. In addition, in vitro absorption, distribution, metabolism, and excretion studies and mouse pharmacokinetics experiments for SL-1910 were conducted.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Gyeonggi-do, 11160, Republic of Korea; College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon, South Korea, 21983
| | - Bokyung Seo
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Young Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye Young Cho
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 339-700, Republic of Korea
| | - Kyeojin Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Su Kim
- College of Pharmacy, CHA University, Gyeonggi-do, 11160, Republic of Korea
| | - Kiwon Jung
- College of Pharmacy, CHA University, Gyeonggi-do, 11160, Republic of Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 339-700, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon, South Korea, 21983.
| | - Young-Ger Suh
- College of Pharmacy, CHA University, Gyeonggi-do, 11160, Republic of Korea; College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
The Influence of Biologically Active Substances Secreted by the Adipose Tissue on Endometrial Cancer. Diagnostics (Basel) 2021; 11:diagnostics11030494. [PMID: 33799622 PMCID: PMC8000529 DOI: 10.3390/diagnostics11030494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer is one of the most frequently diagnosed gynecological neoplasms in developed countries and its incidence is rising. Usually, it is diagnosed in the early stages of the disease and has a good prognosis; however, in later stages, the rate of recurrence reaches up to 60%. The discrepancy in relapse rates is due to the heterogeneity of the group related to the presence of prognostic factors affecting survival parameters. Increased body weight, diabetes, metabolic disturbances and estrogen imbalance are important factors for the pathogenesis of endometrial cancer. Even though prognostic factors such as histopathological grade, clinical stage, histological type and the presence of estrogen and progesterone receptors are well known in endometrial cancer, the search for novel prognostic biomarkers continues. Adipose tissue is an endocrine organ involved in metabolism, immune response and the production of biologically active substances participating in cell growth and differentiation, angiogenesis, apoptosis and carcinogenesis. In this manuscript, we review the impact of factors secreted by the adipose tissue involved in the regulation of glucose and lipid metabolism (leptin, adiponectin, omentin, vaspin, galectins) and factors responsible for homeostasis maintenance, inflammatory processes, angiogenesis and oxidative stress (IL-1β, 6, 8, TNFα, Vascular endothelial growth factor (VEGF), Fibroblast growth factors (FGFs)) in the diagnosis and prognosis of endometrial cancer.
Collapse
|
12
|
Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma. Br J Cancer 2020; 123:1521-1534. [PMID: 32801345 PMCID: PMC7653936 DOI: 10.1038/s41416-020-1022-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023] Open
Abstract
Background High probability of metastasis limited the long-term survival of patients with hepatocellular carcinoma (HCC). Our previous study revealed that Galectin-3 was closely associated with poor prognosis in HCC patients. Methods The effects of Galectin-3 on tumour metastasis were investigated in vitro and in vivo, and the underlying biological and molecular mechanisms involved in this process were evaluated. Results Galectin-3 showed a close correlation with vascular invasion and poor survival in a large-scale study in HCC patients from multiple sets. Galectin-3 was significantly involved in diverse metastasis-related processes in HCC cells, such as angiogenesis and epithelial-to-mesenchymal transition (EMT). Mechanistically, Galectin-3 activated the PI3K-Akt-GSK-3β-β-catenin signalling cascade; the β-catenin/TCF4 transcriptional complex directly targeted IGFBP3 and vimentin to regulate angiogenesis and EMT, respectively. In animal models, Galectin-3 enhanced the tumorigenesis and metastasis of HCC cells via β-catenin signalling. Moreover, molecular deletion of Galectin-3-β-catenin signalling synergistically improved the antitumour effect of sorafenib. Conclusions The Galectin-3-β-catenin-IGFBP3/vimentin signalling cascade was determined as a central mechanism controlling HCC metastasis, providing possible biomarkers for predicating vascular metastasis and sorafenib resistance, as well as potential therapeutic targets for the treatment of HCC patients.
Collapse
|
13
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
14
|
Chetry M, Thapa S, Hu X, Song Y, Zhang J, Zhu H, Zhu X. The Role of Galectins in Tumor Progression, Treatment and Prognosis of Gynecological Cancers. J Cancer 2018; 9:4742-4755. [PMID: 30588260 PMCID: PMC6299382 DOI: 10.7150/jca.23628] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Galectins are the member of soluble proteins that bind with β-galactoside containing glycans. These proteins have been considered to be associated in various important events such as different types of cancers. It has been found that galectins could contribute to neoplastic transformation or regulate cell growth, cell apoptosis, and immune cells, causing tumor invasion, progression, metastasis and angiogenesis. Somehow, galectins are also found to exert a protective effect on cancer in a tissue-dependent way. These glycans binding proteins have been shown to be involved in the regulation of different tumor suppressor genes and oncogenes with their possible roles in human cancers. Objective of the current review is to summarize the role of galectin-1, -3 -7, and -9 in tumorigenesis of gynecological cancers. Galectin protein may be a potential therapeutic target in gynecological malignancies due to reported radio- and chemo- sensitivities, immunotherapeutic, anti-angiogenic and anti-proliferative activities. This review considers the evidence for the future research that how galectins may be important in the progression and treatment of gynecological cancers along with its potent use as a novel prognostic marker.
Collapse
Affiliation(s)
- Mandika Chetry
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Saroj Thapa
- MD, Department of Internal Medicine, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Xiaoli Hu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Yizuo Song
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Jianan Zhang
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Haiyan Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| |
Collapse
|
15
|
Expression of Laminin Receptor 1 in Normal, Hyperplastic, and Malignant Endometrium. Int J Gynecol Pathol 2018; 38:326-334. [PMID: 30028353 DOI: 10.1097/pgp.0000000000000535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Laminin receptor 1 may have a role in the progression from endometrial hyperplasia with or without atypia to endometrial cancer. Therefore, we aimed to investigate the pattern, percentage, and intensity of laminin receptor 1 expression in normal, hyperplastic, and neoplastic endometrium. Paraffin blocks of 131 specimens with the diagnoses of normal endometrium (n=25), endometrial hyperplasia with atypia (n=21) or without atypia (n=55), and endometrial cancer (n=30) were immunostained with laminin receptor 1 antibody, and its expression percentage, pattern, and intensity in the epithelial cytoplasm, basement membrane, and endometrial stroma of these tissues were assessed. When compared with hyperplasia with or without atypia and endometrial cancer, the percentage of nonstaining with laminin receptor 1 in the epithelial basement membrane was higher (96%), and the percentage of <50% staining with laminin receptor 1 was lower (4%) in the normal endometrium (P=0.001). While a progressive increment in staining percentage and density of epithelial cytoplasm and basement membrane was noted through an orderly progression from normal endometrium to endometrial hyperplasia without atypia, endometrial hyperplasia with atypia, and cancer of endometrium (P<0.001), such a relationship was not found for the staining percentage and density of endometrial stroma (P>0.05). Disease progression-related gradual increment in laminin receptor 1 expression in the epithelial basement membranes of hyperplastic endometrium with or without atypia and cancer of endometrium reveals that it may play a substantial role in the transition from premalignant to the malignant state of endometrial lesions.
Collapse
|
16
|
Aboulhagag NA, El-Deek HEM, Sherif MF. Expression of galectin-1 and galectin-3 in renal cell carcinoma; immunohistochemical study. Ann Diagn Pathol 2018; 36:31-37. [PMID: 30055522 DOI: 10.1016/j.anndiagpath.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND AIMS Galectins comprise a large family of calcium independent lectins. Galectin-1 and galectin-3 contribute to neoplastic transformation, angiogenesis, and tumor metastasis in some cancers. This study aimed at studying the immunohistochemical expression of both galectin-1 and galectin-3 in renal cell carcinoma (RCC) variants and detecting the possible association of galectins with various clinicopathological parameters. MATERIALS AND METHODS Sections from 67 formalin-fixed paraffin-embedded tissue blocks of RCC variants were stained with galectin-1 and galectin-3. Expression was assessed in tumor tissue and adjacent renal parenchyma and was correlated with clinicopathological criteria. RESULTS In apparently normal renal parenchyma adjacent to tumor tissue, galectin-1 was expressed in 27 (40.2%) of specimens in renal tubules and glomeruli, while 34 (50.7%) of specimens showed galectin-3 expression in renal tubules sparing glomeruli. In tumor tissue, galectin-1 showed high expression in 47 (70.1%) and low expression in 20 (29.9%) of specimens. Galectin-3 had high expression in 15 (22.4%) and low expression in 52 (77.6%) of specimens. Significant association was detected between expression of galectin-1 and galectin-3 and the type of RCC (P = 0.032) and (P = 0.006), respectively. Significant inverse association was detected between the expression of galectin-3 and the presence of tumor haemorrhage and necrosis (P = 0.014) and (P = 0.039), respectively. CONCLUSION Galectin-1 and galectin-3 are overexpressed in RCC with different percentage in different subtypes. Galactin-1expression is more in tumor tissue than surrounding renal parenchyma suggesting that it has a carcinogenic role. Galectin-1 and galectin-3 overexpression in chromophobe RCC suggests that they may have diagnostic role.
Collapse
Affiliation(s)
- Noha A Aboulhagag
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Heba E M El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud F Sherif
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
17
|
Role of Galectins in Tumors and in Clinical Immunotherapy. Int J Mol Sci 2018; 19:ijms19020430. [PMID: 29389859 PMCID: PMC5855652 DOI: 10.3390/ijms19020430] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Galectins are glycan-binding proteins that contain one or two carbohydrate domains and mediate multiple biological functions. By analyzing clinical tumor samples, the abnormal expression of galectins is known to be linked to the development, progression and metastasis of cancers. Galectins also have diverse functions on different immune cells that either promote inflammation or dampen T cell-mediated immune responses, depending on cognate receptors on target cells. Thus, tumor-derived galectins can have bifunctional effects on tumor and immune cells. This review focuses on the biological effects of galectin-1, galectin-3 and galectin-9 in various cancers and discusses anticancer therapies that target these molecules.
Collapse
|
18
|
Umbaugh CS, Diaz-Quiñones A, Neto MF, Shearer JJ, Figueiredo ML. A dock derived compound against laminin receptor (37 LR) exhibits anti-cancer properties in a prostate cancer cell line model. Oncotarget 2017; 9:5958-5978. [PMID: 29464047 PMCID: PMC5814187 DOI: 10.18632/oncotarget.23236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/16/2017] [Indexed: 11/25/2022] Open
Abstract
Laminin receptor (67 LR) is a 67 kDa protein derived from a 37 kDa precursor (37 LR). 37/67 LR is a strong clinical correlate for progression, aggression, and chemotherapeutic relapse of several cancers including breast, prostate, and colon. The ability of 37/67 LR to promote cancer cell aggressiveness is further increased by its ability to transduce physiochemical and mechanosensing signals in endothelial cells and modulate angiogenesis. Recently, it was demonstrated that 37/67 LR modulates the anti-angiogenic potential of the secreted glycoprotein pigment epithelium-derived factor (PEDF). Restoration of PEDF balance is a desirable therapeutic outcome, and we sought to identify a small molecule that could recapitulate known signaling properties of PEDF but without the additional complications of peptide formulation or gene delivery safety validation. We used an in silico drug discovery approach to target the interaction interface between PEDF and 37 LR. Following cell based counter screening and binding validation, we characterized a hit compound's anti-viability, activation of PEDF signaling-related genes, anti-wound healing, and anti-cancer signaling properties. This hit compound has potential for future development as a lead compound for treating tumor growth and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Charles Samuel Umbaugh
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Adriana Diaz-Quiñones
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Manoel Figueiredo Neto
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Joseph J Shearer
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Chang WA, Tsai MJ, Kuo PL, Hung JY. Role of galectins in lung cancer. Oncol Lett 2017; 14:5077-5084. [PMID: 29113148 PMCID: PMC5662908 DOI: 10.3892/ol.2017.6882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide and is also associated with a poor prognosis. As in numerous other types of cancer, galectins have been demonstrated to be involved in the progression of lung cancer. Galectins belong to a superfamily of lectins, which are carbohydrate-binding proteins. There are at least 15 members in the galectin family, however, only galectin-1, −2, −3, −4, −7, −8, −9, −10, −12, and −13 are found in humans. Galectins are able to mediate interactions between cells, including homotypic and heterotypic interactions; they also facilitate the bindings between cells and extracellular matrix components. These cell-cell and cell-matrix interactions, as well as the galectin signaling on the cell surface, are able to modulate signaling pathways and thereby influence cellular functions and behaviors. Galectin-1, −3, −4, −7, −8 and −9 are associated with lung cancer. These galectins are associated with tumor invasion, migration, metastasis and progression, and may serve important roles in the tumor microenvironment of lung cancer. The majority of galectins are associated with the progression of lung cancer, with the exception of galectin-9, which is associated with enhanced anticancer immunity. Therefore, galectins may be potential targets for developing novel lung cancer therapies.
Collapse
Affiliation(s)
- Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
20
|
Pigment epithelium-derived factor promotes tumor metastasis through an interaction with laminin receptor in hepatocellular carcinomas. Cell Death Dis 2017; 8:e2969. [PMID: 28771223 PMCID: PMC5596550 DOI: 10.1038/cddis.2017.359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Pigment epithelium-derived factor (PEDF) has complex functions in tumor metastasis, but little is known about the roles of PEDF and its receptors in hepatocellular carcinoma (HCC). Here we found that high expression of PEDF is associated with shorter overall survival in HCC patients. Forced expression of PEDF enhanced HCC cell aggressive behavior in vitro and in vivo, whereas silencing PEDF expression reduced migration and invasion. Furthermore, PEDF expression led to changes in cell morphology and the expression of epithelial-mesenchymal transition (EMT)-related markers via ERK1/2 signaling pathway, including the upregulation of N-cadherin and slug, and the downregulation of E-cadherin in HCC cells. Our results further showed that PEDF could interact with laminin receptor (LR) and LR knockdown attenuated PEDF-induced migration, invasion and the change of EMT-related markers. More importantly, in clinical HCC specimens, we found that PEDF expression was correlated with subcellular localization of LR, and that high expression of PEDF and positive expression of LR predicted a poor prognosis. In conclusion, our results demonstrate a novel functional role of PEDF/LR axis in driving metastasis through ERK1/2-mediated EMT in HCC and provided a promising prognostic marker in HCC.
Collapse
|
21
|
Al-Maghrabi J, Abdelrahman AS, Ghabrah T, Butt NS, Al-Maghrabi B, Khabaz MN. Immunohistochemical expression of galectin-3 is significantly associated with grade, stage and differentiation of endometrial carcinomas. Pathol Res Pract 2017; 213:348-352. [PMID: 28215640 DOI: 10.1016/j.prp.2017.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 01/16/2023]
Abstract
This study describes galectin-3 immunohistochemical phenotype and its association with clinicopathological factors in the carcinoma of endometrium. Seventy one cases of endometrial carcinoma and 30 cases of benign and normal endometrium were employed for the detection of galectin-3 protein using tissue microarrays and immunohistochemistry staining. Thirty nine (55%) cases, including 54.2% of endometrioid adenocarcinomas and 55.5% serous carcinomas, were positively stained for galectin-3. Brown granular expression of this glycoprotein was detected in transformed epithelial cells of 36 cases including 28 cases with membranous and cytoplasmic staining and 8 cases with only cytoplasmic staining; nuclear expression was present in stromal cells of the remaining 3 cases. Twenty-four (80%) control cases showed granular cytoplasmic and membranous expression, and six control cases were negative. Tumor grade, stage and differentiation were significantly associated with galectin-3 immunoreactivity (p-values are 0.043, 0.016, and 0.044 respectively), cases with membranous and cytoplasmic staining is significantly associated with grade I and stage II, while cases with loss of staining are more frequent in grade II, III and poorly differentiated tumors. No significant association of galectin-3 staining was observed with age, diagnosis, recurrence and alive status. The current study supports the tumor suppression role of galectin-3 in endometrial carcinoma. Greater galectin-3 immunostaining has been found in control endometrial tissues compared to endometrial tumors. Loss or decreased galectin-3 immunoexpression gives a sign for poor prognoses in endometrial carcinoma patients.
Collapse
Affiliation(s)
- Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amer Shafie Abdelrahman
- Department of Pathology, Rabigh Faculty of Medicine, King Abdulaziz University, P.O. Box: 80205, Jeddah 21589, Saudi Arabia
| | - Tawfik Ghabrah
- Department of Family and Community Medicine, Rabigh Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadeem Shafique Butt
- Department of Family and Community Medicine, Rabigh Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basim Al-Maghrabi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamad Nidal Khabaz
- Department of Pathology, Rabigh Faculty of Medicine, King Abdulaziz University, P.O. Box: 80205, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
22
|
Cousin JM, Cloninger MJ. The Role of Galectin-1 in Cancer Progression, and Synthetic Multivalent Systems for the Study of Galectin-1. Int J Mol Sci 2016; 17:ijms17091566. [PMID: 27649167 PMCID: PMC5037834 DOI: 10.3390/ijms17091566] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/24/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
This review discusses the role of galectin-1 in the tumor microenvironment. First, the structure and function of galectin-1 are discussed. Galectin-1, a member of the galectin family of lectins, is a functionally dimeric galactoside-binding protein. Although galectin-1 has both intracellular and extracellular functions, the defining carbohydrate-binding role occurs extracellularly. In this review, the extracellular roles of galectin-1 in cancer processes are discussed. In particular, the importance of multivalent interactions in galectin-1 mediated cellular processes is reviewed. Multivalent interactions involving galectin-1 in cellular adhesion, mobility and invasion, tumor-induced angiogenesis, and apoptosis are presented. Although the mechanisms of action of galectin-1 in these processes are still not well understood, the overexpression of galectin-1 in cancer progression indicates that the role of galectin-1 is significant. To conclude this review, synthetic frameworks that have been used to modulate galectin-1 processes are reviewed. Small molecule oligomers of carbohydrates, carbohydrate-functionalized pseudopolyrotaxanes, cyclodextrins, calixarenes, and glycodendrimers are presented. These synthetic multivalent systems serve as important tools for studying galectin-1 mediated cancer cellular functions.
Collapse
Affiliation(s)
- Jonathan M Cousin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
23
|
Wang L, Guo XL. Molecular regulation of galectin-3 expression and therapeutic implication in cancer progression. Biomed Pharmacother 2016; 78:165-171. [PMID: 26898438 DOI: 10.1016/j.biopha.2016.01.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
Galectin-3, a multifunctional protein, distributes inside and outside cells and plays an important role in tumor cell adhesion, proliferation, differentiation, angiogenesis, and metastasis in multiple tumors. Changes in galectin-3 expression are commonly seen in cancer and pre-cancerous conditions. Therefore, to understand the molecular regulation of galectin-3 expression could aid the development of new approach for cancer treatment. This review summarizes different expression of galectin-3 in cancer cells and patients' serum, the regulation mechanism and the potential therapeutic targets of galectin-3 in cancer progression.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
24
|
Immunohistochemical Studies on Galectin Expression in Colectomised Patients with Ulcerative Colitis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5989128. [PMID: 26885508 PMCID: PMC4739479 DOI: 10.1155/2016/5989128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/11/2015] [Accepted: 12/20/2015] [Indexed: 12/19/2022]
Abstract
Introduction. The aetiology and pathogenesis of ulcerative colitis (UC) are essentially unknown. Galectins are carbohydrate-binding lectins involved in a large number of physiological and pathophysiological processes. Little is known about the role of galectins in human UC. In this immunohistochemical exploratory study, both epithelial and inflammatory cell galectin expression were studied in patients with a thoroughly documented clinical history and were correlated with inflammatory activity. Material and Methods. Surgical whole intestinal wall colon specimens from UC patients (n = 22) and controls (n = 10) were studied. Clinical history, pharmacological treatment, and modified Mayo-score were recorded. Tissue inflammation was graded, and sections were stained with antibodies recognizing galectin-1, galectin-2, galectin-3, and galectin-4. Results. Galectin-1 was undetectable in normal and UC colonic epithelium, while galectin-2, galectin-3, and galectin-4 were strongly expressed. A tendency towards diminished epithelial expression with increased inflammatory grade for galectin-2, galectin-3, and galectin-4 was also found. In the inflammatory cells, a strong expression of galectin-2 and a weak expression of galectin-3 were seen. No clear-cut correlation between epithelial galectin expression and severity of the disease was found. Conclusion. Galectin expression in patients with UC seems to be more dependent on disease focality and individual variation than on degree of tissue inflammation.
Collapse
|
25
|
Shetty P, Bargale A, Patil BR, Mohan R, Dinesh US, Vishwanatha JK, Gai PB, Patil VS, Amsavardani TS. Cell surface interaction of annexin A2 and galectin-3 modulates epidermal growth factor receptor signaling in Her-2 negative breast cancer cells. Mol Cell Biochem 2015; 411:221-33. [PMID: 26438086 DOI: 10.1007/s11010-015-2584-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
Abstract
Overexpression and activation of tyrosine kinase receptors like EGFR and Src regulate the progression and metastasis of Her-2 negative breast cancer. Recently we have reported the role of cell membrane interaction of phospholipid-binding protein annexin A2 (AnxA2) and EGFR in regulating cellular signaling in the activation of angiogenesis, matrix degradation, invasion, and cancer metastasis. Beta-galactoside-specific animal lectin galectin-3 is an apoptosis inhibitor, and cell surface-associated extracellular galectin-3 also has a role in cell migration, cancer progression, and metastasis. Similar expression pattern and membrane co-localization of these two proteins made us to hypothesize in the current study that galectin-3 and AnxA2 interaction is critical for Her-2 negative breast cancer progression. By various experimental analyses, we confirm that glycosylated AnxA2 at the membrane surface interacts with galectin-3. N-linked glycosylation inhibitor tunicamycin treatment convincingly blocked AnxA2 membrane translocation and its association with galectin-3. To analyze whether this interaction has any functional relevance, we tried to dissociate this interaction with purified plant lectin from chickpea (Cicer arietinum agglutinin). This highly specific 30 kDa plant lectin could dissociate AnxA2 from endogenous lectin galectin-3 interaction at the cell surface. This dissociation could down-regulate Bcl-2 family proteins, cell proliferation, and migration simultaneously triggering cell apoptosis. Targeting this interaction of membrane surface glycoprotein and its animal lectin in Her-2 negative breast cancer may be of therapeutic value.
Collapse
Affiliation(s)
- Praveenkumar Shetty
- Central Research Laboratory, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India. .,Department of Biochemistry, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India.
| | - Anil Bargale
- Central Research Laboratory, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India.,Department of Biochemistry, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India
| | | | - Rajashekar Mohan
- Department of Surgery, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - U S Dinesh
- Department of Pathology, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Jamboor K Vishwanatha
- Department of Molecular Medicine, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | - Pramod B Gai
- Karnataka Institute of DNA Research, Dharwad, India
| | - Vidya S Patil
- Central Research Laboratory, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India.,Department of Biochemistry, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India
| | - T S Amsavardani
- Department of Oral Pathology, Indira Gandhi Institute of Dental Sciences, Pondicherry, India
| |
Collapse
|
26
|
Liu J, Liu Y, Wang W, Wang C, Che Y. Expression of immune checkpoint molecules in endometrial carcinoma. Exp Ther Med 2015; 10:1947-1952. [PMID: 26640578 DOI: 10.3892/etm.2015.2714] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 08/10/2015] [Indexed: 02/01/2023] Open
Abstract
The main obstacle in the development of an effective tumor vaccine is the inherent ability of tumors to evade immune responses. Tumors often use common immune mechanisms and regulators to evade the immune system. The present study aimed to analyze the expression levels of indoleamine 2,3-dioxygenase (IDO), programmed death-ligand (PD-L) 1, PD-L2, B7-H4, galectin-1 and galectin-3 in tissue samples from patients with endometrial carcinoma, in order to detect the immunosuppressive environment of endometrial carcinomas. The levels of IDO, PD-L1, PD-L2 and B7-H4 were analyzed by immunohistochemical methods, and the levels of galectin-1 and galectin-3 in tumor lysates were determined using ELISA. PD-L2 was expressed at low levels in the majority of tumor samples. IDO expression was detected in 38, 63 and 43% of primary endometrial carcinoma, recurrent endometrial carcinoma, and metastatic endometrial carcinoma specimens, respectively. Positive expression rates for PD-L1 were 83% in primary endometrial carcinoma, 68% in recurrent endometrial carcinoma, and 100% in metastatic endometrial carcinoma, whereas B7-H4 expression was detected in 100% of both primary endometrial carcinoma and recurrent endometrial carcinoma samples, and in 96% of metastatic endometrial carcinoma specimens. The expression levels of galectin-1 and galectin-3 were not significantly different between the normal and tumor specimens. The results of the present study suggest that the interaction between PD-1/PD-L1 and B7-H4 may be a potential target for immune intervention in the treatment of endometrial carcinoma. Furthermore, the results may provide the basis for immunosuppressant therapy in the treatment of patients with uterine cancer.
Collapse
Affiliation(s)
- Jia Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Yuling Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Wuliang Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Chenyang Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Yanhong Che
- Department of Gynecology and Obstetrics, Women & Infants Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
27
|
Abstract
The alteration in expression of B cell lymphoma-2 (Bcl-2) family of protein members in cancer is involved mainly in the regulation of apoptosis. Bcl-2 family proteins are currently used as major targets in the development of methods to improve treatment outcomes for cancer patients that underwent clinical trials. Although many agents have been developed for targeting Bcl-2 in the past decade, some previous attempts to target Bcl-2 have not resulted in beneficial clinical outcome for reasons unknown. Here, we propose that this was due in part for not considering the cellular level of a different antiapoptotic protein, i.e., galectin-3 (Gal-3). Gal-3 is a member of the β-galactoside binding protein family and a multifunctional oncogenic protein which regulates cell growth, cell adhesion, cell proliferation, angiogenesis, and apoptosis. Gal-3 is the sole protein that contains the NWGR anti-death motif of the Bcl-2 family and inhibits cell apoptosis induced by chemotherapeutic agents through phosphorylation, translocation and regulation of survival signaling pathways. It is now established that Gal-3 is a candidate target protein to suppress antiapoptotic activity and anticancer drug resistance. In this review, we describe the role and relevance of Gal-3 and Bcl-2 protein family in the regulation of apoptosis and propose a novel combination therapy modality. Combination therapy that targets Gal-3 could be essential for improvement of the efficacy of Bcl-2 targeting therapy in cancers and should be studied in future clinical trials. Otherwise, not considering Gal-3 cellular level could lead to trial failure.
Collapse
|
28
|
Than NG, Romero R, Balogh A, Karpati E, Mastrolia SA, Staretz-Chacham O, Hahn S, Erez O, Papp Z, Kim CJ. Galectins: Double-edged Swords in the Cross-roads of Pregnancy Complications and Female Reproductive Tract Inflammation and Neoplasia. J Pathol Transl Med 2015; 49:181-208. [PMID: 26018511 PMCID: PMC4440931 DOI: 10.4132/jptm.2015.02.25] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eva Karpati
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
- Department of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | | | - Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Pathology, Wayne State University, Detroit, MI, USA
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Thijssen VL, Heusschen R, Caers J, Griffioen AW. Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim Biophys Acta Rev Cancer 2015; 1855:235-47. [PMID: 25819524 DOI: 10.1016/j.bbcan.2015.03.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
Abstract
Galectins are a family of proteins that bind to specific glycans thereby deciphering the information captured within the glycome. In the last two decades, several galectin family members have emerged as versatile modulators of tumor progression. This has initiated the development and preclinical assessment of galectin-targeting compounds. With the first compounds now entering clinical trials it is pivotal to gain insight in the diagnostic and prognostic value of galectins in cancer as this will allow a more rational selection of the patients that might benefit most from galectin-targeted therapies. Here, we present a systematic review of galectin expression in human cancer patients. Malignant transformation is frequently associated with altered galectin expression, most notably of galectin-1 and galectin-3. In most cancers, increased galectin-1 expression is associated with poor prognosis while elevated galectin-9 expression is emerging as a marker of favorable disease outcome. The prognostic value of galectin-3 appears to be tumor type dependent and the other galectins require further investigation. Regarding the latter, additional studies using larger patient cohorts are essential to fully unravel the diagnostic and prognostic value of galectin expression. Furthermore, to better compare different findings, consensus should be reached on how to assess galectin expression, not only with regard to localization within the tissue and within cellular compartments but also regarding alternative splicing and genomic variations. Finally, linking galectin expression and function to aberrant glycosylation in cancer cells will improve our understanding of how these versatile proteins can be exploited for diagnostic, prognostic and even therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Victor L Thijssen
- Angiogenesis Laboratory, Department Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands; Angiogenesis Laboratory, Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands.
| | - Roy Heusschen
- Laboratory of Hematology, GIGA-Research, University of Liege, Liege, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA-Research, University of Liege, Liege, Belgium
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Jovanovic K, Chetty CJ, Khumalo T, Da Costa Dias B, Ferreira E, Malindisa ST, Caveney R, Letsolo BT, Weiss SFT. Novel patented therapeutic approaches targeting the 37/67 kDa laminin receptor for treatment of cancer and Alzheimer's disease. Expert Opin Ther Pat 2015; 25:567-82. [PMID: 25747044 DOI: 10.1517/13543776.2015.1014802] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The 37/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a multi-faceted cellular receptor. It plays a vital role in the malignancy of various cancer types where it is seen to contribute to invasion, adhesion, apoptosis evasion and angiogenesis. Furthermore, it has been found to play an important role in facilitating the processes leading to neurotoxicity in Alzheimer's disease (AD). Various therapeutic options targeting this receptor have been patented with the outlook on application for the treatment/prevention of these diseases. AREAS COVERED The various roles that LRP/LR plays in cancer, AD and infectious diseases caused by viruses and bacteria have been examined in detail and an overview of the current patented therapeutic strategies targeting this receptor is given. EXPERT OPINION Molecular tools directed against LRP/LR, such as antibodies and small interfering RNA, could prove to be effective in the prevention of metastasis and angiogenesis while inducing apoptosis in cancers. Moreover, these strategies could also be applied to AD where LRP/LR is seen to facilitate the production and internalization of the neurotoxic Aβ peptide. This review provides a comprehensive overview of the mechanisms by which LRP/LR is involved in eliciting pathogenic events, while showing how the use of patented approaches targeting this receptor could be used to treat them.
Collapse
Affiliation(s)
- Katarina Jovanovic
- University of the Witwatersrand, School of Molecular and Cell Biology , Private Bag 3, Wits 2050, Johannesburg , Republic of South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kang B, Opatz T, Landfester K, Wurm FR. Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chem Soc Rev 2015; 44:8301-25. [DOI: 10.1039/c5cs00092k] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbohydrates are used to functionalize or construct nanocarriers for biomedical applications – specific targeting, biocompatibility, stealth effect, biodegradability.
Collapse
Affiliation(s)
- Biao Kang
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Till Opatz
- Institute of Organic Chemistry
- University of Mainz
- 55128 Mainz
- Germany
| | | | | |
Collapse
|
32
|
Baker GJ, Chockley P, Yadav VN, Doherty R, Ritt M, Sivaramakrishnan S, Castro MG, Lowenstein PR. Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity. Cancer Res 2014; 74:5079-90. [PMID: 25038230 DOI: 10.1158/0008-5472.can-14-1203] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Natural killer (NK) cells safeguard against early tumor formation by destroying transformed target cells in a process referred to as NK immune surveillance. However, the immune escape mechanisms used by malignant brain tumors to subvert this innate type of immune surveillance remain unclear. Here we show that malignant glioma cells suppress NK immune surveillance by overexpressing the β-galactoside-binding lectin galectin-1. Conversely, galectin-1-deficient glioma cells could be eradicated by host NK cells before the initiation of an antitumor T-cell response. In vitro experiments demonstrated that galectin-1-deficient GL26-Cit glioma cells are ∼3-fold more sensitive to NK-mediated tumor lysis than galectin-1-expressing cells. Our findings suggest that galectin-1 suppression in human glioma could improve patient survival by restoring NK immune surveillance that can eradicate glioma cells. Cancer Res; 74(18); 5079-90. ©2014 AACR.
Collapse
Affiliation(s)
- Gregory J Baker
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Peter Chockley
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Viveka Nand Yadav
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Robert Doherty
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michael Ritt
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sivaraj Sivaramakrishnan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan. Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
33
|
Mapping the immunosuppressive environment in uterine tumors: implications for immunotherapy. Cancer Immunol Immunother 2014; 63:545-57. [PMID: 24658839 PMCID: PMC4024136 DOI: 10.1007/s00262-014-1537-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 03/08/2014] [Indexed: 01/22/2023]
Abstract
The major hurdle for cancer vaccines to be effective is posed by tumor immune evasion. Several common immune mechanisms and mediators are exploited by tumors to avoid immune destruction. In an attempt to shed more light on the immunosuppressive environment in uterine tumors, we analyzed the presence of PD-L1, PD-L2, B7-H4, indoleamine 2,3-dioxygenase (IDO), galectin-1, galectin-3, arginase-1 activity and myeloid-derived suppressor cell (MDSC) infiltration. IDO, PD-L1, PD-L2 and B7-H4 were analyzed by immunohistochemistry. PD-L2 was mostly expressed at low levels in these tumors. We found high IDO expression in 21 % of endometrial carcinoma samples and in 14 % of uterine sarcoma samples. For PD-L1 and B7-H4, we found high expression in 92 and 90 % of endometrial cancers, respectively, and in 100 and 92 % of the sarcomas. Galectin-1 and 3 were analyzed in tissue lysates by ELISA, but we did not find an increase in both molecules in tumor lysates compared with benign tissues. We detected expression of galectin-3 by fibroblasts, immune cells and tumor cells in single-cell tumor suspensions. In addition, we noted a highly significant increase in arginase-1 activity in endometrial carcinomas compared with normal endometria, which was not the case for uterine sarcomas. Finally, we could demonstrate MDSC infiltration in fresh tumor suspensions from uterine tumors. These results indicate that the PD-1/PD-L1 interaction and B7-H4 could be possible targets for immune intervention in uterine cancer patients as well as mediation of MDSC function. These observations are another step toward the implementation of inhibitors of immunosuppression in the treatment of uterine cancer patients.
Collapse
|
34
|
Rachel H, Chang-Chun L. Recent advances toward the development of inhibitors to attenuate tumor metastasis via the interruption of lectin-ligand interactions. Adv Carbohydr Chem Biochem 2014; 69:125-207. [PMID: 24274369 DOI: 10.1016/b978-0-12-408093-5.00005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant glycosylation is a well-recognized phenomenon that occurs on the surface of tumor cells, and the overexpression of a number of ligands (such as TF, sialyl Tn, and sialyl Lewis X) has been correlated to a worse prognosis for the patient. These unique carbohydrate structures play an integral role in cell-cell communication and have also been associated with more metastatic cancer phenotypes, which can result from binding to lectins present on cell surfaces. The most well studied metastasis-associated lectins are the galectins and selectins, which have been correlated to adhesion, neoangiogenesis, and immune-cell evasion processes. In order to slow the rate of metastatic lesion formation, a number of approaches have been successfully developed which involve interfering with the tumor lectin-substrate binding event. Through the generation of inhibitors, or by attenuating lectin and/or carbohydrate expression, promising results have been observed both in vitro and in vivo. This article briefly summarizes the involvement of lectins in the metastatic process and also describes different approaches used to prevent these undesirable carbohydrate-lectin binding events, which should ultimately lead to improvement in current cancer therapies.
Collapse
Affiliation(s)
- Hevey Rachel
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
35
|
Vladoiu MC, Labrie M, St-Pierre Y. Intracellular galectins in cancer cells: potential new targets for therapy (Review). Int J Oncol 2014; 44:1001-14. [PMID: 24452506 DOI: 10.3892/ijo.2014.2267] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of galectin expression is frequently observed in cancer tissues. Such an abnormal expression pattern often correlates with aggressiveness and relapse in many types of cancer. Because galectins have the ability to modulate functions that are important for cell survival, migration and metastasis, they also represent attractive targets for cancer therapy. This has been well-exploited for extracellular galectins, which bind glycoconjugates expressed on the surface of cancer cells. Although the existence of intracellular functions of galectins has been known for many years, an increasing number of studies indicate that these proteins can also alter tumor progression through their interaction with intracellular ligands. In fact, in some instances, the interactions of galectins with their intracellular ligands seem to occur independently of their carbohydrate recognition domain. Such findings call for a change in the basic assumptions, or paradigms, concerning the activity of galectins in cancer and may force us to revisit our strategies to develop galectin antagonists for the treatment of cancer.
Collapse
Affiliation(s)
| | | | - Yves St-Pierre
- INRS-Institut Armand-Frappier, Laval, QC H7V 1B7, Canada
| |
Collapse
|
36
|
Kim DG, Lee JY, Kwon NH, Fang P, Zhang Q, Wang J, Young NL, Guo M, Cho HY, Mushtaq AU, Jeon YH, Choi JW, Han JM, Kang HW, Joo JE, Hur Y, Kang W, Yang H, Nam DH, Lee MS, Lee JW, Kim ES, Moon A, Kim K, Kim D, Kang EJ, Moon Y, Rhee KH, Han BW, Yang JS, Han G, Yang WS, Lee C, Wang MW, Kim S. Chemical inhibition of prometastatic lysyl-tRNA synthetase-laminin receptor interaction. Nat Chem Biol 2013; 10:29-34. [PMID: 24212136 DOI: 10.1038/nchembio.1381] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/18/2013] [Indexed: 01/11/2023]
Abstract
Lysyl-tRNA synthetase (KRS), a protein synthesis enzyme in the cytosol, relocates to the plasma membrane after a laminin signal and stabilizes a 67-kDa laminin receptor (67LR) that is implicated in cancer metastasis; however, its potential as an antimetastatic therapeutic target has not been explored. We found that the small compound BC-K-YH16899, which binds KRS, impinged on the interaction of KRS with 67LR and suppressed metastasis in three different mouse models. The compound inhibited the KRS-67LR interaction in two ways. First, it directly blocked the association between KRS and 67LR. Second, it suppressed the dynamic movement of the N-terminal extension of KRS and reduced membrane localization of KRS. However, it did not affect the catalytic activity of KRS. Our results suggest that specific modulation of a cancer-related KRS-67LR interaction may offer a way to control metastasis while avoiding the toxicities associated with inhibition of the normal functions of KRS.
Collapse
Affiliation(s)
- Dae Gyu Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea. [3]
| | - Jin Young Lee
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea. [3]
| | - Nam Hoon Kwon
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Pengfei Fang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA
| | - Qian Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Jing Wang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA
| | - Nicolas L Young
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA
| | - Hye Young Cho
- College of Pharmacy, Korea University, Sejong, Korea
| | | | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong, Korea
| | - Jin Woo Choi
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jung Min Han
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | - Youn Hur
- Yuhan Research Institute, Yongin, Korea
| | - Wonyoung Kang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heekyoung Yang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Sook Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jung Weon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Aree Moon
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Kibom Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Doyeun Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eun Joo Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Youngji Moon
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Kyung Hee Rhee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jee Sun Yang
- Translational Research Center for Protein Function Control, Department of Biotechnology and WCU Department of Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Gyoonhee Han
- Translational Research Center for Protein Function Control, Department of Biotechnology and WCU Department of Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Won Suk Yang
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Cheolju Lee
- BRI, Korea Institute of Science and Technology, Seoul, Korea
| | - Ming-Wei Wang
- The National Center for Drug Screening, Zhangjiang High-Tech Park, Shanghai, China
| | - Sunghoon Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea. [3] World Class University Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
37
|
Barrientos G, Freitag N, Tirado-González I, Unverdorben L, Jeschke U, Thijssen VL, Blois SM. Involvement of galectin-1 in reproduction: past, present and future. Hum Reprod Update 2013; 20:175-93. [DOI: 10.1093/humupd/dmt040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
38
|
A proposed score for assessing progression in pT1 high-grade urothelial carcinoma of the bladder. Appl Immunohistochem Mol Morphol 2013; 21:218-27. [PMID: 22820663 DOI: 10.1097/pai.0b013e31825f3264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We tested a selected series of patients with single urothelial high-grade pT1 stage (pT1 HG) or urothelial carcinoma in situ (CIS) with a set of immunohistochemical markers to elaborate a risk score for progression. We retrospectively reviewed all first diagnoses of single, <3 cm, urothelial papillary carcinoma pT1 HG or isolated CIS between 2006 and 2009. Galectin-3, CD44, E-cadherin, CD138, p16, survivin, HYAL-1, and topoisomerase-II α were used. A grading score 0 or 1 for each immunohistochemical staining was assigned to obtain a total score for assessing the progression. The median "progression score" was selected as cutoff value for statistical analysis. Overall, 23 patients (19 pT1 HG and 4 CIS) were included in the study. After a median follow-up of 21 months (range, 12 to 34 mo), 9 patients (39.1%) showed disease recurrence whereas 4 patients (17.4%) showed tumor progression. Topoisomerase-II α, p16, survivin, galectin-3, and CD138 were significantly associated with progression. Progression score ranged from 0 (best prognosis) to 7 (worst prognosis). Using a score ≥5 as a threshold, specificity was 78.9%, sensitivity 100%, positive predictive value 50%, and negative predictive value 100%. ROC area (a 95% confidence interval, 0.807-1.000; P<0.001). This immunohistochemistry-based progression score using a threshold ≥5, might help the clinician to focus on patients with HG pT1 or extended CIS at high risk for disease progression. These patients might benefit from a more intensive follow-up program or early cystectomy.
Collapse
|
39
|
El-Nagdy S, Salama NM, Mourad MI. Immunohistochemical clue for the histological overlap of salivary adenoid cystic carcinoma and polymorphous low-grade adenocarcinoma. Interv Med Appl Sci 2013; 5:131-9. [PMID: 24265903 DOI: 10.1556/imas.5.2013.3.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
It remains difficult to distinguish adenoid cystic carcinoma (ACC) from polymorphous low-grade adenocarcinoma (PLGA). Although these neoplasms exhibit nearly similar histologic patterns, their biologic behavior is significantly different. This study was carried out in an attempt to overcome the histological overlap between these tumors using immunohistochemical method for c-kit and galectin-3 proteins on twenty cases of salivary gland tumors including twelve ACC and eight PLGA. Results revealed positive cytoplasmic reactivity for c-kit in 100% of ACC cases and only in 25% of PLGA. On the other hand, galectin-3 expression was observed in 100% of both ACC and PLGA cases. Moreover, solid variant of ACC showed overexpression of both proteins than cribriform and tubular subtypes. Significant positive correlation between the two studied proteins in ACC and PLGA was also observed (p < 0.05). Upon these results, over expression of c-kit and galectin-3 in ACC cases supports the concept of solid variant as a high-grade tumor. Moreover, c-kit may be used as a helpful marker to distinguish ACC from PLGA in cases where the diagnosis can be challenging.
Collapse
Affiliation(s)
- Sherif El-Nagdy
- Oral Pathology Department, Faculty of Dentistry, Mansoura University Mansoura Egypt
| | | | | |
Collapse
|
40
|
Priglinger CS, Szober CM, Priglinger SG, Merl J, Euler KN, Kernt M, Gondi G, Behler J, Geerlof A, Kampik A, Ueffing M, Hauck SM. Galectin-3 induces clustering of CD147 and integrin-β1 transmembrane glycoprotein receptors on the RPE cell surface. PLoS One 2013; 8:e70011. [PMID: 23922889 PMCID: PMC3726584 DOI: 10.1371/journal.pone.0070011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/14/2013] [Indexed: 01/22/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and integrin-β1 via interaction with β1,6-branched N-glycans on RPE cells and hypothesize that Gal-3 acts as a positive regulator for CD147/integrin-β1 clustering and therefore modifies RPE cell behavior contributing to the pathogenesis of PVR. Further investigations at this pathway may aid in the development of specific therapies for PVR.
Collapse
|
41
|
Abstract
Although aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multi-functional proteins (AIMPs) have long been recognized as housekeeping proteins, evidence indicating that they play a key role in regulating cancer is now accumulating. In this chapter we will review the conventional and non-conventional functions of ARSs and AIMPs with respect to carcinogenesis. First, we will address how ARSs and AIMPs are altered in terms of expression, mutation, splicing, and post-translational modifications. Second, the molecular mechanisms for ARSs' and AIMPs' involvement in the initiation, maintenance, and progress of carcinogenesis will be covered. Finally, we will introduce the development of therapeutic approaches that target ARSs and AIMPs with the goal of treating cancer.
Collapse
|
42
|
Kim ES, Lim DJ, Lee K, Jung CK, Bae JS, Jung SL, Baek KH, Lee JM, Moon SD, Kang MI, Cha BY, Lee KW, Son HY. Absence of galectin-3 immunostaining in fine-needle aspiration cytology specimens from papillary thyroid carcinoma is associated with favorable pathological indices. Thyroid 2012; 22:1244-50. [PMID: 22892040 DOI: 10.1089/thy.2011.0166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Galectin-3 (G3) immunostaining of fine-needle aspiration (FNA) samples from thyroid nodules is very useful for the diagnosis of malignancy. The objective of the present study was to determine whether the absence of G3 immunostaining in preoperative FNA samples is associated with favorable clinicopathological parameters, including lymph node (LN) metastasis, in papillary thyroid carcinoma (PTC). METHODS The records of 868 patients with PTC who had prethyroidectomy ultrasonography-guided FNA with G3 immunostaining between January 2006 and December 2009 were retrospectively reviewed. G3 immunostaining was considered positive if the percentage of tumor cells showing definite cytoplasmic immunostaining exceeded 5%. Patients who had negative G3 immunostaining of FNA samples were assigned to the G3-negative (G3N) group; whereas those who had positive G3 immunostaining were assigned to the G3-positive (G3P) group. RESULTS There were 92 patients who were assigned to the G3N group (10.6%) because of the negative staining for G3 in the preoperative FNA samples from their thyroid nodules. The proportion of PTC subtypes in the G3N and G3P groups was similar (p=0.376). There was less frequent thyroid capsular invasion (46.7% vs. 66.5%, p<0.001), extrathyroidal extension (28.3% vs. 48.5%, p<0.001), and LN metastasis (22.2% vs. 48.7%, p<0.001) in the G3N group than the G3P group. In multivariate regression analysis, G3N expression predicted a lower risk of LN metastasis (odds ratio=0.37, 95% confidence interval 0.18-0.78) after adjustment for other clinicopathological parameters. Over a median follow-up of 33 months, no association was observed between G3N and disease-free survival. CONCLUSION The absence of G3 expression in FNA samples from PTC is associated with pathological parameters considered less aggressive than is the case for PTCs with G3 expression, including being a negative predictor of negative LN involvement. Long-term follow-up studies, however, are needed to verify whether G3N patients have lower recurrence and mortality rates.
Collapse
Affiliation(s)
- Eun Sook Kim
- Division of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yamaki S, Fujii T, Yajima R, Hirakata T, Yamaguchi S, Fujisawa T, Tsutsumi S, Asao T, Yanagita Y, Iijima M, Kuwano H. Clinicopathological significance of decreased galectin-3 expression and the long-term prognosis in patients with breast cancer. Surg Today 2012; 43:901-5. [PMID: 23090139 DOI: 10.1007/s00595-012-0378-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/24/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE Galectin-3 expression is modulated in cancer cells, and that finding has led to the recognition of galectin-3 as a diagnostic or prognostic marker for various cancers, including breast cancer. This study investigated the correlation between galectin-3 expression and the clinicopathological features in patients with breast cancer, in order to determine the relevance and role of galectin-3 in breast cancer progression. METHODS Galectin-3 expression was investigated immunohistochemically in 116 patients with breast cancer, and a statistical analysis was performed. RESULTS Galectin-3 expression in breast cancer was significantly associated with tumor vascular invasion. However, galectin-3 expression was not associated with Ki-67 expression, which reflects tumor proliferation. Disease-free survival and long-term overall survival were significantly shorter for patients with reduced galectin-3 expression. CONCLUSIONS This study demonstrated that the galectin-3 expression was associated with tumor vascular invasion and metastasis, suggesting that galectin-3 plays a critical role in tumor progression via an invasive mechanism but not via proliferation in breast cancer. Furthermore, reduced expression of galectin-3 is useful for predicting a long-term poor prognosis in patients with breast cancer.
Collapse
Affiliation(s)
- Sayaka Yamaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Suzme R, Tseng JC, Levin B, Ibrahim S, Meruelo D, Pellicer A. Sindbis viral vectors target hematopoietic malignant cells. Cancer Gene Ther 2012; 19:757-66. [PMID: 22956041 DOI: 10.1038/cgt.2012.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sindbis viral vectors target and inhibit the growth of various solid tumors in mouse models. However, their efficacy against blood cancer has not been well established. Here, we show that Sindbis vectors infect and efficiently trigger apoptosis in mouse BW5147 malignant hematopoietic T-cells, but only at low levels in human lymphoma and leukemia cells (Jurkat, Karpas, CEM, DHL and JB). The Mr 37/67 kD laminin receptor (LAMR) has been suggested to be the receptor for Sindbis virus. However, JB cells, which are infected by Sindbis at low efficiency, express high levels of LAMR, revealing that additional factors are involved in Sindbis tropism. To test the infectivity and therapeutic efficacy of Sindbis vectors against malignant hematopoietic cells in vivo, we injected BW5147 cells intraperitoneally into (C3HXAKR) F1 hybrid mice. We found that Sindbis vectors targeted the tumors and significantly prolonged survival of tumor-bearing mice. We also tested the Sindbis vectors in a transgenic CD4-Rgr model, which spontaneously develop thymic lymphomas. However, infectivity in this model was less efficient. Taken together, these results demonstrate that Sindbis vectors have the potential to target and kill hematopoietic malignancies in mice, but further research is needed to evaluate the mechanism underlining the susceptibility of human lymphoid malignancies to Sindbis therapy.
Collapse
Affiliation(s)
- R Suzme
- Department of Pathology and NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Kim HJ, Do IG, Jeon HK, Cho YJ, Park YA, Choi JJ, Sung CO, Lee YY, Choi CH, Kim TJ, Kim BG, Lee JW, Bae DS. Galectin 1 expression is associated with tumor invasion and metastasis in stage IB to IIA cervical cancer. Hum Pathol 2012; 44:62-8. [PMID: 22939954 DOI: 10.1016/j.humpath.2012.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023]
Abstract
Galectin 1 is a 14-kd laminin-binding lectin involved in important biologic mechanisms of tumors, including neoplastic transformation, cell survival, angiogenesis, cell proliferation, and metastasis. In this study, we investigated the role of galectin 1 in cell survival and metastasis in cervical cancer. The expression of galectin 1 was determined in 73 formalin-fixed, paraffin-embedded cervical cancer tissues using an immunohistochemical method and compared with clinicopathologic risk factors for recurrence after surgery. To evaluate the role of galectin 1 in cell proliferation and invasion, we performed proliferation and invasion assays with galectin 1 small interfering RNA (siRNA) using cervical cancer cell lines, including HeLa and SiHa cells. Immunohistochemical analysis revealed that galectin 1 expression was found in most peritumoral stroma samples (72/73; 98.6%). Galectin 1 expression was significantly correlated with the depth of invasion in the cervix (P=.015) and lymph node metastasis (P=.045) on univariate analysis. When progression-free survival of all of the patients studied was analyzed based upon galectin 1 expression, galectin 1 expression was not correlated with progression-free survival (P=.32). Down-regulation of galectin 1 using small interfering RNA resulted in the inhibition of cell growth and proliferation of HeLa and SiHa cells. Moreover, the ability of cells to invade was significantly reduced by galectin 1 small interfering RNA. Our results revealed that high galectin 1 expression in peritumoral stroma was significantly correlated with depth of invasion in cervical lesions and lymph node metastasis of cervical cancer and that galectin 1 may be functionally involved in cell proliferation and invasion.
Collapse
Affiliation(s)
- Ha-Jeong Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang H, Lei C, Cheng C, Feng Y, Zhang W, Petracco RG, Sak S. The Antiapoptotic Effect of Galectin-3 in Human Endometrial Cells under the Regulation of Estrogen and Progesterone1. Biol Reprod 2012; 87:39. [DOI: 10.1095/biolreprod.112.099234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
47
|
de Vasconcelos Carvalho M, Pereira JDS, Alves PM, Silveira EJDD, de Souza LB, Queiroz LMG. Alterations in the immunoexpression of galectins-1, -3 and -7 between different grades of oral epithelial dysplasia. J Oral Pathol Med 2012; 42:174-9. [PMID: 22845866 DOI: 10.1111/j.1600-0714.2012.01199.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2012] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Oral epithelial dysplasia (OED) is a potentially malignant lesion characterized by a combination of cytological and architectural anomalies, which are essential for its diagnosis. Galectins are proteins that participate in cell cycle, adhesion and differentiation, apoptosis, and immune responses, as well as in cancer development and progression. MATERIALS AND METHODS The aim of this study was to analyze the immunohistochemical expression of galectins-1, -3, and -7 in the OED (21 low risk and 29 high risk) and normal oral mucosa (NOM). The binary grading system was used. RESULTS Galectin-1 was expressed in the middle/lower third in most OED cases. Nuclear/cytoplasmic staining was observed in most low-risk and high-risk OEDs. All cases of NOM were negative for galectin-1. Galectin-3 was expressed in the middle/lower third in most low-risk cases. Nuclear/cytoplasmic staining was noted in most low-risk and high-risk OEDs. Middle/lower third and in membrane staining was detected in four cases of NOM for galectin-3. Galectin-7 was expressed in the upper/middle third in most of OED cases. Nuclear/cytoplasmic staining predominated in low-risk and high-risk OEDs. Galectin-7 was detected in four cases of NOM, all of them presenting staining in the upper/middle third and in the membrane. CONCLUSION The differences in the immunoexpression of galactin-1, -3, and -7 between different grades of OEDs suggest the involvement of this protein in the progression of dysplasias.
Collapse
|
48
|
Straube T, Elli AF, Greb C, Hegele A, Elsässer HP, Delacour D, Jacob R. Changes in the expression and subcellular distribution of galectin-3 in clear cell renal cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:89. [PMID: 21958686 PMCID: PMC3220637 DOI: 10.1186/1756-9966-30-89] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
Abstract
Background Clear cell renal cell carcinoma, a solid growing tumor, is the most common tumor in human kidney. Evaluating the usefulness of β-galactoside binding galectin-3 as a diagnostic marker for this type of cancer could open avenues for preventive and therapeutic strategies by employing specific inhibitors of the lectin. To study a putative correlation between the extent of galectin-3 and the development of clear cell renal cell carcinoma, we monitored the quantity and distribution of this lectin in tissue samples from 39 patients. Methods Galectin-3 concentrations in normal, intermediate and tumor tissues were examined by immunofluorescence microscopy and on immunoblots with antibodies directed against galectin-3 and renal control proteins. The cell nuclei were isolated to determine quantities of galectin-3 that were transferred into this compartment in normal or tumor samples. Results Immunofluorescence data revealed a mosaic pattern of galectin-3 expression in collecting ducts and distal tubules of normal kidney. Galectin-3 expression was significantly increased in 79% of tumor samples as compared to normal tissues. Furthermore, we observed an increase in nuclear translocation of the lectin in tumor tissues. Conclusions Our data indicate that changes in the cellular level of galectin-3 correlate with the development of clear cell renal cell carcinoma, which is in line with previously published data on this specific type of tumor. In most of these studies the lectin tends to be highly expressed in tumor tissues. Furthermore, this study suggests that the increase in the proportion of galectin-3 affects the balance from a cytosolic distribution towards translocation into the nucleus.
Collapse
Affiliation(s)
- Tamara Straube
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Robert-Koch-Str,6, 35037 Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Cortesi L, Rossi E, Casa LD, Barchetti A, Nicoli A, Piana S, Abrate M, Sala GBL, Federico M, Iannone A. Protein expression patterns associated with advanced stage ovarian cancer. Electrophoresis 2011; 32:1992-2003. [DOI: 10.1002/elps.201000654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/22/2011] [Accepted: 04/24/2011] [Indexed: 01/19/2023]
|
50
|
Kurdoglu M, Kurdoglu Z, Ozen S, Kucukaydin Z, Bulut G, Erten R, Kamaci M. Expression of laminin receptor 1 in human placentas from normal and preeclamptic pregnancies and its relationship with the severity of preeclampsia. J Perinat Med 2011; 39:411-6. [PMID: 21391874 DOI: 10.1515/jpm.2011.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To investigate the expression of laminin receptor 1 (LR1), a non-integrin-type laminin receptor, in preeclamptic and normal third-trimester placentas, as well as to investigate whether its expression differs with disease severity. STUDY DESIGN Third trimester placental samples obtained from deliveries of preeclamptic (n=34) and normotensive healthy pregnant women (n=35) were immunohistochemically studied for the expression of LR1. The placentas from both mild (n=14) and severe (n=20) preeclamptic pregnancies were further assessed for strength of LR1 expression according to disease severity. RESULTS When compared with normal placentas, the staining with LR1 protein in cytotrophoblasts and syncytiotrophoblasts was lower in preeclamptic placentas (P<0.05 and P<0.01, respectively). The intensity of staining with LR1 in decidual cells, cytotrophoblasts, syncytiotrophoblasts, and extracellular matrix cells of preeclamptic placentas did not vary with disease severity (P>0.05). CONCLUSIONS Decreased LR1 expression in cytotrophoblasts and syncytiotrophoblasts of preeclamptic placentas, which may be independent of disease severity, might have a role in shallow trophoblastic invasion in preeclampsia.
Collapse
Affiliation(s)
- Mertihan Kurdoglu
- Department of Obstetrics and Gynecology, Yuzuncu Yil University School of Medicine, Van, Turkey.
| | | | | | | | | | | | | |
Collapse
|