1
|
Parsons C, Lim WY, Loy C, McGuinness B, Passmore P, Ward SA, Hughes C. Withdrawal or continuation of cholinesterase inhibitors or memantine or both, in people with dementia. Cochrane Database Syst Rev 2021; 2:CD009081. [PMID: 35608903 PMCID: PMC8094886 DOI: 10.1002/14651858.cd009081.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Dementia is a progressive syndrome characterised by deterioration in memory, thinking and behaviour, and by impaired ability to perform daily activities. Two classes of drug - cholinesterase inhibitors (donepezil, galantamine and rivastigmine) and memantine - are widely licensed for dementia due to Alzheimer's disease, and rivastigmine is also licensed for Parkinson's disease dementia. These drugs are prescribed to alleviate symptoms and delay disease progression in these and sometimes in other forms of dementia. There are uncertainties about the benefits and adverse effects of these drugs in the long term and in severe dementia, about effects of withdrawal, and about the most appropriate time to discontinue treatment. OBJECTIVES To evaluate the effects of withdrawal or continuation of cholinesterase inhibitors or memantine, or both, in people with dementia on: cognitive, neuropsychiatric and functional outcomes, rates of institutionalisation, adverse events, dropout from trials, mortality, quality of life and carer-related outcomes. SEARCH METHODS We searched the Cochrane Dementia and Cognitive Improvement Group's Specialised Register up to 17 October 2020 using terms appropriate for the retrieval of studies of cholinesterase inhibitors or memantine. The Specialised Register contains records of clinical trials identified from monthly searches of a number of major healthcare databases, numerous trial registries and grey literature sources. SELECTION CRITERIA We included all randomised, controlled clinical trials (RCTs) which compared withdrawal of cholinesterase inhibitors or memantine, or both, with continuation of the same drug or drugs. DATA COLLECTION AND ANALYSIS Two review authors independently assessed citations and full-text articles for inclusion, extracted data from included trials and assessed risk of bias using the Cochrane risk of bias tool. Where trials were sufficiently similar, we pooled data for outcomes in the short term (up to 2 months after randomisation), medium term (3-11 months) and long term (12 months or more). We assessed the overall certainty of the evidence for each outcome using GRADE methods. MAIN RESULTS We included six trials investigating cholinesterase inhibitor withdrawal, and one trial investigating withdrawal of either donepezil or memantine. No trials assessed withdrawal of memantine only. Drugs were withdrawn abruptly in five trials and stepwise in two trials. All participants had dementia due to Alzheimer's disease, with severities ranging from mild to very severe, and were taking cholinesterase inhibitors without known adverse effects at baseline. The included trials randomised 759 participants to treatment groups relevant to this review. Study duration ranged from 6 weeks to 12 months. There were too few included studies to allow planned subgroup analyses. We considered some studies to be at unclear or high risk of selection, performance, detection, attrition or reporting bias. Compared to continuing cholinesterase inhibitors, discontinuing treatment may be associated with worse cognitive function in the short term (standardised mean difference (SMD) -0.42, 95% confidence interval (CI) -0.64 to -0.21; 4 studies; low certainty), but the effect in the medium term is very uncertain (SMD -0.40, 95% CI -0.87 to 0.07; 3 studies; very low certainty). In a sensitivity analysis omitting data from a study which only included participants who had shown a relatively poor prior response to donepezil, inconsistency was reduced and we found that cognitive function may be worse in the discontinuation group in the medium term (SMD -0.62; 95% CI -0.94 to -0.31). Data from one longer-term study suggest that discontinuing a cholinesterase inhibitor is probably associated with worse cognitive function at 12 months (mean difference (MD) -2.09 Standardised Mini-Mental State Examination (SMMSE) points, 95% CI -3.43 to -0.75; moderate certainty). Discontinuation may make little or no difference to functional status in the short term (SMD -0.25, 95% CI -0.54 to 0.04; 2 studies; low certainty), and its effect in the medium term is uncertain (SMD -0.38, 95% CI -0.74 to -0.01; 2 studies; very low certainty). After 12 months, discontinuing a cholinesterase inhibitor probably results in greater functional impairment than continuing treatment (MD -3.38 Bristol Activities of Daily Living Scale (BADLS) points, 95% CI -6.67 to -0.10; one study; moderate certainty). Discontinuation may be associated with a worsening of neuropsychiatric symptoms over the short term and medium term, although we cannot exclude a minimal effect (SMD - 0.48, 95% CI -0.82 to -0.13; 2 studies; low certainty; and SMD -0.27, 95% CI -0.47 to -0.08; 3 studies; low certainty, respectively). Data from one study suggest that discontinuing a cholinesterase inhibitor may result in little to no change in neuropsychiatric status at 12 months (MD -0.87 Neuropsychiatric Inventory (NPI) points; 95% CI -8.42 to 6.68; moderate certainty). We found no clear evidence of an effect of discontinuation on dropout due to lack of medication efficacy or deterioration in overall medical condition (odds ratio (OR) 1.53, 95% CI 0.84 to 2.76; 4 studies; low certainty), on number of adverse events (OR 0.85, 95% CI 0.57 to 1.27; 4 studies; low certainty) or serious adverse events (OR 0.80, 95% CI 0.46 to 1.39; 4 studies; low certainty), and on mortality (OR 0.75, 95% CI 0.36 to 1.55; 5 studies; low certainty). Institutionalisation was reported in one trial, but it was not possible to extract data for the groups relevant to this review. AUTHORS' CONCLUSIONS This review suggests that discontinuing cholinesterase inhibitors may result in worse cognitive, neuropsychiatric and functional status than continuing treatment, although this is supported by limited evidence, almost all of low or very low certainty. As all participants had dementia due to Alzheimer's disease, our findings are not transferable to other dementia types. We were unable to determine whether the effects of discontinuing cholinesterase inhibitors differed with baseline dementia severity. There is currently no evidence to guide decisions about discontinuing memantine. There is a need for further well-designed RCTs, across a range of dementia severities and settings. We are aware of two ongoing registered trials. In making decisions about discontinuing these drugs, clinicians should exercise caution, considering the evidence from existing trials along with other factors important to patients and their carers.
Collapse
Affiliation(s)
- Carole Parsons
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Wei Yin Lim
- Centre for Clinical Epidemiology, Institute for Clinical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
| | - Clement Loy
- Brain and Mind Centre and Sydney School of Public Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | | | - Peter Passmore
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Stephanie A Ward
- Monash Aging Research Center, The Kingston Centre, Cheltenham, Australia
| | - Carmel Hughes
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
2
|
Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer's disease. Life Sci 2021; 276:119129. [PMID: 33515559 DOI: 10.1016/j.lfs.2021.119129] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.
Collapse
Affiliation(s)
- Ewen Se Thoe
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Ayesha Fauzi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Yin Quan Tang
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Sunita Chamyuang
- School of Science, Mae Fah Luang University, Chaing Rai 57100, Thailand; Microbial Products and Innovation Research Group, Mae Fah Luang University, Chaing Rai 57100, Thailand
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia.
| |
Collapse
|
3
|
Nikpour M, Sharafi A, Hamidi M, Andalib S. Effect of Colloidal Aqueous Solution of Fullerene (C60) in the Presence of a P-Glycoprotein Inhibitor (Verapamil) on Spatial Memory and Hippocampal Expression of Sirtuin6, SELADIN1, and AQP1 Genes in a Rat Model of Alzheimer's Disease. ACS Chem Neurosci 2020; 11:2549-2565. [PMID: 32631043 DOI: 10.1021/acschemneuro.0c00213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common types of neurodegenerative diseases which is accompanied by irreversible neuronal damage, learning difficulties, memory impairments, and cognitive disorders. The cholinergic system is destroyed during AD pathogenesis, leading to the major symptoms of the disease. Although in severe stages AD is life threatening, to date no absolute treatment has been found for this illness and some palliative options are available. The aim of this study was to investigate the effect of fullerene (C60) aqueous suspension (FAS) on improving spatial memory in amnesic male Wistar rats (weighing 200 ± 20 g) and to further compare the results with that of donepezil (DNPZL) as a standard drug. FAS was prepared via a solvent exchange method. The particle size was in the 119.14 ± 3.38 nm range with polydispersity index of 0.15 ± 0.02 and zeta potential of -12.22 ± 5.98 mV. A simple and high sensitive reversed phase high performance liquid chromatography (HPLC) method was developed to identify the C60 concentration in FAS (21 μg/mL). Efficiencies of drugs were examined in both pretreatment and post-treatment groups of animals to better understand how they participate in affecting AD symptoms. Seeing that previous studies have presented antithetical declarations about whether C60 is a P-glycoprotein (P-gp) substrate, we studied FAS effects in both conditions of the presence and absence of a P-gp inhibitor (verapamil HCl, 25 mg/kg). In order to clarify the molecular mechanisms of action of two drugs, their effects on the expression of three principal genes involved in AD, including Sirtuin6, SELADIN1, and AQP1, and as well as their total antioxidant capacities (TACs) were studied. In order to induce memory impairment, scopolamine HBr (SCOP) was administered for 10 days (2 mg/kg/i.p.). FAS and DNPZL administration regimens were 21 μg/mL, BID (i.p.) and 10 mg/kg (p.o.) for 10 days, respectively. Our results introduce FAS as a promising nanoformulation for improving AD symptoms, especially memory impairment, and further assert that more studies are needed to elucidate C60 and P-gp interaction type.
Collapse
Affiliation(s)
- Mehrnoosh Nikpour
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Andalib
- Department of Pharmacology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Pohanka M. Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase. Curr Med Chem 2020; 27:2994-3011. [PMID: 30706778 DOI: 10.2174/0929867326666190130161202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022]
Abstract
Two cholinesterases exist: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). While AChE plays a crucial role in neurotransmissions, BChE has no specific function apart from the detoxification of some drugs and secondary metabolites from plants. Thus, both AChE and BChE can serve as biochemical markers of various pathologies. Poisoning by nerve agents like sarin, soman, tabun, VX, novichok and overdosing by drugs used in some neurodegenerative disorders like Alzheimer´s disease and myasthenia gravis, as well as poisoning by organophosphorus pesticides are relevant to this issue. But it appears that changes in these enzymes take place in other processes including oxidative stress, inflammation, some types of cancer and genetically conditioned diseases. In this review, the cholinesterases are introduced, the mechanism of inhibitors action is explained and the relations between the cholinesterases and pathologies are explained.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Polyphenols in Alzheimer's Disease and in the Gut-Brain Axis. Microorganisms 2020; 8:microorganisms8020199. [PMID: 32023969 PMCID: PMC7074796 DOI: 10.3390/microorganisms8020199] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenolic antioxidants, including dietary plant lignans, modulate the gut-brain axis, which involves transformation of these polyphenolic compounds into physiologically active and neuroprotector compounds (called human lignans) through gut bacterial metabolism. These gut bacterial metabolites exert their neuroprotective effects in various neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), and also have protective effects against other diseases, such as cardiovascular diseases, cancer, and diabetes. For example, enterolactone and enterodiol, the therapeutically relevant polyphenols, are formed as the secondary gut bacterial metabolites of lignans, the non-flavonoid polyphenolic compounds found in plant-based foods. These compounds are also acetylcholinesterase inhibitors, and thereby have potential applications as therapeutics in AD and other neurological diseases. Polyphenols are also advanced glycation end product (AGE) inhibitors (antiglycating agents), and thereby exert neuroprotective effects in cases of AD. Thus, gut bacterial metabolism of lignans and other dietary polyphenolic compounds results in the formation of neuroprotective polyphenols-some of which have enhanced blood-brain barrier permeability. It is hypothesized that gut bacterial metabolism-derived polyphenols, when combined with the nanoparticle-based blood-brain barrier (BBB)-targeted drug delivery, may prove to be effective therapeutics for various neurological disorders, including traumatic brain injury (TBI), AD, and PD. This mini-review addresses the role of polyphenolic compounds in the gut-brain axis, focusing on AD.
Collapse
|
6
|
Muramatsu I, Uwada J, Yoshiki H, Sada K, Lee K, Yazawa T, Taniguchi T, Nishio M, Ishibashi T, Masuoka T. Novel regulatory systems for acetylcholine release in rat striatum and anti‐Alzheimer's disease drugs. J Neurochem 2019; 149:605-623. [DOI: 10.1111/jnc.14701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/20/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Ikunobu Muramatsu
- Department of Pharmacology School of Medicine Kanazawa Medical University Uchinada, Ishikawa Japan
- Division of Genomic Science and Microbiology School of Medicine University of Fukui Eiheiji Fukui Japan
- Kimura Hospital Awara Fukui Japan
| | - Junsuke Uwada
- Division of Cellular Signal Transduction Department of Biochemistry Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Hatsumi Yoshiki
- Division of Genomic Science and Microbiology School of Medicine University of Fukui Eiheiji Fukui Japan
| | - Kiyonao Sada
- Division of Genomic Science and Microbiology School of Medicine University of Fukui Eiheiji Fukui Japan
| | - Kung‐Shing Lee
- Division of Genomic Science and Microbiology School of Medicine University of Fukui Eiheiji Fukui Japan
- Department of Surgery Kaohsiung Medical University Kaohsiung Taiwan
| | - Takashi Yazawa
- Division of Cellular Signal Transduction Department of Biochemistry Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Takanobu Taniguchi
- Division of Cellular Signal Transduction Department of Biochemistry Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Matomo Nishio
- Department of Pharmacology School of Medicine Kanazawa Medical University Uchinada, Ishikawa Japan
| | - Takaharu Ishibashi
- Department of Pharmacology School of Medicine Kanazawa Medical University Uchinada, Ishikawa Japan
| | - Takayoshi Masuoka
- Department of Pharmacology School of Medicine Kanazawa Medical University Uchinada, Ishikawa Japan
| |
Collapse
|
7
|
Atukeren P, Cengiz M, Yavuzer H, Gelisgen R, Altunoglu E, Oner S, Erdenen F, Yuceakın D, Derici H, Cakatay U, Uzun H. The efficacy of donepezil administration on acetylcholinesterase activity and altered redox homeostasis in Alzheimer’s disease. Biomed Pharmacother 2017; 90:786-795. [DOI: 10.1016/j.biopha.2017.03.101] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/13/2017] [Indexed: 12/28/2022] Open
|
8
|
Progress in drug development for Alzheimer's disease: An overview in relation to mitochondrial energy metabolism. Eur J Med Chem 2016; 121:774-784. [DOI: 10.1016/j.ejmech.2016.03.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/21/2016] [Accepted: 03/26/2016] [Indexed: 12/27/2022]
|
9
|
Kračmarová A, Drtinová L, Pohanka M. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors. ACTA MEDICA (HRADEC KRÁLOVÉ) 2015; 58:37-42. [DOI: 10.14712/18059694.2015.91] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing cholinergic function using inhibitors of acetylcholinesterase like rivastigmine, donepezil or galantamine. These drugs can influence not only the acetylcholinesterase activity but also other processes in treated organism. The paper is aimed mainly on possibility of increased expression and protein level of acetylcholinesterase caused by the therapy with acetylcholinesterase inhibitors.
Collapse
|
10
|
Abstract
Alzheimer disease (AD) and Parkinson disease (PD) are the most common neurodegenerative disorders. For both diseases, early intervention is thought to be essential to the success of disease-modifying treatments. Cerebrospinal fluid (CSF) can reflect some of the pathophysiological changes that occur in the brain, and the number of CSF biomarkers under investigation in neurodegenerative conditions has grown rapidly in the past 20 years. In AD, CSF biomarkers are increasingly being used in clinical practice, and have been incorporated into the majority of clinical trials to demonstrate target engagement, to enrich or stratify patient groups, and to find evidence of disease modification. In PD, CSF biomarkers have not yet reached the clinic, but are being studied in patients with parkinsonism, and are being used in clinical trials either to monitor progression or to demonstrate target engagement and downstream effects of drugs. CSF biomarkers might also serve as surrogate markers of clinical benefit after a specific therapeutic intervention, although additional data are required. It is anticipated that CSF biomarkers will have an important role in trials aimed at disease modification in the near future. In this Review, we provide an overview of CSF biomarkers in AD and PD, and discuss their role in clinical trials.
Collapse
|
11
|
Cholinesterase inhibitors for the treatment of Alzheimer's disease:: getting on and staying on. CURRENT THERAPEUTIC RESEARCH 2014; 64:216-35. [PMID: 24944370 DOI: 10.1016/s0011-393x(03)00059-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2003] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cholinesterase (ChE) inhibitors currently used in the treatment of Alzheimer's disease (AD) are the acetylcholinesterase (AChE)-selective inhibitors, donepezil and galantamine, and the dual AChE and butyrylcholinesterase (BuChE) inhibitor, rivastigmine. In addition to differences in selectivity for AChE and BuChE, ChE inhibitors also differ in pharmacokinetic and pharmacodynamic properties, and these differences could significantly impact on safety, tolerability, and efficacy. OBJECTIVE The aim of this article was to provide an overview of the ChE inhibitors widely used in AD, focusing on key pharmacologic differences among agents and how these may translate into important differences in safety, tolerability, and efficacy in clinical practice. METHODS Using published literature collected over time by the author, a review was conducted, focusing on the pharmacology and clinical data of donepezil, galantamine, and rivastigmine. RESULTS All ChE inhibitors have the potential to induce centrally mediated cholinergic adverse events (AEs), such as nausea and vomiting, if the dose is increased too rapidly or in increments that are too large. These AEs, which are most likely to occur during the "getting on," or dose-escalation, phase of treatment, may result in patients discontinuing treatment early without achieving optimum therapeutic benefit. To reduce the incidence of these AEs, a slow dose-escalation schedule has been established in clinical practice, consisting of a "start low, go slow" procedure with a minimum of 4 weeks between dose increases. After "getting on" treatment, maintaining treatment in the long term, or "staying on," may be achieved with good safety, tolerability, and sustained symptomatic efficacy across the key symptom domains (activities of daily living, behavior, and cognition). CONCLUSIONS ChE inhibitors provide symptomatic benefit in AD across key symptom domains. Factors influencing the safety, tolerability, and efficacy of these agents in clinical practice include ChE enzymes inhibited, brain and brain-region ChE selectivity, and metabolism route. Class-specific cholinergic AEs can be minimized using slow, flexible dose escalation.
Collapse
|
12
|
Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer's disease. Prim Care Companion CNS Disord 2013; 15:PCC.12r01412. [PMID: 23930233 PMCID: PMC3733526 DOI: 10.4088/pcc.12r01412] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/11/2012] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To examine the role of butyrylcholinesterase (BuChE) in cholinergic signaling and neurologic conditions, such as Alzheimer's disease (AD). The rationale for inhibiting cholinesterases in the management of AD, including clinical evidence supporting use of the dual acetylcholinesterase (AChE) and BuChE inhibitor rivastigmine, is discussed. DATA SOURCES PubMed searches were performed using butyrylcholinesterase as a keyword. English-language articles referenced in PubMed as of September 2011 were included. Study Selection and Data Synthesis: English-language articles related to BuChE considered to be of clinical relevance to physicians were included. English-language articles specifically related to AChE were not included, as the role of AChE in cholinergic signaling and the underlying pathology of AD is well documented. Reference lists of included publications were used to supplement the search. RESULTS AChE and BuChE play a role in cholinergic signaling; BuChE can hydrolyze acetylcholine and compensate for AChE when levels are depleted. In the AD brain, AChE levels decrease, while BuChE levels are reportedly increased or unchanged, with changes becoming more pronounced during the disease course. Furthermore, BuChE genotype may influence AD risk and rate of disease progression. Strategies that increase acetylcholine levels (eg, cholinesterase inhibitors) demonstrate symptomatic efficacy in AD. Rivastigmine has proven cognitive efficacy in clinical trials, and data suggest that its action is mediated, in part, by inhibition of BuChE. Retrospective analyses of clinical trials provide evidence that BuChE genotype may also influence treatment response. CONCLUSIONS AChE-selective inhibitors and a dual AChE and BuChE inhibitor demonstrate symptomatic efficacy in AD. Mounting preclinical and clinical evidence for a role of BuChE in maintaining normal cholinergic function and the pathology of AD provides a rationale for further studies investigating use of rivastigmine in AD and the influence of BuChE genotype on observed efficacy.
Collapse
Affiliation(s)
- Agneta Nordberg
- Alzheimer Neurobiology Center, Karolinska Institute, Stockholm, Sweden (Drs Nordberg and Darreh-Shori); Wolfson Centre for Age-Related Diseases, King's College, London, United Kingdom (Dr Ballard); Kingshill Research Centre, Victoria Hospital, Swindon, United Kingdom (Dr Bullock); and Novartis Pharmaceuticals Corporation, East Hanover, New Jersey (Dr Somogyi)
| | | | | | | | | |
Collapse
|
13
|
Parsons C, Hughes C, McGuinness B, Passmore P. Withdrawal or continuation of cholinesterase inhibitors and/or memantine in patients with dementia. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2011. [DOI: 10.1002/14651858.cd009081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carole Parsons
- Queen's University Belfast; School of Pharmacy; 97 Lisburn Road Belfast UK BT9 7BL
| | - Carmel Hughes
- Queen's University Belfast; School of Pharmacy; 97 Lisburn Road Belfast UK BT9 7BL
| | - Bernadette McGuinness
- National University of Ireland; School of Medicine; Room 215, Block S University Road Galway Ireland
| | - Peter Passmore
- Queen's University Belfast; Department of Geriatric Medicine; Whitla Medical Building 97 Lisburn Road Belfast UK BT9 5HP
| |
Collapse
|
14
|
Small G, Bullock R. Defining optimal treatment with cholinesterase inhibitors in Alzheimer's disease. Alzheimers Dement 2010; 7:177-84. [PMID: 21056013 DOI: 10.1016/j.jalz.2010.03.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/18/2010] [Indexed: 10/18/2022]
Abstract
Despite growing recognition that Alzheimer's disease (AD) represents a global public health and social care crisis, diagnosis is frequently slow and many patients still receive no treatment at all. Of those who do receive treatment, many remain on lower than recommended doses. The Alzheimer's disease International Global Charter promotes awareness and understanding of AD, stressing the importance of optimal treatment. However, the definition of "optimal treatment" is unclear. Since cholinesterase inhibitors became available nearly 20 years ago, clinicians have developed a variety of protocols on the basis of clinical experiences. This review considers what is optimal for several aspects of cholinesterase inhibitor therapy, taking into account initiation strategies, dosages, modes of drug delivery (e.g., oral vs. transdermal), and treatment durations. Regardless of management approach, individuals with AD, their families, and caregivers have a right to a timely diagnosis and access to best available treatment.
Collapse
Affiliation(s)
- Gary Small
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA.
| | | |
Collapse
|
15
|
Nordberg A, Darreh-Shori T, Peskind E, Soininen H, Mousavi M, Eagle G, Lane R. Different cholinesterase inhibitor effects on CSF cholinesterases in Alzheimer patients. Curr Alzheimer Res 2009; 6:4-14. [PMID: 19199870 DOI: 10.2174/156720509787313961] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. METHODS AND FINDINGS AD patients aged 50-85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman's colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by 10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2% increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. CONCLUSION The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation.
Collapse
Affiliation(s)
- Agneta Nordberg
- Karolinska Institute, Division of Alzheimer Neurobiology, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
16
|
García-Ayllón MS, Silveyra MX, Sáez-Valero J. Association between acetylcholinesterase and beta-amyloid peptide in Alzheimer's cerebrospinal fluid. Chem Biol Interact 2008; 175:209-15. [PMID: 18554581 DOI: 10.1016/j.cbi.2008.04.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 04/27/2008] [Indexed: 11/17/2022]
Abstract
The altered expression of acetylcholinesterase (AChE) in the brains of patients with Alzheimer's disease (AD) has raised much interest of late. Despite an overall decrease in the AD brain, the activity of AChE increases around beta-amyloid plaques and indeed, the beta-amyloid peptide (Abeta) can influence AChE levels. Such evidence stimulated our interest in the possibility that the levels of AChE and amyloid might vary together in AD. We previously found that the different AChE forms present in both the brain and in the cerebrospinal fluid (CSF) of AD patients varied in conjunction with abnormal glycosylation. Thus, the alterations in glycosylation are correlated with the accumulation of a minor subspecies of AChE monomers. We also recently analysed whether long-term exposure to the cholinesterase inhibitor (ChE-I) donepezil influences the AChE species found in AD CSF. The marked increase in CSF-AChE activity in AD patients following long-term treatment with donepezil was not paralleled by a rise in this subset of light variants. Hence, the correlation with the levels of CSF-Abeta is unique to these AChE species in patients receiving such treatment. The aim of this report is to review the links between AChE and beta-amyloid, and to discuss the significance of the responses of the distinct AChE species to ChE-I during the treatment of AD.
Collapse
Affiliation(s)
- María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | | | | |
Collapse
|
17
|
Seltzer B. Is long-term treatment of Alzheimer's disease with cholinesterase inhibitor therapy justified? Drugs Aging 2008; 24:881-90. [PMID: 17953456 DOI: 10.2165/00002512-200724110-00001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The cholinesterase inhibitors (ChEIs) donepezil, rivastigmine and galantamine are the current mainstays in the drug treatment of Alzheimer's disease (AD). There is convincing evidence that these agents provide at least modest cognitive, behavioural and functional benefit for 6-12 months at all stages of the disease. Longer term benefits cannot be directly examined by placebo-controlled trials. Nevertheless, the results of virtually all open-label extensions of the pivotal trials, studies of patients with AD at different levels of severity and clinical trials using other designs favour treatment over no treatment for periods of up to 5 years. There are plausible biological reasons why ChEIs might be expected to work over a prolonged period of time although, to date, studies using various markers to chart the effects of medication on long-term disease progression have yielded mixed results. The most contentious issue regarding long-term treatment is economic, but the majority of available economic analyses suggest net savings over the long term if patients with AD receive persistent treatment with ChEIs.
Collapse
Affiliation(s)
- Ben Seltzer
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
18
|
García-Ayllón MS, Silveyra MX, Andreasen N, Brimijoin S, Blennow K, Sáez-Valero J. Cerebrospinal fluid acetylcholinesterase changes after treatment with donepezil in patients with Alzheimer's disease. J Neurochem 2007; 101:1701-11. [PMID: 17326766 DOI: 10.1111/j.1471-4159.2007.04461.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We analyzed whether donepezil differently influences acetylcholinesterase (AChE) variants from cerebrospinal fluid (CSF) in patients with Alzheimer's disease (AD) after long-term treatment. Overall CSF-AChE activity in AD patients before treatment was not different from controls, but the ratio between the major tetrameric form, G(4), and the smaller G(1) and G(2) species was significantly lower. AChE levels at study outset were found to correlate positively with beta-amyloid (1-42) (Abeta42). When patients were re-examined after 12 months treatment with donepezil, there was a remarkable increase in both the G(4) and the lighter species of CSF AChE. As compared with placebo, donepezil caused decreases in the percentage of AChE that failed to bind to the lectin concanavalin A and the antibody AE1. These non-binding species comprised primarily a small subset of G(1) and G(2) forms. In treated patients, these light variants were the only subset of CSF AChE that correlated with CSF-Abeta42 levels. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that a 77-kDa band, attributed in part to inactive AChE, was lower in AD patients than in controls. Unlike enzyme activity, the intensity of this band did not increase after donepezil treatment. The varying responses of different AChE species to ChE-I treatment suggest different modes of regulation, which may have therapeutic implications.
Collapse
Affiliation(s)
- María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Blennow K. CSF biomarkers for Alzheimer's disease: use in early diagnosis and evaluation of drug treatment. Expert Rev Mol Diagn 2007; 5:661-72. [PMID: 16149870 DOI: 10.1586/14737159.5.5.661] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early diagnosis of Alzheimer's disease is important in initiating symptomatic treatment with acetylcholine esterase inhibitors, and will be of even greater significance if drugs with a potential to slow down the degenerative process, such as beta-secretase inhibitors and beta-amyloid vaccination, prove to have a clinical effect. During the last decade, research efforts have focused on developing cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. In this review, the background and principles for, and the diagnostic performance of, the CSF biomarkers total tau, phosphorylated tau and the 42-amino acid form of beta-amyloid, are reviewed. New candidate CSF biomarkers and new strategies, including multiparameter immunoassays and CSF proteomics techniques, in the search of additional CSF biomarkers are also reviewed. Finally, the rationale for the use of CSF biomarkers to identify and monitor the biochemical effect of new drug candidates is reviewed.
Collapse
Affiliation(s)
- Kaj Blennow
- The Sahlgrenska Academy at Göteborg University, Department of Clinical Neuroscience, Section of Experimental Neuroscience, Sahlgrenska University Hospital, SE-431 80 Mölndal, Sweden.
| |
Collapse
|
20
|
Moretti R, Torre P, Antonello RM, Cazzato G. Therapy of vascular dementia: perspectives and milestones. THERAPY 2005. [DOI: 10.1586/14750708.2.4.649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004; 21:453-78. [PMID: 15132713 DOI: 10.2165/00002512-200421070-00004] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The deficiency in cholinergic neurotransmission in Alzheimer's disease has led to the development of cholinesterase inhibitors as the first-line treatment for symptoms of this disease. The clinical benefits of these agents include improvements, stabilisation or less than expected decline in cognition, function and behaviour. The common mechanism of action underlying this class of agents is an increase in available acetylcholine through inhibition of the catabolic enzyme, acetylcholinesterase. There is substantial evidence that the cholinesterase inhibitors, including donepezil, galantamine and rivastigmine, decrease acetylcholinesterase activity in a number of brain regions in patients with Alzheimer's disease. There is also a significant correlation between acetylcholinesterase inhibition and observed cognitive improvement. However, the cholinesterase inhibitors are reported to have additional pharmacological actions. Rivastigmine inhibits butyrylcholinesterase with a similar affinity to acetylcholinesterase, although it is not clear whether the inhibition of butyrylcholinesterase contributes to the therapeutic effect of rivastigmine. Based on data from preclinical studies, it has been proposed that galantamine also potentiates the action of acetylcholine on nicotinic receptors via allosteric modulation; however, the effects appear to be highly dependent on the concentrations of agonist and galantamine. It is not yet clear whether these concentrations are related to those achieved in the brain of patients with Alzheimer's disease within therapeutic dose ranges. Preclinical studies have shown that donepezil and galantamine also significantly increase nicotinic receptor density, and increased receptor density may be associated with enhanced synaptic strengthening through long-term potentiation, which is related to cognitive function. Despite these differences in pharmacology, a review of clinical data, including head-to-head studies, has not demonstrated differences in efficacy, although they may have an impact on tolerability. It seems clear that whatever the subsidiary modes of action, clinical evidence supporting acetylcholinesterase inhibition as the mechanism by which cholinesterase inhibitors treat the symptoms of Alzheimer's disease is accumulating. Certainly, as a class, the currently approved cholinesterase inhibitors (donepezil, galantamine, rivastigmine and tacrine) provide important benefits in patients with Alzheimer's disease and these drugs offer a significant advance in the management of dementia.
Collapse
Affiliation(s)
- David G Wilkinson
- Memory Assessment and Research Centre, Moorgreen Hospital, Southampton, UK.
| | | | | | | |
Collapse
|
22
|
Abstract
Until recently, the only established function of acetylcholinesterase (AChE) was the termination of cholinergic neurotransmission. Therefore, the use of AChE inhibitors to treat symptoms caused by cholinergic imbalances in Alzheimer disease (AD) represented a rational approach. However, it is now clear that AChE and the cholinergic system may have broader effects in AD. Of particular interest may be signal transduction pathways mediated through cholinergic receptors that promote nonamyloidogenic amyloid precursor protein processing and decrease tau phosphorylation, and the role of AChE in the aggregation of beta-amyloid (Abeta) peptide. In addition, the neuronal and nonneuronal cholinergic systems have important roles in the modulation of regional cerebral blood flow. These findings may modify the overly simplistic cholinergic hypothesis in AD that is limited to symptomatic treatment and ignores the potential of cholinergic therapies as disease-modifying agents. Chronic increases in AChE activity may exacerbate neurodegenerative processes, make clinically relevant levels of AChE inhibition more difficult to achieve, and cause the therapeutic value of cholinesterase inhibitors (ChE-Is) to be limited and temporary. Rapidly reversible ChE-Is appear to increase AChE activity over the longer term whereas, remarkably, irreversible or very slowly reversible ChE-Is do not seem to have this effect. If such differences between ChE-Is are shown to have clinical correlates, this may prompt reconsideration of the rationale and expectations of some agents in the long-term management of AD.
Collapse
Affiliation(s)
- Roger M Lane
- Novartis Neuroscience, Novartis Pharmaceuticals Corp., East Hanover, NJ 07936-1080, USA.
| | | | | |
Collapse
|
23
|
Gauthier S, Emre M, Farlow MR, Bullock R, Grossberg GT, Potkin SG. Strategies for continued successful treatment of Alzheimer's disease: switching cholinesterase inhibitors. Curr Med Res Opin 2003; 19:707-14. [PMID: 14687441 DOI: 10.1185/030079903125002450] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cholinesterase (ChE) inhibitors represent the standard therapeutic approach to the treatment of Alzheimer's disease (AD). However, a proportion of patients experience lack or loss of therapeutic benefit with an initial agent, or discontinue due to safety/tolerability issues. In many instances, no alternative treatment is offered once the initial agent has been stopped. Thus, for many patients, the total duration of treatment is relatively short in comparison with the chronic nature of AD. Switching medications is a common therapeutic strategy within many drug classes across many clinical areas following a lack/loss of efficacy or safety/tolerability problems, and is also an increasingly important concept in the management of AD with ChE inhibitors. A number of open-label studies, where patients were switched from donepezil to rivastigmine, have indicated that approximately 50% of patients experiencing a lack/loss of efficacy with donepezil (a selective acetylcholinesterase [AChE] inhibitor) respond to subsequent treatment with rivastigmine (a dual AChE and butyrylcholinesterase inhibitor). In these studies, rivastigmine was well tolerated, and the occurrence of safety/tolerability problems with donepezil was not predictive of similar problems with rivastigmine. In the summer of 2002, leading neurologists and psychiatrists attended a medical experts meeting to discuss the clinical importance of switching ChE inhibitors in AD. The expert panel examined available clinical data, shared clinical experiences, and discussed current clinical guidelines for switching. The panel also aimed to reach consensus on 'whom to switch', 'when to switch' and 'how to switch'. The key findings from that meeting are reported in this review.
Collapse
Affiliation(s)
- Serge Gauthier
- McGill Centre for Studies in Aging, Verdun, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
Zhao Q, Tang XC. Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur J Pharmacol 2002; 455:101-7. [PMID: 12445575 DOI: 10.1016/s0014-2999(02)02589-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Five inhibitors of acetylcholinesterase, huperzine A, donepezil, tacrine, rivastigmine and physostigmine, were compared with regard to their effects on different molecular forms of acetylcholinesterase in cerebral cortex, hippocampus, and striatum from the rat brain. In general, huperzine A preferentially inhibited tetrameric acetylcholinesterase (G4 form), while tacrine and rivastigmine preferentially inhibited monomeric acetylcholinesterase (G1 form). Donepezil showed pronounced selectivity for G1 acetylcholinesterase in striatum and hippocampus, but not in cortex. Physostigmine showed no form-selectivity in any brain region. In cortex, the most potent inhibitors of G4 acetylcholinesterase were huperzine A (K(i) 7 x 10(-9) M) and donepezil (K(i) 4 x 10(-9) M). The potent inhibitors of cortical G1 acetylcholinesterase were donepezil (K(i) 3.5 x 10(-9) M) and tacrine (K(i) 2.3 x 10(-8) M). In hippocampus, huperzine A and physostigmine were the most potent inhibitors of G4 acetylcholinesterase, while donepezil and tacrine were most potent against G1 acetylcholinesterase. In striatum, huperzine A and donepezil were the most potent against G4 acetylcholinesterase, while again donepezil was the most potent against G1. Although the inhibition constants (K(i)) of these acetylcholinesterase inhibitors differed significantly from region to region, the nature of the inhibition did not vary. These results suggest that the use of acetylcholinesterase inhibitors in treatment of Alzheimer's disease must consider both form-specific and region-specific characteristics of acetylcholinesterase inhibition.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | |
Collapse
|
25
|
Hogan DB, Patterson C. Progress in clinical neurosciences: Treatment of Alzheimer's disease and other dementias--review and comparison of the cholinesterase inhibitors. Can J Neurol Sci 2002; 29:306-14. [PMID: 12463485 DOI: 10.1017/s031716710000216x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in older adults. Acceptance of the cholinergic hypothesis led to a search for medications which could enhance central cholinergic activity in this condition. There are now three cholinesterase inhibitors available for the treatment of AD in Canada. OBJECTIVES To review the currently available cholinesterase inhibitors approved for the treatment of AD in Canada and to provide guidance on who and how to treat with these agents. RESULTS Donepezil, rivastigmine, and galantamine are approved for the treatment of AD in Canada. In clinical trails, patients with mild to moderate AD treated with these agents experienced modest improvements in cognition, function, behaviour, and/or global clinical state. The magnitude of benefits seen with each agent appeared to be similar. While to date, there is no convincing evidence that one is more efficacious or effective, they do differ in their pharmacokinetics, additional mechanisms of action, and side effect profiles. Therefore, the selection of agent will be based on considerations such as side effect profiles, ease of administration, personal familiarity/experience, and beliefs about the importance of the noted differences in their pharmacokinetics and additional mechanisms of action. CONCLUSION We believe that these agents should be offered to all individuals with a mild to moderate dementia where Alzheimer's pathology is felt to be a contributing factor. We view all three available cholinesterase inhibitors as first-line drugs.
Collapse
Affiliation(s)
- David B Hogan
- Department of Medicine, University of Calgary, Calgary. Alberta, Canada
| | | |
Collapse
|
26
|
Auriacombe S, Pere JJ, Loria-Kanza Y, Vellas B. Efficacy and safety of rivastigmine in patients with Alzheimer's disease who failed to benefit from treatment with donepezil. Curr Med Res Opin 2002; 18:129-38. [PMID: 12094822 DOI: 10.1185/030079902125000471] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Selective acetylcholinesterase (AChE) and dual acetyl- and butyrylcholinesterase inhibitors constitute the only approved agents for the symptomatic treatment of Alzheimer's disease (AD). Donepezil is a specific, reversible inhibitor of AChE, while rivastigmine is a slowly reversible (pseudoirreversible) dual cholinesterase (ChE) inhibitor, with brain-regional specificity for the cerebral cortex and hippocampus. According to the European Marketing Authorisations, the clinical benefit of ChE inhibitors should be reassessed on a regular basis and discontinuation should be considered when evidence of a therapeutic effect is no longer present. However, substantial differences in the pharmacological and pharmacokinetic profiles of the available ChE inhibitors suggest that it may be desirable to switch between ChE inhibitors if patients fail to show efficacy, deteriorate or are unable to tolerate their initially prescribed medication. DESIGN This open-label, six-month study evaluated the efficacy and safety of rivastigmine in 382 AD patients who had previously failed to benefit from treatment with donepezil (80% due to lack of efficacy, 11% due to tolerability problems, 9% both reasons). RESULTS At the end of the study, 56.2% of patients were responders to rivastigmine, as assessed using a global function scale (the Clinicians' Global Impression of Change). Cognitive performance (measured by the Mini-Mental State Examination) and the ability to perform activities of daily living (measured by the Instrumental Activities of Daily Living scale) were improved/stabilised in 48.9% and 57.0% of patients, respectively. Rivastigmine was generally well tolerated, the most common adverse events being nausea and vomiting, consistent with reports from previous clinical studies. The occurrence of side-effects or lack of efficacy with donepezil treatment was not a predictor of similar problems when treated with rivastigmine. CONCLUSION Rivastigmine treatment appears to be beneficial in AD patients who have previously failed to benefit from, or were unable to tolerate treatment with, donepezil.
Collapse
|