1
|
Abstract
Prion diseases are neurodegenerative disorders caused by conformational conversion of the cellular prion protein (PrPC) into scrapie prion protein (PrPSc). As the main component of prion, PrPSc acts as an infectious template that recruits and converts normal cellular PrPC into its pathogenic, misfolded isoform. Intriguingly, the phenomenon of prionoid, or prion-like, spread has also been observed in many other disease-associated proteins, such as amyloid β (Aβ), tau and α-synuclein. This Cell Science at a Glance and the accompanying poster highlight recently described physiological roles of prion protein and the advanced understanding of pathogenesis of prion disease they have afforded. Importantly, prion protein may also be involved in the pathogenesis of other neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Therapeutic studies of prion disease have also exploited novel strategies to combat these devastating diseases. Future studies on prion protein and prion disease will deepen our understanding of the pathogenesis of a broad spectrum of neurodegenerative conditions.
Collapse
Affiliation(s)
- Caihong Zhu
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zürich, Zürich, CH-8091, Switzerland
| |
Collapse
|
2
|
Ellett LJ, Revill ZT, Koo YQ, Lawson VA. Strain variation in treatment and prevention of human prion diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:121-145. [PMID: 32958230 DOI: 10.1016/bs.pmbts.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases describe a number of different human disorders that differ in their clinical phenotypes, which are nonetheless united by their transmissible nature and common pathology. Clinical variation in the absence of a conventional infectious agent is believed to be encoded by different conformations of the misfolded prion protein. This misfolded protein is the target of methods designed to prevent disease transmission in a surgical setting and reduction of the misfolded seed or preventing its continued propagation have been the focus of therapeutic strategies. It is therefore possible that strain variation may influence the efficacy of prevention and treatment approaches. Historically, an understanding of prion disease transmission and pathogenesis has been focused on research tools developed using agriculturally relevant strains of prion disease. However, an increased understanding of the molecular biology of human prion disorders has highlighted differences not only between different forms of the disease affecting humans and animals but also within diseases such as Creutzfeldt-Jakob Disease (CJD), which is represented by several sporadic CJD specific conformations and an additional conformation associated with variant CJD. In this chapter we will discuss whether prion strain variation can affect the efficacy of methods used to decontaminate prions and whether strain variation in pre-clinical models of prion disease can be used to identify therapeutic strategies that have the best possible chance of success in the clinic.
Collapse
Affiliation(s)
- Laura J Ellett
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Zoe T Revill
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Yong Qian Koo
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Victoria A Lawson
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Bonham LW, Evans DS, Liu Y, Cummings SR, Yaffe K, Yokoyama JS. Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for GNG4 and KCNQ2 Genes. Am J Alzheimers Dis Other Demen 2018; 33:153-165. [PMID: 29338302 PMCID: PMC6209098 DOI: 10.1177/1533317517739384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND/RATIONALE Experimental studies support the role of neurotransmitter genes in dementia risk, but human studies utilizing single variants in candidate genes have had limited success. METHODS We used the gene-based testing program Versatile Gene-based Association Study to assess whether aggregate variation across 6 neurotransmitter pathways influences risk of cognitive decline in 8159 cognitively normal elderly (≥65 years old) adults from 3 community-based cohorts. RESULTS Common genetic variation in GNG4 and KCNQ2 was associated with cognitive decline. In human brain tissue data sets, both GNG4 and KCNQ2 show higher expression in hippocampus relative to other brain regions; GNG4 expression decreases with advancing age. Both GNG4 and KCNQ2 show highest expression in fetal astrocytes. CONCLUSION Genetic variation analyses and gene expression data suggest that GNG4 and KCNQ2 may be associated with cognitive decline in normal aging. Gene-based testing of neurotransmitter pathways may confirm and reveal novel risk genes in future studies of healthy cognitive aging.
Collapse
Affiliation(s)
- Luke W. Bonham
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Kristine Yaffe
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Jennifer S. Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Abstract
Prion diseases are a group of invariably fatal and transmissible neurodegenerative disorders that are associated with the misfolding of the normal cellular prion protein, with the misfolded conformers constituting an infectious unit referred to as a "prion". Prions can spread within an affected organism by directly propagating this misfolding within and between cells and can transmit disease between animals of the same and different species. Prion diseases have a range of clinical phenotypes in humans and animals, with a principle determinant of this attributed to different conformations of the misfolded protein, referred to as prion strains. This chapter will describe the different clinical manifestations of prion diseases, the evidence that these diseases can be transmitted by an infectious protein and how the misfolding of this protein causes disease.
Collapse
|
5
|
Jaeger HM, Pehlke JR, Kaltwasser B, Kilic E, Bähr M, Hermann DM, Doeppner TR. The indirect NMDAR inhibitor flupirtine induces sustained post-ischemic recovery, neuroprotection and angioneurogenesis. Oncotarget 2016; 6:14033-44. [PMID: 26050199 PMCID: PMC4546449 DOI: 10.18632/oncotarget.4226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) activation induces excitotoxicity, contributing to post-stroke brain injury. Hitherto, NMDAR deactivation failed in clinical trials due to insufficient pre-clinical study designs and drug toxicity. Flupirtine is an indirect NMDAR antagonist being used as analgesic in patients. Taking into account its tolerability profile, we evaluated effects of flupirtine on post-stroke tissue survival, neurological recovery and brain remodeling. Mice were exposed to stroke and intraperitoneally treated with saline (control) or flupirtine at various doses (1-10 mg/kg) and time-points (0-12 hours). Tissue survival and cell signaling were studied on day 2, whereas neurological recovery and tissue remodeling were analyzed until day 84. Flupirtine induced sustained neuroprotection, when delivered up to 9 hours. The latter yielded enhanced neurological recovery that persisted over three months and which was accompanied by enhanced angioneurogenesis. On the molecular level, inhibition of calpain activation was noted, which was associated with increased signal-transducer-and-activator-of-transcription-6 (STAT6) abundance, reduced N-terminal-Jun-kinase and NF-κB activation, as well as reduced proteasomal activity. Consequently, blood-brain-barrier integrity was stabilized, oxidative stress was reduced and brain leukocyte infiltration was diminished. In view of its excellent tolerability, considering its sustained effects on neurological recovery, brain tissue survival and remodeling, flupirtine is an attractive candidate for stroke therapy.
Collapse
Affiliation(s)
- Hanna M Jaeger
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| | - Jens R Pehlke
- LWL-Klinik Muenster, Department of Addiction Disorders, Muenster, Germany
| | - Britta Kaltwasser
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Mathias Bähr
- University of Goettingen Medical School, Department of Neurology, Goettingen, Germany
| | - Dirk M Hermann
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| | - Thorsten R Doeppner
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany.,Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| |
Collapse
|
6
|
Vetrugno V, Puopolo M, Cardone F, Capozzoli F, Ladogana A, Pocchiari M. The future for treating Creutzfeldt–Jakob disease. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2015.994605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Malty RH, Jessulat M, Jin K, Musso G, Vlasblom J, Phanse S, Zhang Z, Babu M. Mitochondrial targets for pharmacological intervention in human disease. J Proteome Res 2014; 14:5-21. [PMID: 25367773 PMCID: PMC4286170 DOI: 10.1021/pr500813f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Over the past several years, mitochondrial
dysfunction has been
linked to an increasing number of human illnesses, making mitochondrial
proteins (MPs) an ever more appealing target for therapeutic intervention.
With 20% of the mitochondrial proteome (312 of an estimated 1500 MPs)
having known interactions with small molecules, MPs appear to be highly
targetable. Yet, despite these targeted proteins functioning in a
range of biological processes (including induction of apoptosis, calcium
homeostasis, and metabolism), very few of the compounds targeting
MPs find clinical use. Recent work has greatly expanded the number
of proteins known to localize to the mitochondria and has generated
a considerable increase in MP 3D structures available in public databases,
allowing experimental screening and in silico prediction of mitochondrial
drug targets on an unprecedented scale. Here, we summarize the current
literature on clinically active drugs that target MPs, with a focus
on how existing drug targets are distributed across biochemical pathways
and organelle substructures. Also, we examine current strategies for
mitochondrial drug discovery, focusing on genetic, proteomic, and
chemogenomic assays, and relevant model systems. As cell models and
screening techniques improve, MPs appear poised to emerge as relevant
targets for a wide range of complex human diseases, an eventuality
that can be expedited through systematic analysis of MP function.
Collapse
Affiliation(s)
- Ramy H Malty
- Department of Biochemistry, Research and Innovation Centre, University of Regina , Regina, Saskatchewan S4S 0A2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Panchanathan E, Ramanathan G, Lakkakula BVKS. Effect of flupirtine on the growth and viability of U373 malignant glioma cells. Cancer Biol Med 2013; 10:142-7. [PMID: 24379989 PMCID: PMC3860341 DOI: 10.7497/j.issn.2095-3941.2013.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 09/14/2013] [Indexed: 11/23/2022] Open
Abstract
Objective Flupirtine is a non-opioid analgesic without antipyretic or antiphlogistic properties but with favorable tolerability in humans. This analgesic also exhibits neuroprotective activities. Furthermore, flupirtine antagonizes glutamate- and NMDA-induced intracellular levels of Ca2+ and counteracts the effects of focal cerebral ischemia. Although flupirtine has been used to relieve pain caused by different diseases and clinical procedures, information on the safety and efficacy of flupirtine is limited. The present study was conducted to investigate the neuroprotective effects of flupirtine on U373 malignant glioma (MG) cell lines. Methods Cell viability and cell cycle analysis was performed by MTT assay and flow cytometry, respectively. Results Variations in the growth of U373 MG cells in 5 mM N-methyl-D-aspartate (NMDA), 1 mM flupirtine, and combined treatment indicated the antagonistic effects of NMDA and flupirtine on MG cell lines. The variation in the percentage of gated cell population in different cell cycle phases showed significant variations after 48 h of treatment. Conclusion Flupirtine has neuroprotective effect of on U373 MG cells, which limits its use in the pain management of brain tumors. This property warrants further studies using animal models and large-scale clinical trials.
Collapse
Affiliation(s)
- Elango Panchanathan
- Department of Pharmacology, Sri Ramachandra University, Chennai 600118, India
| | | | | |
Collapse
|
9
|
Flupirtine, a re-discovered drug, revisited. Inflamm Res 2013; 62:251-8. [PMID: 23322112 DOI: 10.1007/s00011-013-0592-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022] Open
Abstract
Flupirtine was developed long before K(V)7 (KCNQ) channels were known. However, it was clear from the beginning that flupirtine is neither an opioid nor a nonsteroidal anti-inflammatory analgesic. Its unique muscle relaxing activity was discovered by serendipity. In the meantime, broad and intensive research has resulted in a partial clarification of its mode of action. Flupirtine is the first therapeutically used K(V)7 channel activator with additional GABA(A)ergic mechanisms and thus the first representative of a novel class of analgesics. The presently accepted main mode of its action, potassium K(V)7 (KCNQ) channel activation, opens a series of further therapeutic possibilities. One of them has now been realized: its back-up compound, the bioisostere retigabine, has been approved for the treatment of epilepsy.
Collapse
|
10
|
Flupirtine may stop the progressive course of subacute sclerosing panencephalitis. Med Hypotheses 2010; 75:576-7. [DOI: 10.1016/j.mehy.2010.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/10/2010] [Accepted: 07/15/2010] [Indexed: 11/22/2022]
|
11
|
Fawcett RJ, Osborne NN. Flupirtine attenuates sodium nitroprusside-induced damage to retinal photoreceptors, in situ. Brain Res Bull 2007; 73:278-88. [PMID: 17562394 DOI: 10.1016/j.brainresbull.2007.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 12/17/2022]
Abstract
Flupirtine has been shown to function as a neuroprotectant and is presently used in man to treat a number of conditions. The aim of this study was to investigate the specific antioxidant properties of flupirtine in relation to oxidant-induced damage to retinal photoreceptors. Initial in vitro studies on brain membranes showed that flupirtine was approximately 20 times more potent than trolox (vitamin E analogue) and 8 times more potent than metipranolol at attenuating lipid peroxidation caused by the nitric oxide donor, sodium nitroprusside (SNP). Subsequent immunohistochemical studies revealed that following an intraocular injection of SNP, retinal photoreceptors are the only retinal cell types that appear to be clearly affected. This was supported by electroretinogram (ERG) recordings which showed both the a- and b-wave amplitudes to be significantly reduced. Western blotting techniques showed that SNP caused a significant decrease in photoreceptor-specific markers (RET-P1, rhodopsin kinase), an increase in cleaved caspase-3, Bcl-2, and cleaved PARP proteins that are associated with apoptosis and no change in the ganglion cell specific marker, neurofilament (NF-L). This was supported by RT-PCR data where rhodopsin (photoreceptor specific) mRNA was reduced while Thy-1 and NF-L (ganglion cell specific) mRNAs were unaffected. In addition SNP caused an elevation of glial cell response mRNAs primarily associated with Müller cells (GFAP, CNTF, bFGF) as well as caspase-3 and Bcl-2. Importantly, when flupirtine was co-injected, the effects to the retina caused by SNP on retinal proteins and mRNAs were in most cases significantly blunted. The conclusion reached from this study is that flupirtine is a powerful antioxidant and when injected into the eye with SNP attenuates the detrimental influence of SNP to retinal photoreceptors. Since oxidative stress has been implicated in retinal diseases like age-related macular degeneration (AMD) this study provides "proof of principle" for the idea that flupirtine may help individuals suffering from such retinal diseases.
Collapse
Affiliation(s)
- R J Fawcett
- Nuffield Laboratory of Ophthalmology, Oxford University, Walton Street, Oxford OX2 6AW, UK
| | | |
Collapse
|
12
|
Wiens M, Belikov SI, Kaluzhnaya OV, Schröder HC, Hamer B, Perovic-Ottstadt S, Borejko A, Luthringer B, Müller IM, Müller WEG. Axial (apical-basal) expression of pro-apoptotic and pro-survival genes in the lake baikal demosponge Lubomirskia baicalensis. DNA Cell Biol 2006; 25:152-64. [PMID: 16569194 DOI: 10.1089/dna.2006.25.152] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Like in all other Metazoa, also in sponges (Porifera) proliferation, differentiation, and death of cells are controlled by apoptotic processes, thus allowing the establishment of a Bauplan (body plan). The demosponge Lubomirskia baicalensis from the Lake Baikal is especially suitable to assess the role of the apoptotic molecules, since its grade of construction is highly elaborated into an encrusting base and branches composed of modules lined up along the apical-basal axis. The four cDNAs, ALG-2, BAK, MA-3, and Bcl-2, were isolated from this sponge species. The expression levels of these genes follow characteristic gradients. While the proapoptotic genes are highly expressed at the base of the branches and comparably low at the top, the pro-survival gene follows an opposite gradient. Parallel with the tuned expression of these genes, the activities of the apoptosis-executing enzymes caspase-8 (IETDase activity) and caspase-3 (DEVDase activity) are lowest at the top of the branch and highest at their base. This characteristic expression/activity pattern of the genes/enzymes, which had been determined in a few specimens, collected from an unpolluted, natural site, appears reversed in specimens collected from an anthropogenically polluted site. These findings indicate the involvement of apoptotic proteins in the axis formation (branches) in L. baicalensis.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bringmann G, Lang G, Gulder TA, Tsuruta H, Mühlbacher J, Maksimenka K, Steffens S, Schaumann K, Stöhr R, Wiese J, Imhoff JF, Perović-Ottstadt S, Boreiko O, Müller WE. The first sorbicillinoid alkaloids, the antileukemic sorbicillactones A and B, from a sponge-derived Penicillium chrysogenum strain. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.05.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Aiello A, D'Esposito M, Fattorusso E, Menna M, Müller WE, Perović-Ottstadt S, Tsuruta H, Gulder TA, Bringmann G. Daminin, a bioactive pyrrole alkaloid from the Mediterranean sponge Axinella damicornis. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Bringmann G, Lang G, Maksimenka K, Hamm A, Gulder TAM, Dieter A, Bull AT, Stach JEM, Kocher N, Müller WEG, Fiedler HP. Gephyromycin, the first bridged angucyclinone, from Streptomyces griseus strain NTK 14. PHYTOCHEMISTRY 2005; 66:1366-73. [PMID: 15907962 DOI: 10.1016/j.phytochem.2005.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 04/07/2005] [Accepted: 04/07/2005] [Indexed: 05/02/2023]
Abstract
The new, highly oxygenated angucyclinone gephyromycin was isolated from an extract of a Streptomyces griseus strain. Its unprecedented ether-bridged structure was elucidated by NMR methods and substantiated by single crystal X-ray analysis. The absolute configuration was evidenced by quantum chemical CD calculations. Gephyromycin exhibits glutaminergic activity towards neuronal cells. Furthermore, the known compounds fridamycin E and dehydrorabelomycin were identified.
Collapse
Affiliation(s)
- Gerhard Bringmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ramkumar KM, Anuradha CV. Short-term dietary restriction modulates liver lipid peroxidation in carbon tetrachloride-intoxicated rats. J Basic Clin Physiol Pharmacol 2005; 16:245-56. [PMID: 16438391 DOI: 10.1515/jbcpp.2005.16.4.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We investigated whether dietary restriction (DR) can protect the liver against the acute toxicity of carbon tetrachloride (CCl4). Adult female Wistar rats received a quantum of diet representing 75 and 50 percent of the food intake of control rats fed ad libitum (25% and 50% daily regimen, respectively) for 30 days. A single dose of CCl4 (3 mL kg(-1) b.w.) was administered subcutaneously at the end of the feeding period. Lipid peroxidation, as thiobarbituric acid reactive substance, conjugated dienes, lipid hydroperoxides and the hepatic markers alanine transaminase, aspartic transaminase, and alkaline phosphatase were significantly decreased in food-restricted rats. The enzymic antioxidants superoxide dismutase, catalase, glutathione peroxidase and the non-enzymic antioxidant glutathione were significantly increased in both groups. The magnitude of liver damage after CCl4 treatment was lower in food-restricted animals than in ad libitum-fed animals. The results suggest that dietary restriction increases the resistance of the liver and protects against oxidative insult produced by an acute dose of CCl4.
Collapse
Affiliation(s)
- K M Ramkumar
- Department of Biochemistry, Faculty of Science, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India.
| | | |
Collapse
|
17
|
Gibson BW. Exploiting Proteomics in the Discovery of Drugs That Target Mitochondrial Oxidative Damage. ACTA ACUST UNITED AC 2004; 2004:pe12. [PMID: 15028863 DOI: 10.1126/sageke.2004.11.pe12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To understand how oxidative stress contributes to aging and age-related diseases and to better evaluate the therapeutic effect of antioxidant drugs, it would be highly desirable to have a comprehensive and detailed readout of the types of oxidative damage that occur to proteins at a global or proteome level. In this Perspective, I examine how proteomics, defined here as the science of examining all proteins in an organelle, cell, or tissue in the context of biological phenomena, can be used to provide molecular details of mitochondrial protein oxidative damage. Specifically, I discuss approaches that combine knowledge of the mitochondrial proteome with newer mass spectrometry-based techniques that are capable of identifying proteins and sites of oxidative modification in a high-throughput manner.
Collapse
|
18
|
Tagliavini F, Forloni G, D'Ursi P, Bugiani O, Salmona M. Studies on peptide fragments of prion proteins. ADVANCES IN PROTEIN CHEMISTRY 2002; 57:171-201. [PMID: 11447690 DOI: 10.1016/s0065-3233(01)57022-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- F Tagliavini
- Istituto Nazionale Neurologico Carlo Besta, Milano, Italy
| | | | | | | | | |
Collapse
|
19
|
Ford JW, Stevens EB, Treherne JM, Packer J, Bushfield M. Potassium channels: gene family, therapeutic relevance, high-throughput screening technologies and drug discovery. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2002; 58:133-68. [PMID: 12079199 DOI: 10.1007/978-3-0348-8183-8_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Existing drugs that modulate ion channels represent a key class of pharmaceutical agents across many therapeutic areas and there is considerable further potential for potassium channel drug discovery. Potassium channels represent the largest and most diverse sub-group of ion channels and they play a central role in regulating the membrane potential of cells. Recent advances in genomics have greatly added to the number of these potential drug targets, but selecting a suitable potassium channel for drug discovery research is a key step. In particular, the potential therapeutic relevance of a potassium channel should be taken into account when selecting a target for screening. Potassium channel drug discovery is being driven by a need to identify lead compounds that can provide tractable starting points for medicinal chemistry. Furthermore, advances in laboratory automation have brought significant opportunities to increase screening throughput for potassium channel assays, but careful assay configuration to model drug-target interactions in a physiological manner is an essential consideration. Several potassium channel screening platforms are described in this review in order to provide some insight into the variety of formats available for screening, together with some of their inherent advantages and limitations. Particular emphasis is placed on the mechanistic basis of drug-target interaction and those aspects of structure/function that are of prime importance in potassium channel drug discovery.
Collapse
|
20
|
Lawson K. Is there a role for potassium channel openers in neuronal ion channel disorders? Expert Opin Investig Drugs 2000; 9:2269-80. [PMID: 11060806 DOI: 10.1517/13543784.9.10.2269] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malfunction in ion channels, due to mutations in genes encoding channel proteins or the presence of autoantibodies, are increasing being implicated in causing disease conditions, termed channelopathies. Dysfunction of potassium (K(+)) channels has been associated with the pathophysiology of a number of neurological, as well as peripheral, disorders (e.g., episodic ataxia, epilepsy, neuromyotonia, Parkinson's disease, congenital deafness, long QT syndrome). K(+) channels, which demonstrate a high degree of diversity and ubiquity, are fundamental in the control of membrane depolarisation and cell excitability. A common feature of K(+) channelopathies is a reduction or loss of membrane potential repolarisation. The identification of K(+) channel subtype specific openers will allow the recovery of the mechanism(s) responsible for counteraction of uncontrolled cellular depolarisation. Synthetic agents that demonstrate K(+) channel opening properties are available for a variety of K(+) channel subtypes (e.g., K(ATP), BK(Ca), GIRK and M-channel). This study reviews the realistic therapeutic potential that may be gained in a broad spectrum of clinical conditions by K(+) channel openers. K(+) channel openers would therefore identify dysfunctional K(+) channel as therapeutic targets for clinical benefit, in addition being able to modulate normally functioning K(+) channels to gain clinical management of pathophysiological events irrespective of the cause.
Collapse
Affiliation(s)
- K Lawson
- Biomedical Research Centre, Sheffield Hallam University, School of Science and Mathematics, City Campus, Sheffield, S1 1WB, UK.
| |
Collapse
|
21
|
Müller WE, Laplanche JL, Ushijima H, Schröder HC. Novel approaches in diagnosis and therapy of Creutzfeldt-Jakob disease. Mech Ageing Dev 2000; 116:193-218. [PMID: 10996019 DOI: 10.1016/s0047-6374(00)00112-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The scrapie prion protein, PrP(Sc), as well as its peptide fragment, PrP106-126, are toxic on neuronal cells, resulting in cell death by an apoptotic, rather than necrotic mechanism. The apoptotic process of neuronal cells induced by prion protein supports diagnosis and offers potential targets for therapeutic intervention of the prion diseases. Among the cerebrospinal fluid (CSF) proteins, which may serve as markers of neuronal cell death associated with prion diseases, the 14-3-3 protein(s) turned out to be the most promising one. A new sensitive assay allows the detection of even small changes in the normally low levels of these proteins. In vitro, the toxic effects displayed by PrP(Sc) and its peptide fragment can be blocked by antagonists of N-methyl-D-aspartate (NMDA) receptor channels, like Memantine. Also Flupirtine, a non-opiod analgesic drug, which is already in clinical use, was found to display in vitro a strong cytoprotective effect on neurons treated with PrP(Sc) or PrP106-126. This drug acts like a NMDA receptor antagonists, but does not bind to the receptor. Clinical trials on prion diseases with Flupirtine are in progress. Flupirtine was found to enhance the intracellular levels of the antiapoptotic protein Bcl-2 and the antioxidative agent glutathione (GSH). Due to its favourable pharmacokinetic profile, Flupirtine is considered to be a promising drug to prevent neuronal death in Creutzfeldt-Jakob disease (CJD) and other neurodegenerative disorders occurring with age, e.g. Alzheimer's disease.
Collapse
Affiliation(s)
- W E Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, Duesbergweg 6, D-55099, Mainz, Germany.
| | | | | | | |
Collapse
|
22
|
Badria FA, Guirguis AN, Perovic S, Steffen R, Müller WE, Schröder HC. Sarcophytolide: a new neuroprotective compound from the soft coral Sarcophyton glaucum. Toxicology 1998; 131:133-43. [PMID: 9928628 DOI: 10.1016/s0300-483x(98)00124-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Bioactivity-guided fractionation of an alcohol extract of the soft coral Sarcophyton glaucum collected from the intertidal areas and the fringing coral reefs near Hurghada, Red Sea, Egypt resulted in the isolation of a new lactone cembrane diterpene, sarcophytolide. The structure of this compound was deduced from its spectroscopic data and by comparison of the spectral data with those of known closely related cembrane-type compounds. In antimicrobial assays, the isolated compound exhibited a good activity towards Staphylococcus aureus, Pseudomonas aeruginosa, and Saccharomyces cerevisiae. Sarcophytolide was found to display a strong cytoprotective effect against glutamate-induced neurotoxicity in primary cortical cells from rat embryos. Preincubation of the neurons with 1 or 10 microg/ml of sarcophytolide resulted in a significant increase of the percentage of viable cells from 33 +/- 4% (treatment of the cells with glutamate only) to 44 +/- 4 and 92 +/- 6%, respectively. Administration of sarcophytolide during the post-incubation period following glutamate treatment did not prevent neuronal cell death. Pretreatment of the cells with sarcophytolide for 30 min significantly suppressed the glutamate-caused increase in the intracellular Ca2+ level ([Ca2+]i). Evidence is presented that the neuroprotective effect of sarcophytolide against glutamate may be partially due to an increased expression of the proto-oncogene bcl-2. The coral secondary metabolite, sarcophytolide, might be of interest as a potential drug for treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- F A Badria
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Egypt
| | | | | | | | | | | |
Collapse
|