1
|
Bojarski KK, David A, Lecaille F, Samsonov SA. In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions. Carbohydr Res 2024; 543:109201. [PMID: 39013335 DOI: 10.1016/j.carres.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Alexis David
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
2
|
Liang F, Chao M, Song KY, Wang HQ, Jiang LZ, Ye XM. Catheter and Non-Catheter-Related Venous Thromboembolism in Cancer Patients: Survival, Anticoagulation Efficacy, and Safety. Clin Appl Thromb Hemost 2024; 30:10760296241282771. [PMID: 39233654 PMCID: PMC11378205 DOI: 10.1177/10760296241282771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
PURPOSE To investigate the differences in survival after venous thromboembolism (VTE) and anticoagulation efficacy and safety between catheter (CRVTE) and non-catheter-related VTE (NCRVTE) in cancer patients. METHODS A retrospective research was conducted, and consecutive cancer (digestive, respiratory, genitourinary, blood and lymphatic, and the other cancers) patients with VTE were enrolled. The anticoagulation therapies included low-molecular-weight heparin (LMWH), warfarin, new type of direct oral anticoagulants (NDOACs), LMWH combined with warfarin, and LMWH combined with NDOACs. Data were collected from the electronic medical record database of our hospital and were analyzed accordingly by Kruskal-Wallis H Test, Chi-square test, Fisher's exact test, Logistic regressions, Kaplan-Meier analysis, and Cox regressions. RESULTS 263 patients were included, median age in years (interquartile range) was 64(56-71) and 60.5% were male. VTE recurrence rate was 16.7% in CRVTE group which was significantly lower than 34.8% in NCRVTE group (P = .032). Heart diseases were independently associated with VTE recurrence (P = .025). Kaplan-Meier survival estimates at 1, 2, and 3 years for CRVTE group were 62.5%, 60.0%, and 47.5%, respectively, compared with 47.9% (P = .130), 38.7% (P = .028), and 30.1% (P = .046), respectively, for NCRVTE group. Cox regression showed surgery (P = .003), anticoagulation therapy types (P = .009), VTE types (P = .006) and cancer types (P = .039) were independent prognostic factors for 3-year survival after VTE. Nonmajor and major bleeding were not significantly different (P = .417). Anticoagulation therapy types were independently associated with the bleeding events (P = .030). CONCLUSIONS Cancer patients with CRVTE potentially have a better anticoagulation efficacy and survival compared to NCRVTE, and the anticoagulation safety seems no significant difference.
Collapse
Affiliation(s)
- Feng Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Min Chao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai-Yi Song
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hui-Qi Wang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ling-Zhi Jiang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiang-Ming Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Bendahl PO, Belting M, Gezelius E. Longitudinal Assessment of Circulating Tumor Cells and Outcome in Small Cell Lung Cancer: A Sub-Study of RASTEN-A Randomized Trial with Low Molecular Weight Heparin. Cancers (Basel) 2023; 15:3176. [PMID: 37370786 DOI: 10.3390/cancers15123176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/04/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Circulating tumor cells (CTCs) may provide a liquid biopsy approach to disease monitoring in small cell lung cancer (SCLC), a particularly aggressive tumor subtype. Yet, the prognostic role of CTCs during and after treatment in relation to baseline remains ill-defined. Here, we assessed the value of longitudinal CTC analysis and the potential of low-molecular-weight heparin (LMWH) to reduce CTC abundance in SCLC patients from a randomized trial (RASTEN). Blood samples were collected at baseline, before chemotherapy Cycle 3, and at 2-month follow-up from 42 patients in total, and CTCs were quantified using the FDA-approved CellSearch system. We found a gradual decline in CTC count during and after treatment, independently of the addition of LMWH to standard therapy. Detectable CTCs at baseline correlated significantly to reduced survival compared to undetectable CTCs (unadjusted hazard ratio (HR) of 2.75 (95% CI 1.05-7.20; p = 0.040)). Furthermore, a persistent CTC count at 2-month follow-up was associated with a HR of 4.22 (95% CI 1.20-14.91; p = 0.025). Our findings indicate that persistently detectable CTCs during and after completion of therapy offer further prognostic information in addition to baseline CTC, suggesting a role for CTC in the individualized management of SCLC.
Collapse
Affiliation(s)
- Pär-Ola Bendahl
- Department of Clinical Sciences, Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85 Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85 Lund, Sweden
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lasarettsgatan 23A, SE-221 85 Lund, Sweden
- Department of Immunology, Pathology, and Genetics, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden
| | - Emelie Gezelius
- Department of Clinical Sciences, Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85 Lund, Sweden
- Department of Respiratory Medicine, Lund University Hospital, Entrégatan 7, SE-221 85 Lund, Sweden
| |
Collapse
|
4
|
Yue M, Liu Y, Zhang P, Li Z, Zhou Y. Integrative Analysis Reveals the Diverse Effects of 3D Stiffness upon Stem Cell Fate. Int J Mol Sci 2023; 24:9311. [PMID: 37298263 PMCID: PMC10253631 DOI: 10.3390/ijms24119311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The origin of life and native tissue development are dependent on the heterogeneity of pluripotent stem cells. Bone marrow mesenchymal stem cells (BMMSCs) are located in a complicated niche with variable matrix stiffnesses, resulting in divergent stem cell fates. However, how stiffness drives stem cell fate remains unknown. For this study, we performed whole-gene transcriptomics and precise untargeted metabolomics sequencing to elucidate the complex interaction network of stem cell transcriptional and metabolic signals in extracellular matrices (ECMs) with different stiffnesses, and we propose a potential mechanism involved in stem cell fate decision. In a stiff (39~45 kPa) ECM, biosynthesis of aminoacyl-tRNA was up-regulated, and increased osteogenesis was also observed. In a soft (7~10 kPa) ECM, biosynthesis of unsaturated fatty acids and deposition of glycosaminoglycans were increased, accompanied by enhanced adipogenic/chondrogenic differentiation of BMMSCs. In addition, a panel of genes responding to the stiffness of the ECM were validated in vitro, mapping out the key signaling network that regulates stem cells' fate decisions. This finding of "stiffness-dependent manipulation of stem cell fate" provides a novel molecular biological basis for development of potential therapeutic targets within tissue engineering, from both a cellular metabolic and a biomechanical perspective.
Collapse
Affiliation(s)
- Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
5
|
Wilczak M, Surman M, Przybyło M. Altered Glycosylation in Progression and Management of Bladder Cancer. Molecules 2023; 28:molecules28083436. [PMID: 37110670 PMCID: PMC10146225 DOI: 10.3390/molecules28083436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Bladder cancer (BC) is the 10th most common malignancy worldwide, with an estimated 573,000 new cases and 213,000 deaths in 2020. Available therapeutic approaches are still unable to reduce the incidence of BC metastasis and the high mortality rates of BC patients. Therefore, there is a need to deepen our understanding of the molecular mechanisms underlying BC progression to develop new diagnostic and therapeutic tools. One such mechanism is protein glycosylation. Numerous studies reported changes in glycan biosynthesis during neoplastic transformation, resulting in the appearance of the so-called tumor-associated carbohydrate antigens (TACAs) on the cell surface. TACAs affect a wide range of key biological processes, including tumor cell survival and proliferation, invasion and metastasis, induction of chronic inflammation, angiogenesis, immune evasion, and insensitivity to apoptosis. The purpose of this review is to summarize the current information on how altered glycosylation of bladder cancer cells promotes disease progression and to present the potential use of glycans for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11 Street, 30-348 Krakow, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
6
|
Pągielska M, Samsonov SA. Molecular Dynamics-Based Comparative Analysis of Chondroitin and Dermatan Sulfates. Biomolecules 2023; 13:biom13020247. [PMID: 36830616 PMCID: PMC9953526 DOI: 10.3390/biom13020247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Glycosaminoglycans (GAGs) are a class of linear anionic periodic polysaccharides containing disaccharide repetitive units. These molecules interact with a variety of proteins in the extracellular matrix and so participate in biochemically crucial processes such as cell signalling affecting tissue regeneration as well as the onset of cancer, Alzheimer's or Parkinson's diseases. Due to their flexibility, periodicity and chemical heterogeneity, often termed "sulfation code", GAGs are challenging molecules both for experiments and computation. One of the key questions in the GAG research is the specificity of their intermolecular interactions. In this study, we make a step forward to deciphering the "sulfation code" of chondroitin sulfates-4,6 (CS4, CS6, where the numbers correspond to the position of sulfation in NAcGal residue) and dermatan sulfate (DS), which is different from CSs by the presence of IdoA acid instead of GlcA. We rigorously investigate two sets of these GAGs in dimeric, tetrameric and hexameric forms with molecular dynamics-based descriptors. Our data clearly suggest that CS4, CS6 and DS are substantially different in terms of their structural, conformational and dynamic properties, which contributes to the understanding of how these molecules can be different when they bind proteins, which could have practical implications for the GAG-based drug design strategies in the regenerative medicine.
Collapse
|
7
|
Cerezo-Magaña M, Bång-Rudenstam A, Belting M. Proteoglycans: a common portal for SARS-CoV-2 and extracellular vesicle uptake. Am J Physiol Cell Physiol 2023; 324:C76-C84. [PMID: 36458979 PMCID: PMC9799137 DOI: 10.1152/ajpcell.00453.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
As structural components of the glycocalyx, heparan sulfate proteoglycans (HSPGs) are involved in multiple pathophysiological processes at the apex of cell signaling cascades, and as endocytosis receptors for particle structures, such as lipoproteins, extracellular vesicles, and enveloped viruses, including SARS-CoV-2. Given their diversity and complex biogenesis regulation, HSPGs remain understudied. Here we compile some of the latest studies focusing on HSPGs as internalizing receptors of extracellular vesicles ("endogenous virus") and SARS-CoV-2 lipid-enclosed particles and highlight similarities in their biophysical and structural characteristics. Specifically, the similarities in their biogenesis, size, and lipid composition may explain a common dependence on HSPGs for efficient cell-surface attachment and uptake. We further discuss the relative complexity of extracellular vesicle composition and the viral mechanisms that evolve towards increased infectivity that complicate therapeutic strategies addressing blockade of their uptake.
Collapse
Affiliation(s)
| | - Anna Bång-Rudenstam
- 1Department of Clinical Sciences Lund, Oncology, Lund University, Lund, Sweden
| | - Mattias Belting
- 1Department of Clinical Sciences Lund, Oncology, Lund University, Lund, Sweden,2Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden,3Department of Hematology, Oncology, and Radiophysics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
8
|
Poças J, Belting M. Analysis of Extracellular Vesicle-Associated Proteoglycans. Methods Mol Biol 2023; 2619:125-139. [PMID: 36662467 DOI: 10.1007/978-1-0716-2946-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a central mechanism of intercellular communication in physiology and disease. EVs participate in paracrine exchange of nucleic acids as well as lipids, proteins, and glycans to elicit a complex biological response in target cells. Proteoglycans (PGs) are widely expressed in EV-producing cells and are sorted to the membrane of secreted EVs to participate in some of the key processes in EV-mediated signaling. Most notably, PGs mainly of the heparan sulfate (HS) type are involved in EV biogenesis and cellular uptake of EVs through endocytic processes. EV-associated PGs may serve as short- and long-range chaperones of signaling molecules with potential implications for intercellular information exchange, most importantly in cancer development. This motivates the development of approaches targeting EV-HSPG interactions as a strategy in cancer treatment. Moreover, the importance of PG remodeling and alterations in their expression in cancer, together with the fact that EVs mimic their cell or tissue of origin, point at an important role of EV-associated PGs as disease biomarkers. Here, we provide methodological insights into the analysis of EV-PGs isolated from cell cultures as well as patient plasma liquid biopsy.
Collapse
Affiliation(s)
- Juliana Poças
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Mattias Belting
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden.
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
The synthesis of hyaluronic acid related oligosaccharides and elucidation of their antiangiogenic activity. Carbohydr Res 2022; 522:108701. [DOI: 10.1016/j.carres.2022.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
|
10
|
Lu X, Prodger A, Sim J, Evans CE. Pulmonary Thrombosis Promotes Tumorigenesis via Myeloid Hypoxia-Inducible Factors. Biomolecules 2022; 12:biom12101354. [PMID: 36291563 PMCID: PMC9599092 DOI: 10.3390/biom12101354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer patients have a greater risk of thrombosis than individuals without cancer. Conversely, thrombosis is a diagnostic predictor of cancer, but the mechanisms by which thrombosis promotes tumor propagation are incompletely understood. Our previous studies showed that hypoxia-inducible factors (HIF) 1α and HIF2α are stabilized in myeloid cells of murine thrombi. We also previously showed that pulmonary thrombosis increases the levels of HIF1α and HIF2α in murine lungs, enhances the levels of tumorigenic factors in the circulation, and promotes pulmonary tumorigenesis. In this study, we aimed to investigate the regulation of thrombosis-induced tumorigenesis by myeloid cell-specific HIFs (i.e., HIF1 and HIF2 in neutrophils and macrophages). Our in vitro studies showed that multiple tumorigenic factors are upregulated in the secretome of hypoxic versus normoxic neutrophils and macrophages, which promotes lung cancer cell proliferation and migration in a myeloid-HIF-dependent manner. Next, we used a mouse model of pulmonary microvascular occlusion to study the impact of pulmonary thrombosis and myeloid HIFs on lung tumorigenesis. Experiments on mice lacking either HIF1α or HIF2α in myeloid cells demonstrated that loss of either factor eliminates the advantage given to pulmonary tumor formation by thrombotic insult. The myeloid HIF-dependent and tumorigenic impact of pulmonary thrombosis on tumor burden may be partly driven by paracrine thymidine phosphorylase (TP), given that TP levels were increased by hypoxia in neutrophil and macrophage supernates, and that plasma TP levels were positively correlated with multiple measures of tumor progression in wild type mice but not myeloid cell-specific HIF1α or HIF2α knockout mice. These data together demonstrate the importance of thrombotic insult in a model of pulmonary tumorigenesis and the essential role of myeloid HIFs in mediating tumorigenic success.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Alice Prodger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Jingwei Sim
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Colin E. Evans
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB2 3EG, UK
- Correspondence:
| |
Collapse
|
11
|
Grinkova AA, Ustyuzhanina NE, Nifantiev NE. Synthesis of Oligosaccharides Structurally Related to Hyaluronic Acid Fragments. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Abstract
Glycosaminoglycans (GAGs) are an important component of the tumor microenvironment (TME). GAGs can interact with a variety of binding partners and thereby influence cancer progression on multiple levels. GAGs can modulate growth factor and chemokine signaling, invasion and metastasis formation. Moreover, GAGs are able to change the physical property of the extracellular matrix (ECM). Abnormalities in GAG abundance and structure (e.g., sulfation patterns and molecular weight) are found across various cancer types and show biomarker potential. Targeting GAGs, as well as the usage of GAGs and their mimetics, are promising approaches to interfere with cancer progression. In addition, GAGs can be used as drug and cytokine carriers to induce an anti-tumor response. In this review, we summarize the role of GAGs in cancer and the potential use of GAGs and GAG derivatives to target cancer.
Collapse
Affiliation(s)
- Ronja Wieboldt
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, Department of Theragnostics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
13
|
Huclier-Markai S, Alliot C, Mazza M, Reiller PE. Complexation of europium(III) with exopolysaccharides from a marine bacterium envisaged as luminescent probe in a theranostic approach. Dalton Trans 2021; 50:17215-17227. [PMID: 34783812 DOI: 10.1039/d1dt03288g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium, showed anti-metastatic properties in osteosarcoma (bone tumor). These EPSs could be employed as new drug delivery systems for therapeutic uses. They may represent a new class of ligands to be combined in a theranostic approach with fluorescent metals, such as Eu(III), to serve as imaging probe. The goal of this work was to investigate the feasibility of such coupling by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Since these EPSs are polyelectrolytes their conformation could affect the complexation properties. Thus, viscosimetric measurements were performed as a function of their concentration as well as the background electrolyte concentration. Polysaccharides conformation exhibited a lower hydrodynamic volume for the highest ionic strengths. The resulting random-coiled conformation could affect the complexation with metal for high concentration but no change was evidenced when increasing europium concentration. Two sites of complexation of Eu(III) were evidenced by TRLFS in heparin, whereas only one site was evidenced in two modified EPSs produced from Alteromonas infernus.
Collapse
Affiliation(s)
- Sandrine Huclier-Markai
- GIP ARRONAX, 1 rue Aronnax, F-44817 Nantes Cedex 3, France. .,SUBATECH, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
| | - Cyrille Alliot
- GIP ARRONAX, 1 rue Aronnax, F-44817 Nantes Cedex 3, France. .,INSERM U892- 8 quai Moncousu, F-44007 Nantes Cedex 1, France
| | - Mattia Mazza
- GIP ARRONAX, 1 rue Aronnax, F-44817 Nantes Cedex 3, France. .,SUBATECH, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
| | - Pascal E Reiller
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces (SEARS), F-91191, Gif sur Yvette, France
| |
Collapse
|
14
|
Muñoz-Garcia J, Mazza M, Alliot C, Sinquin C, Colliec-Jouault S, Heymann D, Huclier-Markai S. Antiproliferative Properties of Scandium Exopolysaccharide Complexes on Several Cancer Cell Lines. Mar Drugs 2021; 19:md19030174. [PMID: 33806830 PMCID: PMC8005100 DOI: 10.3390/md19030174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Antimetastatic properties on both murine and human osteosarcoma cell lines (POS-1 and KHOS) have been evidenced using exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium. These derivatives had no significant effect on the cell cycle neither a pro-apoptotic effect on osteosarcoma cells. Based on this observation, these EPSs could be employed as new drug delivery systems for therapeutic uses. A theranostic approach, i.e., combination of a predictive biomarker with a therapeutic agent, has been developed notably by combining with true pair of theranostic radionuclides, such as scandium 47Sc/44Sc. However, it is crucial to ensure that, once complexation is done, the biological properties of the vector remain intact, allowing the molecular tropism of the ligand to recognize its molecular target. It is important to assess if the biological properties of EPS evidenced on osteosarcoma cell lines remain when scandium is complexed to the polymers and can be extended to other cancer cell types. Scandium-EPS complexes were thus tested in vitro on human cell lines: MNNG/HOS osteosarcoma, A375 melanoma, A549 lung adenocarcinoma, U251 glioma, MDA231 breast cancer, and Caco2 colon cancer cells. An xCELLigence Real Cell Time Analysis (RTCA) technology assay was used to monitor for 160 h, the proliferation kinetics of the different cell lines. The tested complexes exhibited an anti-proliferative effect, this effect was more effective compared to EPS alone. This increase of the antiproliferative properties was explained by a change in conformation of EPS complexes due to their polyelectrolyte nature that was induced by complexation. Alterations of both growth factor-receptor signaling, and transmembrane protein interactions could be the principal cause of the antiproliferative effect. These results are very promising and reveal that EPS can be coupled to scandium for improving its biological effects and also suggesting that no major structural modification occurs on the ligand.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Institut de Cancérologie de l’Ouest, Université de Nantes, Blvd Jacques Monod, F-44805 Saint-Herblain, France; (J.M.-G.); (D.H.)
| | - Mattia Mazza
- GIP ARRONAX, 1 rue Aronnax, CEDEX 3, F-44817 Nantes, France; (M.M.); (C.A.)
- Laboratoire SUBATECH, 4 rue Alfred Kastler, BP 20722, CEDEX 3, F-44307 Nantes, France
| | - Cyrille Alliot
- GIP ARRONAX, 1 rue Aronnax, CEDEX 3, F-44817 Nantes, France; (M.M.); (C.A.)
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, INSERM, U892, 8 quai Moncousu, CEDEX 1, F-44007 Nantes, France
| | - Corinne Sinquin
- IFREMER, Institut Français de Recherche pour L’exploitation de la mer, rue de l’Ile d’Yeu, BP21105, CEDEX 3, F-44311 Nantes, France; (C.S.); (S.C.-J.)
| | - Sylvia Colliec-Jouault
- IFREMER, Institut Français de Recherche pour L’exploitation de la mer, rue de l’Ile d’Yeu, BP21105, CEDEX 3, F-44311 Nantes, France; (C.S.); (S.C.-J.)
| | - Dominique Heymann
- Institut de Cancérologie de l’Ouest, Université de Nantes, Blvd Jacques Monod, F-44805 Saint-Herblain, France; (J.M.-G.); (D.H.)
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield S10 2TN, UK
| | - Sandrine Huclier-Markai
- GIP ARRONAX, 1 rue Aronnax, CEDEX 3, F-44817 Nantes, France; (M.M.); (C.A.)
- Laboratoire SUBATECH, 4 rue Alfred Kastler, BP 20722, CEDEX 3, F-44307 Nantes, France
- Correspondence: ; Tel.: +33-(0)51-85-85-37 or +33-(0)28-21-25-23
| |
Collapse
|
15
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
16
|
Marine Exopolysaccharide Complexed With Scandium Aimed as Theranostic Agents. Molecules 2021; 26:molecules26041143. [PMID: 33672781 PMCID: PMC7924592 DOI: 10.3390/molecules26041143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022] Open
Abstract
(1) Background: Exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium, showed anti-metastatic properties. They may represent a new class of ligands to be combined with theranostic radionuclides, such as 47Sc/44Sc. The goal of this work was to investigate the feasibility of such coupling. (2) Methods: EPSs, as well as heparin used as a drug reference, were characterized in terms of molar mass and dispersity using Asymmetrical Flow Field-Flow Fractionation coupled to Multi-Angle Light Scattering (AF4-MALS). The intrinsic viscosity of EPSs at different ionic strengths were measured in order to establish the conformation. To determine the stability constants of Sc with EPS and heparin, a Free-ion selective radiotracer extraction (FISRE) method has been used. (3) Results: AF4-MALS showed that radical depolymerization produces monodisperse EPSs, suitable for therapeutic use. EPS conformation exhibited a lower hydrodynamic volume for the highest ionic strengths. The resulting random-coiled conformation could affect the complexation with metal for high concentration. The LogK of Sc-EPS complexes have been determined and showing that they are comparable to the Sc-Hep. (4) Conclusions: EPSs are very promising to be coupled with the theranostic pair of scandium for Nuclear Medicine.
Collapse
|
17
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
18
|
Song Y, Zhang F, Linhardt RJ. Glycosaminoglycans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:103-116. [PMID: 34495531 DOI: 10.1007/978-3-030-70115-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycosaminoglycans (GAGs) are important constituents of human glycome. They are negatively charged unbranched polysaccharides that are usually covalently attached to proteins, forming glycan-protein conjugates, called proteoglycans. Glycosaminoglycans play critical roles in numerous biological processes throughout individual development and are also involved in the pathological processes of various diseases. Based on their remarkable bioactivities and their universal involvement in disease progression, GAGs are applied as therapeutics or are being targeted or used in treating diseases. In this chapter, we introduce the characteristics of the four classes of GAGs that constitute the glycosaminoglycan family. The pathological roles of glycosaminoglycans in major diseases including innate disease, infectious disease, and cancer are discussed. The application of GAGs and their mimetics as therapeutics is introduced, as well as those therapeutic methods developed based on GAGs' role in pathogenesis. In addition, we provide a brief and overall lookback at the history of GAG research and sort out some critical techniques that facilitated GAG and glycomics studies.
Collapse
Affiliation(s)
- Yuefan Song
- National R&D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China. .,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
19
|
Yun HW, Choi BH, Park DY, Jin LH, Min BH. Inhibitory Effect of Topical Cartilage Acellular Matrix Suspension Treatment on Neovascularization in a Rabbit Corneal Model. Tissue Eng Regen Med 2020; 17:625-640. [PMID: 32617955 PMCID: PMC7524995 DOI: 10.1007/s13770-020-00275-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) of articular cartilage has an inhibitory effect on vascularization, yet clinical utilization has been technically challenging. In this study, we aimed to fabricate a biologically functional ECM powder suspension from porcine articular cartilage that inhibits neovascularization (NV). METHODS The digested-cartilage acellular matrix (dg-CAM) was prepared by sequential processes of decellularization, enzymatic digestion and pulverization. Physicochemical properties of dg-CAM were compared with that of native cartilage tissue (NCT). Cellular interactions between human umbilical vein endothelial cells (HUVECs) and dg-CAM was evaluated with proliferation, migration and tube formation assays compared with that of type I collagen (COL) and bevacizumab, an anti-angiogenic drug. We then investigated the therapeutic potential of topical administration of dg-CAM suspension on the experimentally induced rabbit corneal NV model. RESULTS The dg-CAM released a significantly larger amount of soluble proteins than that of the NCT and showed an improved hydrophilic and dispersion properties. In contrast, the dg-CAM contained a large amount of collagen, glycosaminoglycans and anti-angiogenic molecules as much as the NCT. The inhibitory effect on NV of the dg-CAM was more prominent than that of COL and even comparable to that of bevacizumab in inhibiting the HUVECs. The therapeutic potential of the dg-CAM was comparable to that of bevacizumab in the rabbit corneal NV model by efficiently inhibiting neovessel formation of the injured cornea. CONCLUSION The current study developed a dg-CAM having anti-angiogenic properties, together with water-dispersible properties suitable for topical or minimally invasive application for prevention of vessel invasion.
Collapse
Affiliation(s)
- Hee-Woong Yun
- Department of Molecular Science and Technology, Ajou University, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou University School of Medicine, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100, Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Do Young Park
- Department of Orthopedic Surgery, Ajou University School of Medicine, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Long Hao Jin
- Department of Orthopedic Surgery, Yanbian University Medical School, 977 Gongyuan Rd, Yanji, Yanbian, China
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Cell Therapy Center, Ajou University School of Medicine, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Department of Orthopedic Surgery, Ajou University School of Medicine, San 5, Wonchon-dong, Youngtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
20
|
Gopinathan P, Chiang N, Bandaru A, Sinha A, Huang W, Hung S, Shan Y, Lee G. Exploring Circulating Tumor Cells in Cholangiocarcinoma Using a Novel Glycosaminoglycan Probe on a Microfluidic Platform. Adv Healthc Mater 2020; 9:e1901875. [PMID: 32329247 DOI: 10.1002/adhm.201901875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
The search of alternative approaches to epithelial cell adhesion molecule (EpCAM), for the isolation of circulating tumor cells (CTC), is on the rise. This work attempts at evaluating the feasibility of using a new glycosaminoglycan, SCH45, as a probe to isolate CTCs from the peripheral blood of 65 advanced/metastatic cholangiocarcinoma (CCA) patients. The positive enrichment of CTCs from 1 mL of blood using SCH45-bound magnetic beads and subsequent staining on an integrated microfluidic platform is demonstrated. Results detailing CTC concentrations averaging ≥1 CTCs mL-1 of blood are shown, and a conventional protein biomarker, EpCAM, has been used to corroborate the finding that 100% of the patients possess CTCs in their blood. Studies detailing the use of CTCs in the prognostic monitoring and treatment effectiveness of advanced/metastatic CCA are scarce, and the isolation of CTCs from all CCA patients tested has not been reported yet. A strong correlation between CTC counts and disease progression at the time of and/or in advance of radiographic imaging in patients receiving chemotherapy is also reported. This study is one of its kind with the new probe and reduced sample volume and has potential for use in CCA diagnosis and prognosis in the near future.
Collapse
Affiliation(s)
- Priya Gopinathan
- Institute of Nanoengineering and MicrosystemsNational Tsing Hua University Hsinchu 30013 Taiwan
| | - Nai‐Jung Chiang
- Institute of Clinical MedicineCollege of MedicineNational Cheng Kung University Tainan 70457 Taiwan
- National Institute of Cancer ResearchNational Health Research Institutes Miaoli 35053 Taiwan
- Department of Internal MedicineNational Cheng Kung University HospitalCollege of MedicineNational Cheng Kung University Tainan 70403 Taiwan
| | - Anandaraju Bandaru
- Genomics Research CentreAcademia Sinica Taipei Taiwan 11529 Republic of China
| | - Anirban Sinha
- Institute of Nanoengineering and MicrosystemsNational Tsing Hua University Hsinchu 30013 Taiwan
| | - Wen‐Yen Huang
- Department of Power Mechanical EngineeringNational Tsing Hua University Hsinchu City 30013 Taiwan
| | - Shang‐Cheng Hung
- Genomics Research CentreAcademia Sinica Taipei Taiwan 11529 Republic of China
- Department of Applied ScienceNational Taitung University Taitung 95053 Taiwan
| | - Yan‐Shen Shan
- Institute of Clinical MedicineCollege of MedicineNational Cheng Kung University Tainan 70457 Taiwan
- Department of SurgeryNational Cheng Kung University HospitalCollege of MedicineNational Cheng Kung University Tainan 70403 Taiwan
| | - Gwo‐Bin Lee
- Institute of Nanoengineering and MicrosystemsNational Tsing Hua University Hsinchu 30013 Taiwan
- Department of Power Mechanical EngineeringNational Tsing Hua University Hsinchu City 30013 Taiwan
- Institute of Biomedical EngineeringNational Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
21
|
Afosah DK, Al-Horani RA. Sulfated Non-Saccharide Glycosaminoglycan Mimetics as Novel Drug Discovery Platform for Various Pathologies. Curr Med Chem 2020; 27:3412-3447. [PMID: 30457046 PMCID: PMC6551317 DOI: 10.2174/0929867325666181120101147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 01/14/2023]
Abstract
Glycosaminoglycans (GAGs) are very complex, natural anionic polysaccharides. They are polymers of repeating disaccharide units of uronic acid and hexosamine residues. Owing to their template-free, spatiotemporally-controlled, and enzyme-mediated biosyntheses, GAGs possess enormous polydispersity, heterogeneity, and structural diversity which often translate into multiple biological roles. It is well documented that GAGs contribute to physiological and pathological processes by binding to proteins including serine proteases, serpins, chemokines, growth factors, and microbial proteins. Despite advances in the GAG field, the GAG-protein interface remains largely unexploited by drug discovery programs. Thus, Non-Saccharide Glycosaminoglycan Mimetics (NSGMs) have been rationally developed as a novel class of sulfated molecules that modulate GAG-protein interface to promote various biological outcomes of substantial benefit to human health. In this review, we describe the chemical, biochemical, and pharmacological aspects of recently reported NSGMs and highlight their therapeutic potentials as structurally and mechanistically novel anti-coagulants, anti-cancer agents, anti-emphysema agents, and anti-viral agents. We also describe the challenges that complicate their advancement and describe ongoing efforts to overcome these challenges with the aim of advancing the novel platform of NSGMs to clinical use.
Collapse
Affiliation(s)
- Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| |
Collapse
|
22
|
Sinkala M, Mulder N, Patrick Martin D. Metabolic gene alterations impact the clinical aggressiveness and drug responses of 32 human cancers. Commun Biol 2019; 2:414. [PMID: 31754644 PMCID: PMC6856368 DOI: 10.1038/s42003-019-0666-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Malignant cells reconfigure their metabolism to support oncogenic processes such as accelerated growth and proliferation. The mechanisms by which this occurs likely involve alterations to genes that encode metabolic enzymes. Here, using genomics data for 10,528 tumours of 32 different cancer types, we characterise the alterations of genes involved in various metabolic pathways. We find that mutations and copy number variations of metabolic genes are pervasive across all human cancers. Based on the frequencies of metabolic gene alterations, we further find that there are two distinct cancer supertypes that tend to be associated with different clinical outcomes. By utilising the known dose-response profiles of 825 cancer cell lines, we infer that cancers belonging to these supertypes are likely to respond differently to various anticancer drugs. Collectively our analyses define the foundational metabolic features of different cancer supertypes and subtypes upon which discriminatory strategies for treating particular tumours could be constructed.
Collapse
Affiliation(s)
- Musalula Sinkala
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town School of Health Sciences, Anzio Rd, Observatory, Cape Town, 7925 South Africa
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town School of Health Sciences, Anzio Rd, Observatory, Cape Town, 7925 South Africa
| | - Darren Patrick Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town School of Health Sciences, Anzio Rd, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
23
|
Jayawardena N, Burga LN, Poirier JT, Bostina M. Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development. Oncolytic Virother 2019; 8:39-56. [PMID: 31754615 PMCID: PMC6825474 DOI: 10.2147/ov.s218494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent advancements in oncolytic virotherapy commend a special attention to developing new strategies for targeting cancer cells with oncolytic viruses (OVs). Modifications of the viral envelope or coat proteins serve as a logical mean of repurposing viruses for cancer treatment. In this review, we discuss how detailed structural knowledge of the interactions between OVs and their natural receptors provide valuable insights into tumor specificity of some viruses and re-targeting of alternate receptors for broad tumor tropism or improved tumor selectivity.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Poirier
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Gezelius E, Bendahl P, Gonçalves de Oliveira K, Ek L, Bergman B, Sundberg J, Strandberg K, Krämer R, Belting M. Low-molecular-weight heparin adherence and effects on survival within a randomised phase III lung cancer trial (RASTEN). Eur J Cancer 2019; 118:82-90. [DOI: 10.1016/j.ejca.2019.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
|
25
|
Gezelius E, Belting M. Biomarkers of venous thromboembolism in cancer: a silent echo from local events? Biomark Med 2019; 13:507-509. [PMID: 31140831 DOI: 10.2217/bmm-2019-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Emelie Gezelius
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Oncology, Barngatan 4, SE-221 85, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Oncology, Barngatan 4, SE-221 85, Lund, Sweden.,Department of Immunology, Pathology, & Genetics, Uppsala University, Rudbecklaboratoriet, SE-751 85, Uppsala, Sweden
| |
Collapse
|
26
|
Saxena T, Lyon JG, Pai SB, Pare D, Amero J, Karumbaia L, Carroll SL, Gaupp E, Bellamkonda RV. Engineering Controlled Peritumoral Inflammation to Constrain Brain Tumor Growth. Adv Healthc Mater 2019; 8:e1801076. [PMID: 30537355 PMCID: PMC6657526 DOI: 10.1002/adhm.201801076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Indexed: 02/06/2023]
Abstract
Brain tumors remain a great clinical challenge, in part due to their capacity to invade into eloquent, inoperable regions of the brain. In contrast, inflammation in the central nervous system (CNS) due to injuries activates microglia and astrocytes culminating in an astroglial scar that typically "walls-off" the injury site. Here, the hypothesis is tested that targeting peritumoral cells surrounding tumors to activate them via an inflammatory stimulus that recapitulates the sequelae of a traumatic CNS injury, could generate an environment that would wall-off and contain invasive tumors in the brain. Gold nanoparticles coated with inflammatory polypeptides to target stromal cells in close vicinity to glioblastoma (GBM) tumors, in order to activate these cells and stimulate stromal CNS inflammation, are engineered. It is reported that this approach significantly contains tumors in rodent models of GBM relative to control treatments (reduction in tumor volume by over 300% in comparison to controls), by the activation of the innate and adaptive immune response, and by triggering pathways related to cell clustering. Overall, this report outlines an approach to contain invasive tumors that can complement adjuvant interventions for invasive GBM such as radiation and chemotherapy.
Collapse
Affiliation(s)
- Tarun Saxena
- Department of Biomedical Engineering Pratt School of Engineering
Duke University, 101 Science Drive, Durham, NC 27705, USA
| | - Johnathan G. Lyon
- Department of Biomedical Engineering Pratt School of Engineering
Duke University, 101 Science Drive, Durham, NC 27705, USA
| | - S. Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology & Emory School of Medicine, UA Whitaker
Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Daniel Pare
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology & Emory School of Medicine, UA Whitaker
Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Jessica Amero
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology & Emory School of Medicine, UA Whitaker
Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Lohitash Karumbaia
- Regenerative Bioscience Center, The University of Georgia, 425
River Road, ADS Complex, Athens, GA 30602, USA
| | - Sheridan L. Carroll
- Department of Biomedical Engineering Pratt School of Engineering
Duke University, 101 Science Drive, Durham, NC 27705, USA
| | - Eric Gaupp
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology & Emory School of Medicine, UA Whitaker
Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Ravi V. Bellamkonda
- Department of Biomedical Engineering Pratt School of Engineering
Duke University, 101 Science Drive, Durham, NC 27705, USA,
| |
Collapse
|
27
|
Xu L, Tang L, Zhang L. Proteoglycans as miscommunication biomarkers for cancer diagnosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:59-92. [PMID: 30905465 DOI: 10.1016/bs.pmbts.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Coagulation biomarkers and prediction of venous thromboembolism and survival in small cell lung cancer: A sub-study of RASTEN - A randomized trial with low molecular weight heparin. PLoS One 2018; 13:e0207387. [PMID: 30412630 PMCID: PMC6226210 DOI: 10.1371/journal.pone.0207387] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Coagulation activation and venous thromboembolism (VTE) are hallmarks of cancer; however, there is an unmet need of improved biomarkers for individualized anticoagulant treatment. The present sub-study of the RASTEN trial was designed to explore the role of coagulation biomarkers in predicting VTE risk and outcome in a homogenous cancer patient population. RASTEN is a multicenter, randomized phase-3 trial investigating the survival effect of low molecular weight heparin enoxaparin when added to standard treatment in newly diagnosed small cell lung cancer (SCLC) patients. Plasma collected at baseline, during treatment, and at follow-up was used in this ad hoc sub-study (N = 242). Systemic coagulation was assessed using four assays reflecting various facets of the coagulation system: Total tissue factor (TF); extracellular vesicle associated TF (EV-TF); procoagulant phospholipids (PPL); and thrombin generation (TG). We found small variations of biomarker levels between baseline, during treatment and at follow-up, and appeared independent on low molecular weight heparin treatment. Overall, none of the measured biomarkers at any time-point did significantly associate with VTE incidence, although increased total TF at baseline showed significant association in control patients not receiving low molecular weight heparin (P = 0.03). Increased TG-Peak was significantly associated with decreased overall survival (OS; P = 0.03), especially in patients with extensive disease. Low baseline EV-TF predicted a worse survival in the low molecular weight heparin as compared with the control group (HR 1.42; 95% CI 1.04–1.95; P = 0.03; P for interaction = 0.12). We conclude that the value of the analyzed coagulation biomarkers for the prediction of VTE risk was very limited in SCLC patients. The associations between TG-Peak and EV-TF with patient survival and response to low molecular weight heparin therapy, respectively, warrant further studies on the role of coagulation activation in SCLC aggressiveness.
Collapse
|
29
|
Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell Immunol 2018; 333:46-57. [DOI: 10.1016/j.cellimm.2018.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/20/2023]
|
30
|
Tsidulko AY, Bezier C, de La Bourdonnaye G, Suhovskih AV, Pankova TM, Kazanskaya GM, Aidagulova SV, Grigorieva EV. Conventional Anti-glioblastoma Chemotherapy Affects Proteoglycan Composition of Brain Extracellular Matrix in Rat Experimental Model in vivo. Front Pharmacol 2018; 9:1104. [PMID: 30333749 PMCID: PMC6176078 DOI: 10.3389/fphar.2018.01104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Temozolomide (TMZ) is a conventional chemotherapy drug for adjuvant treatment of glioblastoma multiforme (GBM), often accompanied by dexamethasone (DXM) to prevent brain oedema and alleviate clinical side effects. Here, we aimed to investigate an ability of the drugs to affect normal brain tissue in terms of proteoglycan (PG) composition/content in experimental rat model in vivo. Age- and brain zone-specific transcriptional patterns of PGs were demonstrated for 8, 60, and 120 days old rats, and syndecan-1, glypican-1, decorin, biglycan, and lumican were identified as the most expressed PGs. DXM treatment affected both PG core proteins expression (mainly syndecan-1, glypican-1, decorin, biglycan, lumican, versican, brevican, and NG2) and heparan sulphate (HS)/chondroitin sulphate (CS) content in organotypic brain slice culture ex vivo and experimental animals in vivo in a dose-dependent manner. TMZ treatment did not result in the significant changes in PG core proteins expression both in normal rat brain hippocampus and cortex in vivo (although generics did), but demonstrated significant effects onto polysaccharide HS/CS content in the brain tissue. The effects were age- and brain zone-specific and similar with the age-related PGs expression changes in rat brain. Combination of TMZ with DXM resulted in the most profound deterioration in PGs composition and content in the brain tissue both at core protein and glycosaminoglycan levels. Taken together, the obtained results demonstrate that conventional anti-glioblastoma therapy affects proteoglycan structure and composition in normal brain tissue, potentially resulting in deterioration of brain extracellular matrix and formation of the favourable tumorigenic niche for the expansion of the residual glioma cells. During the TMZ chemotherapy, dose and regimen of DXM treatment matter, and repetitive low DXM doses seem to be more sparing treatment compared with high DXM dose(s), which should be avoided where possible, especially in combination with TMZ.
Collapse
Affiliation(s)
| | - Cynthia Bezier
- Novosibirsk State University, Novosibirsk, Russia.,UPMC-Sorbonne Universities, Paris, France
| | - Gabin de La Bourdonnaye
- Novosibirsk State University, Novosibirsk, Russia.,Institut National des Sciences Appliquées de Toulouse, Toulouse, France
| | - Anastasia V Suhovskih
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | - Galina M Kazanskaya
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk, Russia
| | | | - Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
31
|
Zhang X, Xia K, Lin L, Zhang F, Yu Y, St. Ange K, Han X, Edsinger E, Sohn J, Linhardt RJ. Structural and Functional Components of the Skate Sensory Organ Ampullae of Lorenzini. ACS Chem Biol 2018; 13:1677-1685. [PMID: 29708722 DOI: 10.1021/acschembio.8b00335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The skate, a cartilaginous fish related to sharks and rays, possesses a unique electrosensitive sensory organ known as the ampullae of Lorenzini (AoL). This organ is responsible for the detection of weak electric field changes caused by the muscle contractions of their prey. While keratan sulfate (KS) is believed to be a component of a jelly that fills this sensory organ and has been credited with its high proton conductivity, modern analytical methods have not been applied to its characterization. Surprisingly, total glycosaminoglycan (GAG) analysis demonstrates that the KS from skate jelly is extraordinarily pure, containing no other GAGs. This KS had a molecular weight of 20 to 30 kDa, consisting primarily of N-linked KS comprised mostly of a monosulfated disaccharide repeating unit, →3) Gal (1→4) GlcNAc6S (1→. Proteomic analysis of AoL jelly suggests that transferrin, keratin, and mucin serve as KS core proteins. Actin and tropomyosin are responsible for assembling the macrostructure of the jelly, and parvalbumin α-like protein and calreticulin regulate calcium and potassium channels involved in the transduction of the electrical signal, once conducted down the AoL by the jelly, serving as the molecular basis for electroreception.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lei Lin
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yanlei Yu
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kalib St. Ange
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Eric Edsinger
- Marine Biological Lab, University of Chicago, Chicago, Illinois 60637, United States
| | - Joel Sohn
- Department of Electrical Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, United States
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
32
|
Menard JA, Cerezo-Magaña M, Belting M. Functional role of extracellular vesicles and lipoproteins in the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0480. [PMID: 29158310 DOI: 10.1098/rstb.2016.0480] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer can be regarded as an invasive organ that exhibits unique plasticity provided by coordinated, cancer cell-stromal cell communication in the tumour microenvironment. Typical stress factors in the tumour niche, such as hypoxia and acidosis, are major drivers and modulators of these events. Recent findings reveal an important role of extracellular vesicles and lipoproteins in cancer cell adaption to exogenous stress. Adaptive mechanisms include stimulation of angiogenesis and increased metastasis. Here, we will discuss the similarities and distinct features of these endogenous nanoparticles and their roles as signalosomes and nutrient sources in cancer. We will focus on the accumulating evidence for a central role of cell-surface heparan sulphate proteoglycans in the uptake of extracellular vesicles and lipoproteins.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Julien A Menard
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Myriam Cerezo-Magaña
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden .,Department of Oncology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
33
|
Tumor target amplification: Implications for nano drug delivery systems. J Control Release 2018; 275:142-161. [PMID: 29454742 DOI: 10.1016/j.jconrel.2018.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting.
Collapse
|
34
|
Ek L, Gezelius E, Bergman B, Bendahl PO, Anderson H, Sundberg J, Wallberg M, Falkmer U, Verma S, Belting M. Randomized phase III trial of low-molecular-weight heparin enoxaparin in addition to standard treatment in small-cell lung cancer: the RASTEN trial. Ann Oncol 2018; 29:398-404. [PMID: 29106448 PMCID: PMC5834130 DOI: 10.1093/annonc/mdx716] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Coagulation activation and venous thromboembolism (VTE) are hallmarks of malignant disease and represent a major cause of morbidity and mortality in cancer. Coagulation inhibition with low-molecular-weight heparin (LMWH) may improve survival specifically in small-cell lung cancer (SCLC) patients by preventing VTE and tumor progression; however, randomized trials with well-defined patient populations are needed to obtain conclusive data. The aim of RASTEN was to investigate the survival effect of LMWH enoxaparin in a homogenous population of SCLC patients. Patients and methods We carried out a randomized, multicenter, open-label trial to investigate the addition of enoxaparin at a supraprophylactic dose (1 mg/kg) to standard treatment in patients with newly diagnosed SCLC. The primary outcome was overall survival (OS), and secondary outcomes were progression-free survival (PFS), incidence of VTE and hemorrhagic events. Results In RASTEN, 390 patients were randomized over an 8-year period (2008-2016), of whom 186 and 191 were included in the final analysis in the LMWH and control arm, respectively. We found no evidence of a difference in OS or PFS by the addition of enoxaparin [hazard ratio (HR), 1.11; 95% confidence interval (CI) 0.89-1.38; P = 0.36 and HR, 1.18; 95% CI 0.95-1.46; P = 0.14, respectively]. Subgroup analysis of patients with limited and extensive disease did not show reduced mortality by enoxaparin. The incidence of VTE was significantly reduced in the LMWH arm (HR, 0.31; 95% CI 0.11-0.84; P = 0.02). Hemorrhagic events were more frequent in the LMWH-treated group but fatal bleedings occurred in both arms. Conclusion LMWH enoxaparin in addition to standard therapy did not improve OS in SCLC patients despite being administered at a supraprophylactic dose and despite resulting in a significant reduction in VTE incidence. Addition of LMWH cannot be generally recommended in the management of SCLC patients, and predictive biomarkers of VTE and LMWH-associated bleeding in cancer patients are warranted.
Collapse
Affiliation(s)
- L Ek
- Department of Heart and Lung Disease, Skåne University Hospital, Lund, Sweden
| | - E Gezelius
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lund, Sweden; Department of Section of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - B Bergman
- Department of Lung Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - P O Bendahl
- Department of Section of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - H Anderson
- Section of Cancer Epidemiology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - J Sundberg
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lund, Sweden
| | - M Wallberg
- Department of Heart and Lung Disease, Skåne University Hospital, Lund, Sweden
| | - U Falkmer
- Department of Oncology, University Hospital, Aalborg, Denmark
| | - S Verma
- Department of Oncology, University of Calgary, Calgary, Canada
| | - M Belting
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lund, Sweden; Department of Section of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden.
| |
Collapse
|
35
|
Muñoz D, Serrano MK, Hernandez ME, Haller R, Swanson T, Slaton JW, Sinha AA, Wilson MJ. Matrix metalloproteinase and heparin-stimulated serine proteinase activities in post-prostate massage urine of men with prostate cancer. Exp Mol Pathol 2017; 103:300-305. [DOI: 10.1016/j.yexmp.2017.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
|
36
|
Pan Y, Wang P, Zhang F, Yu Y, Zhang X, Lin L, Linhardt RJ. Glycosaminoglycans from fish swim bladder: isolation, structural characterization and bioactive potential. Glycoconj J 2017; 35:87-94. [PMID: 29124565 DOI: 10.1007/s10719-017-9804-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/18/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Abstract
The swim bladder of fish is an internal gas-filled organ that allows fish to control their buoyancy and swimming depth. Fish maws (the dried swim bladders of fish) have been used over many centuries as traditional medicines, tonics and a luxurious gourmet food in China and Southeast Asia. Little is known about the structural information of polysaccharides comprising this important functional material of fish tissue. In the present study, the total glycosaminoglycan (GAG) from fish maw was characterized. Two GAGs were identified, chondroitin sulfate (CS, having a molecular weight of 18-40 kDa) and heparan sulfate (HS), corresponding to 95% and 5% of the total GAG, respectively. Chondroitinase digestion showed that the major CS GAG was composed of ΔUA-1 → 3-GalNAc4S (59.7%), ΔUA-1 → 3-GalNAc4,6S (36.5%), ΔUA-1 → 3-GalNAc6S (2.2%) and ΔUA-1 → 3-GalNAc (1.6%) disaccharide units. 1H-NMR analysis and degradation with specific chondroitinases, both CS-type A/C and CS-type B were present in a ratio of 1.4:1. Analysis using surface plasmon resonance showed that fibroblast growth factor (FGF)-2 bound to the CS fraction (KD = 136 nM). These results suggest that this CS may be involved in FGF-signal pathway, mediating tissue repair, regeneration and wound healing. The CS, as the major GAG in fish maw, may have potential pharmacological activity in accelerating wound healing.
Collapse
Affiliation(s)
- Yongxi Pan
- Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Peipei Wang
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Yanlei Yu
- Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xing Zhang
- Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Lei Lin
- Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Departments of Biology, Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
37
|
Evans CE, Palazon A, Sim J, Tyrakis PA, Prodger A, Lu X, Chan S, Bendahl PO, Belting M, Von Euler L, Rundqvist H, Johnson RS, Branco C. Modelling pulmonary microthrombosis coupled to metastasis: distinct effects of thrombogenesis on tumorigenesis. Biol Open 2017; 6:688-697. [PMID: 28302670 PMCID: PMC5450329 DOI: 10.1242/bio.024653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thrombosis can cause localized ischemia and tissue hypoxia, and both of these are linked to cancer metastasis. Vascular micro-occlusion can occur as a result of arrest of circulating tumour cells in small capillaries, giving rise to microthrombotic events that affect flow, creating localized hypoxic regions. To better understand the association between metastasis and thrombotic events, we generated an experimental strategy whereby we modelled the effect of microvascular occlusion in metastatic efficiency by using inert microbeads to obstruct lung microvasculature before, during and after intravenous tumour cell injection. We found that controlled induction of a specific number of these microthrombotic insults in the lungs caused an increase in expression of the hypoxia-inducible transcription factors (HIFs), a pro-angiogenic and pro-tumorigenic environment, as well as an increase in myeloid cell infiltration. Induction of pulmonary microthrombosis prior to introduction of tumour cells to the lungs had no effect on tumorigenic success, but thrombosis at the time of tumour cell seeding increased number and size of tumours in the lung, and this effect was strikingly more pronounced when the micro-occlusion occurred on the day following introduction of tumour cells. The tumorigenic effect of microbead treatment was seen even when thrombosis was induced five days after tumour cell injection. We also found positive correlations between thrombotic factors and expression of HIF2α in human tumours. The model system described here demonstrates the importance of thrombotic insult in metastatic success and can be used to improve understanding of thrombosis-associated tumorigenesis and its treatment. Summary: Induction of pulmonary microthrombosis by three distinct methods enhances HIF-a expression and tumour formation; increases in tumorigenesis that are induced by these thrombotic insults occur in a time- and mode-dependent manner.
Collapse
Affiliation(s)
- Colin E Evans
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Asis Palazon
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Jingwei Sim
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Petros A Tyrakis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Alice Prodger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Xiao Lu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Saria Chan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Pär-Ola Bendahl
- Department of Clinical Sciences, Lund University, Lund, SE-221 00, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Lund University, Lund, SE-221 00, Sweden
| | - Love Von Euler
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Helene Rundqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK .,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Cristina Branco
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
38
|
Seedevi P, Moovendhan M, Vairamani S, Shanmugam A. Mucopolysaccharide from cuttlefish: Purification, chemical characterization and bioactive potential. Carbohydr Polym 2017; 167:129-135. [PMID: 28433147 DOI: 10.1016/j.carbpol.2017.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/15/2017] [Accepted: 03/08/2017] [Indexed: 11/25/2022]
Abstract
The sulfated mucopolysaccharide (GAG) was isolated from S. pharonis and the carbohydrate and protein content was found to be 62.4% and 3.9%. The disaccharide profile of sulfated GAG composed glucuronic acid, N-acetyl glucosamine and sulfate content by contributing 50.11%, 38.00% and 27.69% respectively. The carbon, hydrogen and nitrogen content of the sulfated GAG showed 14.80%, 1.68% and 2.99% respectively. The molecular weight of sulfated GAG was calculated as 27kDa and the structural characterization was done by Fourier Transform Infrared (FT-IR) and NMR Spectroscopy. The Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT) of sulfated GAG were determined as 91 IU and 39.55 IU at 25μg/ml respectively. Further the sulfated GAG reported the cytotoxic effect (CC50) of 1100μg/ml concentration on Vero cell line. The sulfated GAG reported the anticancer activity against HeLa cell line with an inhibition rate of 18.65%-66.13% at 50-250μg/ml concentration. The sulfated GAG can be considered as a potent anticoagulant and anticancer drug in future.
Collapse
Affiliation(s)
- Palaniappan Seedevi
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India.
| | - Meivelu Moovendhan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India
| | - Shanmugam Vairamani
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India
| | - Annaian Shanmugam
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India
| |
Collapse
|
39
|
Afratis NA, Karamanou K, Piperigkou Z, Vynios DH, Theocharis AD. The role of heparins and nano-heparins as therapeutic tool in breast cancer. Glycoconj J 2016; 34:299-307. [PMID: 27778131 DOI: 10.1007/s10719-016-9742-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023]
Abstract
Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.
Collapse
Affiliation(s)
- Nikos A Afratis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Konstantina Karamanou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece.
| |
Collapse
|
40
|
Glycosaminoglycans from chicken muscular stomach or gizzard. Glycoconj J 2016; 34:119-126. [PMID: 27752801 DOI: 10.1007/s10719-016-9737-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Glycosaminoglycans (GAGs) were prepared from the muscular stomach or gizzard of the chicken. The content of GAGs on a dry weight basis contains 0.4 wt.% a typical value observed for a muscle tissue. The major GAG components were chondroitin-6-sulfate and chondroitin-4-sulfate (~64 %) of molecular weight 21-22 kDa. Hyaluronan (~24 %) had a molecular weight 120 kDa. Smaller amounts (12 %) of heparan sulfate was also present which was made of more highly sulfated chains of molecular weight of 21-22 kDa and a less sulfated low molecular weight (< 10 kDa) heterogeneous partially degraded heparan sulfate. Chicken gizzard represents an inexpensive and readily available source of muscle tissue-derived GAGs.
Collapse
|
41
|
Freudenberg U, Liang Y, Kiick KL, Werner C. Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8861-8891. [PMID: 27461855 PMCID: PMC5152626 DOI: 10.1002/adma.201601908] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Glycosaminoglycans (GAGs) govern important functional characteristics of the extracellular matrix (ECM) in living tissues. Incorporation of GAGs into biomaterials opens up new routes for the presentation of signaling molecules, providing control over development, homeostasis, inflammation, and tumor formation and progression. Recent approaches to GAG-based materials are reviewed, highlighting the formation of modular, tunable biohybrid hydrogels by covalent and non-covalent conjugation schemes, including both theory-driven design concepts and advanced processing technologies. Examples of the application of the resulting materials in biomedical studies are provided. For perspective, solid-phase and chemoenzymatic oligosaccharide synthesis methods for GAG-derived motifs, rational and high-throughput design strategies for GAG-based materials, and the utilization of the factor-scavenging characteristics of GAGs are highlighted.
Collapse
Affiliation(s)
- Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| | - Yingkai Liang
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States,
| | - Kristi L. Kiick
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States and Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
42
|
Development of a Biomimetic Chondroitin Sulfate-modified Hydrogel to Enhance the Metastasis of Tumor Cells. Sci Rep 2016; 6:29858. [PMID: 27432752 PMCID: PMC4949442 DOI: 10.1038/srep29858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/22/2016] [Indexed: 02/08/2023] Open
Abstract
Tumor metastasis with resistance to anticancer therapies is the main cause of death in cancer patients. It is necessary to develop reliable tumor metastasis models that can closely recapitulate the pathophysiological features of the native tumor tissue. In this study, chondroitin sulfate (CS)-modified alginate hydrogel beads (ALG-CS) are developed to mimic the in vivo tumor microenvironment with an abnormally increased expression of CS for the promotion of tumor cell metastasis. The modification mechanism of CS on alginate hydrogel is due to the cross-linking between CS and alginate molecules via coordination of calcium ions, which enables ALG-CS to possess significantly different physical characteristics than the traditional alginate beads (ALG). And quantum chemistry calculations show that in addition to the traditional egg-box structure, novel asymmetric egg-box-like structures based on the interaction between these two kinds of polymers are also formed within ALG-CS. Moreover, tumor cell metastasis is significantly enhanced in ALG-CS compared with that in ALG, as confirmed by the increased expression of MMP genes and proteins and greater in vitro invasion ability. Therefore, ALG-CS could be a convenient and effective 3D biomimetic scaffold that would be used to construct standardized tumor metastasis models for tumor research and anticancer drug screening.
Collapse
|
43
|
Zeng YE, Yao XH, Yan ZP, Liu JX, Liu XH. Potential signaling pathway involved in sphingosine-1-phosphate-induced epithelial-mesenchymal transition in cancer. Oncol Lett 2016; 12:379-382. [PMID: 27347154 DOI: 10.3892/ol.2016.4661] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
The developmental process of epithelial-mesenchymal transition (EMT) occurs when epithelial cells acquire invasive mesenchymal cell characteristics, and the activation of this process has been indicated to be involved in tumor progression. EMT could be induced by growth factors, cytokines and matrix metalloproteinases (MMPs). sphingosine-1-phosphate (S1P) is a biologically-active lipid that plays an important role in cancer metastasis. S1P also contributes to the activation of EMT. However, the mechanism underlying S1P-induced EMT is unclear. Increased evidence has demonstrated that the cell surface glycocalyx is closed associated with S1P and plays an important role in tumor progression, suggesting that S1P-induced EMT could be Snail-MMP signaling-dependent. Thus, we hypothesize that an S1P-glycocalyx-Snail-MMP signaling axis mediates S1P-induced EMT. This is an essential step towards improved understanding of the underlying mechanism involved in S1P-regulted EMT, and the development of novel diagnostic and anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Y E Zeng
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xing-Hong Yao
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Zhi-Ping Yan
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing-Xia Liu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Heng Liu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
44
|
Cagnoni AJ, Pérez Sáez JM, Rabinovich GA, Mariño KV. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer. Front Oncol 2016; 6:109. [PMID: 27242953 PMCID: PMC4865499 DOI: 10.3389/fonc.2016.00109] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically relevant information. This information is decoded by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes, and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration, and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade, a number of inhibitors of lectin–glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies to limit cancer progression by targeting lectin–glycan interactions.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
45
|
Pakkiriswami S, Couto A, Nagarajan U, Georgiou M. Glycosylated Notch and Cancer. Front Oncol 2016; 6:37. [PMID: 26925390 PMCID: PMC4757683 DOI: 10.3389/fonc.2016.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/05/2016] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is one of the key components influencing several signaling pathways implicated in cell survival and growth. The Notch signaling pathway plays a pivotal role in numerous cell fate specifications during metazoan development. Both Notch and its ligands are repeatedly glycosylated by the addition of sugar moieties, such as O-fucose, O-glucose, or O-xylose, to bring about structural and functional changes. Disruption to glycosylation processes of Notch proteins result in developmental disorders and disease, including cancer. This review summarizes the importance and recent updates on the role of glycosylated Notch proteins in tumorigenesis and tumor metastasis.
Collapse
Affiliation(s)
| | - Africa Couto
- School of Life Sciences, Queen's Medical Centre, University of Nottingham , Nottingham , UK
| | - Usha Nagarajan
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology & Research Academy, Thanjavur, India
| | - Marios Georgiou
- School of Life Sciences, Queen's Medical Centre, University of Nottingham , Nottingham , UK
| |
Collapse
|
46
|
Induction of a heparin-stimulated serine proteinase in sex accessory gland tumors of the Lobund-Wistar rat. Exp Mol Pathol 2015; 99:39-43. [DOI: 10.1016/j.yexmp.2015.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/18/2015] [Indexed: 11/22/2022]
|