1
|
Zhu (朱培) P, Chao CL, Steffeck AWT, Dang C, Hamlish NX, Pfrender EM, Jiang B, Peek CB. Circadian Dysfunction in the Skeletal Muscle Impairs Limb Perfusion and Muscle Regeneration in Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2025; 45:e30-e47. [PMID: 39633575 PMCID: PMC11753941 DOI: 10.1161/atvbaha.124.321772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Peripheral artery disease (PAD), caused by atherosclerosis, leads to limb ischemia, muscle damage, and impaired mobility in the lower extremities. Recent studies suggest that circadian rhythm disruptions can hinder vascular repair during ischemia, but the specific tissues involved and the impact on muscle health remain unclear. This study investigates the role of the skeletal muscle circadian clock in muscle adaptation to ischemic stress using a surgical mouse model of hindlimb ischemia. METHODS We performed secondary analysis of publicly available RNA-sequencing data sets derived from patients with PAD to identify the differential expression of circadian-related genes in endothelial cells and ischemic limb skeletal muscles. We used mice with specific genetic loss of the circadian clock activator, BMAL1 (brain and muscle ARNT-like 1), in adult skeletal muscle tissues (Bmal1muscle). Bmal1muscle mice and controls underwent femoral artery ligation surgery to induce hindlimb ischemia. Laser Doppler imaging was used to assess limb perfusion at various time points after the surgery. Muscle tissues were analyzed with RNA sequencing and histological examination to investigate PAD-related muscle pathologies. Additionally, we studied the role of BMAL1 in muscle fiber adaptation to hypoxia using RNA and assay for transposase-accessible chromatin with sequencing analyses in primary myotube culture model. RESULTS Disrupted expression of circadian rhythm-related genes was observed in existing RNA-sequencing data sets from endothelial cells and ischemic limb skeletal muscles derived from patients with PAD. Genetic loss of Bmal1 specifically in adult mouse skeletal muscle tissues delayed reperfusion recovery following induction of hindlimb ischemia. Histological examination of muscle tissues showed reduced regenerated myofiber number and a decreased proportion of type IIB fast-twitch myofibers in Bmal1muscle mouse muscles in the ischemic limbs but not in their contralateral nonischemic limbs. Transcriptomic analysis revealed abrogated metabolic, angiogenic, and myogenic pathways relevant to hypoxia adaptation in Bmal1muscle mouse muscles. These changes were corroborated in Bmal1-deficient cultured primary myotubes cultured under hypoxic conditions. CONCLUSIONS Circadian clock in skeletal muscle is crucial for the muscle's response to hypoxia during hindlimb ischemia. Targeting the muscle circadian clock may have therapeutic potential for enhancing muscle response to reduced blood flow and promoting recovery in conditions such as PAD.
Collapse
Affiliation(s)
- Pei Zhu (朱培)
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Calvin L Chao
- Department of Surgery, Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam W T Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Caitlyn Dang
- Department of Surgery, Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Noah X Hamlish
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric M Pfrender
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bin Jiang
- Department of Surgery, Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Kilgallen AB, van den Akker F, Feyen DAM, Crnko S, Snijders Blok CJB, Gremmels H, du Pré BC, Reijers R, Doevendans PA, de Jager SCA, Sluijter JPG, Sampaio-Pinto V, van Laake LW. Circadian Dependence of the Acute Immune Response to Myocardial Infarction. Front Pharmacol 2022; 13:869512. [PMID: 35694249 PMCID: PMC9174900 DOI: 10.3389/fphar.2022.869512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythms influence the recruitment of immune cells and the onset of inflammation, which is pivotal in the response to ischemic cardiac injury after a myocardial infarction (MI). The hyperacute immune response that occurs within the first few hours after a MI has not yet been elucidated. Therefore, we characterized the immune response and myocardial damage 3 hours after a MI occurs over a full twenty-four-hour period to investigate the role of the circadian rhythms in this response. MI was induced at Zeitgeber Time (ZT) 2, 8, 14, and 20 by permanent ligation of the left anterior descending coronary artery. Three hours after surgery, animals were terminated and blood and hearts collected to assess the immunological status and cardiac damage. Blood leukocyte numbers varied throughout the day, peaking during the rest-phase (ZT2 and 8). Extravasation of leukocytes was more pronounced during the active-phase (ZT14 and 20) and was associated with greater chemokine release to the blood and expression of adhesion molecules in the heart. Damage to the heart, measured by Troponin-I plasma levels, was elevated during this time frame. Clock gene oscillations remained intact in both MI-induced and sham-operated mice hearts, which could explain the circadian influence of the hyperacute inflammatory response after a MI. These findings are in line with the clinical observation that patients who experience a MI early in the morning (i.e., early active phase) have worse clinical outcomes. This study provides further insight on the immune response occurring shortly after an MI, which may contribute to the development of novel and optimization of current therapeutic approaches.
Collapse
Affiliation(s)
- Aoife B. Kilgallen
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Dries A. M. Feyen
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sandra Crnko
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christian J. B. Snijders Blok
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hendrik Gremmels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bastiaan C. du Pré
- Division of Internal Medicine, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Robin Reijers
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
- Central Military Hospital, Utrecht, Netherlands
| | - Saskia C. A. de Jager
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost P. G. Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Utrecht University, Utrecht, Netherlands
| | - Vasco Sampaio-Pinto
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linda W. van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Utrecht University, Utrecht, Netherlands
| |
Collapse
|
3
|
Xu L, Liu Y, Cheng Q, Shen Y, Yuan Y, Jiang X, Li X, Guo D, Jiang J, Lin C. Bmal1 Downregulation Worsens Critical Limb Ischemia by Promoting Inflammation and Impairing Angiogenesis. Front Cardiovasc Med 2021; 8:712903. [PMID: 34447794 PMCID: PMC8384109 DOI: 10.3389/fcvm.2021.712903] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Critical limb ischemia (CLI) is the most advanced clinical stage of peripheral vascular disease with high mobility and mortality. CLI patients suffer from lower extremity rest pain, ulceration, and gangrene caused by insufficient blood and oxygen supply. Seeking for effective biomarkers and therapeutic targets is of great significance for improving the life quality of CLI patients. The circadian clock has been reported to be involved in the progression of kinds of cardiovascular diseases. Whether and how circadian genes play a role in CLI remains unknown. In this study, by collecting femoral artery and muscle specimens of CLI patients who underwent amputation, we confirmed that the circadian gene Bmal1 is downregulated in the CLI femoral artery and ischemic distal lower limb muscle. Furthermore, we verified that Bmal1 affects CLI by regulating lipid metabolism, inflammation, and angiogenesis. A hindlimb ischemia model performed in wild-type and Bmal1−/− mice confirmed that Bmal1 disruption would lead to impaired angiogenesis. In vitro experiments indicated that the decreased expression of Bmal1 would increase ox-LDL uptake and impair endothelial cell functions, including proliferation, migration, and tube formation. As for mechanisms, Bmal1 represses inflammation by inhibiting lipid uptake and by activating IL-10 transcription and promotes angiogenesis by transcriptionally regulating VEGF expression. In conclusion, we provide evidence that the circadian gene Bmal1 plays an important role in CLI by inhibiting inflammation and promoting angiogenesis. Thus, Bmal1 may be an effective biomarker and a potential therapeutic target in CLI.
Collapse
Affiliation(s)
- Lirong Xu
- Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pathophysiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yutong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qianyun Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Yuan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolang Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Li
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junhao Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changpo Lin
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Tsuzuki K, Shimizu Y, Suzuki J, Pu Z, Yamaguchi S, Fujikawa Y, Kato K, Ohashi K, Takefuji M, Bando YK, Ouchi N, Calvert JW, Shibata R, Murohara T. Adverse Effect of Circadian Rhythm Disorder on Reparative Angiogenesis in Hind Limb Ischemia. J Am Heart Assoc 2021; 10:e020896. [PMID: 34348468 PMCID: PMC8475022 DOI: 10.1161/jaha.121.020896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Background Circadian rhythm disorders, often seen in modern lifestyles, are a major social health concern. The aim of this study was to examine whether circadian rhythm disorders would influence angiogenesis and blood perfusion recovery in a mouse model of hind limb ischemia. Methods and Results A jet-lag model was established in C57BL/6J mice using a light-controlled isolation box. Control mice were kept at a light/dark 12:12 (12-hour light and 12-hour dark) condition. Concentrations of plasma vascular endothelial growth factor and circulating endothelial progenitor cells in control mice formed a circadian rhythm, which was diminished in the jet-lag model (P<0.05). The jet-lag condition deteriorated tissue capillary formation (P<0.001) and tissue blood perfusion recovery (P<0.01) in hind limb ischemia, which was associated with downregulation of vascular endothelial growth factor expression in local ischemic tissue and in the plasma. Although the expression of clock genes (ie, Clock, Bmal1, and Cry) in local tissues was upregulated after ischemic injury, the expression levels of cryptochrome (Cry) 1 and Cry2 were inhibited by the jet-lag condition. Next, Cry1 and Cry2 double-knockout mice were examined for blood perfusion recoveries and a reparative angiogenesis. Cry1 and Cry2 double-knockout mice revealed suppressed capillary density (P<0.001) and suppressed tissue blood perfusion recovery (P<0.05) in the hind limb ischemia model. Moreover, knockdown of CRY1/2 in human umbilical vein endothelial cells was accompanied by increased expression of WEE1 and decreased expression of HOXC5. This was associated with decreased proliferative capacity, migration ability, and tube formation ability of human umbilical vein endothelial cells, respectively, leading to impairment of angiogenesis. Conclusions Our data suggest that circadian rhythm disorder deteriorates reparative ischemia-induced angiogenesis and that maintenance of circadian rhythm plays an important role in angiogenesis.
Collapse
Affiliation(s)
- Kazuhito Tsuzuki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuuki Shimizu
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Junya Suzuki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Zhongyue Pu
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Shukuro Yamaguchi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yusuke Fujikawa
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Katsuhiro Kato
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Koji Ohashi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikito Takefuji
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yasuko K. Bando
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Noriyuki Ouchi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - John W. Calvert
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Rei Shibata
- Department of Advanced Cardiovascular TherapeuticsNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
5
|
Smolensky MH, Portaluppi F, Manfredini R, Hermida RC, Tiseo R, Sackett-Lundeen LL, Haus EL. Diurnal and twenty-four hour patterning of human diseases: cardiac, vascular, and respiratory diseases, conditions, and syndromes. Sleep Med Rev 2014; 21:3-11. [PMID: 25129838 DOI: 10.1016/j.smrv.2014.07.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 07/04/2014] [Indexed: 11/25/2022]
Abstract
Various medical conditions, disorders, and syndromes exhibit predictable-in-time diurnal and 24 h patterning in the signs, symptoms, and grave nonfatal and fatal events, e.g., respiratory ones of viral and allergic rhinorrhea, reversible (asthma) and non-reversible (bronchitis and emphysema) chronic obstructive pulmonary disease, cystic fibrosis, high altitude pulmonary edema, and decompression sickness; cardiac ones of atrial premature beats and tachycardia, paroxysmal atrial fibrillation, 3rd degree atrial-ventricular block, paroxysmal supraventricular tachycardia, ventricular premature beats, ventricular tachyarrhythmia, symptomatic and non-symptomatic angina pectoris, Prinzmetal vasospastic variant angina, acute (non-fatal and fatal) incidents of myocardial infarction, sudden cardiac arrest, in-bed sudden death syndrome of type-1 diabetes, acute cardiogenic pulmonary edema, and heart failure; vascular and circulatory system ones of hypertension, acute orthostatic postprandial, micturition, and defecation hypotension/syncope, intermittent claudication, venous insufficiency, standing occupation leg edema, arterial and venous branch occlusion of the eye, menopausal hot flash, sickle cell syndrome, abdominal, aortic, and thoracic dissections, pulmonary thromboembolism, and deep venous thrombosis, and cerebrovascular transient ischemic attack and hemorrhagic and ischemic stroke. Knowledge of these temporal patterns not only helps guide patient care but research of their underlying endogenous mechanisms, i.e., circadian and others, and external triggers plus informs the development and application of effective chronopreventive and chronotherapeutic strategies.
Collapse
Affiliation(s)
- Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, TX 78712-0238, USA.
| | - Francesco Portaluppi
- Hospital S. Anna and Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Manfredini
- Hospital S. Anna and Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ramon C Hermida
- Bioengineering & Chronobiology Laboratories, University of Vigo, Campus Universitario, Vigo, Spain
| | - Ruana Tiseo
- Hospital S. Anna and Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Linda L Sackett-Lundeen
- Department of Laboratory Medicine & Pathology, University of Minnesota, HealthPartners Institute for Education and Research and the Department of Pathology, Regions Hospital, St. Paul, MN, USA
| | - Erhard L Haus
- Department of Laboratory Medicine & Pathology, University of Minnesota, HealthPartners Institute for Education and Research and the Department of Pathology, Regions Hospital, St. Paul, MN, USA
| |
Collapse
|
6
|
Manfredini R, Salmi R, Fabbian F, Manfredini F, Gallerani M, Bossone E. Breaking heart: chronobiologic insights into takotsubo cardiomyopathy. Heart Fail Clin 2013; 9:147-56, vii-viii. [PMID: 23562115 DOI: 10.1016/j.hfc.2012.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A considerable amount of evidence has shown that the major acute cardiovascular diseases, ie, myocardial infarction, sudden cardiac death, stroke, pulmonary embolism, and rupture or dissection of aortic aneurysms do not occur randomly in time, but exhibit specific temporal patterns in their onset, according to time of day, month or season, and day of the week. This contributes to the definition of "chronorisk", where several factors, not harmful if taken alone, are capable of triggering unfavorable events when presenting all together within the same temporal window. This article reviews the actual knowledge about time of onset of takotsubo cardiomyopathy.
Collapse
Affiliation(s)
- Roberto Manfredini
- Clinica Medica, Department of Medicine, General and University Hospital of Ferrara, Via Aldo Moro, 44124 Cona, Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Manfredini R, Fabbian F, Manfredini F, Salmi R, Gallerani M, Bossone E. Chronobiology in aortic diseases - "is this really a random phenomenon?". Prog Cardiovasc Dis 2013; 56:116-24. [PMID: 23993245 DOI: 10.1016/j.pcad.2013.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although acute aortic rupture or dissection is relatively uncommon, it ranks in third position among necropsy-confirmed causes of out-of-hospital sudden death in the general population. Similar to other acute cardiovascular events (e.g., acute myocardial infarction, sudden death, stroke, and pulmonary embolism) there is a growing body of evidence regarding temporal patterns in onset, characterized by circadian, seasonal and weekly variations for aortic aneurysms. On one hand, it is possible that these cardiovascular diseases share common underlying pathophysiologic mechanisms, e.g., increase in blood pressure, heart rate, sympathetic activity, basal vascular tone, vasoconstrictive hormones, and prothrombotic tendency. On the other hand, the possibility exists that the connecting link is an internal disruption (dyssynchrony) of some molecular mechanisms intrinsic to the peripheral biological clock (that of cardiomyocyte is the most widely investigated). Such disruption may contribute to cardiovascular disease and biological rhythms - an intriguing hypothesis for future research.
Collapse
Affiliation(s)
- Roberto Manfredini
- Clinica Medica, Department of Medical Sciences, University of Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Portaluppi F, Smolensky MH, Haus E, Fabbian F. Relevance of Chronobiology to the Research and Clinical Practice of Neurorehabilitation. Sleep Med Clin 2012. [DOI: 10.1016/j.jsmc.2012.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Fabbian F, Smolensky MH, Tiseo R, Pala M, Manfredini R, Portaluppi F. Dipper and non-dipper blood pressure 24-hour patterns: circadian rhythm-dependent physiologic and pathophysiologic mechanisms. Chronobiol Int 2012; 30:17-30. [PMID: 23002916 DOI: 10.3109/07420528.2012.715872] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuroendocrine mechanisms are major determinants of the normal 24-h blood pressure (BP) pattern. At the central level, integration of the major driving factors of this temporal variability is mediated by circadian rhythms of monoaminergic systems in conjunction with those of the hypothalamic-pituitary-adrenal, hypothalamic-pituitary-thyroid, opioid, renin-angiotensin-aldosterone, plus endothelial systems and specific vasoactive peptides. Humoral secretions are typically episodic, coupled either to sleep and/or the circadian endogenous (suprachiasmatic nucleus) central pacemaker clock, but exhibiting also weekly, monthly, seasonal, and annual periodicities. Sleep induction and arousal are influenced also by many hormones and chemical substances that exhibit 24-h variation, e.g., arginine vasopressin, vasoactive intestinal peptide, melatonin, somatotropin, insulin, steroids, serotonin, corticotropin-releasing factor, adrenocorticotropic hormone, thyrotropin-releasing hormone, endogenous opioids, and prostaglandin E2, all with established effects on the cardiovascular system. As a consequence, physical, mental, and pathologic stimuli that activate or inhibit neuroendocrine effectors of biological rhythmicity may also interfere with, or modify, the temporal BP structure. Moreover, immediate adjustment to exogenous components/environment demands by BP rhythms is modulated by the circadian-time-dependent responsiveness of biological oscillators and their neuroendocrine effectors. This knowledge contributes to a better understanding of the pathophysiology of abnormalities of the 24-h BP pattern and level and their correction through circadian rhythm-based chronotherapeutic strategies.
Collapse
Affiliation(s)
- Fabio Fabbian
- Section of Clinica Medica, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Hanak V, Somers VK. Cardiovascular and cerebrovascular physiology in sleep. HANDBOOK OF CLINICAL NEUROLOGY 2011; 98:315-25. [PMID: 21056194 DOI: 10.1016/b978-0-444-52006-7.00019-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Viktor Hanak
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
11
|
Manfredini R, Boari B, Smolensky MH, Salmi R, la Cecilia O, Maria Malagoni A, Haus E, Manfredini F. Circadian Variation in Stroke Onset: Identical Temporal Pattern in Ischemic and Hemorrhagic Events. Chronobiol Int 2009; 22:417-53. [PMID: 16076646 DOI: 10.1081/cbi-200062927] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stroke is the culmination of a heterogeneous group of cerebrovascular diseases that is manifested as ischemia or hemorrhage of one or more blood vessels of the brain. The occurrence of many acute cardiovascular events--such as myocardial infarction, sudden cardiac death, pulmonary embolism, critical limb ischemia, and aortic aneurysm rupture--exhibits prominent 24 h patterning, with a major morning peak and secondary early evening peak. The incidence of stroke exhibits the same 24 h pattern. Although ischemic and hemorrhagic strokes are different entities and are characterized by different pathophysiological mechanisms, they share an identical double-peak 24 h pattern. A constellation of endogenous circadian rhythms and exogenous cyclic factors are involved. The staging of the circadian rhythms in vascular tone, coagulative balance, and blood pressure plus temporal patterns in posture, physical activity, emotional stress, and medication effects play central and/or triggering roles. Features of the circadian rhythm of blood pressure, in terms of their chronic and acute effects on cerebral vessels, and of coagulation are especially important. Clinical medicine has been most concerned with the prevention of stroke in the morning, when population-based studies show it is of greatest risk during the 24 h; however, improved protection of at-risk patients against stroke in the early evening, the second most vulnerable time of cerebrovascular accidents, has received relatively little attention thus far.
Collapse
Affiliation(s)
- Roberto Manfredini
- Vascular Diseases Center, Department of Clinical and Experimental Medicine, University of Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Smolensky MH, Hermida RC, Portaluppi F, Haus E. Twenty-four-hour pattern of angina pectoris, acute myocardial infarction and sudden cardiac death: Role of blood pressure, heart rate and rate-pressure product circadian rhythms. BIOL RHYTHM RES 2007. [DOI: 10.1080/09291010600906166] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
D'Negri CE, Nicola-Siri L, Vigo DE, Girotti LA, Cardinali DP. Circadian analysis of myocardial infarction incidence in an Argentine and Uruguayan population. BMC Cardiovasc Disord 2006; 6:1. [PMID: 16401349 PMCID: PMC1360093 DOI: 10.1186/1471-2261-6-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 01/09/2006] [Indexed: 11/25/2022] Open
Abstract
Background The occurrence of variations in the spectrum of cardiovascular disease between different regions of the world and ethnic groups have been the subject of great interest. This study report the 24-h variation of myocardial infarction (MI) occurrence in patients recruited from CCU located in Argentina and Uruguay. Methods A cohort of 1063 patients admitted to the CCU within 24 h of the onset of symptoms of an acute MI was examined. MI incidence along the day was computed in 1 h-intervals. Results A minimal MI incidence between 03:00 and 07:00 h and the occurrence of a first maximum between 08:00 and 12:00 h and a second maximum between 15:00 and 22:00 h were verified. The best fit curve was a 24 h cosinor (acrophase ~ 19:00 h, accounting for 63 % of variance) together with a symmetrical gaussian bell (maximum at ~ 10:00 h, accounting for 37 % of variance). A similar picture was observed for MI frequencies among different excluding subgroups (older or younger than 70 years; with or without previous symptoms; diabetics or non diabetics; Q wave- or non-Q wave-type MI; anterior or inferior MI location). Proportion between cosinor and gaussian probabilities was maintained among most subgroups except for older patients who had more MI at the afternoon and patients with previous symptoms who were equally distributed among the morning and afternoon maxima. Conclusion The results support the existence of two maxima (at morning and afternoon hours) in MI incidence in the Argentine and Uruguayan population.
Collapse
Affiliation(s)
- Carlos E D'Negri
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Leonardo Nicola-Siri
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
- División de Cardiología, Hospital Ramos Mejía, Buenos Aires, Argentina
- Laboratorio de Bioelectricidad, Escuela de Ingeniería – Bioingeniería, Universidad Nacional de Entre Ríos, Argentina
| | - Daniel E Vigo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Luis A Girotti
- División de Cardiología, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Daniel P Cardinali
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
14
|
Abstract
A particular pattern of circadian variation of cardiovascular and cerebrovascular diseases has been reported in the literature. The circadian periodicity of ischaemic stroke with peak onset in the morning hours may not be a random event and could depend on some underlying precipitating and associated cardiovascular risk factors. In a prospective observational study, we observed that ischaemic stroke onset was significantly higher in late morning hours between 6.00 and 12.00 hours. Ischaemic heart disease and hypertension were significantly associated with the occurrence of late morning ischaemic strokes. Further studies in the future are needed to understand the significance of this association and whether these risk factors are implicated in the pathogenesis of stroke.
Collapse
Affiliation(s)
- A Gupta
- West Wales hospital, Carmarthen, UK.
| | | |
Collapse
|
15
|
Dahm AEA, Iversen PO, Hjeltnes N, Sandset PM. Differences in circadian variations of tissue factor pathway inhibitor type 1 between able-bodied and spinal cord injured. Thromb Res 2005; 118:281-7. [PMID: 16139333 DOI: 10.1016/j.thromres.2005.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/28/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Tissue factor pathway inhibitor type 1 (TFPI) is the physiological inhibitor of the tissue factor pathway of coagulation. TFPI is produced by endothelial cells, and most intravascular TFPI is composed of full-length TFPI associated with the endothelium. Circulating TFPI is mainly truncated and lipoprotein-associated, but a small fraction circulates in a free full-length form. Although hormonal state influences the plasma variation of TFPI between individuals, other factors like temporal variation may be important. Hence, in the current study we aimed at exploring the intra-individual variation with focus on the possible circadian variations of TFPI. MATERIALS AND METHODS TFPI free and total antigen from 8 able-bodied and 6 tetraplegic men were measured at 12 time points during a 24 h period. RESULTS TFPI free antigen in the able-bodied exhibited circadian variation with the highest levels (approximately 20% above mean) from 12:00 to 18:00 h and the lowest levels (approximately 15% below mean) at 09:00 and 02:00 h. In contrast, TFPI free antigen in the tetraplegic group showed no circadian variation. TFPI total antigen exhibited circadian variation in neither group, but mean TFPI total antigen was lower in the tetraplegic group compared with the able-bodied (80 versus 110 ng/mL, respectively). Notably, even if TFPI total antigen in both groups did not vary according to any specific circadian rhythm, the intra-individual variation was higher than the assay variation. CONCLUSION TFPI free antigen exhibited circadian variations in able-bodied, but not in tetraplegic subjects and the able-bodied had higher levels of TFPI total antigen than the tetraplegic group.
Collapse
Affiliation(s)
- Anders E A Dahm
- Department of Haematology, Ullevaal University Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
16
|
Manfredini R, Boari B, Gallerani M, Salmi R, Bossone E, Distante A, Eagle KA, Mehta RH. Chronobiology of rupture and dissection of aortic aneurysms. J Vasc Surg 2004; 40:382-8. [PMID: 15297840 DOI: 10.1016/j.jvs.2004.04.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A growing body of evidence suggests that the occurrence of cardiovascular events is not evenly distributed over time, but shows peculiar temporal patterns that vary with time of day, day of the week, and month (season) of the year. These patterns coincide with the temporal variation in the pathophysiologic mechanisms that trigger cardiovascular events and the physiologic changes in body rhythms. These two factors in combination contribute to the periodicity in susceptibility to acute cardiovascular events. The classic assumption of epidemiologic studies that there is a constancy in risk for disease during the various time domains has now been challenged by the emerging new concept of chronorisk. In the last two decades temporal patterns (circadian, weekly, seasonal) have been identified for several acute cardiovascular diseases, such as acute myocardial infarction, sudden death, pulmonary embolism, and stroke, with peak incidence for most in the morning and during winter. One of the most life-threatening cardiovascular emergencies, aortic aneurysm rupture or dissection, also demonstrates periodicity, characterized by a similar temporal distribution, which suggests a common pathophysiologic mechanism or triggers similar to other cardiovascular acute emergencies. We review the data on chronobiology of acute aortic rupture or dissection, and discuss various pathophysiologic mechanisms that account for this variability. It is likely that identification of consistent recurring patterns in the underlying risk mechanisms could provide potential new insights for more precise diagnosis and efficacious therapeutic intervention.
Collapse
Affiliation(s)
- R Manfredini
- Department of Clinical and Experimental Medicine and Center for Vascular Diseases, Section of Internal Medicine, Gerontology and Geriatrics, University of Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Manfredini R, Boari B, Gallerani M, Portaluppi F, Mehta RH. Regarding "The safety, efficacy and pharmacoeconomics of low-dose alteplase compared with urokinase for catheter-directed thrombolysis of arterial and venous occlusions". J Vasc Surg 2003; 38:411-2. [PMID: 12894792 DOI: 10.1016/s0741-5214(03)00478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Manfredini R, La Cecilia O, Boari B, Steliu J, Michelinidagger V, Carlidagger P, Zanotti C, Bigoni M, Gallerani M. Circadian pattern of emergency calls: implications for ED organization. Am J Emerg Med 2002; 20:282-6. [PMID: 12098172 DOI: 10.1053/ajem.2002.33000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A circadian variation has been shown in the onset of acute medical diseases and we postulate that there is a circadian variation in emergency calls. We reviewed the 20,858 emergency calls addressed to the Emergency Coordinating Unit of the Hospital of Ferrara, Italy, from January 1 to December 31, 1998. Precise determination of the time of calls was available from the recordings. Total calls and subgroups by different diseases were categorized into 24 one-hour increments and analyzed for circadian rhythmicity by applying a partial Fourier series. A circadian variation was found for all subgroups, except for alcoholic intoxication. There was a peak frequency of calls in the morning hours for cardiologic, respiratory, and neurologic disease. There was a peak frequency of calls in the afternoon for trauma, neoplastic diseases, and acute poisoning. Organization of quantity and quality of Emergency Department (ED) staff should take into account the increased demand of specific facilities during certain hours of the day.
Collapse
Affiliation(s)
- Roberto Manfredini
- Department of Clinical and Experimental Medicine, University of Ferrara Medical School, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Manfredini R, Casetta I, Paolino E, la Cecilia O, Boari B, Fallica E, Granieri E. Monday preference in onset of ischemic stroke. Am J Med 2001; 111:401-3. [PMID: 11583644 DOI: 10.1016/s0002-9343(01)00836-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R Manfredini
- Department of Clinical and Experimental Medicine, Section of First Internal Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Manfredini R, Zamboni P. Regarding "chronic venous insufficiency is associated with increased platelet and monocyte activation and aggregation". J Vasc Surg 2000; 32:622. [PMID: 10957675 DOI: 10.1067/mva.2000.108647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|