1
|
Bicaldo IEC, Padilla KSAR, Tu TH, Chen WT, Mendoza-Pascual MU, Vicera CVB, de Leon JR, Poblete KN, Austria ES, Lopez MLD, Kobayashi Y, Shiah FK, Papa RDS, Okuda N, Wang PL, Lin LH. The methane-oxidizing microbial communities of three maar lakes in tropical monsoon Asia. Front Microbiol 2024; 15:1410666. [PMID: 39044952 PMCID: PMC11263035 DOI: 10.3389/fmicb.2024.1410666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Methane-oxidizing bacteria (MOB) is a group of planktonic microorganisms that use methane as their primary source of cellular energy. For tropical lakes in monsoon Asia, there is currently a knowledge gap on MOB community diversity and the factors influencing their abundance. Herewith, we present a preliminary assessment of the MOB communities in three maar lakes in tropical monsoon Asia using Catalyzed Reporter Deposition, Fluorescence In-Situ Hybridization (CARD-FISH), 16S rRNA amplicon sequencing, and pmoA gene sequencing. Correlation analysis between MOB abundances and lakes' physicochemical parameters following seasonal monsoon events were performed to explain observed spatial and temporal patterns in MOB diversity. The CARD-FISH analyses detected the three MOB types (I, II, and NC10) which aligned with the results from 16S rRNA amplicons and pmoA gene sequencing. Among community members based on 16S rRNA genes, Proteobacterial Type I MOB (e.g., Methylococcaceae and Methylomonadaceae), Proteobacterial Type II (Methylocystaceae), Verrucomicrobial (Methylacidiphilaceae), Methylomirabilota/NC10 (Methylomirabilaceae), and archaeal ANME-1a were found to be the dominant methane-oxidizers in three maar lakes. Analysis of microbial diversity and distribution revealed that the community compositions in Lake Yambo vary with the seasons and are more distinct during the stratified period. Temperature, DO, and pH were significantly and inversely linked with type I MOB and Methylomirabilota during stratification. Only MOB type I was influenced by monsoon changes. This research sought to establish a baseline for the diversity and ecology of planktonic MOB in tropical monsoon Asia to better comprehend their contribution to the CH4 cycle in tropical freshwater ecosystems.
Collapse
Affiliation(s)
- Iona Eunice C. Bicaldo
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Karol Sophia Agape R. Padilla
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines
- Department of Science and Technology, Science Education Institute, Taguig, Philippines
| | - Tzu-Hsuan Tu
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wan Ting Chen
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
| | - Milette U. Mendoza-Pascual
- Department of Environmental Science, School of Science and Engineering, Ateneo Research Institute for Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | | | - Justine R. de Leon
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, University of Santo Tomas, Manila, Philippines
| | | | | | - Mark Louie D. Lopez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Yuki Kobayashi
- Center for Ecological Research, Kyoto University, Shiga, Japan
| | - Fuh-Kwo Shiah
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Rey Donne S. Papa
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, University of Santo Tomas, Manila, Philippines
| | - Noboru Okuda
- Center for Ecological Research, Kyoto University, Shiga, Japan
- Research Center for Inland Seas, Kobe University, Kobe, Japan
- Research Institute for Humanity and Nature, Kamigamo Motoyama, Kita Ward, Kyoto, Japan
| | - Pei-Ling Wang
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
| | - Li-Hung Lin
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Samanta D, Rauniyar S, Saxena P, Sani RK. From genome to evolution: investigating type II methylotrophs using a pangenomic analysis. mSystems 2024; 9:e0024824. [PMID: 38695578 PMCID: PMC11237726 DOI: 10.1128/msystems.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024] Open
Abstract
A comprehensive pangenomic approach was employed to analyze the genomes of 75 type II methylotrophs spanning various genera. Our investigation revealed 256 exact core gene families shared by all 75 organisms, emphasizing their crucial role in the survival and adaptability of these organisms. Additionally, we predicted the functionality of 12 hypothetical proteins. The analysis unveiled a diverse array of genes associated with key metabolic pathways, including methane, serine, glyoxylate, and ethylmalonyl-CoA (EMC) metabolic pathways. While all selected organisms possessed essential genes for the serine pathway, Methylooceanibacter marginalis lacked serine hydroxymethyltransferase (SHMT), and Methylobacterium variabile exhibited both isozymes of SHMT, suggesting its potential to utilize a broader range of carbon sources. Notably, Methylobrevis sp. displayed a unique serine-glyoxylate transaminase isozyme not found in other organisms. Only nine organisms featured anaplerotic enzymes (isocitrate lyase and malate synthase) for the glyoxylate pathway, with the rest following the EMC pathway. Methylovirgula sp. 4MZ18 stood out by acquiring genes from both glyoxylate and EMC pathways, and Methylocapsa sp. S129 featured an A-form malate synthase, unlike the G-form found in the remaining organisms. Our findings also revealed distinct phylogenetic relationships and clustering patterns among type II methylotrophs, leading to the proposal of a separate genus for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129. This pangenomic study unveils remarkable metabolic diversity, unique gene characteristics, and distinct clustering patterns of type II methylotrophs, providing valuable insights for future carbon sequestration and biotechnological applications. IMPORTANCE Methylotrophs have played a significant role in methane-based product production for many years. However, a comprehensive investigation into the diverse genetic architectures across different genera of methylotrophs has been lacking. This study fills this knowledge gap by enhancing our understanding of core hypothetical proteins and unique enzymes involved in methane oxidation, serine, glyoxylate, and ethylmalonyl-CoA pathways. These findings provide a valuable reference for researchers working with other methylotrophic species. Furthermore, this study not only unveils distinctive gene characteristics and phylogenetic relationships but also suggests a reclassification for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129 into separate genera due to their unique attributes within their respective genus. Leveraging the synergies among various methylotrophic organisms, the scientific community can potentially optimize metabolite production, increasing the yield of desired end products and overall productivity.
Collapse
Affiliation(s)
- Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
3
|
Speijer D. How mitochondrial cristae illuminate the important role of oxygen during eukaryogenesis. Bioessays 2024; 46:e2300193. [PMID: 38449346 DOI: 10.1002/bies.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Inner membranes of mitochondria are extensively folded, forming cristae. The observed overall correlation between efficient eukaryotic ATP generation and the area of internal mitochondrial inner membranes both in unicellular organisms and metazoan tissues seems to explain why they evolved. However, the crucial use of molecular oxygen (O2) as final acceptor of the electron transport chain is still not sufficiently appreciated. O2 was an essential prerequisite for cristae development during early eukaryogenesis and could be the factor allowing cristae retention upon loss of mitochondrial ATP generation. Here I analyze illuminating bacterial and unicellular eukaryotic examples. I also discuss formative influences of intracellular O2 consumption on the evolution of the last eukaryotic common ancestor (LECA). These considerations bring about an explanation for the many genes coming from other organisms than the archaeon and bacterium merging at the start of eukaryogenesis.
Collapse
Affiliation(s)
- Dave Speijer
- Medical Biochemistry, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Pearce D, Brooks E, Wright C, Rankin D, Crombie AT, Murrell JC. Complete genome sequences of Methylococcus capsulatus (Norfolk) and Methylocaldum szegediense (Norfolk) isolated from a landfill methane biofilter. Microbiol Resour Announc 2024; 13:e0067523. [PMID: 38236040 PMCID: PMC10868220 DOI: 10.1128/mra.00675-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
Here we report the complete genome sequence of two moderately thermophilic methanotrophs isolated from a landfill methane biofilter, Methylococcus capsulatus (Norfolk) and Methylocaldum szegediense (Norfolk).
Collapse
Affiliation(s)
- David Pearce
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Elliot Brooks
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | | | | | - Andrew T. Crombie
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
5
|
Lim J, Wehmeyer H, Heffner T, Aeppli M, Gu W, Kim PJ, Horn MA, Ho A. Resilience of aerobic methanotrophs in soils; spotlight on the methane sink under agriculture. FEMS Microbiol Ecol 2024; 100:fiae008. [PMID: 38327184 PMCID: PMC10872700 DOI: 10.1093/femsec/fiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024] Open
Abstract
Aerobic methanotrophs are a specialized microbial group, catalyzing the oxidation of methane. Disturbance-induced loss of methanotroph diversity/abundance, thus results in the loss of this biological methane sink. Here, we synthesized and conceptualized the resilience of the methanotrophs to sporadic, recurring, and compounded disturbances in soils. The methanotrophs showed remarkable resilience to sporadic disturbances, recovering in activity and population size. However, activity was severely compromised when disturbance persisted or reoccurred at increasing frequency, and was significantly impaired following change in land use. Next, we consolidated the impact of agricultural practices after land conversion on the soil methane sink. The effects of key interventions (tillage, organic matter input, and cover cropping) where much knowledge has been gathered were considered. Pairwise comparisons of these interventions to nontreated agricultural soils indicate that the agriculture-induced impact on the methane sink depends on the cropping system, which can be associated to the physiology of the methanotrophs. The impact of agriculture is more evident in upland soils, where the methanotrophs play a more prominent role than the methanogens in modulating overall methane flux. Although resilient to sporadic disturbances, the methanotrophs are vulnerable to compounded disturbances induced by anthropogenic activities, significantly affecting the methane sink function.
Collapse
Affiliation(s)
- Jiyeon Lim
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Helena Wehmeyer
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Tanja Heffner
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Meret Aeppli
- Environmental Engineering Institute IIE-ENAC, Laboratory SOIL, Ecole Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, CH 1950 Sion, Switzerland
| | - Wenyu Gu
- Environmental Engineering Institute IIE-ENAC, Laboratory MICROBE, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Pil Joo Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Marcus A Horn
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Adrian Ho
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| |
Collapse
|
6
|
Boden R. In memoriam: Prof Yuri Alexandrovich Trotsenko (1941-2021). FEMS Microbiol Lett 2024; 371:fnae024. [PMID: 38676918 DOI: 10.1093/femsle/fnae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Affiliation(s)
- Rich Boden
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Marine Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Editor-In-Chief, FEMS Microbiology Letters, Delftechpark 37a, Delft 2628 XJ, Netherlands
| |
Collapse
|
7
|
Zhu X, Deng Y, Liu Y. Methylocystis dominates methane oxidation in glacier foreland soil at elevated temperature. FEMS Microbiol Lett 2024; 371:fnae011. [PMID: 38366911 DOI: 10.1093/femsle/fnae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Methane-oxidizing bacteria (methanotrophs) play an important role in mitigating methane emissions in various ecological environments, including cold regions. However, the response of methanotrophs in these cold environments to extreme temperatures above the in-situ temperature has not been thoroughly explored. Therefore, this study collected soil samples from Longxiazailongba (LXZ) and Qiangyong (QY) glacier forelands and incubated them with 13CH4 at 35°C under different soil water conditions. The active methanotroph populations were identified using DNA stable isotope probing (DNA-SIP) and high throughput sequencing techniques. The results showed that the methane oxidation potential in LXZ and QY glacier foreland soils was significantly enhanced at an unusually high temperature of 35°C during microcosm incubations, where abundant substrate (methane and oxygen) was provided. Moreover, the influence of soil water conditions on this potential was observed. Interestingly, Methylocystis, a type II and mesophilic methanotroph, was detected in the unincubated in-situ soil samples and became the active and dominant methanotroph in methane oxidation at 35°C. This suggests that Methylocystis can survive at low temperatures for a prolonged period and thrive under suitable growth conditions. Furthermore, the presence of mesophilic methanotrophs in cold habitats could have potential implications for reducing greenhouse gas emissions in warming glacial environments.
Collapse
Affiliation(s)
- Xinshu Zhu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Wang F, Zhang S, Hu X, Lv X, Liu M, Ma Y, Manirakiza B. Floating plants reduced methane fluxes from wetlands by creating a habitat conducive to methane oxidation. J Environ Sci (China) 2024; 135:149-160. [PMID: 37778791 DOI: 10.1016/j.jes.2023.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 10/03/2023]
Abstract
Wetlands are one of the important natural sources of atmospheric methane (CH4), as an important part of wetlands, floating plants can be expected to affect methane release. However, the effects of floating plants on methane release are limited. In this study, methane fluxes, physiochemical properties of the overlying water, methane oxidation potential and rhizospheric bacterial community were investigated in simulated wetlands with floating plants Eichhornia crassipes, Hydrocharis dubia, and Trapa natans. We found that E. crassipes, H. dubia, and T. natans plants could inhibit 84.31% - 97.31%, 4.98% - 88.91% and 43.62% - 92.51% of methane fluxes at interface of water-atmosphere compared to Control, respectively. Methane fluxes were negatively related to nutrients concentration in water column but positively related to the aerenchyma proportions of roots, stems, and leaves. At the same biomass, root of E. crassipes (36.44%) had the highest methane oxidation potential, followed by H. dubia (12.99%) and T. natans (11.23%). Forty-five bacterial phyla in total were identified on roots of three plants and 7 bacterial genera (2.10% - 3.33%) were known methanotrophs. Type I methanotrophs accounted for 95.07% of total methanotrophs. The pmoA gene abundances ranged from 1.90 × 1016 to 2.30 × 1018 copies/g fresh weight of root biofilms. Abundances of pmoA gene was significantly positively correlated with environmental parameters. Methylotrophy (5.40%) and methanotrophy (3.75%) function were closely related to methane oxidation. This study highlights that floating plant restoration can purify water and promote carbon neutrality partially by reducing methane fluxes through methane oxidation in wetlands.
Collapse
Affiliation(s)
- Fuwei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Xiuren Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xin Lv
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; China Machinery International Engineering Desigh and Research Institute co., Ltd. East China Regional Center, Nanjing 210008, China
| | - Yu Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | | |
Collapse
|
9
|
Wang Y, Wu M, Lai CY, Lu X, Guo J. Methane Oxidation Coupled to Selenate Reduction in a Membrane Bioreactor under Oxygen-Limiting Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21715-21726. [PMID: 38079577 DOI: 10.1021/acs.est.3c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Microbial methane oxidation coupled to a selenate reduction process has been proposed as a promising solution to treat contaminated water, yet the underlying microbial mechanisms are still unclear. In this study, a novel methane-based membrane bioreactor system integrating hollow fiber membranes for efficient gas delivery and ultrafiltration membranes for biomass retention was established to successfully enrich abundant suspended cultures able to perform methane-dependent selenate reduction under oxygen-limiting conditions. The microbial metabolic mechanisms were then systematically investigated through a combination of short-term batch tests, DNA-based stable isotope probing (SIP) microcosm incubation, and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA and narG). We confirmed that the methane-supported selenate reduction process was accomplished by a microbial consortia consisting of type-II aerobic methanotrophs and several heterotrophic selenate reducers. The mass balance and validation tests on possible intermediates suggested that methane was partially oxidized into acetate under oxygen-limiting conditions, which was consumed as a carbon source for selenate-reducing bacteria. High-throughput 16S rRNA gene sequencing, DNA-SIP incubation with 13CH4, and subsequent functional gene (pmoA and narG) sequencing results collectively proved that Methylocystis actively executed partial methane oxidation and Acidovorax and Denitratisoma were dominant selenate-reducing bacteria, thus forming a syntrophic partnership to drive selenate reduction. The findings not only advance our understanding of methane oxidation coupled to selenate reduction under oxygen-limiting conditions but also offer useful information on developing methane-based biotechnology for bioremediation of selenate-contaminated water.
Collapse
Affiliation(s)
- Yulu Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xuanyu Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
10
|
Danilova OV, Oshkin IY, Belova SE, Miroshnikov KK, Ivanova AA, Dedysh SN. One Step Closer to Enigmatic USCα Methanotrophs: Isolation of a Methylocapsa-like Bacterium from a Subarctic Soil. Microorganisms 2023; 11:2800. [PMID: 38004811 PMCID: PMC10672854 DOI: 10.3390/microorganisms11112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The scavenging of atmospheric trace gases has been recognized as one of the lifestyle-defining capabilities of microorganisms in terrestrial polar ecosystems. Several metagenome-assembled genomes of as-yet-uncultivated methanotrophic bacteria, which consume atmospheric CH4 in these ecosystems, have been retrieved in cultivation-independent studies. In this study, we isolated and characterized a representative of these methanotrophs, strain D3K7, from a subarctic soil of northern Russia. Strain D3K7 grows on methane and methanol in a wide range of temperatures, between 5 and 30 °C. Weak growth was also observed on acetate. The presence of acetate in the culture medium stimulated growth at low CH4 concentrations (~100 p.p.m.v.). The finished genome sequence of strain D3K7 is 4.15 Mb in size and contains about 3700 protein-encoding genes. According to the result of phylogenomic analysis, this bacterium forms a common clade with metagenome-assembled genomes obtained from the active layer of a permafrost thaw gradient in Stordalen Mire, Abisco, Sweden, and the mineral cryosol at Axel Heiberg Island in the Canadian High Arctic. This clade occupies a phylogenetic position in between characterized Methylocapsa methanotrophs and representatives of the as-yet-uncultivated upland soil cluster alpha (USCα). As shown by the global distribution analysis, D3K7-like methanotrophs are not restricted to polar habitats but inhabit peatlands and soils of various climatic zones.
Collapse
Affiliation(s)
| | | | | | | | | | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave. 33/2, Moscow 119071, Russia; (O.V.D.); (I.Y.O.); (S.E.B.); (A.A.I.)
| |
Collapse
|
11
|
Melnikov OI, Mustakhimov II, Reshetnikov AS, Molchanov MV, Machulin AV, Khmelenina VN, Rozova ON. Interchangeability of class I and II fumarases in an obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z. PLoS One 2023; 18:e0289976. [PMID: 37883386 PMCID: PMC10602362 DOI: 10.1371/journal.pone.0289976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/29/2023] [Indexed: 10/28/2023] Open
Abstract
The methanotrophic bacterium Methylotuvimicrobium alcaliphilum 20Z is an industrially promising candidate for bioconversion of methane into value-added chemicals. Here, we have study the metabolic consequences of the breaking in the tricarboxylic acid (TCA) cycle by fumarase knockout. Two fumarases belonging to non-homologous class I and II fumarases were obtained from the bacterium by heterologous expression in Escherichia coli. Class I fumarase (FumI) is a homodimeric enzyme catalyzing the reversible hydration of fumarate and mesaconate with activities of ~94 and ~81 U mg-1 protein, respectively. The enzyme exhibited high activity under aerobic conditions, which is a non-typical property for class I fumarases characterized to date. The calculation of kcat/S0.5 showed that the enzyme works effectively with either fumarate or mesaconate, but it is almost four times less specific to malate. Class II fumarase (FumC) has a tetrameric structure and equal activities of both fumarate hydration and malate dehydration (~45 U mg-1 protein). Using mutational analysis, it was shown that both forms of the enzyme are functionally interchangeable. The triple mutant strain 20Z-3E (ΔfumIΔfumCΔmae) deficient in the genes encoding the both fumarases and the malic enzyme accumulated 2.6 and 1.1 mmol g-1 DCW fumarate in the medium when growing on methane and methanol, respectively. Our data suggest the redundancy of the metabolic node in the TCA cycle making methanotroph attractive targets for modification, including generation of strains producing the valuable metabolites.
Collapse
Affiliation(s)
- Oleg I. Melnikov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Ildar I. Mustakhimov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexander S. Reshetnikov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Maxim V. Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Andrey V. Machulin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Valentina N. Khmelenina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Olga N. Rozova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
12
|
Stein LY. Microbial methane munchers offer a shield from the scorch. Proc Natl Acad Sci U S A 2023; 120:e2313579120. [PMID: 37708161 PMCID: PMC10523581 DOI: 10.1073/pnas.2313579120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Affiliation(s)
- Lisa Y. Stein
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| |
Collapse
|
13
|
Tikhonova EN, Suleimanov RZ, Oshkin IY, Konopkin AA, Fedoruk DV, Pimenov NV, Dedysh SN. Growing in Saltwater: Biotechnological Potential of Novel Methylotuvimicrobium- and Methylomarinum-like Methanotrophic Bacteria. Microorganisms 2023; 11:2257. [PMID: 37764101 PMCID: PMC10538026 DOI: 10.3390/microorganisms11092257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Methanotrophic bacteria that possess a unique ability of using methane as a sole source of carbon and energy have attracted considerable attention as potential producers of a single-cell protein. So far, this biotechnology implied using freshwater methanotrophs, although many regions of the world have limited freshwater resources. This study aimed at searching for novel methanotrophs capable of fast growth in saltwater comparable in composition with seawater. A methane-oxidizing microbial consortium containing Methylomarinum- and Methylotuvimicrobium-like methanotrophs was enriched from sediment from the river Chernavka (water pH 7.5, total salt content 30 g L-1), a tributary river of the hypersaline Lake Elton, southern Russia. This microbial consortium, designated Ch1, demonstrated stable growth on natural gas in a bioreactor in media with a total salt content of 23 to 35.9 g L-1 at a dilution rate of 0.19-0.21 h-1. The highest biomass yield of 5.8 g cell dry weight (CDW)/L with a protein content of 63% was obtained during continuous cultivation of the consortium Ch1 in a medium with a total salt content of 29 g L-1. Isolation attempts resulted in obtaining a pure culture of methanotrophic bacteria, strain Ch1-1. The 16S rRNA gene sequence of strain Ch1-1 displayed 97.09-97.24% similarity to the corresponding gene fragments of characterized representatives of Methylomarinum vadi, methanotrophs isolated from marine habitats. The genome of strain Ch1-1 was 4.8 Mb in size and encoded 3 rRNA operons, and about 4400 proteins. The genome contained the gene cluster coding for ectoine biosynthesis, which explains the ability of strain Ch1-1 to tolerate high salt concentration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (E.N.T.); (R.Z.S.); (I.Y.O.); (A.A.K.); (D.V.F.); (N.V.P.)
| |
Collapse
|
14
|
Weng C, Peng X, Han Y. From methane to value-added bioproducts: microbial metabolism, enzymes, and metabolic engineering. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:119-146. [PMID: 37597946 DOI: 10.1016/bs.aambs.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.
Collapse
Affiliation(s)
- Caihong Weng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
15
|
Guo K, Glatter T, Paczia N, Liesack W. Asparagine Uptake: a Cellular Strategy of Methylocystis to Combat Severe Salt Stress. Appl Environ Microbiol 2023; 89:e0011323. [PMID: 37184406 PMCID: PMC10305061 DOI: 10.1128/aem.00113-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Methylocystis spp. are known to have a low salt tolerance (≤1.0% NaCl). Therefore, we tested various amino acids and other well-known osmolytes for their potential to act as an osmoprotectant under otherwise growth-inhibiting NaCl conditions. Adjustment of the medium to 10 mM asparagine had the greatest osmoprotective effect under severe salinity (1.50% NaCl), leading to partial growth recovery of strain SC2. The intracellular concentration of asparagine increased to 264 ± 57 mM, with a certain portion hydrolyzed to aspartate (4.20 ± 1.41 mM). In addition to general and oxidative stress responses, the uptake of asparagine specifically induced major proteome rearrangements related to the KEGG level 3 categories of "methane metabolism," "pyruvate metabolism," "amino acid turnover," and "cell division." In particular, various proteins involved in cell division (e.g., ChpT, CtrA, PleC, FtsA, FtsH1) and peptidoglycan synthesis showed a positive expression response. Asparagine-derived 13C-carbon was incorporated into nearly all amino acids. Both the exometabolome and the 13C-labeling pattern suggest that in addition to aspartate, the amino acids glutamate, glycine, serine, and alanine, but also pyruvate and malate, were most crucially involved in the osmoprotective effect of asparagine, with glutamate being a major hub between the central carbon and amino acid pathways. In summary, asparagine induced significant proteome rearrangements, leading to major changes in central metabolic pathway activity and the sizes of free amino acid pools. In consequence, asparagine acted, in part, as a carbon source for the growth recovery of strain SC2 under severe salinity. IMPORTANCE Methylocystis spp. play a major role in reducing methane emissions into the atmosphere from methanogenic wetlands. In addition, they contribute to atmospheric methane oxidation in upland soils. Although these bacteria are typical soil inhabitants, Methylocystis spp. are thought to have limited capacity to acclimate to salt stress. This called for a thorough study into potential osmoprotectants, which revealed asparagine as the most promising candidate. Intriguingly, asparagine was taken up quantitatively and acted, at least in part, as an intracellular carbon source under severe salt stress. The effect of asparagine as an osmoprotectant for Methylocystis spp. is an unexpected finding. It may provide Methylocystis spp. with an ecological advantage in wetlands, where these methanotrophs colonize the roots of submerged vascular plants. Collectively, our study offers a new avenue into research on compounds that may increase the resilience of Methylocystis spp. to environmental change.
Collapse
Affiliation(s)
- Kangli Guo
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
16
|
Heffner T, Brami SA, Mendes LW, Kaupper T, Hannula ES, Poehlein A, Horn MA, Ho A. Interkingdom interaction: the soil isopod Porcellio scaber stimulates the methane-driven bacterial and fungal interaction. ISME COMMUNICATIONS 2023; 3:62. [PMID: 37355679 PMCID: PMC10290665 DOI: 10.1038/s43705-023-00271-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Porcellio scaber (woodlice) are (sub-)surface-dwelling isopods, widely recognized as "soil bioengineers", modifying the edaphic properties of their habitat, and affecting carbon and nitrogen mineralization that leads to greenhouse gas emissions. Yet, the impact of soil isopods on methane-cycling processes remains unknown. Using P. scaber as a model macroinvertebrate in a microcosm study, we determined how the isopod influences methane uptake and the associated interaction network in an agricultural soil. Stable isotope probing (SIP) with 13C-methane was combined to a co-occurrence network analysis to directly link activity to the methane-oxidizing community (bacteria and fungus) involved in the trophic interaction. Compared to microcosms without the isopod, P. scaber significantly induced methane uptake, associated to a more complex bacteria-bacteria and bacteria-fungi interaction, and modified the soil nutritional status. Interestingly, 13C was transferred via the methanotrophs into the fungi, concomitant to significantly higher fungal abundance in the P. scaber-impacted soil, indicating that the fungal community utilized methane-derived substrates in the food web along with bacteria. Taken together, results showed the relevance of P. scaber in modulating methanotrophic activity with implications for bacteria-fungus interaction.
Collapse
Affiliation(s)
- Tanja Heffner
- Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Semi A Brami
- Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Lucas W Mendes
- University of São Paulo CENA-USP, Center for Nuclear Energy in Agriculture, Avenida Centenario, 303, 13416-000, Piracicaba (SP), Brazil
| | - Thomas Kaupper
- Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Emilia S Hannula
- Leiden University, Department of Environmental Biology, Institute of Environmental Sciences, Einsteinweg 2, 2333CC, Leiden, the Netherlands
| | - Anja Poehlein
- Georg-August University Göttingen, Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Marcus A Horn
- Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Adrian Ho
- Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| |
Collapse
|
17
|
Xu J, Wang J, Ma C, Wei Z, Zhai Y, Tian N, Zhu Z, Xue M, Li D. Embracing a low-carbon future by the production and marketing of C1 gas protein. Biotechnol Adv 2023; 63:108096. [PMID: 36621726 DOI: 10.1016/j.biotechadv.2023.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Food scarcity and environmental deterioration are two major problems that human populations currently face. Fortunately, the disruptive innovation of raw food materials has been stimulated by the rapid evolution of biomanufacturing. Therefore, it is expected that the new trends in technology will not only alter the natural resource-dependent food production systems and the traditional way of life but also reduce and assimilate the greenhouse gases released into the atmosphere. This review article summarizes the metabolic pathways associated with C1 gas conversion and the production of single-cell protein for animal feed. Moreover, the protein function, worldwide authorization, market access, and methods to overcome challenges in C1 gas assimilation microbial cell factory construction are also provided. With widespread attention and increasing policy support, the production of C1 gas protein will bring more opportunities and make tremendous contributions to our sustainable future.
Collapse
Affiliation(s)
- Jian Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Jie Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Haihe Laboratory of Synthetic Biology, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zuoxi Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Yida Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Na Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Min Xue
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China.
| |
Collapse
|
18
|
Yao X, Wang J, Hu B. How methanotrophs respond to pH: A review of ecophysiology. Front Microbiol 2023; 13:1034164. [PMID: 36687570 PMCID: PMC9853399 DOI: 10.3389/fmicb.2022.1034164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/09/2022] [Indexed: 01/08/2023] Open
Abstract
Varying pH globally affects terrestrial microbial communities and biochemical cycles. Methanotrophs effectively mitigate methane fluxes in terrestrial habitats. Many methanotrophs grow optimally at neutral pH. However, recent discoveries show that methanotrophs grow in strongly acidic and alkaline environments. Here, we summarize the existing knowledge on the ecophysiology of methanotrophs under different pH conditions. The distribution pattern of diverse subgroups is described with respect to their relationship with pH. In addition, their responses to pH stress, consisting of structure-function traits and substrate affinity traits, are reviewed. Furthermore, we propose a putative energy trade-off model aiming at shedding light on the adaptation mechanisms of methanotrophs from a novel perspective. Finally, we take an outlook on methanotrophs' ecophysiology affected by pH, which would offer new insights into the methane cycle and global climate change.
Collapse
Affiliation(s)
- Xiangwu Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China,Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China,*Correspondence: Baolan Hu ✉
| |
Collapse
|
19
|
Guo X, Lai CY, Hartmann EM, Zhao HP. Heterotrophic denitrification: An overlooked factor that contributes to nitrogen removal in n-DAMO mixed culture. ENVIRONMENTAL RESEARCH 2023; 216:114802. [PMID: 36375502 DOI: 10.1016/j.envres.2022.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been recognized as a sustainable process for simultaneous removal of nitrogen and methane. The metabolisms of denitrifying anaerobic methanotrophs, including Candidatus Methanoperedens and Candidatus Methylomirabilis, have been well studied. However, potential roles of heterotrophs co-existing with these anaerobic methanotrophs are generally overlooked. In this study, we pulse-fed methane and nitrate into an anaerobic laboratory sequencing batch bioreactor and enriched a mixed culture with stable nitrate removal rate (NRR) of ∼28 mg NO3--N L-1 d-1. Microbial community analysis indicates abundant heterotrophs, e.g., Arenimonas (5.3%-18.9%) and Fimbriimonadales ATM1 (6.4%), were enriched together with denitrifying anaerobic methanotrophs Ca. Methanoperedens (10.8%-13.2%) and Ca. Methylomirabilis (27.4%-34.3%). The results of metagenomics and batch tests suggested that the denitrifying anaerobic methanotrophs were capable of generating methane-derived intermediates (i.e., formate and acetate), which were employed by non-methanotrophic heterotrophs for denitrification and biomass growth. These findings offer new insights into the roles of heterotrophs in n-DAMO mixed culture, which may help to optimize n-DAMO process for nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Xu Guo
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, IL, 60208, USA
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Khmelenina VN, But SY, Rozova ON, Oshkin IY, Pimenov NV, Dedysh SN. Genome Editing in Methanotrophic Bacteria: Potential Targets and Available Tools. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
21
|
Steinsdóttir HGR, Schauberger C, Mhatre S, Thamdrup B, Bristow LA. Aerobic and anaerobic methane oxidation in a seasonally anoxic basin. LIMNOLOGY AND OCEANOGRAPHY 2022; 67:1257-1273. [PMID: 36248250 PMCID: PMC9540798 DOI: 10.1002/lno.12074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 06/16/2023]
Abstract
Shallow coastal waters are dynamic environments that dominate global marine methane emissions. Particularly high methane concentrations are found in seasonally anoxic waters, which are spreading in eutrophic coastal systems, potentially leading to increased methane emissions to the atmosphere. Here we explore how the seasonal development of anoxia influenced methane concentrations, rates of methane oxidation, and the community composition of methanotrophs in the shallow eutrophic water column of Mariager Fjord, Denmark. Our results show the development of steep concentration gradients toward the oxic-anoxic interface as methane accumulated to 1.4 μM in anoxic bottom waters. Yet, the fjord possessed an efficient microbial methane filter near the oxic-anoxic interface that responded to the increasing methane flux. In experimental incubations, methane oxidation near the oxic-anoxic interface proceeded both aerobically and anaerobically with nearly equal efficiency reaching turnover rates as high as 0.6 and 0.8 d-1, respectively, and was seemingly mediated by members of the Methylococcales belonging to the Deep Sea-1 clade. Throughout the period, both aerobic and anaerobic methane oxidation rates were high enough to consume the estimated methane flux. Thus, our results indicate that seasonal anoxia did not increase methane emissions.
Collapse
Affiliation(s)
| | | | - Snehit Mhatre
- Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Bo Thamdrup
- Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Laura A. Bristow
- Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
22
|
Mahor D, Cong Z, Weissenborn MJ, Hollmann F, Zhang W. Valorization of Small Alkanes by Biocatalytic Oxyfunctionalization. CHEMSUSCHEM 2022; 15:e202101116. [PMID: 34288540 DOI: 10.1002/cssc.202101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of alkanes into valuable chemical products is a vital reaction in organic synthesis. This reaction, however, is challenging, owing to the inertness of C-H bonds. Transition metal catalysts for C-H functionalization are frequently explored. Despite chemical alternatives, nature has also evolved powerful oxidative enzymes (e. g., methane monooxygenases, cytochrome P450 oxygenases, peroxygenases) that are capable of transforming C-H bonds under very mild conditions, with only the use of molecular oxygen or hydrogen peroxide as electron acceptors. Although progress in alkane oxidation has been reviewed extensively, little attention has been paid to small alkane oxidation. The latter holds great potential for the manufacture of chemicals. This Minireview provides a concise overview of the most relevant enzyme classes capable of small alkanes (C<6 ) oxyfunctionalization, describes the essentials of the catalytic mechanisms, and critically outlines the current state-of-the-art in preparative applications.
Collapse
Affiliation(s)
- Durga Mahor
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Indian Institute of Science Education and Research Berhampur, Odisha, 760010, India
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Martin J Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale), Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
23
|
Cai Y, Yun J, Jia Z. Phylogeny and Metabolic Potential of the Methanotrophic Lineage MO3 in Beijerinckiaceae from the Paddy Soil through Metagenome-Assembled Genome Reconstruction. Microorganisms 2022; 10:microorganisms10050955. [PMID: 35630399 PMCID: PMC9145241 DOI: 10.3390/microorganisms10050955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Although the study of aerobic methane-oxidizing bacteria (MOB, methanotrophs) has been carried out for more than a hundred years, there are many uncultivated methanotrophic lineages whose metabolism is largely unknown. Here, we reconstructed a nearly complete genome of a Beijerinckiaceae methanotroph from the enrichment of paddy soil by using nitrogen-free M2 medium. The methanotroph labeled as MO3_YZ.1 had a size of 3.83 Mb, GC content of 65.6%, and 3442 gene-coding regions. Based on phylogeny of pmoA gene and genome and the genomic average nucleotide identity, we confirmed its affiliation to the MO3 lineage and a close relationship to Methylocapsa. MO3_YZ.1 contained mxaF- and xoxF-type methanol dehydrogenase. MO3_YZ.1 used the serine cycle to assimilate carbon and regenerated glyoxylate through the glyoxylate shunt as it contained isocitrate lyase and complete tricarboxylic acid cycle-coding genes. The ethylmalonyl-CoA pathway and Calvin–Benson–Bassham cycle were incomplete in MO3_YZ.1. Three acetate utilization enzyme-coding genes were identified, suggesting its potential ability to utilize acetate. The presence of genes for N2 fixation, sulfur transformation, and poly-β-hydroxybutyrate synthesis enable its survival in heterogeneous habitats with fluctuating supplies of carbon, nitrogen, and sulfur.
Collapse
Affiliation(s)
- Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Correspondence: (Y.C.); (Z.J.); Tel.: +86-25-8688-1850 (Y.C.); +86-25-8688-1311 (Z.J.)
| | - Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Correspondence: (Y.C.); (Z.J.); Tel.: +86-25-8688-1850 (Y.C.); +86-25-8688-1311 (Z.J.)
| |
Collapse
|
24
|
Kaupper T, Mendes LW, Poehlein A, Frohloff D, Rohrbach S, Horn MA, Ho A. The methane-driven interaction network in terrestrial methane hotspots. ENVIRONMENTAL MICROBIOME 2022; 17:15. [PMID: 35382875 PMCID: PMC8981696 DOI: 10.1186/s40793-022-00409-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Biological interaction affects diverse facets of microbial life by modulating the activity, diversity, abundance, and composition of microbial communities. Aerobic methane oxidation is a community function, with emergent community traits arising from the interaction of the methane-oxidizers (methanotrophs) and non-methanotrophs. Yet little is known of the spatial and temporal organization of these interaction networks in naturally-occurring complex communities. We hypothesized that the assembled bacterial community of the interaction network in methane hotspots would converge, driven by high substrate availability that favors specific methanotrophs, and in turn influences the recruitment of non-methanotrophs. These environments would also share more co-occurring than site-specific taxa. RESULTS We applied stable isotope probing (SIP) using 13C-CH4 coupled to a co-occurrence network analysis to probe trophic interactions in widespread methane-emitting environments, and over time. Network analysis revealed predominantly unique co-occurring taxa from different environments, indicating distinctly co-evolved communities more strongly influenced by other parameters than high methane availability. Also, results showed a narrower network topology range over time than between environments. Co-occurrence pattern points to Chthoniobacter as a relevant yet-unrecognized interacting partner particularly of the gammaproteobacterial methanotrophs, deserving future attention. In almost all instances, the networks derived from the 13C-CH4 incubation exhibited a less connected and complex topology than the networks derived from the unlabelledC-CH4 incubations, likely attributable to the exclusion of the inactive microbial population and spurious connections; DNA-based networks (without SIP) may thus overestimate the methane-dependent network complexity. CONCLUSION We demonstrated that site-specific environmental parameters more strongly shaped the co-occurrence of bacterial taxa than substrate availability. Given that members of the interactome without the capacity to oxidize methane can exert interaction-induced effects on community function, understanding the co-occurrence pattern of the methane-driven interaction network is key to elucidating community function, which goes beyond relating activity to community composition, abundances, and diversity. More generally, we provide a methodological strategy that substantiates the ecological linkages between potentially interacting microorganisms with broad applications to elucidate the role of microbial interaction in community function.
Collapse
Affiliation(s)
- Thomas Kaupper
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Lucas W Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo CENA-USP, Piracicaba, SP, Brazil
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, George-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Daria Frohloff
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Stephan Rohrbach
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Marcus A Horn
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Adrian Ho
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| |
Collapse
|
25
|
Roldán DM, Carrizo D, Sánchez-García L, Menes RJ. Diversity and Effect of Increasing Temperature on the Activity of Methanotrophs in Sediments of Fildes Peninsula Freshwater Lakes, King George Island, Antarctica. Front Microbiol 2022; 13:822552. [PMID: 35369426 PMCID: PMC8969513 DOI: 10.3389/fmicb.2022.822552] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Global warming has a strong impact on polar regions. Particularly, the Antarctic Peninsula and nearby islands have experienced a marked warming trend in the past 50 years. Therefore, higher methane (CH4) emissions from this area could be expected in the future. Since mitigation of these emissions can be carried out by microbial oxidation, understanding this biological process is crucial since to our knowledge, no related studies have been performed in this area before. In this work, the aerobic CH4 oxidation potential of five freshwater lake sediments of Fildes Peninsula (King George Island, South Shetland Islands) was determined with values from 0.07 to 10 μmol CH4 gdw–1 day–1 and revealed up to 100-fold increase in temperature gradients (5, 10, 15, and 20°C). The structure and diversity of the bacterial community in the sediments were analyzed by next-generation sequencing (Illumina MiSeq) of 16S rRNA and pmoA genes. A total of 4,836 ASVs were identified being Proteobacteria, Actinobacteriota, Acidobacteriota, and Bacteroidota the most abundant phyla. The analysis of the pmoA gene identified 200 ASVs of methanotrophs, being Methylobacter Clade 2 (Type I, family Methylococcaceae) the main responsible of the aerobic CH4 oxidation. Moreover, both approaches revealed the presence of methanotrophs of the classes Gammaproteobacteria (families Methylococcaceae and Crenotrichaceae), Alphaproteobacteria (family Methylocystaceae), Verrucomicrobia (family Methylacidiphilaceae), and the candidate phylum of anaerobic methanotrophs Methylomirabilota. In addition, bacterial phospholipid fatty acids (PLFA) biomarkers were studied as a proxy for aerobic methane-oxidizing bacteria and confirmed these results. Methanotrophic bacterial diversity was significantly correlated with pH. In conclusion, our findings suggest that aerobic methanotrophs could mitigate in situ CH4 emissions in a future scenario with higher temperatures in this climate-sensitive area. This study provides new insights into the diversity of methanotrophs, as well as the influence of temperature on the CH4 oxidation potential in sediments of freshwater lakes in polar regions of the southern hemisphere.
Collapse
Affiliation(s)
- Diego M. Roldán
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Microbiología, Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniel Carrizo
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), Madrid, Spain
| | - Laura Sánchez-García
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), Madrid, Spain
| | - Rodolfo Javier Menes
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Microbiología, Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Rodolfo Javier Menes,
| |
Collapse
|
26
|
Fan L, Dippold MA, Thiel V, Ge T, Wu J, Kuzyakov Y, Dorodnikov M. Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH 4 balance under global warming. GLOBAL CHANGE BIOLOGY 2022; 28:654-664. [PMID: 34653297 DOI: 10.1111/gcb.15935] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The global methane (CH4 ) budget is based on a sensitive balance between methanogenesis and CH4 oxidation (aerobic and anaerobic). The response of these processes to climate warming, however, is not quantified. This largely reflects our lack of knowledge about the temperature sensitivity (Q10 ) of the anaerobic oxidation of CH4 (AOM)-a ubiquitous process in soils. Based on a 13 CH4 labeling experiment, we determined the rate, Q10 and activation energy of AOM and of methanogenesis in a paddy soil at three temperatures (5, 20, 35°C). The rates of AOM and of methanogenesis increased exponentially with temperature, whereby the AOM rate was significantly lower than methanogenesis. Both the activation energy and Q10 of AOM dropped significantly from 5-20 to 20-35°C, indicating that AOM is a highly temperature-dependent microbial process. Nonetheless, the Q10 of AOM and of methanogenesis were similar at 5-35°C, implying a comparable temperature dependence of AOM and methanogenesis in paddy soil. The continuous increase of AOM Q10 over the 28-day experiment reflects the successive utilization of electron acceptors according to their thermodynamic efficiency. The basic constant for Q10 of AOM was calculated to be 0.1 units for each 3.2 kJ mol-1 increase of activation energy. We estimate the AOM in paddy soils to consume 2.2~5.5 Tg CH4 per year on a global scale. Considering these results in conjunction with literature data, the terrestrial AOM in total consumes ~30% of overall CH4 production. Our data corroborate a similar Q10 of AOM and methanogenesis. As the rate of AOM in paddy soils is lower than methanogenesis, however, it will not fully compensate for an increased methane production under climate warming.
Collapse
Affiliation(s)
- Lichao Fan
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
| | - Michaela A Dippold
- Department of Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Geo-Biosphere Interactions, University of Tuebingen, Tuebingen, Germany
| | - Volker Thiel
- Geobiology, Geoscience Center, University of Göttingen, Göttingen, Germany
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
- Tyumen State University, Tyumen, Russia
| | - Maxim Dorodnikov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Department of Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Tyumen State University, Tyumen, Russia
| |
Collapse
|
27
|
Feng H, Guo J, Ma X, Han M, Kneeshaw D, Sun H, Malghani S, Chen H, Wang W. Methane emissions may be driven by hydrogenotrophic methanogens inhabiting the stem tissues of poplar. THE NEW PHYTOLOGIST 2022; 233:182-193. [PMID: 34617594 DOI: 10.1111/nph.17778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Living trees in forests emit methane (CH4 ) from their stems. However, the magnitudes, patterns, drivers, origins, and biogeochemical pathways of these emissions remain poorly understood. We measured in situ CH4 fluxes in poplar stems and soils using static chambers and investigated the microbial communities of heartwood and sapwood by sequencing bacterial 16S, archaeal 16S, and fungal ITS rRNA genes. Methane emissions from poplar stems occurred throughout the sampling period. The mean CH4 emission rate was 2.7 mg m-2 stem d-1 . Stem CH4 emission rate increased significantly with air temperature, humidity, soil water content, and soil CH4 fluxes, but decreased with increasing sampling height. The CO2 reduction and methylotrophic methanogenesis were the major methanogenic pathways in wood tissues. The dominant methanogen groups detected in stem tissues were Methanobacterium, Methanobrevibacter, Rice Cluster I, Methanosarcina, Methanomassiliicoccus, Methanoculleus, and Methanomethylophilaceae. In addition, three methanotrophic genera were identified in the heartwood and sapwood - Methylocystis, Methylobacterium, and Paracoccus. Overall, stem CH4 emissions can originate directly from the internal tissues or co-occur from soils and stems. The co-existence of methanogens and methanotrophs within heartwood and sapwood highlights a need for future research in the microbial mechanisms underlying stem CH4 exchange with the atmosphere.
Collapse
Affiliation(s)
- Huili Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jiahuan Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xuehong Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Menghua Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Daniel Kneeshaw
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, QC, H3C 3P8, Canada
| | - Hui Sun
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Saadatullah Malghani
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Huai Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Weifeng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
28
|
In vivo quantification of polyhydroxybutyrate (PHB) in the alphaproteobacterial methanotroph, Methylocystis sp. Rockwell. Appl Microbiol Biotechnol 2021; 106:811-819. [PMID: 34921330 DOI: 10.1007/s00253-021-11732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Methane is a common industrial by-product that can be used as feedstock for production of the biopolymer polyhydroxybutyrate (PHB) by alphaproteobacterial methanotrophs. In vivo assessment of PHB production would shed light on the biosynthesis process and guide design of improved production strategies, but it is currently difficult to perform efficiently. In this study, the alphaproteobacterial methanotroph Methylocystis sp. Rockwell was grown on methane with three different nitrogen sources (ammonium, nitrate, and atmospheric nitrogen), and biomass samples were harvested at defined time points during lag, exponential, and stationary growth phases. PHB cell content was analyzed at these sampling points via a standard gas chromatography-flame ionization detector method, which requires hydrolysis of PHB and esterification of the resulting monomer under acidic conditions, and a novel, rapid, cost-effective approach based on fixation and staining of bacterial cells via Nile Blue A fluorescent dye enabling differential staining of cell membranes and intracellular PHB granules for single-cell analysis through fluorescence microscopy. Overall, the two PHB quantification approaches were in agreement at all stages of growth and in all three growing conditions tested. The PHB cell content was greatest with atmospheric nitrogen as a nitrogen source, followed by ammonium and nitrate. Under atmospheric nitrogen and ammonium conditions, PHB cell content decreased with growth progression, while under nitrate conditions PHB cell content remained unchanged in all growth phases. In addition to presenting a rapid, efficient method enabling in vivo quantification of PHB production, the present study highlights the impact of nitrogen source on PHB production by Methylocystis sp. Rockwell. KEY POINTS: • A novel fluorescence microscopy method to quantify PHB in single cells was developed • The microscopy method was validated by the derivation/gas chromatography method • Methylocystis sp. Rockwell synthesizes PHB granules without nutrient stress.
Collapse
|
29
|
Atmospheric Methane Consumption and Methanotroph Communities in West Siberian Boreal Upland Forest Ecosystems. FORESTS 2021. [DOI: 10.3390/f12121738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upland forest ecosystems are recognized as net sinks for atmospheric methane (CH4), one of the most impactful greenhouse gases. Biological methane uptake in these ecosystems occurs due to the activity of aerobic methanotrophic bacteria. Russia hosts one-fifth of the global forest area, with the most extensive forest landscapes located in West Siberia. Here, we report seasonal CH4 flux measurements conducted in 2018 in three types of stands in West Siberian middle taiga–Siberian pine, Aspen, and mixed forests. High rates of methane uptake of up to −0.184 mg CH4 m−2 h−1 were measured by a static chamber method, with an estimated total growing season consumption of 4.5 ± 0.5 kg CH4 ha−1. Forest type had little to no effect on methane fluxes within each season. Soil methane oxidation rate ranged from 0 to 8.1 ng CH4 gDW−1 h−1 and was negatively related to water-filled pore space. The microbial soil communities were dominated by the Alpha- and Gammaproteobacteria, Acidobacteriota and Actinobacteriota. The major group of 16S rRNA gene reads from methanotrophs belonged to uncultivated Beijerinckiaceae bacteria. Molecular identification of methanotrophs based on retrieval of the pmoA gene confirmed that Upland Soil Cluster Alpha was the major bacterial group responsible for CH4 oxidation.
Collapse
|
30
|
Shi LD, Lv PL, McIlroy SJ, Wang Z, Dong XL, Kouris A, Lai CY, Tyson GW, Strous M, Zhao HP. Methane-dependent selenate reduction by a bacterial consortium. THE ISME JOURNAL 2021; 15:3683-3692. [PMID: 34183781 PMCID: PMC8630058 DOI: 10.1038/s41396-021-01044-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Methanotrophic microorganisms play a critical role in controlling the flux of methane from natural sediments into the atmosphere. Methanotrophs have been shown to couple the oxidation of methane to the reduction of diverse electron acceptors (e.g., oxygen, sulfate, nitrate, and metal oxides), either independently or in consortia with other microbial partners. Although several studies have reported the phenomenon of methane oxidation linked to selenate reduction, neither the microorganisms involved nor the underlying trophic interaction has been clearly identified. Here, we provide the first detailed evidence for interspecies electron transfer between bacterial populations in a bioreactor community where the reduction of selenate is linked to methane oxidation. Metagenomic and metaproteomic analyses of the community revealed a novel species of Methylocystis as the most abundant methanotroph, which actively expressed proteins for oxygen-dependent methane oxidation and fermentation pathways, but lacked the genetic potential for selenate reduction. Pseudoxanthomonas, Piscinibacter, and Rhodocyclaceae populations appeared to be responsible for the observed selenate reduction using proteins initially annotated as periplasmic nitrate reductases, with fermentation by-products released by the methanotrophs as electron donors. The ability for the annotated nitrate reductases to reduce selenate was confirmed by gene knockout studies in an isolate of Pseudoxanthomonas. Overall, this study provides novel insights into the metabolic flexibility of the aerobic methanotrophs that likely allows them to thrive across natural oxygen gradients, and highlights the potential role for similar microbial consortia in linking methane and other biogeochemical cycles in environments where oxygen is limited.
Collapse
Affiliation(s)
- Ling-Dong Shi
- grid.13402.340000 0004 1759 700XMOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Pan-Long Lv
- grid.13402.340000 0004 1759 700XMOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Simon J. McIlroy
- grid.489335.00000000406180938Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD Australia ,grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD Australia
| | - Zhen Wang
- grid.13402.340000 0004 1759 700XMOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Xiao-Li Dong
- grid.22072.350000 0004 1936 7697Department of Geoscience, University of Calgary, Calgary, AB Canada
| | - Angela Kouris
- grid.22072.350000 0004 1936 7697Department of Geoscience, University of Calgary, Calgary, AB Canada
| | - Chun-Yu Lai
- grid.13402.340000 0004 1759 700XMOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China ,grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD Australia
| | - Gene W. Tyson
- grid.489335.00000000406180938Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD Australia
| | - Marc Strous
- grid.22072.350000 0004 1936 7697Department of Geoscience, University of Calgary, Calgary, AB Canada
| | - He-Ping Zhao
- grid.13402.340000 0004 1759 700XMOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Jo SY, Son J, Sohn YJ, Lim SH, Lee JY, Yoo JI, Park SY, Na JG, Park SJ. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Int J Biol Macromol 2021; 192:978-998. [PMID: 34656544 DOI: 10.1016/j.ijbiomac.2021.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality. One‑carbon (C1) resources, such as methane, carbon monoxide, and carbon dioxide, are greenhouse gases and are abundantly found in nature and industry. C1 resources as the carbon sources for PHA production have a completely closed carbon loop with much advances; i) fast carbon circulation with direct bioconversion process and ii) simple fermentation procedure without sterilization as non-preferable nutrients. This review discusses the biosynthesis of PHAs based on C1 resource utilization by wild-type and metabolically engineered microbial host strains via biorefinery processes.
Collapse
Affiliation(s)
- Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se Young Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
32
|
Oshkin IY, Danilova OV, Suleimanov RZ, Tikhonova EN, Malakhova TV, Murashova IA, Pimenov NV, Dedysh SN. Thermotolerant Methanotrophic Bacteria from Sediments of the River Chernaya, Crimea, and Assessment of Their Growth Characteristics. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Yun J, Crombie AT, Ul Haque MF, Cai Y, Zheng X, Wang J, Jia Z, Murrell JC, Wang Y, Du W. Revealing the community and metabolic potential of active methanotrophs by targeted metagenomics in the Zoige wetland of the Tibetan Plateau. Environ Microbiol 2021; 23:6520-6535. [PMID: 34390603 DOI: 10.1111/1462-2920.15697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023]
Abstract
The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem. Here we applied DNA stable isotope probing using 13 C-labelled methane to label the genomes of active methanotrophs, examine the methane oxidation potential and recover metagenome-assembled genomes (MAGs) of active methanotrophs. We found that gammaproteobacteria of type I methanotrophs are responsible for methane oxidation in the wetland. We recovered two phylogenetically novel methanotroph MAGs distantly related to extant Methylobacter and Methylovulum. They belong to type I methanotrophs of gammaproteobacteria, contain both mxaF and xoxF types of methanol dehydrogenase coding genes, and participate in methane oxidation via H4 MPT and RuMP pathways. Overall, the community structure of active methanotrophs and their methanotrophic pathways revealed by DNA-SIP metagenomics and retrieved methanotroph MAGs highlight the importance of methanotrophs in suppressing methane emission in the wetland under the scenario of global warming.
Collapse
Affiliation(s)
- Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andrew T Crombie
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
34
|
Lazic M, Sugden S, Sauvageau D, Stein LY. Metabolome profiles of the alphaproteobacterial methanotroph Methylocystis sp. Rockwell in response to carbon and nitrogen source. FEMS Microbiol Lett 2021; 368:6055661. [PMID: 33378457 DOI: 10.1093/femsle/fnaa219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023] Open
Abstract
Methanotrophs use methane as a sole carbon source and thus play a critical role in its global consumption. Intensified interest in methanotrophs for their low-cost production of value-added products and large-scale industrialization has led to investigations of strain-to-strain variation in parameters for growth optimization and metabolic regulation. In this study, Methylocystis sp. Rockwell was grown with methane or methanol as a carbon source and ammonium or nitrate as a nitrogen source. The intracellular metabolomes and production of polyhydroxybutyrate, a bioplastic precursor, were compared among treatments to determine how the different combinations of carbon and nitrogen sources affected metabolite production. The methane-ammonium condition resulted in the highest growth, followed by the methane-nitrate, methanol-nitrate and methanol-ammonium conditions. Overall, the methane-ammonium and methane-nitrate conditions directed metabolism toward energy-conserving pathways, while methanol-ammonium and methanol-nitrate directed the metabolic response toward starvation pathways. Polyhydroxybutyrate was produced at greater abundances in methanol-grown cells, independent of the nitrogen source. Together, the results revealed how Methylocystis sp. Rockwell altered its metabolism with different combinations of carbon and nitrogen source, with implications for production of industrially relevant metabolites.
Collapse
Affiliation(s)
- Marina Lazic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Scott Sugden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Chang WH, Lin HH, Tsai IK, Huang SH, Chung SC, Tu IP, Yu SSF, Chan SI. Copper Centers in the Cryo-EM Structure of Particulate Methane Monooxygenase Reveal the Catalytic Machinery of Methane Oxidation. J Am Chem Soc 2021; 143:9922-9932. [PMID: 34170126 DOI: 10.1021/jacs.1c04082] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The particulate methane monooxygenase (pMMO) is the first enzyme in the C1 metabolic pathway in methanotrophic bacteria. As this enzyme converts methane into methanol efficiently near room temperature, it has become the paradigm for developing an understanding of this difficult C1 chemistry. pMMO is a membrane-bound protein with three subunits (PmoB, PmoA, and PmoC) and 12-14 coppers distributed among different sites. X-ray crystal structures that have revealed only three mononuclear coppers at three sites have neither disclosed the location of the active site nor the catalytic mechanism of the enzyme. Here we report a cyro-EM structure of holo-pMMO from Methylococcus capsulatus (Bath) at 2.5 Å, and develop quantitative electrostatic-potential profiling to scrutinize the nonprotein densities for signatures of the copper cofactors. Our results confirm a mononuclear CuI at the A site, resolve two CuIs at the B site, and uncover additional CuI clusters at the PmoA/PmoC interface within the membrane (D site) and in the water-exposed C-terminal subdomain of the PmoB (E clusters). These findings complete the minimal set of copper factors required for catalytic turnover of pMMO, offering a glimpse of the catalytic machinery for methane oxidation according to the chemical principles underlying the mechanism proposed earlier.
Collapse
Affiliation(s)
- W-H Chang
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - H-H Lin
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - I-K Tsai
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - S-H Huang
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - S-C Chung
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - I-P Tu
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - S S-F Yu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - S I Chan
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| |
Collapse
|
36
|
Karthikeyan OP, Smith TJ, Dandare SU, Parwin KS, Singh H, Loh HX, Cunningham MR, Williams PN, Nichol T, Subramanian A, Ramasamy K, Kumaresan D. Metal(loid) speciation and transformation by aerobic methanotrophs. MICROBIOME 2021; 9:156. [PMID: 34229757 PMCID: PMC8262016 DOI: 10.1186/s40168-021-01112-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 05/06/2023]
Abstract
Manufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs. Video Abstract.
Collapse
Affiliation(s)
- Obulisamy Parthiba Karthikeyan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX USA
| | - Thomas J. Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Shamsudeen Umar Dandare
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Kamaludeen Sara Parwin
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India
| | - Heetasmin Singh
- Department of Chemistry, University of Guyana, Georgetown, Guyana
| | - Hui Xin Loh
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Mark R Cunningham
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Paul Nicholas Williams
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | | - Deepak Kumaresan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| |
Collapse
|
37
|
Huang Y, Ji X, Ma Z, Łężyk M, Xue Y, Zhao H. Green chemical and biological synthesis of cadaverine: recent development and challenges. RSC Adv 2021; 11:23922-23942. [PMID: 35479032 PMCID: PMC9036910 DOI: 10.1039/d1ra02764f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Cadaverine has great potential to be used as an important monomer for the development of a series of high value-added products with market prospects. The most promising strategies for cadaverine synthesis involve using green chemical and bioconversion technologies. Herein, the review focuses on the progress and strategies towards the green chemical synthesis and biosynthesis of cadaverine. Specifically, we address the specific biosynthetic pathways of cadaverine from different substrates as well as extensively discussing the origination, structure and catalytic mechanism of the key lysine decarboxylases. The advanced strategies for process intensification, the separation and purification of cadaverine have been summarized. Furthermore, the challenging issues of the environmental, economic, and applicable impact for cadaverine production are also highlighted. This review concludes with the promising outlooks of state-of-the-art applications of cadaverine along with some insights toward their challenges and potential improvements.
Collapse
Affiliation(s)
- Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou City Henan 450000 China
- Zhongke Langfang Institute of Process Engineering Langfang 065001 China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Zhanling Ma
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou City Henan 450000 China
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Hai Zhao
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
38
|
Wang S, Liu Q, Li J, Wang Z. Methane in wastewater treatment plants: status, characteristics, and bioconversion feasibility by methane oxidizing bacteria for high value-added chemicals production and wastewater treatment. WATER RESEARCH 2021; 198:117122. [PMID: 33865027 DOI: 10.1016/j.watres.2021.117122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Methane is a type of renewable fuel that can generate many types of high value-added chemicals, however, besides heat and power production, there is little methane utilization in most of the wastewater treatment plants (WWTPs) all round the world currently. In this review, the status of methane production performance from WWTPs was firstly investigated. Subsequently, based on the identification and classification of methane oxidizing bacteria (MOB), the key enzymes and metabolic pathway of MOB were presented in depth. Then the production, extraction and purification process of high value-added chemicals, including methanol, ectoine, biofuel, bioplastic, methane protein and extracellular polysaccharides, were introduced in detail, which was conducive to understand the bioconversion process of methane. Finally, the use of methane in wastewater treatment process, including nitrogen removal, emerging contaminants removal as well as resource recovery was extensively explored. These findings could provide guidance in the development of sustainable economy and environment, and facilitate biological methane conversion by using MOB in further attempts.
Collapse
Affiliation(s)
- Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China
| | - Qixin Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| | - Zhiwu Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA 20110, USA.
| |
Collapse
|
39
|
Transcriptomic and Metabolomic Responses to Carbon and Nitrogen Sources in Methylomicrobium album BG8. Appl Environ Microbiol 2021; 87:e0038521. [PMID: 33893121 DOI: 10.1128/aem.00385-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanotrophs use methane as their sole carbon and energy source and represent an attractive platform for converting single-carbon feedstocks into value-added compounds. Optimizing these species for biotechnological applications involves choosing an optimal growth substrate based on an understanding of cellular responses to different nutrients. Although many studies of methanotrophs have examined growth rate, yield, and central carbon flux in cultures grown with different carbon and nitrogen sources, few studies have examined more global cellular responses to different media. Here, we evaluated global transcriptomic and metabolomic profiles of Methylomicrobium album BG8 when grown with methane or methanol as the carbon source and nitrate or ammonium as the nitrogen source. We identified five key physiological changes during growth on methanol: M. album BG8 cultures upregulated transcripts for the Entner-Doudoroff and pentose phosphate pathways for sugar catabolism, produced more ribosomes, remodeled the phospholipid membrane, activated various stress response systems, and upregulated glutathione-dependent formaldehyde detoxification. When using ammonium, M. album BG8 upregulated hydroxylamine dehydrogenase (haoAB) and overall central metabolic activity, whereas when using nitrate, cultures upregulated genes for nitrate assimilation and conversion. Overall, we identified several nutrient source-specific responses that could provide a valuable basis for future research on the biotechnological optimization of these species. IMPORTANCE Methanotrophs are gaining increasing interest for their biotechnological potential to convert single-carbon compounds into value-added products such as industrial chemicals, fuels, and bioplastics. Optimizing these species for biotechnological applications requires a detailed understanding of how cellular activity and metabolism vary across different growth substrates. Although each of the two most commonly used carbon sources (methane or methanol) and nitrogen sources (ammonium or nitrate) in methanotroph growth media have well-described advantages and disadvantages in an industrial context, their effects on global cellular activity remain poorly characterized. Here, we comprehensively describe the transcriptomic and metabolomic changes that characterize the growth of an industrially promising methanotroph strain on multiple combinations of carbon and nitrogen sources. Our results represent a more holistic evaluation of cellular activity than previous studies of core metabolic pathways and provide a valuable basis for the future biotechnological optimization of these species.
Collapse
|
40
|
Lu L, Li X, Li Z, Chen Y, Sabio Y García CA, Yang J, Luo F, Zou X. Aerobic methanotrophs in an urban water cycle system: Community structure and network interaction pattern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145045. [PMID: 33770879 DOI: 10.1016/j.scitotenv.2021.145045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) play an important role in reducing methane emissions in nature. Most current researches focus on the natural habitats (e.g., lakes, reservoirs, wetlands, paddy fields, etc.). However, methanotrophs and the methane-oxidizing process remain essentially unclear in artificial habitat, such as the urban water cycle systems. Here, high-throughput sequencing and qPCR were used to analyze the community structure and abundance of MOB. Six different systems were selected from Yunyang City, Chongqing, China, including the raw water system (RW), the water supply pipe network system (SP), the wastewater pipe network system (WP), the hospital wastewater treatment system (HP), the municipal wastewater treatment plant system (WT) and the downstream river system (ST) of a wastewater treatment plant. Results clearly showed that the MOB community structure and network interaction patterns of the urban water cycle system were different from those of natural water bodies. Type I MOB was the dominant clade in HP. Methylocysis in Type II was the most abundant genus among the whole urban water cycle system, indicating that this genus had a high adaptability to the environment. Temperature, dissolved oxygen, pH and concentration significantly affected the MOB communities in the urban water cycle system. The network of MOB in WT was the most complicated, and there were competitive relationships among species in WP. The structure of the network in HP was unstable, and therefore, it was vulnerable to environmental disturbances. Methylocystis (Type II) and Methylomonas (Type I) were the most important keystone species in the entire urban water cycle system. Overall, these findings broaden the understanding of the distribution and interaction patterns of MOB communities in an urban water cycle system and provide valuable clues for ecosystem restoration and environmental management.
Collapse
Affiliation(s)
- Lunhui Lu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinrui Li
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhe Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Yao Chen
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Carmen A Sabio Y García
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución, Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Argentina
| | - Jixiang Yang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Fang Luo
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xi Zou
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, PR China
| |
Collapse
|
41
|
Shi LD, Wang Z, Liu T, Wu M, Lai CY, Rittmann BE, Guo J, Zhao HP. Making good use of methane to remove oxidized contaminants from wastewater. WATER RESEARCH 2021; 197:117082. [PMID: 33819663 DOI: 10.1016/j.watres.2021.117082] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Being an energetic fuel, methane is able to support microbial growth and drive the reduction of various electron acceptors. These acceptors include a broad range of oxidized contaminants (e.g., nitrate, nitrite, perchlorate, bromate, selenate, chromate, antimonate and vanadate) that are ubiquitously detected in water environments and pose threats to human and ecological health. Using methane as electron donor to biologically reduce these contaminants into nontoxic forms is a promising solution to remediate polluted water, considering that methane is a widely available and inexpensive electron donor. The understanding of methane-based biological reduction processes and the responsible microorganisms has grown in the past decade. This review summarizes the fundamentals of metabolic pathways and microorganisms mediating microbial methane oxidation. Experimental demonstrations of methane as an electron donor to remove oxidized contaminants are summarized, compared, and evaluated. Finally, the review identifies opportunities and unsolved questions that deserve future explorations for broadening understanding of methane oxidation and promoting its practical applications.
Collapse
Affiliation(s)
- Ling-Dong Shi
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, Arizona 85287-5701, U.S.A
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
42
|
Zhang J, Hu Z, Liu T, Wang Z, Guo J, Yuan Z, Zheng M. Feasibility of methane bioconversion to methanol by acid-tolerant ammonia-oxidizing bacteria. WATER RESEARCH 2021; 197:117077. [PMID: 33812128 DOI: 10.1016/j.watres.2021.117077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bioconversion of biogas to value-added liquids has received increasing attention over the years. However, many biological processes are restricted under acidic conditions owing to the excessive carbon dioxide (CO2, 30-40% v/v) in biogas. Here, using an enriched culture dominated by acid-tolerant ammonia-oxidizing bacteria (AOB) 'Candidatus Nitrosoglobus', this study examined the feasibility of producing methanol from methane in the CO2-acidified environment (i.e. pH of 5.0). Within the tested dissolved methane range (0.1-0.9 mM), methane oxidation by the acid-tolerant AOB culture followed first-order kinetics, with the same rate constant (i.e. 0.43 (L/(g VSS‧h)) between pH 7.0 and 5.0. The acidic methane oxidation showed robustness against high dissolved concentrations of CO2 (up to 4.06 mM) and hydrogen sulfide (H2S up to 0.11 mM), which led to a high methanol yield of about 30-40%. As such, the raw biogas containing toxic CO2 and H2S can directly serve for methanol production by this acid-tolerant AOB culture, economizing a conventionally costly biogas upgradation process. Afterwards, two batch reactors fed with methane and oxygen intermittently both obtained a final concentration of 1.5 mM CH3OH (equal to 72 mg chemical oxygen demand/L) in the liquid, suggesting it is a useful carbon source to enhance denitrification in wastewater treatment systems. In addition, ammonia availability was identified to be critical for a higher rate of this AOB-mediated methanol production. Overall, our results for the first time demonstrated the capability of a novel acid-tolerant AOB culture to oxidize methane, and also illustrated the technical feasibility to utilize raw biogas for methanol production at acidic conditions.
Collapse
Affiliation(s)
- Junji Zhang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhetai Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhiyao Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
43
|
Guerrero-Cruz S, Vaksmaa A, Horn MA, Niemann H, Pijuan M, Ho A. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front Microbiol 2021; 12:678057. [PMID: 34054786 PMCID: PMC8163242 DOI: 10.3389/fmicb.2021.678057] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Methane is the final product of the anaerobic decomposition of organic matter. The conversion of organic matter to methane (methanogenesis) as a mechanism for energy conservation is exclusively attributed to the archaeal domain. Methane is oxidized by methanotrophic microorganisms using oxygen or alternative terminal electron acceptors. Aerobic methanotrophic bacteria belong to the phyla Proteobacteria and Verrucomicrobia, while anaerobic methane oxidation is also mediated by more recently discovered anaerobic methanotrophs with representatives in both the bacteria and the archaea domains. The anaerobic oxidation of methane is coupled to the reduction of nitrate, nitrite, iron, manganese, sulfate, and organic electron acceptors (e.g., humic substances) as terminal electron acceptors. This review highlights the relevance of methanotrophy in natural and anthropogenically influenced ecosystems, emphasizing the environmental conditions, distribution, function, co-existence, interactions, and the availability of electron acceptors that likely play a key role in regulating their function. A systematic overview of key aspects of ecology, physiology, metabolism, and genomics is crucial to understand the contribution of methanotrophs in the mitigation of methane efflux to the atmosphere. We give significance to the processes under microaerophilic and anaerobic conditions for both aerobic and anaerobic methane oxidizers. In the context of anthropogenically influenced ecosystems, we emphasize the current and potential future applications of methanotrophs from two different angles, namely methane mitigation in wastewater treatment through the application of anaerobic methanotrophs, and the biotechnological applications of aerobic methanotrophs in resource recovery from methane waste streams. Finally, we identify knowledge gaps that may lead to opportunities to harness further the biotechnological benefits of methanotrophs in methane mitigation and for the production of valuable bioproducts enabling a bio-based and circular economy.
Collapse
Affiliation(s)
- Simon Guerrero-Cruz
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Annika Vaksmaa
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, ’t Horntje, Netherlands
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, ’t Horntje, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
- Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Adrian Ho
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
44
|
Kumar M, Yadav AN, Saxena R, Rai PK, Paul D, Tomar RS. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Liu J, Han J, Zhu C, Cao W, Luo Y, Zhang M, Zhang S, Jia Z, Yu R, Zhao J, Bao Z. Elevated Atmospheric CO 2 and Nitrogen Fertilization Affect the Abundance and Community Structure of Rice Root-Associated Nitrogen-Fixing Bacteria. Front Microbiol 2021; 12:628108. [PMID: 33967976 PMCID: PMC8103900 DOI: 10.3389/fmicb.2021.628108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Elevated atmospheric CO2 (eCO2) results in plant growth and N limitation, yet how root-associated nitrogen-fixing bacterial communities respond to increasing atmospheric CO2 and nitrogen fertilization (eN) during the growth stages of rice is unclear. Using the nifH gene as a molecular marker, we studied the combined effect of eCO2 and eN on the diazotrophic community and abundance at two growth stages in rice (tillering, TI and heading, HI). Quantitative polymerase chain reaction (qPCR) showed that eN had no obvious effect on nifH abundance in rice roots under either ambient CO2 (aCO2) or eCO2 treatment at the TI stage; in contrast, at the HI, nifH copy numbers were increased under eCO2 and decreased under aCO2. For rhizosphere soils, eN significantly reduced the abundance of nifH under both aCO2 and eCO2 treatment at the HI stage. Elevated CO2 significantly increased the nifH abundance in rice roots and rhizosphere soils with nitrogen fertilization, but had no obvious effect without N addition at the HI stage. There was a significant interaction [CO2 × N fertilization] effect on nifH abundance in root zone at the HI stage. In addition, the nifH copy numbers in rice roots were significantly higher at the HI stage than at the TI stage. Sequencing analysis indicated that the root-associated diazotrophic community structure tended to cluster according to the nitrogen fertilization treatment and that Rhizobiales were the dominant diazotrophs in all root samples at the HI stage. Additionally, nitrogen fertilization significantly increased the relative abundance of Methylosinus (Methylocystaceae) under eCO2 treatment, but significantly decreased the relative abundance of Rhizobium (Rhizobiaceae) under aCO2 treatment. Overall, the combined effect of eN and eCO2 stimulates root-associated diazotrophic methane-oxidizing bacteria while inhibits heterotrophic diazotrophs.
Collapse
Affiliation(s)
- Jumei Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jingjing Han
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Weiwei Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ying Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Meng Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ruihong Yu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| |
Collapse
|
46
|
Khider MLK, Brautaset T, Irla M. Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications. World J Microbiol Biotechnol 2021; 37:72. [PMID: 33765207 PMCID: PMC7994243 DOI: 10.1007/s11274-021-03038-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 12/02/2022]
Abstract
Worldwide, the use of methane is limited to generating power, electricity, heating, and for production of chemicals. We believe this valuable gas can be employed more widely. Here we review the possibility of using methane as a feedstock for biotechnological processes based on the application of synthetic methanotrophs. Methane monooxygenase (MMO) enables aerobic methanotrophs to utilize methane as a sole carbon and energy source, in contrast to industrial microorganisms that grow on carbon sources, such as sugar cane, which directly compete with the food market. However, naturally occurring methanotrophs have proven to be difficult to manipulate genetically and their current industrial use is limited to generating animal feed biomass. Shifting the focus from genetic engineering of methanotrophs, towards introducing metabolic pathways for methane utilization in familiar industrial microorganisms, may lead to construction of efficient and economically feasible microbial cell factories. The applications of a technology for MMO production are not limited to methane-based industrial synthesis of fuels and value-added products, but are also of interest in bioremediation where mitigating anthropogenic pollution is an increasingly relevant issue. Published research on successful functional expression of MMO does not exist, but several attempts provide promising future perspectives and a few recent patents indicate that there is an ongoing research in this field. Combining the knowledge on genetics and metabolism of methanotrophy with tools for functional heterologous expression of MMO-encoding genes in non-methanotrophic bacterial species, is a key step for construction of synthetic methanotrophs that holds a great biotechnological potential.
Collapse
Affiliation(s)
- May L K Khider
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Irla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
47
|
Carere CR, Hards K, Wigley K, Carman L, Houghton KM, Cook GM, Stott MB. Growth on Formic Acid Is Dependent on Intracellular pH Homeostasis for the Thermoacidophilic Methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol 2021; 12:651744. [PMID: 33841379 PMCID: PMC8024496 DOI: 10.3389/fmicb.2021.651744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the genus Methylacidiphilum, a clade of metabolically flexible thermoacidophilic methanotrophs from the phylum Verrucomicrobia, can utilize a variety of substrates including methane, methanol, and hydrogen for growth. However, despite sequentially oxidizing methane to carbon dioxide via methanol and formate intermediates, growth on formate as the only source of reducing equivalents (i.e., NADH) has not yet been demonstrated. In many acidophiles, the inability to grow on organic acids has presumed that diffusion of the protonated form (e.g., formic acid) into the cell is accompanied by deprotonation prompting cytosolic acidification, which leads to the denaturation of vital proteins and the collapse of the proton motive force. In this work, we used a combination of biochemical, physiological, chemostat, and transcriptomic approaches to demonstrate that Methylacidiphilum sp. RTK17.1 can utilize formate as a substrate when cells are able to maintain pH homeostasis. Our findings show that Methylacidiphilum sp. RTK17.1 grows optimally with a circumneutral intracellular pH (pH 6.52 ± 0.04) across an extracellular range of pH 1.5–3.0. In batch experiments, formic acid addition resulted in no observable cell growth and cell death due to acidification of the cytosol. Nevertheless, stable growth on formic acid as the only source of energy was demonstrated in continuous chemostat cultures (D = 0.0052 h−1, td = 133 h). During growth on formic acid, biomass yields remained nearly identical to methanol-grown chemostat cultures when normalized per mole electron equivalent. Transcriptome analysis revealed the key genes associated with stress response: methane, methanol, and formate metabolism were differentially expressed in response to growth on formic acid. Collectively, these results show formic acid represents a utilizable source of energy/carbon to the acidophilic methanotrophs within geothermal environments. Findings expand the known metabolic flexibility of verrucomicrobial methanotrophs to include organic acids and provide insight into potential survival strategies used by these species during methane starvation.
Collapse
Affiliation(s)
- Carlo R Carere
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, Auckland, New Zealand
| | - Kathryn Wigley
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Luke Carman
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Karen M Houghton
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, Auckland, New Zealand
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
48
|
Microbial Communities in Methane Cycle: Modern Molecular Methods Gain Insights into Their Global Ecology. ENVIRONMENTS 2021. [DOI: 10.3390/environments8020016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of methane as a greenhouse gas in the concept of global climate changes is well known. Methanogens and methanotrophs are two microbial groups which contribute to the biogeochemical methane cycle in soil, so that the total emission of CH4 is the balance between its production and oxidation by microbial communities. Traditional identification techniques, such as selective enrichment and pure-culture isolation, have been used for a long time to study diversity of methanogens and methanotrophs. However, these techniques are characterized by significant limitations, since only a relatively small fraction of the microbial community could be cultured. Modern molecular methods for quantitative analysis of the microbial community such as real-time PCR (Polymerase chain reaction), DNA fingerprints and methods based on high-throughput sequencing together with different “omics” techniques overcome the limitations imposed by culture-dependent approaches and provide new insights into the diversity and ecology of microbial communities in the methane cycle. Here, we review available knowledge concerning the abundances, composition, and activity of methanogenic and methanotrophic communities in a wide range of natural and anthropogenic environments. We suggest that incorporation of microbial data could fill the existing microbiological gaps in methane flux modeling, and significantly increase the predictive power of models for different environments.
Collapse
|
49
|
Nguyen DTN, Lee OK, Nguyen TT, Lee EY. Type II methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals. Biotechnol Adv 2021; 47:107700. [PMID: 33548453 DOI: 10.1016/j.biotechadv.2021.107700] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Methane, the predominant element in natural gas and biogas, represents a promising alternative to carbon feedstocks in the biotechnological industry due to its low cost and high abundance. The bioconversion of methane to value-added products can enhance the value of gas and mitigate greenhouse gas emissions. Methanotrophs, methane-utilizing bacteria, can make a significant contribution to the production of various valuable biofuels and chemicals from methane. Type II methanotrophs in comparison with Type I methanotrophs have distinct advantages, including high acetyl-CoA flux and the co-incorporation of two important greenhouse gases (methane and CO2), making it a potential microbial cell-factory platform for methane-derived biomanufacturing. Herein, we review the most recent advances in Type II methanotrophs related to multi-omics studies and metabolic engineering. Representative examples and prospects of metabolic engineering strategies for the production of suitable products are also discussed.
Collapse
Affiliation(s)
- Diep Thi Ngoc Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Thu Thi Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
50
|
Tikhomirova TS, But SY. Laboratory scale bioreactor designs in the processes of methane bioconversion: Mini-review. Biotechnol Adv 2021; 47:107709. [PMID: 33548452 DOI: 10.1016/j.biotechadv.2021.107709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
Global methane emissions have been steadily increasing over the past few decades, exerting a negative effect on the environment. Biogas from landfills and sewage treatment plants is the main anthropogenic source of methane. This makes methane bioconversion one of the priority areas of biotechnology. This process involves the production of biochemical compounds from non-food sources through microbiological synthesis. Methanotrophic bacteria are a promising tool for methane bioconversion due to their ability to use this greenhouse gas and to produce protein-rich biomass, as well as a broad range of useful organic compounds. Currently, methane is used not only to produce biomass and chemical compounds, but also to increase the efficiency of water and solid waste treatment. However, the use of gaseous substrates in biotechnological processes is associated with some difficulties. The low solubility of methane in water is one of the major problems. Different approaches have been involved to encounter these challenges, including different bioreactor and gas distribution designs, solid carriers and bulk sorbents, as well as varying air/oxygen supply, the ratio of volumetric flow rate of gas mixture to its consumption rate, etc. The aim of this review was to summarize the current data on different bioreactor designs and the aspects of their applications for methane bioconversion and wastewater treatment. The bioreactors used in these processes must meet a number of requirements such as low methane emission, improved gas exchange surface, and controlled substrate supply to the reaction zone.
Collapse
Affiliation(s)
- Tatyana S Tikhomirova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Institutskaya 7, Pushchino, Moscow Region 142290, Russia.
| | - Sergey Y But
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Prospect Nauki 5, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|