1
|
Su YT, Chen CH, Kang JW, Kuo HY, Yang CC, Tian YF, Yeh CF, Chou CL, Chen SH. Predictive value of FCGBP expression for treatment response and survival in rectal cancer patients undergoing chemoradiotherapy. Aging (Albany NY) 2024; 16:7889-7901. [PMID: 38709264 PMCID: PMC11131975 DOI: 10.18632/aging.205791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024]
Abstract
Despite neoadjuvant chemoradiotherapy (CRT) being the established standard for treating advanced rectal cancer, clinical outcomes remain suboptimal, necessitating the identification of predictive biomarkers for improved treatment decisions. Previous studies have hinted at the oncogenic properties of the Fc fragment of IgG binding protein (FCGBP) in various cancers; however, its clinical significance in rectal cancer remains unclear. In this study, we first conducted an analysis of a public transcriptome comprising 46 rectal cancer patients. Focusing on cell adhesion during data mining, we identified FCGBP as the most upregulated gene associated with CRT resistance. Subsequently, we assessed FCGBP immunointensity using immunohistochemical staining on 343 rectal cancer tissue blocks. Elevated FCGBP immunointensity correlated with lymph node involvement before treatment (p = 0.001), tumor invasion, and lymph node involvement after treatment (both p < 0.001), vascular invasion (p = 0.001), perineural invasion (p = 0.041), and reduced tumor regression (p < 0.001). Univariate analysis revealed a significant association between high FCGBP immunoexpression and inferior disease-specific survival, local recurrence-free survival, and metastasis-free survival (all p ≤ 0.0002). Furthermore, high FCGBP immunoexpression independently emerged as an unfavorable prognostic factor for all three survival outcomes in the multivariate analysis (all p ≤ 0.025). Enriched pathway analysis substantiated the role of FCGBP in conferring resistance to radiation. In summary, our findings suggest that elevated FCGBP immunoexpression in rectal cancer significantly correlates with a poor response to CRT and diminished patient survival. FCGBP holds promise as a valuable prognostic biomarker for rectal cancer patients undergoing CRT.
Collapse
Affiliation(s)
- Yu-Ting Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jui-Wen Kang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
| | - Hsin-Yu Kuo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Cheng-Fa Yeh
- Division of General Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Environment Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chia-Lin Chou
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Shang-Hung Chen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| |
Collapse
|
2
|
Raque M, Raev SA, Guo Y, Kick MK, Saif LJ, Vlasova AN. Host Cell Response to Rotavirus Infection with Emphasis on Virus-Glycan Interactions, Cholesterol Metabolism, and Innate Immunity. Viruses 2023; 15:1406. [PMID: 37515094 PMCID: PMC10385841 DOI: 10.3390/v15071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Although rotavirus A (RVA) is the primary cause of acute viral gastroenteritis in children and young animals, mechanisms of its replication and pathogenesis remain poorly understood. We previously demonstrated that the neuraminidase-mediated removal of terminal sialic acids (SAs) significantly enhanced RVA-G9P[13] replication, while inhibiting RVA-G5P[7] replication. In this study, we compared the transcriptome responses of porcine ileal enteroids (PIEs) to G5P[7] vs. G9P[13] infections, with emphasis on the genes associated with immune response, cholesterol metabolism, and host cell attachment. The analysis demonstrated that G9P[13] infection led to a robust modulation of gene expression (4093 significantly modulated genes vs. 488 genes modulated by G5P[7]) and a significant modulation of glycosyltransferase-encoding genes. The two strains differentially affected signaling pathways related to immune response, with G9P[13] mostly upregulating and G5P[7] inhibiting them. Both RVAs modulated the expression of genes encoding for cholesterol transporters. G9P[13], but not G5P[7], significantly affected the ceramide synthesis pathway known to affect both cholesterol and glycan metabolism. Thus, our results highlight the unique mechanisms regulating cellular response to infection caused by emerging/re-emerging and historical RVA strains relevant to RVA-receptor interactions, metabolic pathways, and immune signaling pathways that are critical in the design of effective control strategies.
Collapse
Affiliation(s)
- Molly Raque
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Sergei A Raev
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Yusheng Guo
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Maryssa K Kick
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Linda J Saif
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Anastasia N Vlasova
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| |
Collapse
|
3
|
An SY, Kim KS, Cho JH, Kim HD, Kim CH, Lee YC. Curcumin-mediated transcriptional regulation of human N-acetylgalactosamine-α2,6-sialyltransferase which synthesizes sialyl-Tn antigen in HCT116 human colon cancer cells. Front Mol Biosci 2022; 9:985648. [PMID: 36172045 PMCID: PMC9510914 DOI: 10.3389/fmolb.2022.985648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Human N-acetylgalactosamine-α2,6-sialyltransferase (hST6GalNAc I) is the major enzyme involved in the biosynthesis of sialyl-Tn antigen (sTn), which is known to be expressed in more than 80% of human carcinomas and correlated with poor prognosis in cancer patients. Athough high expression of hST6GalNAc I is associated with augmented proliferation, migration and invasion in various cancer cells, transcriptional mechanism regulating hST6GalNAc I gene expression remains largely unknown. In this study, we found that hST6GalNAc I gene expression was markedly augmented by curcumin in HCT116 human colon carcinoma cells. To understand the molecular mechanism for the upregulation of hST6GalNAc I gene expression by curcumin in HCT116 cells, we first determined the transcriptional start site of hST6GalNAc I gene by 5'-RACE and cloned the proximal hST6GalNAc I 5'-flanking region spanning about 2 kb by PCR. Functional analysis of the hST6GalNAc I 5' flanking region of hST6GalNAc I by sequential 5'-deletion, transient transfection of reporter gene constructs and luciferase reporter assays showed that -378/-136 region is essential for maximal activation of transcription in response to curcumin in HCT 116 cells. This region includes putative binding sites for transcription factors c-Ets-1, NF-1, GATA-1, ER-α, YY1, and GR-α. ChIP analysis and site-directed mutagenesis demonstrated that estrogen receptor α (ER-α) binding site (nucleotides -248/-238) in this region is crucial for hST6GalNAc I gene transcription in response to curcumin stimulation in HCT116 cells. The transcription activity of hST6GalNAc I gene induced by curcumin in HCT116 cells was strongly inhibited by PKC inhibitor (Gö6983) and ERK inhibitor (U0126). These results suggest that curcumin-induced hST6GalNAc I gene expression in HCT116 cells is modulated through PKC/ERKs signal pathway.
Collapse
Affiliation(s)
- So-Young An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Jong-Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, South Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, South Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| |
Collapse
|
4
|
O-glycan recognition and function in mice and human cancers. Biochem J 2020; 477:1541-1564. [PMID: 32348475 DOI: 10.1042/bcj20180103] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation represents a nearly ubiquitous post-translational modification, and altered glycosylation can result in clinically significant pathological consequences. Here we focus on O-glycosylation in tumor cells of mice and humans. O-glycans are those linked to serine and threonine (Ser/Thr) residues via N-acetylgalactosamine (GalNAc), which are oligosaccharides that occur widely in glycoproteins, such as those expressed on the surfaces and in secretions of all cell types. The structure and expression of O-glycans are dependent on the cell type and disease state of the cells. There is a great interest in O-glycosylation of tumor cells, as they typically express many altered types of O-glycans compared with untransformed cells. Such altered expression of glycans, quantitatively and/or qualitatively on different glycoproteins, is used as circulating tumor biomarkers, such as CA19-9 and CA-125. Other tumor-associated carbohydrate antigens (TACAs), such as the Tn antigen and sialyl-Tn antigen (STn), are truncated O-glycans commonly expressed by carcinomas on multiple glycoproteins; they contribute to tumor development and serve as potential biomarkers for tumor presence and stage, both in immunohistochemistry and in serum diagnostics. Here we discuss O-glycosylation in murine and human cells with a focus on colorectal, breast, and pancreatic cancers, centering on the structure, function and recognition of O-glycans. There are enormous opportunities to exploit our knowledge of O-glycosylation in tumor cells to develop new diagnostics and therapeutics.
Collapse
|
5
|
Sohn SH, Sul HJ, Kim B, Kim BJ, Kim HS, Zang DY. Tepotinib Inhibits the Epithelial-Mesenchymal Transition and Tumor Growth of Gastric Cancers by Increasing GSK3β, E-Cadherin, and Mucin 5AC and 6 Levels. Int J Mol Sci 2020; 21:ijms21176027. [PMID: 32825724 PMCID: PMC7503648 DOI: 10.3390/ijms21176027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of mucins (MUCs) can promote the epithelial–mesenchymal transition (EMT), which leads to enhanced tumorigenesis. Carcinogenesis-related pathways involving c-MET and β-catenin are associated with MUCs. In this study, we characterized the expression of EMT-relevant proteins including MET, β-catenin, and E-cadherin in human gastric cancer (GC) cell lines, and further characterized the differential susceptibility of these cell lines compared with the c-MET inhibitor tepotinib. We assessed the antitumor activity of tepotinib in GC cell lines. The effects of tepotinib on cell viability, apoptotic cell death, EMT, and c-MET and β-catenin signaling were evaluated by 3-(4,5 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS), flow cytometry, Western blotting, and qRT-PCR. The antitumor efficacy was assessed in MKN45 xenograft mice. Tepotinib treatment induced apoptosis in c-MET-amplified SNU620, MKN45, and KATO III cells, but had no effect on c-MET-reduced MKN28 or AGS cells. Tepotinib treatment also significantly reduced the protein levels of phosphorylated and total c-MET, phosphorylated and total ERK, β-catenin, and c-MYC in SNU620 and MKN45 cells. In contrast, this drug was only slightly active against KATO III cells. Notably, tepotinib significantly reduced the expression of EMT-promoting genes such as MMP7, COX-2, WNT1, MUC5B, and c-MYC in c-MET-amplified GC cells and increased the expression of EMT-suppressing genes such as MUC5AC, MUC6, GSK3β, and E-cadherin. In a mouse model, tepotinib exhibited good antitumor growth activity along with increased E-cadherin and decreased phosphorylated c-MET (phospho-c-MET) protein levels. Collectively, these results suggest that tepotinib suppresses tumor growth and migration by negatively regulating c-MET-induced EMT. These findings provide new insights into the mechanism by which MUC5AC and MUC6 contribute to GC progression.
Collapse
Affiliation(s)
- Sung-Hwa Sohn
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
| | - Hee Jung Sul
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
| | - Bohyun Kim
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
| | - Bum Jun Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Korea; (B.J.K.); (H.S.K.)
| | - Hyeong Su Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Korea; (B.J.K.); (H.S.K.)
| | - Dae Young Zang
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Korea; (B.J.K.); (H.S.K.)
- Correspondence: ; Tel.: +82-31-380-4167
| |
Collapse
|
6
|
Moreira IB, Pinto F, Gomes C, Campos D, Reis CA. Impact of Truncated O-glycans in Gastric-Cancer-Associated CD44v9 Detection. Cells 2020; 9:cells9020264. [PMID: 31973075 PMCID: PMC7072479 DOI: 10.3390/cells9020264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
CD44 variant isoforms are often upregulated in cancer and associated with increased aggressive tumor phenotypes. The CD44v9 is one of the major protein splice variant isoforms expressed in human gastrointestinal cancer cells. Immunodetection of CD44 isoforms like CD44v9 in tumor tissue is almost exclusively performed by using specific monoclonal antibodies. However, the structural variability conferred by both the alternative splicing and CD44 protein glycosylation is disregarded. In the present work, we have evaluated the role of O-glycosylation using glycoengineered gastric cancer models in the detection of CD44v9 by monoclonal antibodies. We demonstrated, using different technical approaches, that the presence of immature O-glycan structures, such as Tn and STn, enhance CD44v9 protein detection. These findings can have significant implications in clinical applications mainly at the detection and targeting of this cancer-related CD44v9 isoform and highlight the utmost importance of considering glycan structures in cancer biomarker detection and in therapy targeting.
Collapse
Affiliation(s)
- Inês B. Moreira
- I3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (I.B.M.); (F.P.); (C.G.)
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Filipe Pinto
- I3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (I.B.M.); (F.P.); (C.G.)
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Catarina Gomes
- I3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (I.B.M.); (F.P.); (C.G.)
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Diana Campos
- I3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (I.B.M.); (F.P.); (C.G.)
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Correspondence: (D.C.); (C.A.R.)
| | - Celso A. Reis
- I3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (I.B.M.); (F.P.); (C.G.)
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (D.C.); (C.A.R.)
| |
Collapse
|
7
|
Kvorjak M, Ahmed Y, Miller ML, Sriram R, Coronnello C, Hashash JG, Hartman DJ, Telmer CA, Miskov-Zivanov N, Finn OJ, Cascio S. Cross-talk between Colon Cells and Macrophages Increases ST6GALNAC1 and MUC1-sTn Expression in Ulcerative Colitis and Colitis-Associated Colon Cancer. Cancer Immunol Res 2019; 8:167-178. [PMID: 31831633 DOI: 10.1158/2326-6066.cir-19-0514] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
Abstract
Patients with ulcerative colitis have an increased risk of developing colitis-associated colon cancer (CACC). Changes in glycosylation of the oncoprotein MUC1 commonly occur in chronic inflammation, including ulcerative colitis, and this abnormally glycosylated MUC1 promotes cancer development and progression. It is not known what causes changes in glycosylation of MUC1. Gene expression profiling of myeloid cells in inflamed and malignant colon tissues showed increased expression levels of inflammatory macrophage-associated cytokines compared with normal tissues. We analyzed the involvement of macrophage-associated cytokines in the induction of aberrant MUC1 glycoforms. A coculture system was used to examine the effects of M1 and M2 macrophages on glycosylation-related enzymes in colon cancer cells. M2-like macrophages induced the expression of the glycosyltransferase ST6GALNAC1, an enzyme that adds sialic acid to O-linked GalNAc residues, promoting the formation of tumor-associated sialyl-Tn (sTn) O-glycans. Immunostaining of ulcerative colitis and CACC tissue samples confirmed the elevated number of M2-like macrophages as well as high expression of ST6GALNAC1 and the altered MUC1-sTn glycoform on colon cells. Cytokine arrays and blocking antibody experiments indicated that the macrophage-dependent ST6GALNAC1 activation was mediated by IL13 and CCL17. We demonstrated that IL13 promoted phosphorylation of STAT6 to activate transcription of ST6GALNAC1. A computational model of signaling pathways was assembled and used to test IL13 inhibition as a possible therapy. Our findings revealed a novel cellular cross-talk between colon cells and macrophages within the inflamed and malignant colon that contributes to the pathogenesis of ulcerative colitis and CACC.See related Spotlight on p. 160.
Collapse
Affiliation(s)
- Michael Kvorjak
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yasmine Ahmed
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michelle L Miller
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Raahul Sriram
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jana G Hashash
- Department of Gastroenterology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Douglas J Hartman
- Department of Pathology University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Cheryl A Telmer
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Natasa Miskov-Zivanov
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sandra Cascio
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Fondazione Ri.Med, Palermo, Italy.,Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Freitas D, Balmaña M, Poças J, Campos D, Osório H, Konstantinidi A, Vakhrushev SY, Magalhães A, Reis CA. Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. J Extracell Vesicles 2019; 8:1621131. [PMID: 31236201 PMCID: PMC6571546 DOI: 10.1080/20013078.2019.1621131] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/17/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of small secreted particles involved in intercellular communication and mediating a broad spectrum of biological functions. EVs cargo is composed of a large repertoire of molecules, including glycoconjugates. Herein, we report the first study on the impact of the isolation strategy on the EV populations’ glycosylation profile. The use of different state-of-the-art protocols, namely differential ultracentrifugation (UC), total exosome isolation (TEI), OptiPrepTM density gradient (ODG) and size exclusion chromatography (SEC) resulted in EV populations displaying different sets of glycoconjugates. The EV populations obtained by UC, ODG and SEC methods displayed similar protein and glycan profiles, whereas TEI methodology isolated the most distinct EV population. In addition, ODG and SEC isolation protocols provided an enhanced EV glycoproteins detection. Remarkably, proteins displaying the tumour-associated glycan sialyl-Tn (STn) were identified as packaged cargo into EVs independently of the isolation methodology. STn carrying EV samples isolated by UC, ODG and SEC presented a considerable set of cancer-related proteins that were not detected in EVs isolated by TEI. Our work demonstrates the impact of using different isolation methodologies in the populations of EVs that are obtained, with consequences in the glycosylation profile of the isolated population. Furthermore, our results highlight the importance of selecting adequate EV isolation protocols and cell culture conditions to determine the structural and functional complexity of the EV glycoconjugates.
Collapse
Affiliation(s)
- Daniela Freitas
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Meritxell Balmaña
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Juliana Poças
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Diana Campos
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Hugo Osório
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Celso A Reis
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Freitas D, Campos D, Gomes J, Pinto F, Macedo JA, Matos R, Mereiter S, Pinto MT, Polónia A, Gartner F, Magalhães A, Reis CA. O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotype. EBioMedicine 2019; 40:349-362. [PMID: 30662000 PMCID: PMC6413340 DOI: 10.1016/j.ebiom.2019.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Changes in glycosylation are known to play critical roles during gastric carcinogenesis. Expression of truncated O-glycans, such as the Sialyl-Tn (STn) antigen, is a common feature shared by many cancers and is associated with cancer aggressiveness and poor-prognosis. METHODS Glycoengineered cell lines were used to evaluate the impact of truncated O-glycans in cancer cell biology using in vitro functional assays, transcriptomic analysis and in vivo models. Tumor patients 'samples and datasets were used for clinical translational significance evaluation. FINDINGS In the present study, we demonstrated that gastric cancer cells expressing truncated O-glycans display major phenotypic alterations associated with higher cell motility and cell invasion. Noteworthy, the glycoengineered cancer cells overexpressing STn resulted in tumor xenografts with less cohesive features which had a critical impact on mice survival. Furthermore, truncation of O-glycans induced activation of EGFR and ErbB2 receptors and a transcriptomic signature switch of gastric cancer cells. The disclosed top activated genes were further validated in gastric tumors, revealing that SRPX2 and RUNX1 are concomitantly overexpressed in gastric carcinomas and its expression is associated with patients' poor-survival, highlighting their prognosis potential in clinical practice. INTERPRETATION This study discloses novel molecular links between O-glycans truncation frequently observed in cancer and key cellular regulators with major impact in tumor progression and patients' clinical outcome.
Collapse
Affiliation(s)
- Daniela Freitas
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal
| | - Diana Campos
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Joana Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Filipe Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Joana A Macedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Rita Matos
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Stefan Mereiter
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Marta T Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - António Polónia
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Fátima Gartner
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal
| | - Ana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal.
| | - Celso A Reis
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal; Faculty of Medicine of the University of Porto, Al. Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
| |
Collapse
|
10
|
Jonckheere N, Van Seuningen I. Integrative analysis of the cancer genome atlas and cancer cell lines encyclopedia large-scale genomic databases: MUC4/MUC16/MUC20 signature is associated with poor survival in human carcinomas. J Transl Med 2018; 16:259. [PMID: 30236127 PMCID: PMC6149062 DOI: 10.1186/s12967-018-1632-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MUC4 is a membrane-bound mucin that promotes carcinogenetic progression and is often proposed as a promising biomarker for various carcinomas. In this manuscript, we analyzed large scale genomic datasets in order to evaluate MUC4 expression, identify genes that are correlated with MUC4 and propose new signatures as a prognostic marker of epithelial cancers. METHODS Using cBioportal or SurvExpress tools, we studied MUC4 expression in large-scale genomic public datasets of human cancer (the cancer genome atlas, TCGA) and cancer cell line encyclopedia (CCLE). RESULTS We identified 187 co-expressed genes for which the expression is correlated with MUC4 expression. Gene ontology analysis showed they are notably involved in cell adhesion, cell-cell junctions, glycosylation and cell signaling. In addition, we showed that MUC4 expression is correlated with MUC16 and MUC20, two other membrane-bound mucins. We showed that MUC4 expression is associated with a poorer overall survival in TCGA cancers with different localizations including pancreatic cancer, bladder cancer, colon cancer, lung adenocarcinoma, lung squamous adenocarcinoma, skin cancer and stomach cancer. We showed that the combination of MUC4, MUC16 and MUC20 signature is associated with statistically significant reduced overall survival and increased hazard ratio in pancreatic, colon and stomach cancer. CONCLUSIONS Altogether, this study provides the link between (i) MUC4 expression and clinical outcome in cancer and (ii) MUC4 expression and correlated genes involved in cell adhesion, cell-cell junctions, glycosylation and cell signaling. We propose the MUC4/MUC16/MUC20high signature as a marker of poor prognostic for pancreatic, colon and stomach cancers.
Collapse
Affiliation(s)
- Nicolas Jonckheere
- Inserm, CHU Lille, UMR-S 1172-JPARC-Jean-Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", Univ. Lille, 59000, Lille, France.
| | - Isabelle Van Seuningen
- Inserm, CHU Lille, UMR-S 1172-JPARC-Jean-Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", Univ. Lille, 59000, Lille, France.
| |
Collapse
|
11
|
ICOSL-augmented adenoviral-based vaccination induces a bipolar Th17/Th1 T cell response against unglycosylated MUC1 antigen. Vaccine 2018; 36:6262-6269. [PMID: 30219366 DOI: 10.1016/j.vaccine.2018.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
Abstract
Cellular immunity established via immunotherapy holds the potential to eliminate solid tumors. Yet, cancer vaccines have failed to induce tumor-reactive T cells of sufficient quality to control disease. The inducible T cell costimulator (ICOS) pathway has been implicated in both the selective induction of immunity over tolerance as well as licensing of IL-17-polarized cellular immunity. Herein, we evaluated the ability of ICOS ligand (ICOSL) to augment the immunogenicity of adenoviral-based vaccination targeting the unglycosylated MUC1 peptide antigen. Vaccination disrupted immunotolerance in a transgenic mouse model recognizing human MUC1 as a self-antigen, inducing robust MUC1-specific immunity. Augmenting vaccination with ICOSL induced a bipolar Th17/Th1 effector profile, marked by increased MUC1-specific IL-17A production and RORγt expression in CD4+ but not CD8+ T cells which predominantly expressed IFNγ/IL-2 and T-bet. The polarization and maintenance of Th17 cells established following ICOSL augmented vaccination was highly durable, with elevated IL-17A and RORγt levels detected in CD4+ T cells up to 10 months after initial immunization. Furthermore, provision of ICOSL significantly enhanced MUC1-specific IgG antibody in response to immunization. ICOSL signaling dramatically influenced CD4+ T cell phenotype, altering gene expression of transcription factors and regulators of effector function following immunization. Interestingly, ICOSL augmentation failed to alter the transcriptional profile of CD8+ T cells following immunization, affecting the magnitude, but not distribution, of gene expression. Collectively, ICOSL supports the induction of durable, antigen-specific Th17/Th1-mediated immunity in vivo, establishing a vaccination platform to enhance CD4+ T cell-mediated antitumor immunity and providing a crucial component of an effective cancer vaccine.
Collapse
|
12
|
Kasinathan NK, Subramaniya B, Sivasithamparam ND. NF-κB/twist mediated regulation of colonic inflammation by lupeol in abating dextran sodium sulfate induced colitis in mice. J Funct Foods 2018; 41:240-249. [DOI: 10.1016/j.jff.2017.12.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
13
|
Ogawa T, Hirohashi Y, Murai A, Nishidate T, Okita K, Wang L, Ikehara Y, Satoyoshi T, Usui A, Kubo T, Nakastugawa M, Kanaseki T, Tsukahara T, Kutomi G, Furuhata T, Hirata K, Sato N, Mizuguchi T, Takemasa I, Torigoe T. ST6GALNAC1 plays important roles in enhancing cancer stem phenotypes of colorectal cancer via the Akt pathway. Oncotarget 2017; 8:112550-112564. [PMID: 29348846 PMCID: PMC5762531 DOI: 10.18632/oncotarget.22545] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a mortal disease due to treatment resistance, recurrence and distant metastasis. Emerging evidence has revealed that a small sub-population of cancer cells termed cancer stem cells (CSCs)/ cancer-initiating cells (CICs) is endowed with high levels of tumor-initiating ability, self-renewal ability and differentiation ability and is responsible for treatment resistance, recurrence and distant metastasis. Eradication of CSCs/CICs is essential to improve current treatments. However, the molecular mechanisms by which CSCs/CICs are maintained are still elusive. In this study, we aimed to determine the molecular mechanisms by which colorectal (CR)-CSCs/CICs in are maintained human primary CRC cells. CR-CSCs/CICs were isolated by sphere-culture and the ALDEFLUOR assay, and transcriptome analysis revealed that the gene ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 1 (ST6GALNAC1) was expressed at high levels in CR-CSCs/CICs. Overexpression of ST6GALNAC1 enhanced the expression of sialyl-Tn (STn) antigen, which is carried by the CSC marker CD44, and increased the sphere-forming ability and resistance to a chemotherapeutic reagent. The opposite phenomena were observed by gene knockdown using siRNA. Furthermore, the Akt pathway was activated in ST6GANAC1-overexpressed cells, and activation of the pathway was cancelled by gene knockdown of galectin-3. The results indicate that ST6GALNAC1 has a role in the maintenance of CR-CSCs/CICs by activating the Akt pathway in cooperation with galectin-3 and that ST6GalNAC1 (or STn antigen) might be a reasonable molecule for CSC/CIC-targeting therapy.
Collapse
Affiliation(s)
- Tadashi Ogawa
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan.,Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Toshihiko Nishidate
- Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Kenji Okita
- Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Liming Wang
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Yuzuru Ikehara
- The Molecular Medicine Team, Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Tetsuta Satoyoshi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan.,Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Akihiro Usui
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan.,Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Munehide Nakastugawa
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Goro Kutomi
- Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tomohisa Furuhata
- Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Koichi Hirata
- Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Toru Mizuguchi
- Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Ichiro Takemasa
- Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| |
Collapse
|
14
|
Ye Y, Yang C, Xu L, Fang D. MUC1 rs4072037 polymorphism is associated with decreased risk of gastric cancer: a meta-analysis. Int J Biol Markers 2017; 32:e284-e290. [PMID: 28561882 DOI: 10.5301/ijbm.5000270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Several studies have recently investigated the association between mucin 1 (MUC1) rs4072037 polymorphism and gastric cancer (GC) risk, but with conflicting results. The aim of this meta-analysis was to evaluate the association between MUC1 rs4072037 polymorphism and GC risk. METHODS A comprehensive database search of PubMed, Elsevier, Embase and China National Knowledge Infrastructure (CNKI) databases was performed to identify relevant studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of any association. RESULTS A total of 12 papers containing 18 studies were included in this meta-analysis, involving 12,373 cases and 15,008 controls. Our data suggested that rs4072037 polymorphism was associated with a decreased risk of GC. Stratification analyses of ethnicity indicated that rs4072037 decreased the risk of GC among white populations, but no significant relationship was observed among Asian populations. No significant associations were observed in subgroups of Lauren classification (intestinal or diffuse) and anatomical classification (cardia or non-cardia). CONCLUSIONS In conclusion, this meta-analysis suggested that rs4245739 polymorphism in the MUC1 gene may play a pivotal role in the pathogenesis of GC, especially for white populations.
Collapse
Affiliation(s)
- Yu Ye
- Department of General Surgery, Hang Zhou Red Cross Hospital, Hangzhou, Zhejiang - PR China
| | - Chong Yang
- Department of General Surgery, Hang Zhou Red Cross Hospital, Hangzhou, Zhejiang - PR China
| | - Lei Xu
- Department of Digestion, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang - PR China
| | - Dilong Fang
- Department of General Surgery, Hang Zhou Red Cross Hospital, Hangzhou, Zhejiang - PR China
| |
Collapse
|
15
|
Protein glycosylation in gastric and colorectal cancers: Toward cancer detection and targeted therapeutics. Cancer Lett 2017; 387:32-45. [DOI: 10.1016/j.canlet.2016.01.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/25/2022]
|
16
|
RNAi-mediated gene silencing of ST6GalNAc I suppresses the metastatic potential in gastric cancer cells. Gastric Cancer 2016; 19:85-97. [PMID: 25532910 DOI: 10.1007/s10120-014-0454-z] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND ST6GalNAc I is a sialyltransferase controlling the expression of sialyl-Tn antigen (STn), which is overexpressed in several epithelial cancers, including gastric cancer, and is highly correlated with cancer metastasis. However, the functional contribution of ST6GalNAc I to development or progression of gastric cancer remains unclear. In this study, we investigated the effects of suppression of ST6GalNAc I on gastric cancer in vitro and in vivo. METHODS Gastric cancer cell lines were transfected with ST6GalNAc I siRNA and were examined by cell proliferation, migration, and invasion assays. We also evaluated the effect of ST6GalNAc I siRNA treatment in a peritoneal dissemination mouse model. The differences in mRNA levels of selected signaling molecules were analyzed by polymerase chain reaction (PCR) arrays associated with tumor metastasis in MKN45 cells. The signal transducer and activator of transcription 5b (STAT5b) signaling pathways that reportedly regulate the insulin-like growth factor-1 (IGF-1) were analyzed by Western blot. RESULTS ST6GalNAc I siRNA inhibited gastric cancer cell growth, migration, and invasion in vitro. Furthermore, intraperitoneal administration of ST6GalNAc I siRNA- liposome significantly inhibited peritoneal dissemination and prolonged the survival of xenograft model mice with peritoneal dissemination of gastric cancer. PCR array confirmed that suppression of ST6GalNAc I caused a significant reduction in expression of IGF-1 mRNA. Decreased IGF-1 expression in MKN45 cells treated with ST6GalNAc I siRNA was accompanied by reduced phosphorylation of STAT5b. CONCLUSION ST6GalNAc I may regulate the gene expression of IGF-1 through STAT5b activation in gastric cancer cells and may be a potential target for treatment of metastasizing gastric cancer.
Collapse
|
17
|
Anti-MUC1 Antibody in Nipple Aspirate Fluids Correlates with Tumor Aggressiveness in Breast Cancer: A Feasibility Study. DISEASE MARKERS 2015; 2015:179689. [PMID: 26693201 PMCID: PMC4676998 DOI: 10.1155/2015/179689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/27/2015] [Accepted: 11/11/2015] [Indexed: 11/17/2022]
Abstract
Antibodies against MUC1 are found in circulation of breast cancer (BC) patients. We hypothesized that anti-MUC1 antibodies might be present in even a higher concentration in nipple aspirate fluid (NAF) and could be used to predict aggressiveness of BC. Serum and NAF samples were collected from high risk lesions, BC, and healthy contralateral breasts. ELISA was used to measure the amount of IgG, IgM, and IgA against a tumor-specific MUC1 peptide derived from the extracellular tandem repeat domain of MUC1. Tumor characteristics were recorded prospectively; 120 NAF samples were obtained from a total of 77 women in the study. There was no significant difference of anti-MUC1 antibody levels compared to BC with other lesions. Anti-MUC1 IgG level in NAF was higher in triple negative tumors (P = 0.02); serum anti-MUC1 IgG levels were significantly higher in patients with ER (−) tumor and recurrent disease (P = 0.01); NAF anti-MUC1 IgA levels were significantly higher in patients with LVI and Her2-neu (+) tumors (P < 0.05). These results show that NAF could be a reliable biomarker to predict tumor aggressiveness in BC. A larger study will be needed to confirm these data and to investigate the potential of anti-MUC1 antibodies in NAF and serum to predict disease outcome.
Collapse
|
18
|
Campos D, Freitas D, Gomes J, Magalhães A, Steentoft C, Gomes C, Vester-Christensen MB, Ferreira JA, Afonso LP, Santos LL, Pinto de Sousa J, Mandel U, Clausen H, Vakhrushev SY, Reis CA. Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery. Mol Cell Proteomics 2015; 14:1616-29. [PMID: 25813380 PMCID: PMC4458724 DOI: 10.1074/mcp.m114.046862] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO "SimpleCell" (SC) strategy to characterize the O-glycoproteome of two gastric cancer SimpleCell lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses at least partially truncated O-glycans. Overall, we identified 499 O-glycoproteins and 1236 O-glycosites in gastric cancer SimpleCells, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer and healthy individuals to identify circulating O-glycoproteins with the STn glycoform. We identified 37 O-glycoproteins in the pool of cancer sera, and only nine of these were also found in sera from healthy individuals. Two identified candidate O-glycoprotein biomarkers (CD44 and GalNAc-T5) circulating with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to show that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set of O-glycoprotein candidates with biomarker potential in gastric cancer.
Collapse
Affiliation(s)
- Diana Campos
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Daniela Freitas
- §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Joana Gomes
- §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Magalhães
- §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Catharina Steentoft
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catarina Gomes
- §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Malene B Vester-Christensen
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - José Alexandre Ferreira
- ¶Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida 4200-072 Porto, Portugal; ‖QOPNA, Department of Chemistry of the University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Luis P Afonso
- **Department of Pathology, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida 4200-072 Porto, Portugal
| | - Lúcio L Santos
- ¶Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida 4200-072 Porto, Portugal
| | - João Pinto de Sousa
- ‡‡Faculty of Medicine of the University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ulla Mandel
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark;
| | - Celso A Reis
- §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; ‡‡Faculty of Medicine of the University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; §§Institute of Biomedical Sciences Abel Salazar, ICBAS, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
| |
Collapse
|
19
|
Corfield AP. Mucins: A biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta Gen Subj 2015; 1850:236-52. [DOI: 10.1016/j.bbagen.2014.05.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/05/2014] [Accepted: 05/02/2014] [Indexed: 02/08/2023]
|
20
|
Silva MCC, de Paula CAA, Ferreira JG, Paredes-Gamero EJ, Vaz AMSF, Sampaio MU, Correia MTS, Oliva MLV. Bauhinia forficata lectin (BfL) induces cell death and inhibits integrin-mediated adhesion on MCF7 human breast cancer cells. Biochim Biophys Acta Gen Subj 2014; 1840:2262-71. [PMID: 24641823 DOI: 10.1016/j.bbagen.2014.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/31/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity. METHODS MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting. RESULTS BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and β1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21. CONCLUSION BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells. GENERAL SIGNIFICANCE Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer.
Collapse
Affiliation(s)
- Mariana C C Silva
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Cláudia A A de Paula
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Joana G Ferreira
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Departamento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Angela M S F Vaz
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, 22460-030 Rio de Janeiro, RJ, Brazil
| | - Misako U Sampaio
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Maria Tereza S Correia
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, 50670-910 Recife, PE, Brazil
| | - Maria Luiza V Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil.
| |
Collapse
|
21
|
AnandKumar A, Devaraj H. Tumour Immunomodulation: Mucins in Resistance to Initiation and Maturation of Immune Response Against Tumours. Scand J Immunol 2013; 78:1-7. [DOI: 10.1111/sji.12019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/31/2012] [Indexed: 12/22/2022]
Affiliation(s)
- A. AnandKumar
- Unit of Biochemistry and Glycotechnology; University of Madras; Guindy campus; Chennai; India
| | - H. Devaraj
- Unit of Biochemistry and Glycotechnology; University of Madras; Guindy campus; Chennai; India
| |
Collapse
|
22
|
Rambaruth ND, Greenwell P, Dwek MV. The lectin Helix pomatia agglutinin recognizes O-GlcNAc containing glycoproteins in human breast cancer. Glycobiology 2012; 22:839-48. [DOI: 10.1093/glycob/cws051] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
A comprehensive analysis of common genetic variation in MUC1, MUC5AC, MUC6 genes and risk of stomach cancer. Cancer Causes Control 2010; 21:313-21. [PMID: 19924550 DOI: 10.1007/s10552-009-9463-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 10/29/2009] [Indexed: 12/22/2022]
Abstract
OBJECTIVE MUC1, MUC5AC, and MUC6 are main constituents of the mucus barrier in the stomach, which protects the underlying epithelium from acid, proteases, mechanical trauma, and pathogenic microorganisms. Accumulating evidence implicates potential roles of MUC1, MUC5AC, and MUC6 genetic variation in the development of stomach cancer. METHODS We evaluated the relationship between common genetic variations in these genes and stomach cancer risk, using an LD-based tagSNP approach in a population-based case-control study conducted in Warsaw, Poland, during 1994-1996. We genotyped 6, 8, and 14 tagSNPs in MUC1, MUC5AC, and MUC6 genes, respectively, among 273 cases newly diagnosed with stomach cancer and 377 controls. RESULTS Each of the six tagSNPs tested across the MUC1 region showed statistically significant associations with an increased risk of stomach cancer. Carriers of the haplotype ACTAA rare alleles of rs4971052, rs4276913, rs4971088, rs4971092, and rs4072037 had a nearly doubled risk (OR = 1.93, 95% CI = 1.49-2.48) compared to the referent haplotype GTAAG. Out of the eight tagSNPs across MUC5AC region, only minor allele of rs868903 was significantly associated with an increased risk of stomach cancer (OR = 1.80, 95% CI = 1.22-2.63). CONCLUSIONS Overall, our data provide evidence that some common variations in MUC1 and MUC5AC genes contribute to an elevated risk of stomach cancer. Further studies are needed to confirm these novel findings.
Collapse
|
24
|
Jonckheere N, Van Seuningen I. The membrane-bound mucins: From cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie 2009; 92:1-11. [PMID: 19818375 DOI: 10.1016/j.biochi.2009.09.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/30/2009] [Indexed: 12/26/2022]
Abstract
The membrane-bound mucins belong to an ever-increasing family of O-glycoproteins. Based on their structure and localization at the cell surface they are thought to play important biological roles in cell-cell and cell-matrix interactions, in cell signalling and in modulating biological properties of cancer cells. Among them, MUC1 and MUC4 mucins are best characterized. Their altered expression in cancer (overexpression in the respiratory, gastro-intestinal, urogenital and hepato-biliary tracts) indicates an important role for these membrane-bound mucins in tumour progression, metastasis, cancer cell resistance to chemotherapeutics drugs and as specific markers of epithelial cancer cells. Some mechanisms responsible for MUC1 and MUC4 role in tumour cell properties have been deciphered recently. However, much remains to be done in order to understand the molecular mechanisms and signalling pathways that control the expression of membrane-bound mucins during the different steps of tumour progression toward adenocarcinoma and evaluate their potential as prognostic/diagnostic markers and as therapeutic tools. In this review we focus on the molecular mechanisms and signalling pathways known to control the expression of membrane-bound mucins in cancer. We will discuss the mechanisms of regulation at the promoter level (including genetic and epigenetic modifications) that may be responsible for the mucin altered pattern of expression in epithelial cancers.
Collapse
|
25
|
Baldus SE, Engelmann K, Hanisch FG. MUC1 and the MUCs: A Family of Human Mucins with Impact in Cancer Biology. Crit Rev Clin Lab Sci 2008; 41:189-231. [PMID: 15270554 DOI: 10.1080/10408360490452040] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mucins represent a family of glycoproteins characterized by repeat domains and a dense O-glycosylation. During the last two decades, the gene and peptide structures of various mucins as well as their glycosylation states were partly elucidated. Characteristic tumor-associated alterations of the expression patterns and glycosylation profiles were observed in biochemical, immunochemical, and histological studies and are discussed in the light of efforts to use the most prominent member in this family, MUC1, as a tumor target in anti-tumor strategies. Within this context the present review, focusing on MUC1, describes recent work on the regulation of mucin biosynthesis by cytokines and hormones, the role of mucins in cell adhesion, and their interaction with the immune system. Important aspects of clinical diagnostics based on mucin antigens are discussed, including the application of tumor serum assays and the significance of numerous studies revealing correlations between the expression of peptide cores or mucin-associated carbohydrates and clinicopathological parameters like tumor progression and prognosis.
Collapse
Affiliation(s)
- Stephan E Baldus
- Institute of Pathology and Center of Biochemistry, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
26
|
Abstract
Mucins are high molecular weight glycoproteins with complex oligosaccharide side chains attached to the apomucin protein backbone byO-glycosidic linkage; they are found in crude mucus gels that protect epithelial surfaces in the major tracts of the body and as transmembrane proteins expressed on the apical cell surface of glandular and ductal epithelia of various organs. Changes in the sequence of glycosylation of mucins in different settings generate a variety of epitopes in the oligosaccharide side chains of mucins, including newly expressed blood-group antigens, distinguishing between normal and diseased states. Tumour-associated epitopes on mucins and their antigenicity make them suitable as immunotargets on malignant epithelial cells and their secretions, creating a surge of interest in mucins as diagnostic and prognostic markers for various diseases, and even influencing the design of mucin-based vaccines. This review discusses the emerging roles of mucins such as MUC1 and MUC4 in cancer and some other diseases, and stresses how underglycosylated and truncated mucins are exploited as markers of disease and to monitor widespread metastasis, making them useful in patient management. Furthermore the type, pattern and amount of mucin secreted in some tissues have been considered in the classification and terminology of neoplasia and in specific organs such as the pancreas. These factors have been instrumental in pathological classification, diagnosis and prognostication of neoplasia.
Collapse
|
27
|
Mall AS, Chirwa N, Govender D, Lotz Z, Tyler M, Rodrigues J, Kahn D, Goldberg P. MUC2, MUC5AC and MUC5B in the mucus of a patient with pseudomyxoma peritonei: biochemical and immunohistochemical study. Pathol Int 2007; 57:537-47. [PMID: 17610480 DOI: 10.1111/j.1440-1827.2007.02137.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 58-year-old man with a 1 year history of progressive abdominal distension underwent a laparotomy for pseudomyxoma peritonei. The mucin was identified and characterized in the present study. Approximately 6 L of crude mucus in the sol (highly viscous) and gel (semisolid) phases was obtained from the patient's peritoneal cavity. The sol material was briefly homogenized followed by slow stirring at dilutions of up to 1:10 with 6 mol/L guanidinium chloride and proteolytic inhibitors for periods of up to 48 h. Preparative and analytical gel filtration on Sepharose 2B showed some PAS-positive material eluting in the void volume accompanied by equal or larger amounts of protein in the void and included volumes of the columns. Sodium dodecylsulfate-polyacrylamide gel electrophoresis of purified mucin on a 4-20% gradient gel showed PAS-positive material on the top of the running gel and a distinct smaller-sized species of mucin of higher electrophoretic mobility with background material in between the large and small mucin. Western blot (confirmed by immunohistochemical analysis) after agarose gel electrophoresis showed the presence of MUC2, MUC5AC and MUC5B in the mucus. There was no MUC1, MUC1core or MUC6 in the tissue. Histopathological examination confirmed a mucinous appendicular adenocarcinoma. Histology showed the mucin to be predominantly of the sulfated and non-sulfated acidic type. Serine, threonine and proline comprised 21.6% of the total amino acid composition of the sample. The viscous nature of the material is due to the presence of three gel-forming mucins and possibly to its high content of protein.
Collapse
Affiliation(s)
- Anwar S Mall
- Department of Surgery, University of Cape Town, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pinho S, Marcos NT, Ferreira B, Carvalho AS, Oliveira MJ, Santos-Silva F, Harduin-Lepers A, Reis CA. Biological significance of cancer-associated sialyl-Tn antigen: modulation of malignant phenotype in gastric carcinoma cells. Cancer Lett 2006; 249:157-70. [PMID: 16965854 DOI: 10.1016/j.canlet.2006.08.010] [Citation(s) in RCA: 298] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/07/2006] [Accepted: 08/09/2006] [Indexed: 11/22/2022]
Abstract
The activation of an abnormal glycosylation pathway in cancer cells leads to the formation of the sialyl-Tn antigen, blocking regular carbohydrate chain elongation. Sialyl-Tn antigen is rarely expressed in normal tissues but is aberrantly expressed in a variety of carcinomas, where it constitutes a marker of poor prognosis. Although the clinical significance of sialyl-Tn is well characterized, a functional role for this glycan and its contribution to cancer progression remain to be elucidated. This study evaluates the capability of sialyl-Tn to modify processes like cell cycle, apoptosis, actin cytoskeleton dynamics, adhesion and motility on ECM components, cell-cell aggregation and invasion. De-novo expression of sialyl-Tn leads to major morphological and cell behavior alterations in gastric carcinoma cells which were reverted by specific antibody blockage. Sialyl-Tn antigen is able to modulate a malignant phenotype inducing a more aggressive cell behavior, such as decreased cell-cell aggregation and increased ECM adhesion, migration and invasion.
Collapse
Affiliation(s)
- Sandra Pinho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dengjel J, Stevanovic S. Naturally Presented MHC Ligands Carrying Glycans. Transfus Med Hemother 2006. [DOI: 10.1159/000090194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Abstract
Although oral contrast agents are known to improve the accuracy of CT colonography (CTC) by tagging fluid and stool, it is not well recognized that oral contrast also adheres to the surface of polyps. The authors' objective was to quantitate the frequency of contrast adhering to polyps. Three hundred thirty-eight optical colonoscopy-proven polyps were identified on CTC of all of the 216 patients with polyps in a larger cohort of screening patients. CT scans of polyps were analyzed for adherent contrast (ie, a thin coat/adherent drops) in at least one view (prone/supine). Forty-six percent of the 312 polyps not touching a contrast pool had adherent contrast. Polyps with villous histology were significantly more likely to have adherent contrast (77% [20/26] vs. 43% [124/286], P<0.001). Oral contrast agents often tag polyp surfaces in a pattern that is distinct from internal tagging of adherent stool, which must be recognized during CTC interpretation. Polyps with villous histology show a higher rate of contrast adherence than nonvillous polyps.
Collapse
Affiliation(s)
- Stacy D O'Connor
- Radiology Department, National Institutes of Health, Bethesda, MD and Uniformed Services University of the Health Sciences, Bethesda, MD 20892-1182, USA
| | | | | | | |
Collapse
|
31
|
Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL. Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 2005; 18:92-7. [PMID: 16343885 DOI: 10.1016/j.coi.2005.11.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 11/25/2005] [Indexed: 01/21/2023]
Abstract
A variety of different post-translational modifications of peptides displayed by class I and II MHC molecules have now been described. Some modifications promote the binding of peptides to MHC molecules, and might also influence the ability of the peptide to be produced by antigen processing pathways. In some instances, the antigen processing components themselves are actually responsible for generating post-translational modifications. Finally, evidence is accumulating that modifications can be altered as a consequence of inflammation, transformation, apoptosis and aging. This leads to altered repertories of MHC-associated peptides, which may be important in immune responses associated with autoimmune diseases, infection and cancer.
Collapse
Affiliation(s)
- Victor H Engelhard
- Carter Center for Immunology Research and the Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Cell surface and extracellular proteins are O-glycosylated, where the most abundant type of O-glycosylation in proteins is the GalNAc attachment to serine (Ser) or threonine (Thr) in the protein chain by an a-glycosidic linkage. Most eukaryotic nuclear and cytoplasmic proteins modified by a-linked O-GlcNAc to Ser or Thr exhibit reciprocal O-GlcNAc glycosylation and phosphorylation during the cell cycle, cell stimulation, and/or cell growth. Less-investigated types of O-glycosylation are O-fucosylation, O-mannosylation, and O-glucosylation, but they are functionally of high relevance for early stages of development and for vital physiological functions of proteins. Glycosaminoglycans are a-linked to proteoglycans via a xylose-containing tetrasaccharide, represented by linear chains of repetitive disaccharides modified by carboxylates and O- or/and N-linked sulfates. Analysis of O-glycosylation by mass spectrometry (MS) is a complex task due to the high structural diversity of glycan and protein factors. The parameters in structural analysis of O-glycans include determination of (i) O-glycosylation attachment sites in the protein sequence, (ii) the type of attached monosaccharide moiety, (iii) a core type in the case of GalNAc O-glycosylation, (iv) the type and size of the oligosaccharide portion, (v) carbohydrate branching patterns, (vi) the site of monosaccharide glycosidic linkages, (vii) the anomericity of glycosidic linkages, and (viii) covalent modifications of the sugar backbone chains by carbohydrate- and noncarbohydrate-type of substitutents. Classical and novel analytical strategies for identification and sequencing of O-glycans by MS are described. These include methods to analyze O-glycans after total or partial release from the parent protein by chemical or enzymatic approach or to analyze O-glycosylated peptides by mapping and sequencing from proteolytic mixtures. A recombination process of multiply charged glycopeptides with electrons by electron capture dissociation Fourier transform ion cyclotrone resonance (FTICR)-MS has been introduced and is instrumental for nonergodic polypeptide backbone cleavages without losses of labile glycan substituents. A method for O-glycoscreening under increased sensitivity and efficient sequencing as a combination of an on-line coupling of capillary electrophoresis separation, as well as an automated MS-tandem MS (MS/MS) switching under variable energy conditions collision-induced dissociation (CID) protocol, is beneficial for determination of O-acetylation and oversulfation (Bindila et al., 2004a; Zamfir et al., 2004a). O-glycomics by robotized chip-electrospray/ionization (ESI)-MS and MS/MS on the quadrupole time-of-flight (QTOF) and FTICR analyzers, accurate mass determination, and software for assignment of fragmentation spectra represent essentials for high-throughput (HTP) in serial screenings (Bindila et al., 2004b; Froesch et al., 2004; Vakhrushev et al., 2005). Dimerization of intact O-glycosylated proteins can be investigated by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF)-MS after blotting.
Collapse
MESH Headings
- Animals
- Biochemistry/methods
- Blotting, Western
- Cell Membrane/metabolism
- Collagen/chemistry
- Dimerization
- Electrophoresis, Capillary
- Electrophoresis, Polyacrylamide Gel
- Fungal Proteins/chemistry
- Glycoproteins/chemistry
- Glycosylation
- Humans
- Mass Spectrometry
- Models, Chemical
- Oligosaccharides/chemistry
- Peptides/chemistry
- Phosphorylation
- Protein Processing, Post-Translational
- Proteins/chemistry
- Serine/chemistry
- Software
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spectroscopy, Fourier Transform Infrared
- Threonine/chemistry
Collapse
|
33
|
Marcos NT, Pinho S, Grandela C, Cruz A, Samyn-Petit B, Harduin-Lepers A, Almeida R, Silva F, Morais V, Costa J, Kihlberg J, Clausen H, Reis CA. Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res 2004; 64:7050-7. [PMID: 15466199 DOI: 10.1158/0008-5472.can-04-1921] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Sialyl-Tn antigen (Neu5Acalpha2-6GalNAc-O-Ser/Thr) is highly expressed in several human carcinomas and is associated with carcinoma aggressiveness and poor prognosis. We characterized two human sialyltransferases, CMP-Neu5Ac:GalNAc-R alpha2,6-sialyltransferase (ST6GalNAc)-I and ST6GalNAc-II, that are candidate enzymes for Sialyl-Tn synthases. We expressed soluble recombinant hST6GalNAc-I and hST6GalNAc-II and characterized the substrate specificity of both enzymes toward a panel of glycopeptides, glycoproteins, and other synthetic glycoconjugates. The recombinant ST6GalNAc-I and ST6GalNAc-II showed similar substrate specificity toward glycoproteins and GalNAcalpha-O-Ser/Thr glycopeptides, such as glycopeptides derived from the MUC2 mucin and the HIVgp120. We also observed that the amino acid sequence of the acceptor glycopeptide contributes to the in vitro substrate specificity of both enzymes. We additionally established a gastric cell line, MKN45, stably transfected with the full length of either ST6GalNAc-I or ST6GalNAc-II and evaluated the carbohydrate antigens expression profile induced by each enzyme. MKN45 transfected with ST6GalNAc-I showed high expression of Sialyl-Tn, whereas MKN45 transfected with ST6GalNAc-II showed the biosynthesis of the Sialyl-6T structure [Galbeta1-3 (Neu5Acalpha2-6)GalNAc-O-Ser/Thr]. In conclusion, although both enzymes show similar in vitro activities when Tn antigen alone is available, whenever both Tn and T antigens are present, ST6GalNAc-I acts preferentially on Tn antigen, whereas the ST6GalNAc-II acts preferentially on T antigen. Our results show that ST6GalNAc-I is the major Sialyl-Tn synthase and strongly support the hypothesis that the expression of the Sialyl-Tn antigen in cancer cells is due to ST6GalNAc-I activity.
Collapse
Affiliation(s)
- Nuno T Marcos
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ. MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 2004; 82:249-93. [PMID: 14975259 DOI: 10.1016/s0065-2776(04)82006-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anda M Vlad
- Department of Immunology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
35
|
Grohmann GPM, Schirmacher P, Manzke O, Hanisch FG, Dienes HP, Baldus SE. Modulation of MUC1 and blood group antigen expression in gastric adenocarcinoma cells by cytokines. Cytokine 2003; 23:86-93. [PMID: 12906871 DOI: 10.1016/s1043-4666(03)00202-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Immunohistological studies demonstrated that MUC1 expression in gastric cancer is associated with a poor prognosis. As a mediator of cell-cell interactions, MUC1 may also be involved in metastasis. However, these aspects are of relevance since cytokine levels are locally increased as a consequence of peritumorous inflammatory response and coexisting chronic gastritis. Therefore we analyzed the potential influence of several cytokines on the expression of tumor-associated MUC1 and Lewis blood group antigens in gastric carcinoma cells. Gastric cancer cell lines AGS and KATOIII were incubated with the cytokines interleukin-1beta, interferon-gamma, tumor necrosis factor-alpha (TNF-alpha), and hepatocyte growth factor over a period of 72 h. Expressions of mucin antigens and cytokine secretion were measured by immunocytochemistry and/or enzyme-linked immunosorbent assay (ELISA). Analysis by fluorescence-activated cell sorter (FACS) demonstrated that MUC1 and sialyl Lewis A reactivities of AGS cells were increased significantly following TNF-alpha stimulation but not by other cytokines. Expression of mucin-associated antigens by cell line KATOIII was not affected by any of the employed cytokines. These data provide evidence that TNF-alpha can raise the expression of important mucin peptide as well as mucin-associated carbohydrate antigens and thereby potentially influence the progression of gastric carcinomas.
Collapse
Affiliation(s)
- Georg P M Grohmann
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Street 9, D-50931 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Flucke U, Steinborn E, Dries V, Mönig SP, Schneider PM, Thiele J, Hölscher AH, Dienes HP, Baldus SE. Immunoreactivity of cytokeratins (CK7, CK20) and mucin peptide core antigens (MUC1, MUC2, MUC5AC) in adenocarcinomas, normal and metaplastic tissues of the distal oesophagus, oesophago-gastric junction and proximal stomach. Histopathology 2003; 43:127-34. [PMID: 12877727 DOI: 10.1046/j.1365-2559.2003.01680.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Adenocarcinomas of the distal oesophagus and especially the oesophago-gastric junction have shown an increasing incidence during the last decade. Definition of subgroups according to different sites of development, histogenesis or aetiology may prove to be valuable for clinical diagnosis and treatment. Previous studies have shown differences in cytokeratin patterns between Barrett's metaplasia of the oesophagus and intestinal metaplasia in the stomach. The aim of our study was to investigate whether the expression of certain cytokeratins (CK7, CK20) and mucins (MUC1, MUC2, MUC5AC) exhibit clear-cut patterns, thus allowing a subclassification of adenocarcinomas of the oesophago-gastric junction. The possibility of a relationship between antigen expression and the presence or absence of Barrett's metaplastic epithelium was also studied. METHODS AND RESULTS CK7, CK20, MUC1, MUC2 and MUC5AC were visualized in six adenocarcinomas of the distal oesophagus, 29 adenocarcinomas of the oesophago-gastric junction and eight adenocarcinomas of the proximal stomach. CK7, CK20 and MUC1 were strongly expressed in the great majority of all neoplasms under study, whereas MUC2 and MUC5AC were absent or only faintly detectable. CK20 exhibited a significantly stronger expression in poorly differentiated tumours (G3) and MUC1 immunoreactivity correlated with tubular and papillary versus signet-ring cell histopathology. Other statistically significant correlations between antigens and histopathological features (pTNM stage, grading, histopathological subtype, presence/absence of Barrett's epithelium) were not observed. CONCLUSIONS According to our results, most adenocarcinomas of the oesophago-gastric junction show a CK7+, CK20+, MUC1+ phenotype irrespective of the presence or absence of Barrett's epithelium. The immunohistochemical data suggest a similar histogenesis of these tumours.
Collapse
Affiliation(s)
- U Flucke
- Institute of Pathology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kurtenkov O, Klaamas K, Sergeyev B, Chuzmarov V, Miljukhina L, Shljapnikova L. Better survival of Helicobacter pylori infected patients with early gastric cancer is related to a higher level of Thomsen-Friedenreich antigen-specific antibodies. Immunol Invest 2003; 32:83-93. [PMID: 12722944 DOI: 10.1081/imm-120019210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The survival of patients with histologically verified gastric carcinoma at stage I (n = 44) and stage II (n = 43) was analysed by the Kaplan-Meier method depending on H. pylori serological status and a level of IgG and IgM antibody to tumor-associated Thomson-Friedenreich antigen (T Ag). In cancer patients at stage I, significantly better survival for H. pylori seropositive patients was observed compared to H. pylori seronegative patients (median SE survival time: 60.0 +/- 3.8 mths and 37.0 +/- 7.8 mths, respectively; P < 0.0004, log-rank test). Patients with higher level of T Ag-specific IgG antibody (strong responders) showed significantly and dramatically better (P < 0.00001) survival rate than weak responders. However, an association of better survival with a higher level of anti-T antibody level was limited to the H. pylori seropositive patients exclusively (P < 0.00001) with no difference for H. pylori seronegative group of patients. The level of IgM anti-T Ag antibody was not significantly related to the survival of patients at both stages of the disease, though better survival was noted in H. pylori seropositive IgM strong responders at approximately 40-60 months of observation. Statistically insignificant associations between survival and H. pylori status or anti-T antibody levels were also observed in a group of gastric cancer patients at stage II. In summary, the survival of patients with early gastric cancer (stage I) is significantly better in H. pylori seropositive patients, and this phenomenon may be in part explained by up-regulation of T Ag-specific IgG immune response in H. pylori infected individuals.
Collapse
Affiliation(s)
- Oleg Kurtenkov
- Institute of Experimental and Clinical Medicine, Tallinn, Estonia.
| | | | | | | | | | | |
Collapse
|
38
|
Baldus SE. [Clinical, pathological and molecular prognostic factors in colorectal carcinomas]. DER PATHOLOGE 2003; 24:49-60. [PMID: 12601478 DOI: 10.1007/s00292-002-0592-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various aspects of the progression and prognosis of colorectal carcinoma have been investigated in numerous publications during recent years. An exact macroscopic and microscopic examination is still of basic importance but different factors of the molecular pathogenesis of colorectal carcinoma could be described by immunohistochemistry and molecular biology. Furthermore, they have been evaluated regarding their importance for the course of disease and prognosis and in particular, the different pathways of carcinogenesis and microsatellite instability were included. The detection of micrometastasis was investigated applying mostly molecular genetic methods. Numerous oncogenes, tumor suppressor genes and regulators of the cell cycle, markers of proliferation and apoptosis, cell adhesion antigens and angiogenetic factors were characterized with regard to their prognostic potential. In the future, so-called response predictors will presumably gain a certain relevance in the context of neoadjuvant (radiotherapy) chemotherapy. The present review summarizes these results and discusses the future clinical relevance.
Collapse
Affiliation(s)
- S E Baldus
- Institut für Pathologie, Universität zu Köln, Cologne.
| |
Collapse
|
39
|
Turner MS, McKolanis JR, Ramanathan RK, Whitcomb DC, Finn OJ. Mucins in gastrointestinal cancers. CANCER CHEMOTHERAPY AND BIOLOGICAL RESPONSE MODIFIERS 2003; 21:259-74. [PMID: 15338749 DOI: 10.1016/s0921-4410(03)21012-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mucin family has been under study by molecular biologists, biochemists, pathologists and immunologists interested in cancer because of the role these molecules can play in the diagnosis and treatment of cancer. Immense knowledge has been accumulated, but the high speed of progress in the laboratory has not been matched by the progress towards applying this knowledge in the clinic. For example, specific knowledge of cancer-associated changes in the expression and glycosylation of various mucins, which can aid in the diagnosis as well as prognosis of GI cancers, has not yet led to the use of a panel of anti-mucin antibodies as a standard diagnostic tool. Similarly, many more opportunities exist for using mucin-based therapies than are currently being considered in the clinic. This chapter aimed to highlight some of these opportunities and to interest clinician scientists in exploring them in the near future.
Collapse
Affiliation(s)
- Michael S Turner
- Department of Immunology, University of Pittsburgh School of Medicine, Cancer Center, PA 15261, USA
| | | | | | | | | |
Collapse
|
40
|
Vlad AM, Muller S, Cudic M, Paulsen H, Otvos L, Hanisch FG, Finn OJ. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. J Exp Med 2002; 196:1435-46. [PMID: 12461079 PMCID: PMC2194269 DOI: 10.1084/jem.20020493] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In contrast to protein antigens, processing of glycoproteins by dendritic cells (DCs) for presentation to T cells has not been well studied. We developed mouse T cell hybridomas to study processing and presentation of the tumor antigen MUC1 as a model glycoprotein. MUC1 is expressed on the surface as well as secreted by human adenocarcinomas. Circulating soluble MUC1 is available for uptake, processing, and presentation by DCs in vivo and better understanding of how that process functions in the case of glycosylated antigens may shed light on antitumor immune responses that could be initiated against this glycoprotein. We show that DCs endocytose MUC1 glycopeptides, transport them to acidic compartments, process them into smaller peptides, and present them on major histocompatability complex (MHC) class II molecules without removing the carbohydrates. Glycopeptides that are presented on DCs are recognized by T cells. This suggests that a much broader repertoire of T cells could be elicited against MUC1 and other glycoproteins than expected based only on their peptide sequences.
Collapse
Affiliation(s)
- Anda M Vlad
- Department of Immunology, University of Pittsburgh School of Medicine, Biomedical Science Tower, Terrace & DeSoto Streets, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Baldus SE, Mönig SP, Arkenau V, Hanisch FG, Schneider PM, Thiele J, Hölscher AH, Dienes HP. Correlation of MUC5AC immunoreactivity with histopathological subtypes and prognosis of gastric carcinoma. Ann Surg Oncol 2002; 9:887-93. [PMID: 12417511 DOI: 10.1007/bf02557526] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND MUC5AC represents a mucin peptide core expressed in normal gastric epithelia. Its presence in gastric carcinomas was previously described as a characteristic of gastric differentiation. METHODS MUC5AC reactivity was investigated by immunohistochemistry and correlated with clinicopathological variables in a large series (n = 200) of gastric carcinomas. RESULTS A statistically significant association between MUC5AC positivity and parameters of cancer progression (pTNM staging and grading) could not be observed. However, MUC5AC exhibited correlations with certain subtypes of histopathological differentiation. A significant reduction of MUC5AC expression was evident in mucinous and undifferentiated carcinomas according to the World Health Organization classification, as well as in type III cancers according to the Goseki classification system. Furthermore, reduced MUC5AC reactivity (confined to up to 35% of the tumor area) was significantly correlated with an unfavorable prognosis of all patients in univariate and multivariate analysis. The same association could be observed in the subgroup of pTNM stage I patients (n = 60). CONCLUSIONS A significant reduction of gastric differentiation as reflected by MUC5AC immunoreactivity represents a marker of worse survival probability in gastric cancer. Finally, reduced MUC5AC positivity defines a high-risk subgroup of pTNM stage I patients.
Collapse
Affiliation(s)
- Stephan E Baldus
- Institute of Pathology and Center of Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Baldus SE, Mönig SP, Hanisch FG, Zirbes TK, Flucke U, Oelert S, Zilkens G, Madejczik B, Thiele J, Schneider PM, Hölscher AH, Dienes HP. Comparative evaluation of the prognostic value of MUC1, MUC2, sialyl-Lewis(a) and sialyl-Lewis(x) antigens in colorectal adenocarcinoma. Histopathology 2002; 40:440-9. [PMID: 12010364 DOI: 10.1046/j.1365-2559.2002.01389.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS The significance of MUC1, MUC2 and sialylated Lewis blood group antigens as prognostic markers in colorectal adenocarcinoma was investigated in a large series of patients because previous investigations revealed inconsistent results due to unrelated tumour samples from different patient groups and methodological differences. METHODS AND RESULTS Tissues from 243 patients with colorectal adenocarcinoma were stained immunohistochemically. MUC1 showed a strong immunoreactivity (in more than 35% of the tumour area) in 32.5%, MUC2 in 51.0%, sialyl-Lewis(x) in 67.9% and sialyl-Lewis(a) in 73.7% of the cases, respectively. MUC1 immunoreactivity displayed a significant correlation with tumour progression as reflected by advancing pTNM staging and poor differentiation. MUC2 expression was significantly stronger in mucinous adenocarcinomas. Sialyl-Lewis(x) immunostaining correlated with the extent of lymph node metastasis as well as low cytological differentiation. According to univariate and multivariate analysis (P < 0.0001) only MUC1 reactivity represented a marker of worse survival probability, opposed to the sialylated Lewis antigens that did not exert a predictive value. CONCLUSIONS According to our data, MUC1 and sialyl-Lewis(x) immunoreactivity exhibit statistically significant correlations with established markers of tumour progression. However, only MUC1 presents as an independent prognostic factor of colorectal adenocarcinoma.
Collapse
Affiliation(s)
- S E Baldus
- Institute of Pathology, Medical Faculty, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lüttges J, Zamboni G, Longnecker D, Klöppel G. The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma. Am J Surg Pathol 2001; 25:942-8. [PMID: 11420467 DOI: 10.1097/00000478-200107000-00014] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intraductal papillary-mucinous neoplasms of the pancreas seem to comprise various types, whose relationship to ductal adenocarcinoma and mucinous noncystic carcinoma is unclear. We analyzed the mucin immunophenotype and the DPC4/SMAD4 expression in intraductal papillary-mucinous neoplasms, ductal carcinomas, and mucinous noncystic carcinomas to define features that may help to distinguish between different types of intraductal papillary-mucinous neoplasms and to establish their relationship to other neoplasms of the exocrine pancreas. A series of 51 intraductal papillary-mucinous neoplasms, three mucinous noncystic carcinomas (two with an intraductal component), and 35 ductal adenocarcinomas were screened immunohistochemically for their expression of MUC1, MUC2, MUC5, and DPC4/SMAD4. All intraductal papillary-mucinous neoplasms and mucinous noncystic carcinomas were positive for MUC5. Thirty-two intraductal papillary-mucinous neoplasms and three mucinous noncystic carcinomas abundantly expressed MUC2 but no (or only little) MUC1. The remaining intraductal papillary-mucinous neoplasms showed either mainly MUC1 expression or focal MUC1 and MUC2 expression. All ductal carcinomas but one were MUC2 negative and MUC1 and MUC5 positive. DPC4 was not expressed in two intraductal papillary-mucinous neoplasms that showed a tubular invasion pattern. Twelve of 23 ductal adenocarcinomas were DPC4 positive. Intraductal papillary-mucinous neoplasms can be divided into at least three different mucin immunophenotypes. The first and largest group of intraductal papillary-mucinous neoplasms and mucinous noncystic carcinomas is MUC1 negative and MUC2 positive and probably forms one tumor entity. The second group seems to be related to ductal carcinoma because of its MUC1 positivity in the absence or very weak MUC2 staining. The third group shows focal MUC1/MUC2 expression and is characterized by oncocytic histology.
Collapse
Affiliation(s)
- J Lüttges
- Department of Pathology, University of Kiel, Germany.
| | | | | | | |
Collapse
|
44
|
Baldus SE, Zirbes TK, Hanisch FG, Kunze D, Shafizadeh ST, Nolden S, M�nig SP, Schneider PM, Karsten U, Thiele J, H�lscher AH, Dienes HP. Thomsen-Friedenreich antigen presents as a prognostic factor in colorectal carcinoma. Cancer 2000. [DOI: 10.1002/(sici)1097-0142(20000401)88:7<1536::aid-cncr6>3.0.co;2-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|