1
|
Zheng WQ, Porcel JM, Hu ZD. Tumor markers determination in malignant pleural effusion: pearls and pitfalls. Clin Chem Lab Med 2024; 0:cclm-2024-0542. [PMID: 39148297 DOI: 10.1515/cclm-2024-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Serum and pleural fluid tumor markers are well-recognized auxiliary diagnostic tools for malignant pleural effusion (MPE). Here, we discuss some pearls and pitfalls regarding the role of tumor markers in MPE management. The following issues are discussed in this article: What is the appropriate clinical scenario for evaluating pleural tumor markers? Which tumor markers should be advocated for diagnosing MPE? Can extremely high levels of tumor markers be employed to establish a diagnosis of MPE? Does the serum-to-pleural fluid ratio of a tumor marker have the same diagnostic efficacy as the measurement of that marker alone in the pleural fluid? Can tumor markers be used to estimate the risk of specific cancers? What should be considered when interpreting the diagnostic accuracy of tumor markers? How should tumor marker studies be performed? We addressed these issues with published works, particularly systematic reviews and meta-analyses.
Collapse
Affiliation(s)
- Wen-Qi Zheng
- Department of Laboratory Medicine, 159375 The Affiliated Hospital of Inner Mongolia Medical University , Hohhot, P.R. China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, P.R. China
| | - José M Porcel
- Department of Internal Medicine, Pleural Medicine and Clinical Ultrasound Unit, Arnau de Vilanova University Hospital, IRBLleida, University of Lleida, Lleida, Spain
| | - Zhi-De Hu
- Department of Laboratory Medicine, 159375 The Affiliated Hospital of Inner Mongolia Medical University , Hohhot, P.R. China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, P.R. China
| |
Collapse
|
2
|
Yang L, Gilbertsen A, Jacobson B, Kratzke R, Henke CA. Serum Splicing Factor Proline- and Glutamine-Rich Is a Diagnostic Marker for Non-Small-Cell Lung Cancer and Other Solid Cancers. Int J Mol Sci 2024; 25:8766. [PMID: 39201453 PMCID: PMC11354699 DOI: 10.3390/ijms25168766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer markers are measurable molecules in blood or tissues that are produced by tumor cells or immune cells in response to cancer progression. They play an important role in clinical diagnosis, prognosis, and therapy monitoring. Splicing factor proline- and glutamine-rich (SFPQ) plays an important role in cancer growth and metastasis. SFPQ is not only more highly expressed in non-small-cell lung cancer (NSCLC) cells than it is in controls, but also highly expressed in cancer cells in patients with other solid cancers. Thus, a new enzyme-linked immunosorbent assay (ELISA) for detecting SFPQ was developed, in which the SFPQ protein is trapped by the first specific mAb coated on a microplate, and then recognized by a second specific mAb. This assay allows for the specific detection of SFPQ in the serum of patients with solid cancer. Regarding NSCLC, the serum SFPQ levels distinguished the non-cancer controls from the patients with NSCLC, with an area under the curve of 0.876, a sensitivity of 87%, and a specificity of 94%. The serum SFPQ levels were significantly elevated in the patients with NSCLC or other solid cancers. In conclusion, serum SFPQ could be a promising novel diagnostic biomarker for NSCLC and other malignancies.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (A.G.)
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (A.G.)
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (B.J.); (R.K.)
| | - Robert Kratzke
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (B.J.); (R.K.)
| | - Craig A. Henke
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (A.G.)
| |
Collapse
|
3
|
Pîslaru AI, Albișteanu SM, Ilie AC, Ștefaniu R, Mârza A, Moscaliuc Ș, Nicoară M, Turcu AM, Grigoraș G, Alexa ID. Lung Cancer: New Directions in Senior Patients Assessment. Geriatrics (Basel) 2024; 9:101. [PMID: 39195131 DOI: 10.3390/geriatrics9040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Age is but one significant prognostic factor in lung cancer, influencing survival, treatment response, and outcomes. This narrative review synthesizes findings from searches of 11 leading databases of research studies, systematic reviews, book chapters, and clinical trial reports on lung cancer in senior patients, with a focus on geriatric assessment as well as biomarkers. Key prognostic factors for lung cancer in seniors include biological age, functional capability, physical and psychological comorbidities, frailty, nutrition, status, and biomarkers like DNA methylation age. We identified the most valuable assessments that balance efficacy with quality of life. Optimizing care and improving outcomes with senior lung cancer patients benefits from a tailored therapeutic approach incorporating a complex geriatric assessment. A multidisciplinary collaboration between geriatricians, oncologists, and pulmonologists is crucial.
Collapse
Affiliation(s)
- Anca Iuliana Pîslaru
- Department of Medical Specialties II, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Sabinne-Marie Albișteanu
- Department of Medical Specialties II, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adina Carmen Ilie
- Department of Medical Specialties II, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ramona Ștefaniu
- Department of Medical Specialties II, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Aurelia Mârza
- Department of Medical Specialties II, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ștefan Moscaliuc
- Department of Oncology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mălina Nicoară
- Department of Oncology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana-Maria Turcu
- Department of Medical Specialties II, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Gabriela Grigoraș
- Department of Medical Specialties II, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana Dana Alexa
- Department of Medical Specialties II, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
4
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Mohamed E, García Martínez DJ, Hosseini MS, Yoong SQ, Fletcher D, Hart S, Guinn BA. Identification of biomarkers for the early detection of non-small cell lung cancer: a systematic review and meta-analysis. Carcinogenesis 2024; 45:1-22. [PMID: 38066655 DOI: 10.1093/carcin/bgad091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/13/2024] Open
Abstract
Lung cancer (LC) causes few symptoms in the earliest stages, leading to one of the highest mortality rates among cancers. Low-dose computerised tomography (LDCT) is used to screen high-risk individuals, reducing the mortality rate by 20%. However, LDCT results in a high number of false positives and is associated with unnecessary follow-up and cost. Biomarkers with high sensitivities and specificities could assist in the early detection of LC, especially in patients with high-risk features. Carcinoembryonic antigen (CEA), cytokeratin 19 fragments and cancer antigen 125 have been found to be highly expressed during the later stages of LC but have low sensitivity in the earliest stages. We determined the best biomarkers for the early diagnosis of LC, using a systematic review of eight databases. We identified 98 articles that focussed on the identification and assessment of diagnostic biomarkers and achieved a pooled area under curve of 0.85 (95% CI 0.82-0.088), indicating that the diagnostic performance of these biomarkers when combined was excellent. Of the studies, 30 focussed on single/antigen panels, 22 on autoantibodies, 31 on miRNA and RNA panels, and 15 suggested the use of circulating DNA combined with CEA or neuron-specific enolase (NSE) for early LC detection. Verification of blood biomarkers with high sensitivities (Ciz1, exoGCC2, ITGA2B), high specificities (CYFR21-1, antiHE4, OPNV) or both (HSP90α, CEA) along with miR-15b and miR-27b/miR-21 from sputum may improve early LC detection. Further assessment is needed using appropriate sample sizes, control groups that include patients with non-malignant conditions, and standardised cut-off levels for each biomarker.
Collapse
Affiliation(s)
- Eithar Mohamed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | - Daniel J García Martínez
- Department of Biotechnology, Pozuelo de Alarcón, University Francisco De Vitoria, Madrid, 28223, Spain
| | - Mohammad-Salar Hosseini
- Research Centre for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Si Qi Yoong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Daniel Fletcher
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | - Simon Hart
- Respiratory Medicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | - Barbara-Ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| |
Collapse
|
6
|
Islam J, Shree A, Khan HA, Sultana S. Chemopreventive potential of Diosmin against benzo[a]pyrene induced lung carcinogenesis in Swiss Albino mice. J Biochem Mol Toxicol 2022; 36:e23187. [PMID: 35920545 DOI: 10.1002/jbt.23187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer, one of the most common cancer is a cause of concern associated with cancer-related mortality. Benzo[a]pyrene [B(a)P], a potent carcinogen as well as an environmental contaminant is reported to be found in cigarette smoke among various sources. The present study focuses on the chemopreventive potential of Diosmin against B[a]P-induced lung carcinogenesis and its possible mechanism in male Swiss Albino mice (SAM). SAM were treated orally with Diosmin (200 mg/kg b.w.) for 16 weeks and/or B[a]P (50 mg/kg b.w) for a period of 4 weeks. B[a]P treated cancerous mice showed increased peroxidation of membrane lipid as well as a decrease in the level/activity of antioxidant proteins. Cancerous mice also showed an increased level of carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE). Diosmin treatment, however, leads to decreased peroxidation of lipids, increased antioxidant proteins as well decrease in the level of CEA and NSE. B[a]P-induced cancerous animals also exhibited increased expression of cyclic AMP response element-binding protein (CREB), COX2 as well as prostaglandin-E2 (PGE2) while Diosmin-treated mice were found to have an ameliorative effect. Histopathological results further confirm the protective effect of Diosmin in averting B[a]P-induced pathological alterations of lung tissue. Overall, our results suggest Diosmin exerts its chemopreventive potential possibly via targeting the CREB/cyclooxygenase-2 (COX-2)/PGE2 pathway thereby repressing inflammation.
Collapse
Affiliation(s)
- Johirul Islam
- Department of Toxicology, Jamia Hamdard, New Delhi, Delhi, India
| | - Alpa Shree
- Department of Toxicology, Jamia Hamdard, New Delhi, Delhi, India
| | - Haider Ali Khan
- Department of Toxicology, Jamia Hamdard, New Delhi, Delhi, India
| | - Sarwat Sultana
- Department of Toxicology, Jamia Hamdard, New Delhi, Delhi, India
| |
Collapse
|
7
|
Wang Y, Luo N, Gao Y, Wu Y, Qin X, Qi Y, Sun T, Tao R, Qi C, Liu B, Yuan S. The joint detection of CEA and ctDNA in cerebrospinal fluid: an auxiliary tool for the diagnosis of leptomeningeal metastases in cancer. J Cancer Res Clin Oncol 2022; 149:1679-1690. [PMID: 35583828 DOI: 10.1007/s00432-022-04053-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Leptomeningeal metastases (LMs) are highly invasive which leads to poor prognosis, but the accurate diagnosis of LM is challenging. It is necessary to investigate more advanced diagnostic methods to realize precision medicine. The main purpose of this study was to select a more effective method for the auxiliary diagnosis of LM by comparing various detection methods. The secondary purpose was to explore the value of cerebrospinal fluid (CSF) tumor markers (TMs) and circulating tumor DNA (ctDNA) testing in guiding clinical treatment. METHODS TMs in serum and CSF of patients were detected by chemiluminescence. The ctDNA of CSF and plasma were detected by the next-generation sequencing (NGS) technology. RESULTS In total, 54 tumor patients participated in this study, in which 39 with LM and 15 without LM (8 with parenchymal tumor and 7 without brain metastasis). The results showed that the sensitivity and accuracy of CSF cytology isolated during the first lumbar puncture were 0.31 (95% CI 0.17-0.48) and 0.50 (95% CI 0.36-0.64), respectively. The sensitivity and accuracy of CSF_CEA were 0.71 (95% CI 0.54-0.85) and 0.78 (95% CI 0.64-0.89), which were better than those of CSF_NSE and CSF_CFRA-211. The sensitivity and accuracy of CSF_ctDNA were 0.92 (95% CI 0.79-0.98) and 0.91 (95% CI 0.80-0.97), significantly higher than that of CSF cytology (P < 0.01). The sensitivity and accuracy of CSF_CEA combined with CSF_ctDNA were 0.97 (95% CI, 0.87-1.00) and 0.94 (95% CI 0.85-0.99), which were significantly higher than the traditional methods CSF cytology (P < 0.01). For LM patients with hydrocephalus, the sensitivity of CSF ctDNA even achieved 100% (14/14). CONCLUSION CSF_CEA combined with CSF_ctDNA could be used to accurately distinguish patients with LM from those with no brain metastasis and from those with parenchymal tumors. CSF_ctDNA testing reveals a unique mutation profile for patients with LM. Dynamic detection of CSF TM and ctDNA can better predict the efficacy and reveal the cause of drug resistance to guide subsequent treatment. CLINICAL TRIAL REGISTRATION Clinical trial registration number: NCT03029065.
Collapse
Affiliation(s)
- Yong Wang
- Shandong Cancer Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, No.440. Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Ningning Luo
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd; Nanjing Simcere Medical Laboratory Science Co., Ltd; The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, People's Republic of China
| | - Ye Gao
- Department of Neurosurgery, Zhangqiu District People's Hospital, Jinan, Shandong, People's Republic of China
| | - Yaqing Wu
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd; Nanjing Simcere Medical Laboratory Science Co., Ltd; The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, People's Republic of China
| | - Xueting Qin
- Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, No.440. Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Yingxue Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd; Nanjing Simcere Medical Laboratory Science Co., Ltd; The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, People's Republic of China
| | - Tingting Sun
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd; Nanjing Simcere Medical Laboratory Science Co., Ltd; The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, People's Republic of China
| | - Rongjie Tao
- Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, No.440. Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Chuang Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd; Nanjing Simcere Medical Laboratory Science Co., Ltd; The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, People's Republic of China
| | - Baoyan Liu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, No. 18877 Jingshi Road, Jinan, 250062, Shandong, People's Republic of China.
| | - Shuanghu Yuan
- Shandong Cancer Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China. .,Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, No.440. Jiyan Road, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Belousov PV. The Autoantibodies against Tumor-Associated Antigens as Potential Blood-Based Biomarkers in Thyroid Neoplasia: Rationales, Opportunities and Challenges. Biomedicines 2022; 10:biomedicines10020468. [PMID: 35203677 PMCID: PMC8962333 DOI: 10.3390/biomedicines10020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
The Autoantibodies targeting Tumor-Associated Antigens (TAA-AAbs) emerge as a result of a variety of tumor-related immunogenic stimuli and may be regarded as the eyewitnesses to the anti-tumor immune response. TAA-AAbs may be readily detected in peripheral blood to unveil the presence of a particular TAA-expressing tumor, and a fair number of TAAs eliciting the tumor-associated autoantibody response have been identified. The potential of TAA-AAbs as tumor biomarkers has been extensively studied in many human malignancies with a major influence on public health; however, tumors of the endocrine system, and, in particular, the well-differentiated follicular cell-derived thyroid neoplasms, remain understudied in this context. This review provides a detailed perspective on and legitimate rationales for the potential use of TAA-AAbs in thyroid neoplasia, with particular reference to the already established diagnostic implications of the TAA-AAbs in human cancer, to the windows for improvement and diagnostic niches in the current workup strategies in nodular thyroid disease and differentiated thyroid cancer that TAA-AAbs may successfully occupy, as well as to the proof-of-concept studies demonstrating the usefulness of TAA-AAbs in thyroid oncology, particularly for the pre-surgical discrimination between tumors of different malignant potential in the context of the indeterminate results of the fine-needle aspiration cytology.
Collapse
Affiliation(s)
- Pavel V. Belousov
- National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, 117036 Moscow, Russia; or
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int J Biol Macromol 2022; 195:356-383. [PMID: 34920057 DOI: 10.1016/j.ijbiomac.2021.12.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
As well-appreciated biomarkers, tumor markers have been spotlighted as reliable tools for predicting the behavior of different tumors and helping clinicians ascertain the type of molecular mechanism of tumorigenesis. The sensitivity and specificity of these markers have made them an object of even broader interest for sensitive detection and staging of various cancers. Enzyme-linked immunosorbent assay (ELISA), fluorescence-based, mass-based, and electrochemical-based detections are current techniques for sensing tumor markers. Although some of these techniques provide good selectivity, certain obstacles, including a low sample concentration or difficulty carrying out the measurement, limit their application. With the advent of nanotechnology, many studies have been carried out to synthesize and employ nanomaterials (NMs) in sensing techniques to determine these tumor markers at low concentrations. The fabrication, sensitivity, design, and multiplexing of sensing techniques have been uplifted due to the attractive features of NMs. Various NMs, such as magnetic and metal nanoparticles, up-conversion NPs, carbon nanotubes (CNTs), carbon-based NMs, quantum dots (QDs), and graphene-based nanosensors, hyperbranched polymers, optical nanosensors, piezoelectric biosensors, paper-based biosensors, microfluidic-based lab-on-chip sensors, and hybrid NMs have proven effective in detecting tumor markers with great sensitivity and selectivity. This review summarizes various categories of NMs for detecting these valuable markers, such as prostate-specific antigen (PSA), human carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3, MUC1), and cancer antigen 19-9 (CA19-9), and highlights recent nanotechnology-based advancements in detection of these prognostic biomarkers.
Collapse
|
10
|
Mousazadeh M, Jahangiri-Manesh A, Nikkhah M, Abbasian S, Moshaii A, Masroor MJ, Norouzi P. Detection of hexanal gas as a volatile organic compound cancer biomarker using a nanocomposite of gold nanoparticles and selective polymers. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Sharifianjazi F, Jafari Rad A, Bakhtiari A, Niazvand F, Esmaeilkhanian A, Bazli L, Abniki M, Irani M, Moghanian A. Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): a systematic review. Biomed Mater 2021; 17. [PMID: 34891145 DOI: 10.1088/1748-605x/ac41fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
The second cause of death in the world has been reported to be cancer, and it has been on the rise in recent years. As a result of the difficulties of cancer detection and its treatment, the survival rate of patients is unclear. The early detection of cancer is an important issue for its therapy. Cancer detection based on biomarkers may effectively enhance the early detection and subsequent treatment. Nanomaterial-based nanobiosensors for cancer biomarkers are excellent tools for the molecular detection and diagnosis of disease. This review reports the latest advancement and attainment in applying nanoparticles to the detection of cancer biomarkers. In this paper, the recent advances in the application of common nanomaterials like graphene, carbon nanotubes, Au, Ag, Pt, and Fe3O4together with newly emerged nanoparticles such as quantum dots, upconversion nanoparticles, inorganics (ZnO, MoS2), and metal-organic frameworks for the diagnosis of biomarkers related to lung, prostate, breast, and colon cancer are highlighted. Finally, the challenges, outlook, and closing remarks are given.
Collapse
Affiliation(s)
| | - Azadeh Jafari Rad
- Department of Chemistry, Islamic Azad University, Omidiyeh Branch, Omidiyeh, Iran
| | | | - Firoozeh Niazvand
- School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | | | - Leila Bazli
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Milad Abniki
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Mohammad Irani
- Dentistry Clinical Research Development Unit, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Moghanian
- Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
| |
Collapse
|
12
|
Plexin C1: A novel screening test for lung cancer. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.955975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Abdul-Maksoud RS, Rashad NM, Elsayed WSH, Elsayed RS, Sherif MM, Abbas A, El Shabrawy M. The diagnostic significance of circulating lncRNA ADAMTS9-AS2 tumor biomarker in non-small cell lung cancer among the Egyptian population. J Gene Med 2021; 23:e3381. [PMID: 34312940 DOI: 10.1002/jgm.3381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Long non-coding RNA ADAM metallopeptidase with thrombospondin type 1 motif, 9 antisense RNA 2 (ADAMTS9-AS2) was recognized as a novel tumor suppressor and plays an important role in the initiation and progression of malignant behavior in human cancers, although its plasma expression and clinical value in patients with non-small cell lung cancer (NSCLC) remain unknown. We aimed to analyze the diagnostic role of ADAMTS9-AS2 and cytokeratin 19 fragmentation antigen (CYFRA 21-1) in NSCLC. METHODS The present study included 80 control subjects, 80 patients with benign lung lesion and 80 NSCLC patients. The expression of ADAMTS9-AS2 in the tissue and plasma was detected by a real-time polymerase chain reaction. Serum CYFRA 21-1 was analyzed using an enzyme-linked immunosorbent assay. RESULTS In comparison with benign lung lesion and controls, tissue and plasma ADAMTS9-AS2 expression were significantly down-regulated in NSCLC (p < 0.001). Decreased ADAMTS9-AS2 expression was associated with TNM stages in NSCLC patients (p < 0.001). Up-regulation of CYFRA 21-1 was reported among NSCLC patients and it was associated with TNM staging. Tissue and plasma ADAMTS9-AS2 expression levels were the predicting factors for NSCLC and they both correlated negatively with CYFRA 21-1 levels. Plasma ADAMTS9-AS2 levels had a significant positive correlation with their tumor tissue levels. Plasma ADAMTS9-AS2 showed a higher sensitivity (95%) and specificity (99.1%) in the diagnosis of NSCLC than CYFRA 21-1 (61.3% sensitivity and 60% specificity). CONCLUSIONS Our results suggested that decreased plasma ADAMTS9-AS2 expression might act as a novel non-invasive tumor biomarker in NSCLC diagnosis. Furthermore, plasma ADAMTS9-AS2 might predict aggressive tumor behavior.
Collapse
Affiliation(s)
- Rehab S Abdul-Maksoud
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nearmeen M Rashad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walid S H Elsayed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha S Elsayed
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Magda M Sherif
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmad Abbas
- Chest department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
14
|
Calaf GM, Bleak TC, Roy D. Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells (Review). Oncol Rep 2021; 45:24. [PMID: 33649804 PMCID: PMC7905528 DOI: 10.3892/or.2021.7975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer development is a multistep process that may be induced by a variety of compounds. Environmental substances, such as pesticides, have been associated with different human diseases. Organophosphorus pesticides (OPs) are among the most commonly used insecticides. Despite the fact that organophosphorus has been associated with an increased risk of cancer, particularly hormone-mediated cancer, few prospective studies have examined the use of individual insecticides. Reported results have demonstrated that OPs and estrogen induce a cascade of events indicative of the transformation of human breast epithelial cells. In vitro studies analyzing an immortalized non-tumorigenic human breast epithelial cell line may provide us with an approach to analyzing cell transformation under the effects of OPs in the presence of estrogen. The results suggested hormone-mediated effects of these insecticides on the risk of cancer among women. It can be concluded that, through experimental models, the initiation of cancer can be studied by analyzing the steps that transform normal breast cells to malignant ones through certain substances, such as pesticides and estrogen. Such substances cause genomic instability, and therefore tumor formation in the animal, and signs of carcinogenesis in vitro. Cancer initiation has been associated with an increase in genomic instability, indicated by the inactivation of tumor-suppressor genes and activation of oncogenes in the presence of malathion, parathion, and estrogen. In the present study, a comprehensive summary of the impact of OPs in human and rat breast cancer, specifically their effects on the cell cycle, signaling pathways linked to epidermal growth factor, drug metabolism, and genomic instability in an MCF-10F estrogen receptor-negative breast cell line is provided.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Debasish Roy
- Department of Natural Sciences, Hostos Community College of The City University of New York, Bronx, NY 10451, USA
| |
Collapse
|
15
|
Xu FZ, Zhang YB. Correlation analysis between serum neuron-specific enolase and the detection of gene mutations in lung adenocarcinoma. J Thorac Dis 2021; 13:552-561. [PMID: 33717528 PMCID: PMC7947504 DOI: 10.21037/jtd-20-1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Lung cancer is a chronic, progressive and malignant disease associated with ever-growing incidence and mortality. Targeted therapy plays an important role in the clinical treatment of lung cancer. Besides, neuron-specific enolase (NSE), an intracellular enzyme, is highly correlated with the targeted treatment outcome in patients with non-small cell lung cancer (NSCLC). The present study aimed to explore the correlation of NSE with the detection of gene mutations. Methods It is a case-control study. From June 2017 to October 2019, the newly diagnosed patients with lung adenocarcinoma were enrolled from the First Affiliated Hospital of Anhui Medical University. Next-generation sequencing (NGS) was conducted in these patients. Kruskal-Wallis test was used to calculate the difference in NSE levels between mutant and non-mutant group and the differences were compared between blood and tissue samples. Results Compared with patients with no gene mutation (15.4±7.8 mmol/L), the NSE levels in patients with gene mutations were remarkably increased in blood sample group (22.2±12.9 mmol/L) (P<0.05). Besides, the linear regression model was applied for analysis which further emphasized the close relationship between them. The area under the ROC curve (AUC) of NSE was 0.7300 [95% confidence interval (CI): 0.6059-0.8541] and optimal threshold was 18.5650 U/mL with a sensitivity of 87.50% and a specificity of 52.08%. In addition, NSE levels increased in blood sample group, suggesting that the occurrence of polygenic mutation with dismal prognosis, but no correlation was detected in tissue sample group. Conclusions This study elucidates the functional role of NSE, and findings in this study notably increase the gene detection efficiency for lung adenocarcinoma.
Collapse
Affiliation(s)
- Fang-Zhou Xu
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan-Bei Zhang
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
17
|
Zhong Y, Ding X, Bian Y, Wang J, Zhou W, Wang X, Li P, Shen Y, Wang JJ, Li J, Zhang C, Wang C. Discovery and validation of extracellular vesicle-associated miRNAs as noninvasive detection biomarkers for early-stage non-small-cell lung cancer. Mol Oncol 2021; 15:2439-2452. [PMID: 33340250 PMCID: PMC8410569 DOI: 10.1002/1878-0261.12889] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
miRNAs in circulating extracellular vesicles (EVs) are promising biomarkers for cancer. However, their diagnostic ability for early‐stage non‐small‐cell lung cancer (NSCLC) is not well known. In this study, the circulating EV miRNAs profiling was initially performed in 36 untreated NSCLC patients and 36 healthy controls by TaqMan Low Density Array (TLDA). Subsequently, we performed quantitative reverse‐transcription PCR assay (RT‐qPCR) validation in several independent cohorts that included 159 NSCLC patients, 120 age/sex‐matched healthy controls and 31 benign nodule patients enrolled from three different clinical centres. In addition, 38 cases of NSCLC were analysed before and after surgery. We demonstrated that miR‐520c‐3p and miR‐1274b were significantly and steadily increased in NSCLC patients in comparison with healthy controls and benign nodule patients (P < 0.001) and decreased markedly after tumour resection (P < 0.001). The areas under the curve (AUCs) of the ROC curve of the two‐miRNA panel were 0.857 (95% CI, 0813–0.901; P < 0.0001) and 0.845 (95% CI, 0.793–0.896; P < 0.0001) for NSCLC and NSCLC stage I, respectively. Furthermore, the panel was able to differentiate NSCLC from benign nodules with an AUC of 0.823 (95% CI, 0.730–0.915; P < 0.0001). Furthermore, logistic regression analysis revealed the two‐miRNA panel as an independent risk factor for NSCLC (OR = 16.128, P < 0.0001). In conclusion, miR‐520c‐3p and miR‐1274b have biomarker potential for early diagnosis of NSCLC in multiple centres.
Collapse
Affiliation(s)
- Yujie Zhong
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| | - Xiaoyu Ding
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| | - Yuying Bian
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China
| | - Jing Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China
| | - Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, China
| | - Xiangdong Wang
- Department of Laboratory Medicine, the Affiliated Chest Hospital of Nanjing Medical School, China
| | - Pumin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| | - Yi Shen
- Department of Thoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, China
| | - Jun-Jun Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| |
Collapse
|
18
|
Garcia-Valdecasas Gayo S, Ruiz-Alvarez MJ, Gonzalez-Gay D, Ramos-Corral R, Marquez-Lietor E, Del Amo N, Plata MDC, Guillén-Santos R, Arribas I, Cava-Valenciano F. CYFRA 21-1 in patients with suspected cancer: evaluation of an optimal cutoff to assess the diagnostic efficacy and prognostic value. ADVANCES IN LABORATORY MEDICINE 2020; 1:20200005. [PMID: 37360615 PMCID: PMC10197668 DOI: 10.1515/almed-2020-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/25/2020] [Indexed: 06/28/2023]
Abstract
Objectives Chosen cutoff for cytokeratin 19 fragment antigen (CYFRA 21-1) as a tumor biomarker considerably influences its diagnostic and prognostic usefulness. The aim of the present study is to determine an optimal cutoff value for diagnostic validity of CYFRA 21-1 by Lumipulse ® technology in patients with suspected cancer and also to determine if CYFRA 21-1 levels provide prognostic value. Methods A consecutive 284 patients suggestive of malignant disease from six hospitals of Madrid were enrolled in a retrospective design. Optimal CYFRA 21-1 cutoff value was obtained by receiver operating characteristic curve and Youden test. The diagnostic validity was evaluated according to sensitivity, specificity, predictive values and likelihood ratios. The prognostic value of CYFRA 21-1 was checked using multiple logistic regression. Thirty-two diagnostic cancers were confirmed. Results The most optimal cutoff was 3.15 ng/mL. This cutoff showed a better specificity 93.63% (95% confidence interval [CI], 89.66-96.16), positive predictive value 60.98% (95% CI, 44.54-75.38) and positive likelihood ratio 12.65 (95% CI, 7.64-20.95) than the cutoff recommended by Fujirebio® (1.8 ng/mL) (specificity: 73.71% [95% CI, 67.72-78.95], positive predictive value: 29.79% [95% CI, 21.02-40.23] and positive likelihood ratio 3.43 [95% CI, 2.71-4.35]), improving the current diagnostic accuracy. In multivariate analysis, elevated levels of CYFRA 21-1 (>3.15 ng/mL) was confirmed as an unfavorable prognostic factor. Conclusions The best cutoff for CYFRA 21-1 obtained was 3.15 ng/mL in patients with suspected cancer. This new cutoff decreases the false positive rate and improves the diagnostic efficacy of CYFRA 21-1 as a tumor marker as well as its association with death events.
Collapse
Affiliation(s)
- Sonsoles Garcia-Valdecasas Gayo
- Central Laboratory BR Salud, Department of Clinical Chemistry, Infanta Sofia University Hospital, San Sebastian de los Reyes, Madrid, Spain
| | - Maria Jesus Ruiz-Alvarez
- Central Laboratory BR Salud, Department of Clinical Chemistry, Infanta Sofia University Hospital, San Sebastian de los Reyes, Madrid, Spain
| | - Daniel Gonzalez-Gay
- Central Laboratory BR Salud, Department of Clinical Chemistry, Infanta Sofia University Hospital, San Sebastian de los Reyes, Madrid, Spain
| | - Raquel Ramos-Corral
- Central Laboratory BR Salud, Department of Clinical Chemistry, Infanta Sofia University Hospital, San Sebastian de los Reyes, Madrid, Spain
| | - Eva Marquez-Lietor
- Central Laboratory BR Salud, Department of Clinical Chemistry, Infanta Sofia University Hospital, San Sebastian de los Reyes, Madrid, Spain
| | - Nazaret Del Amo
- Central Laboratory BR Salud, Department of Clinical Chemistry, Infanta Sofia University Hospital, San Sebastian de los Reyes, Madrid, Spain
| | - Maria del Carmen Plata
- Central Laboratory BR Salud, Department of Clinical Chemistry, Infanta Sofia University Hospital, San Sebastian de los Reyes, Madrid, Spain
| | - Raquel Guillén-Santos
- Central Laboratory BR Salud, Department of Clinical Chemistry, Infanta Sofia University Hospital, San Sebastian de los Reyes, Madrid, Spain
| | - Ignacio Arribas
- Department of Clinical Chemistry, Ramón y Cajal University Hospital, San Sebastian de los Reyes, Madrid, Spain
| | - Fernando Cava-Valenciano
- Central Laboratory BR Salud, Department of Clinical Chemistry, Infanta Sofia University Hospital, San Sebastian de los Reyes, Madrid, Spain
| |
Collapse
|
19
|
Kikuchi T, Tohda C, Suyama M. Recovery of motor function of chronic spinal cord injury by extracellular pyruvate kinase isoform M2 and the underlying mechanism. Sci Rep 2020; 10:19475. [PMID: 33173148 PMCID: PMC7656253 DOI: 10.1038/s41598-020-76629-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
In our previous study, we found that pyruvate kinase isoform M2 (PKM2) was secreted from the skeletal muscle and extended axons in the cultured neuron. Indirect evidence suggested that secreted PKM2 might relate to the recovery of motor function in spinal cord injured (SCI) mice. However, in vivo direct evidence has not been obtained, showing that extracellular PKM2 improved axonal density and motor function in SCI mice. In addition, the signal pathway of extracellular PKM2 underlying the increase in axons remained unknown. Therefore, this study aimed to identify a target molecule of extracellular PKM2 in neurons and investigate the critical involvement of extracellular PKM2 in functional recovery in the chronic phase of SCI. Recombinant PKM2 infusion to the lateral ventricle recovered motor function in the chronic phase of SCI mice. The improvement of motor function was associated with axonal increase, at least of raphespinal tracts connecting to the motor neurons directly or indirectly. Target molecules of extracellular PKM2 in neurons were identified as valosin-containing protein (VCP) by the drug affinity responsive target stability method. ATPase activation of VCP mediated the PKM2-induced axonal increase and recovery of motor function in chronic SCI related to the increase in axonal density. It is a novel finding that axonal increase and motor recovery are mediated by extracellular PKM2-VCP-driven ATPase activity.
Collapse
Affiliation(s)
- Takahiro Kikuchi
- Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Chihiro Tohda
- Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Masato Suyama
- Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
20
|
Kim H, Kim SH, Hwang D, An J, Chung HS, Yang EG, Kim SY. Extracellular pyruvate kinase M2 facilitates cell migration by upregulating claudin-1 expression in colon cancer cells. Biochem Cell Biol 2020; 98:219-226. [PMID: 31545907 DOI: 10.1139/bcb-2019-0139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extensive studies have been reported the non-canonical functions of pyruvate kinase M2 (PKM2) as a kinase, transcriptional regulator, and even cell-to-cell communicator, emphasizing its importance in various signaling pathways. However, the role of secreted PKM2 in cancer progression and its signaling pathway is yet to be elucidated. In this study, we found that extracellular PKM2 enhanced the migration of low-metastatic, benign colon cancer cells by upregulating claudin-1 expression and internalizing it to the cytoplasm and nucleus. Knock-down of claudin-1 significantly reduced extracellular PKM2-induced cell migration. Inhibition of either protein kinase C (PKC) or epidermal growth factor receptor (EGFR) resulted in a reduction of extracellular PKM2-mediated claudin-1 expression, suggesting EGFR-PKC-claudin-1 as a signaling pathway in the extracellular PKM2-mediated tumorigenesis of colon cancer cells.
Collapse
Affiliation(s)
- Hyunju Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seong Ho Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Dohyeon Hwang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jinsu An
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hak Suk Chung
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
21
|
Wu HY, Pan YY, Kopylov AT, Zgoda V, Ma MC, Wang CH, Su WC, Lai WW, Cheng PN, Liao PC. Assessment of Serological Early Biomarker Candidates for Lung Adenocarcinoma by using Multiple Reaction Monitoring-Mass Spectrometry. Proteomics Clin Appl 2020; 14:e1900095. [PMID: 32012456 DOI: 10.1002/prca.201900095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/24/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Plasma markers that enable diagnosis in the early stage of lung cancer is not discovered. A liquid chromatography multiple reaction monitoring-mass spectrometry (LC-MRM-MS) assay for identifying potential early marker proteins for lung adenocarcinoma is developed. EXPERIMENTAL DESIGN LC-MRM-MS assay is used for measuring the level of 35 candidate peptides in plasma from 102 lung adenocarcinoma patients (including n = 50, 16, 24, and 12 in stage I, II, III, and IV, respectively.) and 84 healthy controls. Stable isotope labeled standard peptides are synthesized to accurately measure the amount of these proteins. RESULTS Seven proteins are able to distinguish stage I patients from controls. These proteins are combined in to a protein marker panel which improve the sensitivity to discriminate stage I patients from controls with cross-validated area under the curve = 0.76. Besides, it is found that low expression of eukaryotic initiation factor 4A-I and high expression of lumican show significantly poor prognosis in overall survival (p = 0.012 and 0.0074, respectively), which may be used as prognostic biomarkers for lung cancer. CONCLUSIONS AND CLINICAL RELEVANCE Proteins highlighted here may be used for early detection of lung adenocarcinoma or therapeutics development after validation in a larger cohort.
Collapse
Affiliation(s)
- Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Yi Pan
- Department of Statistics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Arthur T Kopylov
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Mi-Chia Ma
- Department of Statistics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Hsun Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
22
|
Tsai HY, Wu HH, Chou BC, Li CS, Gau BZ, Lin ZY, Fuh CB. A magneto-microfluidic platform for fluorescence immunosensing using quantum dot nanoparticles. NANOTECHNOLOGY 2019; 30:505101. [PMID: 31557130 DOI: 10.1088/1361-6528/ab423d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study reports the online fluorescent detection of carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) biomarker proteins in microfluidic channels using functional nanoparticles. Functional magnetic nanoparticles labeled with two antibodies were predeposited on separated microfluidic channels. Antigens were passed through each microfluidic channel to react with the respective antibodies. Two types of fluorescent nanoparticles labeled with antibodies were then used to detect and confirm antigens in the immunocomplex. Results indicate that online fluorescent detection of proteins can provide advantages for real-time monitoring and diagnostic applications. The running time was less than 20 min for each trial. The detection limits of CEA and AFP were found to be 0.6 and 0.2 pg ml-1. These detection limits are lower than those of ELISA. The linear ranges of CEA and AFP detection were from 1.8 pg ml-1 to 1.8 ng ml-1 and from 0.68 pg ml-1 to 0.68 ng ml-1 for two deposition zones in a magnetic sandwich immunoassay. The linear ranges of this method are wider than those of ELISA and those of most other methods. The measurements of CEA and AFP in serum samples from this method differed from ELISA results by 11% and 9.4%, respectively. The detection limit of online detection has achieved the same range as those of previous offline detection. This method has a good potential for automation and multichannel analysis to increase the throughput with some modifications in the future. The proposed method can provide simple, fast, and sensitive online detection for biomarkers.
Collapse
Affiliation(s)
- H Y Tsai
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan. Department of Medical Education, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Recent advances in biosensor for detection of lung cancer biomarkers. Biosens Bioelectron 2019; 141:111416. [DOI: 10.1016/j.bios.2019.111416] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
|
24
|
Serum thrombospondin-2 is a candidate diagnosis biomarker for early non-small-cell lung cancer. Biosci Rep 2019; 39:BSR20190476. [PMID: 31296790 PMCID: PMC6658726 DOI: 10.1042/bsr20190476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/04/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Thrombospondin-2 (THBS2) is a secreted protein overexpressed in numerous cancers and may function as a diagnostic tumor marker. The objective of the present study was to investigate the diagnostic performance of serum THBS2 in early stage non-small-cell lung cancer (NSCLC). Serum THBS2 and Cyfra21-1 level were evaluated in blood samples of 112 patients from NSCLC groups and 51 healthy control (HC) groups. Receiver operator characteristic (ROC) curves were used to evaluate the diagnostic significance. Serum THBS2 level was significantly up-regulated in NSCLC patients compared with healthy control subjects (P<0.0001), and the postoperative THBS2 level decreased significantly (P<0.0001). ROC curves analysis demonstrated that THBS2 was a comparable biomarker as Cyfra21-1 to distinguish early stage NSCLC or lung squamous cell carcinoma (SC) from healthy control subjects. And Cyfra21-1 was observed with significantly improved performances by the combination of THBS2 to distinguish early stage NSCLC (P<0.05) as well as SC (P<0.05) from the control subjects. In addition, THBS2 was estimated to perform well in the diagnosis of patients with Cyfra21-1-negative NSCLC (area under the curve [AUC] = 0.73). In summary, the present study suggested that serum THBS2 might be an early diagnostic biomarker for NSCLC.
Collapse
|
25
|
Nakamura Y, Tanese K, Hirai I, Amagai M, Kawakami Y, Funakoshi T. Serum cytokeratin 19 fragment 21‐1 and carcinoembryonic antigen combination assay as a biomarker of tumour progression and treatment response in extramammary Paget disease. Br J Dermatol 2019; 181:535-543. [DOI: 10.1111/bjd.17789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Y. Nakamura
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - K. Tanese
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - I. Hirai
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - M. Amagai
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - Y. Kawakami
- Division of Cellular Signaling Institute for Advanced Medical Research Keio University School of Medicine Tokyo Japan
| | - T. Funakoshi
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| |
Collapse
|
26
|
Cheng Y, Qin K, Huang N, Zhou Z, Xiong H, Zhao J, Zhang Y, Yu S. Cytokeratin 18 regulates the transcription and alternative splicing of apoptotic‑related genes and pathways in HeLa cells. Oncol Rep 2019; 42:301-312. [PMID: 31115582 PMCID: PMC6549092 DOI: 10.3892/or.2019.7166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cytokeratin 18 (CK18), one of the major components of intermediate filaments (IF) in simple epithelial cells, undergoes caspase-mediated cleavage upon epithelial cell necrosis and apoptosis. CK18 has been used as a biomarker of several cancers and has been reported to be dysregulated in cervical cancers. The effects of dysregulated expression of CK18 at a molecular level are, however, unclear. In the present study, the function of CK18 in HeLa cells, a cell line derived from a cervical cancer cells, was investigated using shRNA knockdown. Reduced levels of CK18 led to a significant decrease in cell apoptosis, compared with control cells. Notably, RNA-seq analysis of the transcriptomes of HeLa cells, with or without CK18 knockdown, revealed that genes in the NF-κB pathway, and certain apoptosis pathways, were under global transcriptional and alternative splicing regulation. Quantitative RT-PCR confirmed the CK18-regulated transcription of apoptotic genes FAS and FADD, as well as immune genes CXCL2 and CD79B, in addition to alternative splicing of FAS and CTNNB1. Western blot analysis further revealed that CK18 knockdown led to reduced expression of CASP8. In conclusion, the present study indicated that CK18 played a role in apoptosis, which may be mediated via a feed-back regulation loop and may involve regulation of transcription and alternative splicing of a number of genes in apoptotic pathways.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Nan Huang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhipeng Zhou
- Laboratory for Genome Regulation and Human Health, ABLife, Inc., Optics Valley International Biomedical Park, East Lake High‑Tech Development Zone, Wuhan, Hubei 430075, P.R. China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yi Zhang
- Laboratory for Genome Regulation and Human Health, ABLife, Inc., Optics Valley International Biomedical Park, East Lake High‑Tech Development Zone, Wuhan, Hubei 430075, P.R. China
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
27
|
Helmig S, Lochnit G, Schneider J. Comparative proteomic analysis in serum of former uranium miners with and without radon induced squamous lung cancer. J Occup Med Toxicol 2019; 14:9. [PMID: 30923558 PMCID: PMC6419832 DOI: 10.1186/s12995-019-0228-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
SUMMARY Former uranium miners of the Wismut Company, East Germany, have been exposed to ionizing radiation from radon decay products and therefore were at high risk for lung cancer. Since histological types of cancer in the so called Wismut cohort revealed an association of high radon exposure with a higher relative frequency of squamous cell carcinoma (SqCC), we used comparative proteomic analysis to identify differentially expressed proteins in serum exposed uranium miners with SqCC. METHODE Pooled sera of exposed former uranium miners without lung disease and pooled sera of former uranium miners with SqCC were analysed by 2-D gel electrophoresis. MALDI-TOF-MS was performed from reproducable, significantly, at least 5-fold up-regulated protein spots. Proteins were identified by MASCOT peptide mass fingerprint search. Additionally a receiver operating characteristic curve for CYFRA 21-1 was created. RESULTS The protein spots were identified as Keratin 10 (K10), Keratin 1 (K1), complement factor H (CFH) and a haptoglobin (Hpt) fragment. The sensitivity for CYFRA 21-1 reveals 60% at a specifity of 95 and 80% at a specifity of 80%. Plotting the sensitivity against specifity reveals an AUC of 0.88. CONCLUSION In SqCC Keratin 10 and 1 were strongly induced. This was associated with CYFRA 21-1, confirming the cytokeratin fragment as a tumormarker.
Collapse
Affiliation(s)
- Simone Helmig
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus-Liebig-University Giessen, Aulweg 129, D-35392, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Friedrichstraße 24, Justus-Liebig-University Giessen, D-35392, Giessen, Germany
| | - Joachim Schneider
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus-Liebig-University Giessen, Aulweg 129, D-35392, Giessen, Germany
| |
Collapse
|
28
|
Saleem M, Raza SK, G Musharraf S. A comparative protein analysis of lung cancer, along with three controls using a multidimensional proteomic approach. Exp Biol Med (Maywood) 2019; 244:36-41. [PMID: 30776966 DOI: 10.1177/1535370219826525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT A multistep proteomics fractionation strategy was developed and validated for the discovery of proteomic biomarkers which could be used as potential diagnostic biomarkers for monitoring the progression of disease in smokers and COPD patients towards lung cancer.
Collapse
Affiliation(s)
- Mahwish Saleem
- 1 Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan.,2 Baqai Institute of Information Technology, Baqai Medical University, Karachi-74600, Pakistan
| | - Syed K Raza
- 3 College of Allied Health Professionals, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed G Musharraf
- 1 Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
29
|
A critical review of the role of M 2PYK in the Warburg effect. Biochim Biophys Acta Rev Cancer 2019; 1871:225-239. [PMID: 30708038 PMCID: PMC6525063 DOI: 10.1016/j.bbcan.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
It is becoming generally accepted in recent literature that the Warburg effect in cancer depends on inhibition of M2PYK, the pyruvate kinase isozyme most commonly expressed in tumors. We remain skeptical. There continues to be a general lack of solid experimental evidence for the underlying idea that a bottle neck in aerobic glycolysis at the level of M2PYK results in an expanded pool of glycolytic intermediates (which are thought to serve as building blocks necessary for proliferation and growth of cancer cells). If a bottle neck at M2PYK exists, then the remarkable increase in lactate production by cancer cells is a paradox, particularly since a high percentage of the carbons of lactate originate from glucose. The finding that pyruvate kinase activity is invariantly increased rather than decreased in cancer undermines the logic of the M2PYK bottle neck, but is consistent with high lactate production. The "inactive" state of M2PYK in cancer is often described as a dimer (with reduced substrate affinity) that has dissociated from an active tetramer of M2PYK. Although M2PYK clearly dissociates easier than other isozymes of pyruvate kinase, it is not clear that dissociation of the tetramer occurs in vivo when ligands are present that promote tetramer formation. Furthermore, it is also not clear whether the dissociated dimer retains any activity at all. A number of non-canonical functions for M2PYK have been proposed, all of which can be challenged by the finding that not all cancer cell types are dependent on M2PYK expression. Additional in-depth studies of the Warburg effect and specifically of the possible regulatory role of M2PYK in the Warburg effect are needed.
Collapse
|
30
|
Singh RD, Shandilya R, Bhargava A, Kumar R, Tiwari R, Chaudhury K, Srivastava RK, Goryacheva IY, Mishra PK. Quantum Dot Based Nano-Biosensors for Detection of Circulating Cell Free miRNAs in Lung Carcinogenesis: From Biology to Clinical Translation. Front Genet 2018; 9:616. [PMID: 30574163 PMCID: PMC6291444 DOI: 10.3389/fgene.2018.00616] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most frequently occurring malignancy and the leading cause of cancer-related death for men in our country. The only recommended screening method is clinic based low-dose computed tomography (also called a low-dose CT scan, or LDCT). However, the effect of LDCT on overall mortality observed in lung cancer patients is not statistically significant. Over-diagnosis, excessive cost, risks associated with radiation exposure, false positive results and delay in the commencement of the treatment procedure questions the use of LDCT as a reliable technique for population-based screening. Therefore, identification of minimal-invasive biomarkers able to detect malignancies at an early stage might be useful to reduce the disease burden. Circulating nucleic acids are emerging as important source of information for several chronic pathologies including lung cancer. Of these, circulating cell free miRNAs are reported to be closely associated with the clinical outcome of lung cancer patients. Smaller size, sequence homology between species, low concentration and stability are some of the major challenges involved in characterization and specific detection of miRNAs. To circumvent these problems, synthesis of a quantum dot based nano-biosensor might assist in sensitive, specific and cost-effective detection of differentially regulated miRNAs. The wide excitation and narrow emission spectra of these nanoparticles result in excellent fluorescent quantum yields with a broader color spectrum which make them ideal bio-entities for fluorescence resonance energy transfer (FRET) based detection for sequential or simultaneous study of multiple targets. In addition, photo-resistance and higher stability of these nanoparticles allows extensive exposure and offer state-of-the art sensitivity for miRNA targeting. A major obstacle for integrating QDs into clinical application is the QD-associated toxicity. However, the use of non-toxic shells along with surface modification not only overcomes the toxicity issues, but also increases the ability of QDs to quickly detect circulating cell free miRNAs in a non-invasive mode. The present review illustrates the importance of circulating miRNAs in lung cancer diagnosis and highlights the translational prospects of developing QD-based nano-biosensor for rapid early disease detection.
Collapse
Affiliation(s)
- Radha D. Singh
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Irina Y. Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
31
|
Gong J, Liu J, Jiang Y, Sun X, Zheng B, Nie S. Fusion of quantitative imaging features and serum biomarkers to improve performance of computer‐aided diagnosis scheme for lung cancer: A preliminary study. Med Phys 2018; 45:5472-5481. [PMID: 30317652 DOI: 10.1002/mp.13237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jing Gong
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology 516 Jun Gong Road Shanghai 200093 China
- Department of Radiology Fudan University Shanghai Cancer Center 270 Dongan Road Shanghai 200032 China
| | - Ji‐yu Liu
- Radiology Department Shanghai Pulmonary Hospital 507 Zheng Min Road Shanghai 200433 China
| | - Yao‐jun Jiang
- Department of Radiology The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Xi‐wen Sun
- Radiology Department Shanghai Pulmonary Hospital 507 Zheng Min Road Shanghai 200433 China
| | - Bin Zheng
- School of Electrical and Computer Engineering University of Oklahoma Norman OK 73019 USA
| | - Sheng‐dong Nie
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology 516 Jun Gong Road Shanghai 200093 China
| |
Collapse
|
32
|
Sung HJ, Ahn JM, Yoon YH, Na SS, Choi YJ, Kim YI, Lee SY, Lee EB, Cho S, Cho JY. Quiescin Sulfhydryl Oxidase 1 (QSOX1) Secreted by Lung Cancer Cells Promotes Cancer Metastasis. Int J Mol Sci 2018; 19:ijms19103213. [PMID: 30336636 PMCID: PMC6214099 DOI: 10.3390/ijms19103213] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/16/2023] Open
Abstract
As lung cancer shows the highest mortality in cancer-related death, serum biomarkers are demanded for lung cancer diagnosis and its treatment. To discover lung cancer protein biomarkers, secreted proteins from primary cultured lung cancer and adjacent normal tissues from patients were subjected to LC/MS⁻MS proteomic analysis. Quiescin sulfhydryl oxidase (QSOX1) was selected as a biomarker candidate from the enriched proteins in the secretion of lung cancer cells. QSOX1 levels were higher in 82% (51 of 62 tissues) of lung cancer tissues compared to adjacent normal tissues. Importantly, QSOX1 serum levels were significantly higher in cancer patients (p < 0.05, Area Under curve (AUC) = 0.89) when measured by multiple reaction monitoring (MRM). Higher levels of QSOX1 were also uniquely detected in lung cancer tissues, among several other solid cancers, by immunohistochemistry. QSOX1-knock-downed Lewis lung cancer (LLC) cells were less viable from oxidative stress and reduced migration and invasion. In addition, LLC mouse models with QSOX1 knock-down also proved that QSOX1 functions in promoting cancer metastasis. In conclusion, QSOX1 might be a lung cancer tissue-derived biomarker and be involved in the promotion of lung cancers, and thus can be a therapeutic target for lung cancers.
Collapse
Affiliation(s)
- Hye-Jin Sung
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Jung-Mo Ahn
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Yeon-Hee Yoon
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Sang-Su Na
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Young-Jin Choi
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Yong-In Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Soo-Youn Lee
- Departments of Laboratory Medicine & Genetics and Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| | - Eung-Bae Lee
- Department of Thoracic and Cardiovascular Surgery, Kyungpook National University Medical Center, Daegu 41944, Korea.
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoungnam-si, Gyeonggi-do 13620, Korea.
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
33
|
Dai L, Qu Y, Li J, Wang X, Wang K, Wang P, Jiang BH, Zhang J. Serological proteome analysis approach-based identification of ENO1 as a tumor-associated antigen and its autoantibody could enhance the sensitivity of CEA and CYFRA 21-1 in the detection of non-small cell lung cancer. Oncotarget 2018; 8:36664-36673. [PMID: 28456790 PMCID: PMC5482686 DOI: 10.18632/oncotarget.17067] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose Lung cancer (LC) is the leading cause of cancer-related deaths for both male and female worldwide. Early detection of LC could improve five-year survival rate up to 48.8% compared to 3.3% of late/distant stage. Autoantibodies to tumor-associated antigens (TAAs) have been described as being present before clinical symptoms in lung and other cancers. We aimed to identify more TAAs to improve the performance for discovering non-small cell lung cancer (NSCLC) patients from healthy individuals. Methods Two independent sets were included in this study. Serological proteome analysis (SERPA) was used to identify TAAs from NSCLC cell line H1299 in a discovery set. In validation study, anti-ENO1 autoantibody was examined by immunoassay in sera from 242 patients with NSCLC and 270 normal individuals. Results A 47 KDa protein was identified to be alpha-enolase (ENO1) by using SERPA. Analysis of sera from 512 participants by ELISA showed significantly higher frequency of anti-ENO1 autoantibodies in NSCLC sera compared with the sera from normal individuals, with AUC (95%CI) of 0.589 (0.539-0.638, P=0.001). There was no significant difference in frequency of anti-ENO1 in different stages, histological or metastasis status of NSCLC. When anti-ENO1 detection was combined with other two tumor protein biomarkers (CEA and CYFRA 21-1), the sensitivity of NSCLC increased to 84%. Conclusions ENO1 can elicit humoral immune response in NSCLC and its autoantibody has association with the tumorigenesis of NSCLC. Furthermore, these intriguing results suggest the possibility of autoantibody against ENO1 serving as a potential diagnostic biomarker in NSCLC and have implications for defining novel histological determinants of NSCLC.
Collapse
Affiliation(s)
- Liping Dai
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China.,Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA.,Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yanhong Qu
- Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China.,The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jitian Li
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Xiao Wang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Kaijuan Wang
- Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China.,Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Wang
- Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China.,Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bing-Hua Jiang
- Center for Molecular Carcinogenesis, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jianying Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China.,Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA.,Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
34
|
Du Q, Li E, Liu Y, Xie W, Huang C, Song J, Zhang W, Zheng Y, Wang H, Wang Q. CTAPIII/CXCL7: a novel biomarker for early diagnosis of lung cancer. Cancer Med 2018; 7:325-335. [PMID: 29356357 PMCID: PMC5806116 DOI: 10.1002/cam4.1292] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
It is desirable to have a biomarker which can facilitate low-dose CT in diagnosis of early stage lung cancer. CTAPIII/CXCL7 is reported to be a potential biomarker for diagnosis of early lung cancer. In this study, we investigated the serum level of CTAPIII/CXCL7 in patients at different stage of lung cancer and the diagnostic efficacy of CTAPIII/CXCL7 in NSCLC. The plasma level of CTAPIII/CXCL7 was assayed by ELISA. CEA, SCCAg, and Cyfra211 were measured using a commercial chemiluminescent microparticle immunoassay. A total of 419 subjects were recruited, including 265 NSCLC patients and 154 healthy individuals. The subjects were randomly assigned to a training set and a test set. Receiver operating characteristic (ROC) and binary logistic regression analyses were conducted to evaluate the diagnostic efficacy and establish diagnostic mathematical model. Plasma CTAPIII/CXCL7 levels were significantly higher in NSCLC patients than in controls, which was independent of the stage of NSCLC. The diagnostic efficiency of CTAPIII/CXCL7 in NSCLC (training set: area under ROC curve (AUC) 0.806, 95% CI: 0.748-0.863; test set: AUC 0.773, 95% CI: 0.711-0.835) was greater than that of SCCAg, Cyfra21-1, or CEA. The model combining CTAPIII/CXCL7 with CEA, SCCAg, and Cyfra21-1 was more effective for NSCLC diagnosis than CTAPIII/CXCL7 alone. In addition, plasma level of CTAPIII/CXCL7 may contribute to the early diagnosis of NSCLC. CTAPIII/CXCL7 can be used as a plasma biomarker for the diagnosis of NSCLCs, particularly early stage lung cancer, with relatively high sensitivity and specificity.
Collapse
Affiliation(s)
- Qiang Du
- Department of Respiratory MedicineThe Second Affiliated HospitalDalian Medical UniversityDalianChina
- Department of Respiratory MedicineThe North Area of Suzhou Municipal HospitalSuzhouChina
| | - Encheng Li
- Department of Respiratory MedicineThe Second Affiliated HospitalDalian Medical UniversityDalianChina
| | - Yonge Liu
- Department of Clinical LaboratoryThe Second Affiliated HospitalDalian Medical UniversityDalianChina
| | - Wenli Xie
- Department of Cardiology MedicineThe Second Affiliated HospitalDalian Medical UniversityDalianChina
| | - Chun Huang
- Department of Respiratory MedicineThe North Area of Suzhou Municipal HospitalSuzhouChina
| | - Jiaqi Song
- Department of Health StatisticsSecond Military Medical UniversityShanghaiChina
| | - Wei Zhang
- Department of BiostatisticsSchool of Public HealthFudan UniversityShanghaiChina
| | - Yijie Zheng
- Medical Scientific Liaison Asian PacificAbbott Diagnostics DivisionAbbott LaboratoriesShanghaiChina
| | - Huiling Wang
- Department of Respiratory MedicineThe Second Affiliated HospitalDalian Medical UniversityDalianChina
| | - Qi Wang
- Department of Respiratory MedicineThe Second Affiliated HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
35
|
Gebauer F, Gelis S, Zander H, Meyer KF, Wolters-Eisfeld G, Izbicki JR, Bockhorn M, Tachezy M. Tenascin-C serum levels and its prognostic power in non-small cell lung cancer. Oncotarget 2018; 7:20945-52. [PMID: 26967391 PMCID: PMC4991503 DOI: 10.18632/oncotarget.7976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/17/2015] [Indexed: 01/14/2023] Open
Abstract
Background Tenascin-C is overexpressed in the stroma of most solid malignancies and may function as a diagnostic tumor marker. This study was conducted to evaluate the potential significance of Tenascin-C as a predictive marker for tumor progression in the sera of non-small cell lung cancer (NSCLC) patients. Results Serum concentration of Tenascin-C is significantly elevated in NSCLC patients compared to healthy controls (p=0.013). The sensitivity of Tenascin-C in detecting NSCLC was 74% at a specificity of 57%. Elevated Tenascin-C serum values are associated with larger tumor size and lymph node involvement (p=0.022 and p=0.036, respectively). The Kaplan-Meyer-curves showed a significant association of Tenascin-C with the patient's overall survival (p=0.004), but not with the recurrence-free survival (p=0.328). Methods We quantified Tenascin-C in the sera of 103 NSCLC patients and 76 healthy blood donors by enzyme-linked immune-absorbance assay tests. Prognostic significance was determined by area under the curve analysis and Youden-index. The results were correlated with clinical, histopathological, and patient survival data (Chi-square test, Kaplan-Meier analysis, log-rank test, multivariate Cox-regression analysis). Conclusion Although significantly elevated in patients with NSCLC, the sensitivity and specificity of the Tenascin-C serum quantification test was low. However, although failing to be an independent prognosticator in multivariate analysis, the results implicate Tenascin-C as a predictive prognostic marker for NSCLC patients. The data must be further validated in future prospective trials with larger patient cohorts.
Collapse
Affiliation(s)
- Florian Gebauer
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Suyin Gelis
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hilke Zander
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl-Frederick Meyer
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Almousa AA, Morris M, Fowler S, Jones J, Alcorn J. Elevation of serum pyruvate kinase M2 (PKM2) in IBD and its relationship to IBD indices. Clin Biochem 2017; 53:19-24. [PMID: 29273328 DOI: 10.1016/j.clinbiochem.2017.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Endoscopy remains the gold standard to diagnose and evaluate inflammatory bowel disease (IBD) activity. Current biomarkers or their combinations cannot adequately predict IBD risk, diagnosis, progression or relapse, and response to therapy. Pyruvate kinase M2 (PKM2) is emerging as a significant mediator of the inflammatory process. We aimed to assess levels of serum PKM2 in healthy and newly diagnosed IBD patients and its relationship with IBD indices and microbiota changes. DESIGN AND METHODS IBD serum samples from newly diagnosed patients were collected and analyzed using a PKM2-ELISA and correlated with disease activity scores, IBD disease type, and intestinal microbiota. Furthermore, we tested the genetic and protein expression of PKM2 in an in vitro intestinal cell model of inflammation. RESULTS Serum PKM2 levels were 6-fold higher in IBD patients compared to healthy controls, with no sensitivity to disease phenotype (Crohn's Disease or Ulcerative Colitis) or localization of inflammation. Serum PKM2 had considerably less interindividual variability than established IBD fecal biomarkers. A positive Pearson correlation (r=0.6121) existed between serum PKM2 and Bacteroidetes fecal levels in Crohn's disease (CD), while a negative (r=-0.6128) correlation was observed with Actinobacteria fecal levels. Furthermore, LPS (500ng/mL) significantly increased PKM2 expression in vitro, which was significantly suppressed by an anti-inflammatory flaxseed bioactive agent. CONCLUSION Our data suggests PKM2 as a putative biomarker for IBD and the dysbiosis of microflora in CD. Investigations involving larger number of clinical patients are necessary to validate its use as a serum biomarker of IBD.
Collapse
Affiliation(s)
- Ahmed A Almousa
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Marc Morris
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Sharyle Fowler
- Department of Gastroenterology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Jennifer Jones
- Division of Digestive Care & Endoscopy, Department of Community Health and Epidemiology, Dalhousie University, Halifax, Canada
| | - Jane Alcorn
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
37
|
Napsin A levels in epithelial lining fluid as a diagnostic biomarker of primary lung adenocarcinoma. BMC Pulm Med 2017; 17:195. [PMID: 29233112 PMCID: PMC5727880 DOI: 10.1186/s12890-017-0534-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is crucial to develop novel diagnostic approaches for determining if peripheral lung nodules are malignant, as such nodules are frequently detected due to the increased use of chest computed tomography scans. To this end, we evaluated levels of napsin A in epithelial lining fluid (ELF), since napsin A has been reported to be an immunohistochemical biomarker for histological diagnosis of primary lung adenocarcinoma. METHODS In consecutive patients with indeterminate peripheral lung nodules, ELF samples were obtained using a bronchoscopic microsampling (BMS) technique. The levels of napsin A and carcinoembryonic antigen (CEA) in ELF at the nodule site were compared with those at the contralateral site. A final diagnosis of primary lung adenocarcinoma was established by surgical resection. RESULTS We performed BMS in 43 consecutive patients. Among patients with primary lung adenocarcinoma, the napsin A levels in ELF at the nodule site were markedly higher than those at the contralateral site, while there were no significant differences in CEA levels. Furthermore, in 18 patients who were undiagnosed by bronchoscopy and finally diagnosed by surgery, the napsin A levels in ELF at the nodule site were identically significantly higher than those at the contralateral site. In patients with non-adenocarcinoma, there were no differences in napsin A levels in ELF. The area under the receiver operator characteristic curve for identifying primary lung adenocarcinoma was 0.840 for napsin A and 0.542 for CEA. CONCLUSION Evaluation of napsin A levels in ELF may be useful for distinguishing primary lung adenocarcinoma.
Collapse
|
38
|
Hu X, Li Q, Shao S, Zeng Q, Jiang S, Wu Q, Jiang C. Potential lung carcinogenicity induced by chronic exposure to PM 2.5 in the rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18991-19000. [PMID: 28656580 DOI: 10.1007/s11356-017-9430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Exposure to fine particulate matter (PM2.5) may increase lung cancer risk, but the underlying mechanisms are poorly understood. This study explored the potential carcinogenicity in rat lung induced by chronic exposure to PM2.5. Adult male rats (200-220 g) were treated with PM2.5 (10 mg/kg body weight) by tracheal perfusion once per week for 1 year; the rats were killed, and expression of tumor markers (carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), squamous cell carcinoma antigen (SCCA)), cancer-related genes, and pathological changes were detected. Chronic treatment with PM2.5 significantly increased SCCA and NSE expression in rat lung tissue and serum. Damaged lung tissue structure was observed by hematoxylin and eosin staining. Although no evidence of tumors was detected, the Wnt/β-catenin signaling, epithelial-mesenchymal transition, vascular endothelial growth factor, and epidermal growth factor receptor pathways were all activated or overexpressed and likely involved in the potential carcinogenicity in the rat model. Additionally, abnormal expression of the proto-oncogenes c-Myc and K-Ras and tumor suppressor p53 can be seen in lung tissue induced by PM2.5 exposure. Chronic exposure to PM2.5 has the potential to be carcinogenic in rat lung.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Respiratory, Tianjin Medical University General Hospital, 54 Anshan Road, Heping District, Tianjin, Tianjin, 300052, China
- Department of Respiratory, People's Hospital of Qitaihe City, 37 Shanhu Road, Qitaihe, Heilongjiang, 154600, China
| | - Qingzhao Li
- School of Public Health, North China University of Science and Technology, 57 Jianshe Road, Tangshan, Hebei, 063000, China
| | - Shifeng Shao
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin, Tianjin, 300350, China
| | - Qiang Zeng
- Tianjin Center for Disease Control and Prevention, 6 Huayue Road, Tianjin, Tianjin, 300011, China
| | - Shoufang Jiang
- School of Public Health, North China University of Science and Technology, 57 Jianshe Road, Tangshan, Hebei, 063000, China.
| | - Qi Wu
- Department of Respiratory, Tianjin Medical University General Hospital, 54 Anshan Road, Heping District, Tianjin, Tianjin, 300052, China.
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin, Tianjin, 300350, China.
| | - Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, Tianjin, 300121, China.
| |
Collapse
|
39
|
Role of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in the Diagnosis of Newly Found Suspected Malignant Solitary Pulmonary Lesions in Patients Who Have Received Curative Treatment for Colorectal Cancer. Gastroenterol Res Pract 2017; 2017:3458739. [PMID: 28487728 PMCID: PMC5405602 DOI: 10.1155/2017/3458739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Background. Positron emission tomography/computed tomography (PET/CT) is recommended for colorectal cancer (CRC) patients with suspected malignant pulmonary lesions. This study aims to systematically discuss the 18F-FDG-PET/CT diagnosis of solitary pulmonary lesions that are strongly suspected to be malignant in CRC patients who have previously undergone curative therapy. Methods. This retrospective study involved 49 consecutive CRC patients who had previously undergone curative therapy and then underwent PET/CT for the investigation of solitary pulmonary lesions that were strongly suspected to be malignant. Results. Pathological examination confirmed the presence of pulmonary metastases (29 patients, 59.2%), primary lung cancer (15 patients, 30.6%), and benign pulmonary disease (5 patients, 10.2%). Small lung lesions, advanced pathological stage, adjuvant chemotherapy after CRC surgery, solitary pulmonary lesions with lower border irregularity, higher carcinoembryonic antigen level, and the lack of concomitant mediastinal lymph node metastasis were more likely to be associated with pulmonary metastasis than with primary lung cancer. None of these factors was independently significant in the multivariate analysis. Conclusion. Clinicopathological characteristics help to differentiate metastasis and primary lung cancer to some extent during the diagnosis of solitary pulmonary lesions suspected to be malignant in this group of patients. This may provide valuable information to clinicians.
Collapse
|
40
|
Determination of 16 serum angiogenic factors in stage I non-small cell lung cancer using a bead-based multiplex immunoassay. Biomed Pharmacother 2017; 88:1031-1037. [DOI: 10.1016/j.biopha.2017.01.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
|
41
|
Ma R, Yang Y, Tu Q, Hu K. Overexpression of T-box Transcription Factor 5 (TBX5) Inhibits Proliferation and Invasion in Non-Small Cell Lung Carcinoma Cells. Oncol Res 2017; 25:1495-1504. [PMID: 28276311 PMCID: PMC7841191 DOI: 10.3727/096504017x14883287513729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
T-box transcription factor 5 (TBX5), a member of the conserved T-box transcription factor family that functions in organogenesis and embryogenesis, has recently been identified as a critical player in cancer development. The aim of this study was to determine the role of TBX5 in non-small cell lung carcinoma (NSCLC). Immunohistochemistry was used to detect the correlation between levels of TBX5 and clinicopathological features of NSCLC patients in tissue microarray. Expression of TBX5 in NSCLC tissues and cell lines was evaluated by quantitative PCR and Western blot. The role of TBX5 in regulating proliferation, colony formation, invasion, and apoptosis of NSCLC cells was evaluated in vitro. Finally, a tumorigenicity assay was performed to determine the effect of TBX5 on tumor growth in vivo. The levels of TBX5 in NSCLC tissues were significantly correlated with the TNM stage (p = 0.016), histopathologic type (p = 0.029), and lymph node status (p = 0.035) of NSCLC. TBX5 overexpression markedly suppressed in vitro NSCLC cell proliferation, colony formation, and invasion and induced apoptosis. In vivo tumor growth was significantly suppressed by TBX5. TBX5 has a tumor-suppressing effect in NSCLC and may serve as a therapeutic target for diagnoses and treatment of NSCLC.
Collapse
|
42
|
Chen J, Tao F, Zhang B, Chen Q, Qiu Y, Luo Q, Gen Y, Meng J, Zhang J, Lu H. Elevated Squamous Cell Carcinoma Antigen, Cytokeratin 19 Fragment, and Carcinoembryonic Antigen Levels in Diabetic Nephropathy. Int J Endocrinol 2017; 2017:5304391. [PMID: 28744310 PMCID: PMC5514347 DOI: 10.1155/2017/5304391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/16/2017] [Accepted: 05/28/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE We aimed to explore whether squamous cell carcinoma antigen (SCC), cytokeratin 19 fragment (Cyfra21-1), neuron-specific enolase (NSE), and carcinoembryonic antigen (CEA) are elevated in diabetic nephropathy (DN) and the association between urinary albumin-to-creatinine ratio (UACR) and tumor markers in diabetic patients. METHODS Nondialysis patients with diabetes (n = 261) and 90 healthy controls were enrolled. DN was defined as an UACR ≥ 30 mg/g in the absence of a urinary tract infection or other renal abnormalities. RESULTS Patients with DN had significantly higher serum SCC, Cyfra21-1, and CEA levels than those with normoalbuminuria and healthy controls. The rates of positive SCC, Cyfra21-1, and CEA significantly increased with increasing urinary albumin excretion (all P for trend < 0.001). In contrast, NSE was not affected by DN. SCC, Cyfra21-1, and CEA were significantly and positively correlated with UACR. In logistic regression, after multivariable adjustment, increased UACR was associated with increased odds ratio of elevated tumor marker levels (all P for trend < 0.05). CONCLUSIONS Serum levels of SCC, Cyfra21-1, and CEA are markedly increased with increasing urinary albumin excretion, which affects the specificity for diagnosis for lung cancer. Appropriate interpretation of tumor markers in diabetic patients is mandatory to avoid unnecessary and even hazardous biopsies.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Tao
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zhang
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingguang Chen
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Qiu
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Luo
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanna Gen
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiali Meng
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Zhang
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Jue Zhang: and
| | - Hao Lu
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Hao Lu:
| |
Collapse
|
43
|
Tanizaki J, Hayashi H, Kimura M, Tanaka K, Takeda M, Shimizu S, Ito A, Nakagawa K. Report of two cases of pseudoprogression in patients with non-small cell lung cancer treated with nivolumab-including histological analysis of one case after tumor regression. Lung Cancer 2016; 102:44-48. [PMID: 27987588 DOI: 10.1016/j.lungcan.2016.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
The recent approval of nivolumab and other immune-checkpoint inhibitors for the treatment of certain solid tumors including non-small cell lung cancer (NSCLC) has transformed cancer therapy. However, it will be important to characterize effects of such agents not seen with classical cytotoxic drugs or other targeted therapeutics. We here report two cases of NSCLC showing so-called pseudoprogression during nivolumab treatment. In both cases, imaging assessment revealed that liver metastatic lesions initially progressed but subsequently shrank during continuous nivolumab administration, with treatment also resulting in a decline in serum levels of carcinoembryonic antigen. Histological evaluation of the liver metastatic lesion of one case after regression revealed fibrotic tissue containing infiltrated lymphocytes positive for CD3, CD4, or CD8 but no viable tumor cells, suggestive of a durable immune reaction even after a pathological complete response. Given the increasing use of immune-checkpoint inhibitors in patients with NSCLC or other solid tumors, further clinical evaluation and pathological assessment are warranted to provide a better understanding of such pseudoprogression.
Collapse
Affiliation(s)
- Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| | - Masatomo Kimura
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shigeki Shimizu
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
44
|
Time courses and value of circulating microparticles in patients with operable stage non-small cell lung cancer undergoing surgical intervention. Tumour Biol 2016; 37:11873-11882. [PMID: 27059732 DOI: 10.1007/s13277-016-5047-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
Microparticles (MPs) are substantially increased in patients with operable stage non-small cell lung cancer (NSCLC) prior to lung resection surgery. This study tested the hypothesis that there is a decrease in MPs after surgical intervention. Between March 2012 and January 2015, 33 patients who had operable stage NSCLC were consecutively and prospectively enrolled into the study. Additionally, 31 healthy subjects who were consecutively enrolled in the study period served as age- and gender-matched controls. Circulating MPs (EDAc-MPs, EDAp-MPs, PDAc-MPs, PDAp-MPs) were measured by flow cytometry once in control subjects and twice (i.e., prior to and three months later after surgical intervention) in NSCLC patients. Compared with control subjects, these four types of circulating MPs were significantly higher in NSCLC patients prior to operation (all P < 0.005), but did not differ among the controls and NSCLC patients at 3 months after surgery (all P > 0.2). Additionally, a receiver operating characteristic curve (ROC) showed that these four types of MPs were significantly valuable predictors for detecting early stage NSCLC (all P < 0.004). Circulating MPs which were remarkably increased in the operable stage of NSCLC prior to surgery were substantially decreased 3 months later after surgery. These findings show that circulating MPs might be an accessory biomarker for monitoring those of NSCLC after receiving lung resection surgery.
Collapse
|
45
|
Identification of Serum Peptidome Signatures of Non-Small Cell Lung Cancer. Int J Mol Sci 2016; 17:410. [PMID: 27043541 PMCID: PMC4848884 DOI: 10.3390/ijms17040410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 12/26/2022] Open
Abstract
Due to high mortality rates of lung cancer, there is a need for identification of new, clinically useful markers, which improve detection of this tumor in early stage of disease. In the current study, serum peptide profiling was evaluated as a diagnostic tool for non-small cell lung cancer patients. The combination of the ZipTip technology with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the analysis of peptide pattern of cancer patients (n = 153) and control subjects (n = 63) was presented for the first time. Based on the observed significant differences between cancer patients and control subjects, the classification model was created, which allowed for accurate group discrimination. The model turned out to be robust enough to discriminate a new validation set of samples with satisfactory sensitivity and specificity. Two peptides from the diagnostic pattern for non-small cell lung cancer (NSCLC) were identified as fragments of C3 and fibrinogen α chain. Since ELISA test did not confirm significant differences in the expression of complement component C3, further study will involve a quantitative approach to prove clinical utility of the other proteins from the proposed multi-peptide cancer signature.
Collapse
|
46
|
Zhang Y, Li L, Liu Y, Liu ZR. PKM2 released by neutrophils at wound site facilitates early wound healing by promoting angiogenesis. Wound Repair Regen 2016; 24:328-36. [PMID: 26808610 DOI: 10.1111/wrr.12411] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022]
Abstract
Neutrophils infiltration/activation following wound induction marks the early inflammatory response in wound repair. However, the role of the infiltrated/activated neutrophils in tissue regeneration/proliferation during wound repair is not well understood. Here, we report that infiltrated/activated neutrophils at wound site release pyruvate kinase M2 (PKM2) by its secretive mechanisms during early stages of wound repair. The released extracellular PKM2 facilitates early wound healing by promoting angiogenesis at wound site. Our studies reveal a new and important molecular linker between the early inflammatory response and proliferation phase in tissue repair process.
Collapse
Affiliation(s)
- Yinwei Zhang
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Liangwei Li
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Yuan Liu
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
47
|
Jiang L, Li F, Feng J, Wang P, Liu Q, Li Y, Dong Y, Wei Q. An optionality further amplification of an sandwich-type electrochemical immunosensor based on biotin–streptavidin–biotin strategy for detection of alpha fetoprotein. RSC Adv 2016. [DOI: 10.1039/c6ra01178k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An optionality further amplification of sandwich-type electrochemical immunosensor based on biotin–streptavidin–biotin strategy.
Collapse
Affiliation(s)
- Liping Jiang
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Faying Li
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Jinhui Feng
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Ping Wang
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Qing Liu
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Yueyun Li
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Yunhui Dong
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| |
Collapse
|
48
|
He Y, Wang Y, Liu H, Xu X, He S, Tang J, Huang Y, Miao X, Wu Y, Wang Q, Cheng C. Pyruvate kinase isoform M2 (PKM2) participates in multiple myeloma cell proliferation, adhesion and chemoresistance. Leuk Res 2015; 39:1428-36. [PMID: 26453405 DOI: 10.1016/j.leukres.2015.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/19/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022]
Abstract
Cell adhesion mediated drug resistance (CAM-DR) remains the major barrier in human multiple myeloma (MM) therapy. In the present study, we aimed at investigating the role of pyruvate kinase isoform M2 (PKM2) in MM CAM-DR. We determined that PKM2 expression was positively correlated with cell proliferation and knockdown of PKM2 contributed to the increased cell adhesion rate in MM. The enhancement in the adhesion of MM cells to fibronectin or the bone marrow stroma cell line HS-5 cells translated to an increased CAM-DR phenotype. Importantly, we showed that this CAM-DR phenotype was correlated with the phosphorylation of Akt and ERK in MM cells. Taken together, our data shed new light on the molecular mechanism of CAM-DR in MM, and targeting PKM2 may be a novel therapeutic approach for improving the effectiveness of chemotherapy in MM.
Collapse
Affiliation(s)
- Yunhua He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yuchan Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong 22600, Jiangsu Province, People's Republic of China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jie Tang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yuejiao Huang
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Qiru Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Chun Cheng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
49
|
Wu HY, Goan YG, Chang YH, Yang YF, Chang HJ, Cheng PN, Wu CC, Zgoda VG, Chen YJ, Liao PC. Qualification and Verification of Serological Biomarker Candidates for Lung Adenocarcinoma by Targeted Mass Spectrometry. J Proteome Res 2015; 14:3039-50. [DOI: 10.1021/pr501195t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hsin-Yi Wu
- Institute
of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yih-Gang Goan
- Division
of Thoracic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Ying-Hua Chang
- Department
of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, United States
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Yi-Fang Yang
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Hsiao-Jen Chang
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Pin-Nan Cheng
- Department
of Internal Medicine, College of Medicine, National Cheng Kung University
Hospital, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chieh Wu
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | | | - Yu-Ju Chen
- Institute
of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Pao-Chi Liao
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
50
|
Luo L, Dong LY, Yan QG, Cao SJ, Wen XT, Huang Y, Huang XB, Wu R, Ma XP. Research progress in applying proteomics technology to explore early diagnosis biomarkers of breast cancer, lung cancer and ovarian cancer. Asian Pac J Cancer Prev 2015; 15:8529-38. [PMID: 25374164 DOI: 10.7314/apjcp.2014.15.20.8529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
According to the China tumor registry 2013 annual report , breast cancer, lung cancer, and ovarian cancer are three common cancers in China nowadays, with high mortality due to the absence of early diagnosis technology. However, proteomics has been widespreadly implanted into every field of life science and medicine as an important part of post-genomics era research. The development of theory and technology in proteomics has provided new ideas and research fields for cancer research. Proteomics can be used not only for elucidating the mechanisms of carcinogenesis focussing on whole proteins of the tissue or cell, but also seeking the biomarkers for diagnosis and therapy of cancer. In this review, we introduce proteomics principles, covering current technology used in exploring early diagnosis biomarkers of breast cancer, lung cancer and ovarian cancer.
Collapse
Affiliation(s)
- Lu Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|