1
|
Intracellular NF-HEV/IL-33 harbors essential roles in Ras-induced cellular transformation by contributing to cyclin D1 protein synthesis. Cell Signal 2016; 28:1025-36. [PMID: 27155324 DOI: 10.1016/j.cellsig.2016.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/10/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022]
Abstract
A member of the interleukin-1 family, interleukin-33 (NF-HEV/IL-33), is a ligand for the receptor, ST2L and stimulates the production of Th2 cytokines. Although IL-33 localizes to the nucleus and may be involved in the regulation of transcription independent of ST2L, its functions in the nucleus currently remain unclear. We herein demonstrated that the expression of IL-33 was markedly enhanced in NIH-3T3 cells transformed by an oncogenic H-Ras mutant (H-Ras (G12V)), and the induced IL-33 was mainly located in the nuclei of these cells. The enforced expression of IL-33 accelerated H-Ras (G12V)-induced transformation in NIH-3T3 cells, and this transforming activity was markedly reduced by the knockdown of IL-33 with shRNA. We subsequently analyzed several signaling molecules regulated by Ras in order to elucidate the mechanism by which IL-33 contributes to Ras (G12V)-induced transformation. We found that the knockdown of IL-33 effectively attenuated the Ras (G12V)-induced expression of cyclin D1. However, the knockdown of IL-33 failed to affect cyclin D1 mRNA expression levels, and epoxomicin, a proteasome inhibitor, did not cancel the IL-33 knockdown-induced down-regulation of its protein levels. We showed that Ras (G12V)-induced cyclin D1 protein synthesis was markedly suppressed by the knockdown of IL-33. Taken together, the results of the present study strongly suggest a novel role for IL-33 in cellular transformation.
Collapse
|
2
|
Interplay between oncogenic K-Ras and wild-type H-Ras in Caco2 cell transformation. J Proteomics 2012; 75:5356-69. [DOI: 10.1016/j.jprot.2012.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/14/2012] [Accepted: 06/18/2012] [Indexed: 11/22/2022]
|
3
|
Blüthgen N, Legewie S, Kielbasa SM, Schramme A, Tchernitsa O, Keil J, Solf A, Vingron M, Schäfer R, Herzel H, Sers C. A systems biological approach suggests that transcriptional feedback regulation by dual-specificity phosphatase 6 shapes extracellular signal-related kinase activity in RAS-transformed fibroblasts. FEBS J 2009; 276:1024-35. [PMID: 19154344 DOI: 10.1111/j.1742-4658.2008.06846.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling determines crucial cell fate decisions in most cell types, and mediates cellular transformation in many types of cancer. The activity of MAPK is controlled by reversible phosphorylation, and the quantitative characteristics of MAPK activation determine the cellular response. Many systems biological studies have analyzed the activation kinetics and the dose-response behavior of the MAPK signaling pathway. Here we investigate how the pathway activity is controlled by transcriptional feedback loops. Initially, we predict that MAPK signaling regulates phosphatases, by integrating promoter sequence data and ontology-based classification of gene function. From this, we deduce that MAPK signaling might be controlled by transcriptional negative feedback regulation via dual-specificity phosphatases (DUSPs), and implement a mathematical model to further test this hypothesis. Using time-resolved measurements of pathway activity and gene expression, we employ a model selection approach, and select DUSP6 as a highly likely candidate for shaping the activity of the MAPK pathway during cellular transformation caused by oncogenic RAS. Two predictions from the model were confirmed: first, feedback regulation requires that DUSP6 mRNA and protein are unstable; and second, the activation kinetics of MAPK are ultrasensitive. Taken together, an integrated systems biological approach reveals that transcriptional negative feedback controls the kinetics and the extent of MAPK activation under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Nils Blüthgen
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hamm A, Veeck J, Bektas N, Wild PJ, Hartmann A, Heindrichs U, Kristiansen G, Werbowetski-Ogilvie T, Del Maestro R, Knuechel R, Dahl E. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: a systematic expression analysis. BMC Cancer 2008; 8:25. [PMID: 18226209 PMCID: PMC2268946 DOI: 10.1186/1471-2407-8-25] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 01/28/2008] [Indexed: 02/06/2023] Open
Abstract
Background The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain – bikunin, encoded by AMBP – and five homologous heavy chains (encoded by ITIH1, ITIH2, ITIH3, ITIH4, and ITIH5), contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis. Methods We systematically investigated differential gene expression of the ITIH gene family, as well as AMBP and the interacting partner TNFAIP6 in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas) using cDNA dot blot analysis (Cancer Profiling Array, CPA), semiquantitative RT-PCR and immunohistochemistry. Results We found that ITIH genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, ITIH genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose ITIH2 expression in human breast cancer. Loss of ITIH2 expression in 70% of cases (n = 50, CPA) could be confirmed by real-time PCR in an additional set of breast cancers (n = 36). Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p < 0.001) between ITIH2 expression and estrogen receptor (ER) expression indicating that ER may be involved in the regulation of this ECM molecule. Conclusion Altogether, this is the first systematic analysis on the differential expression of ITIH genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies.
Collapse
Affiliation(s)
- Alexander Hamm
- Institute of Pathology, University Hospital of RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Agudo-Ibáñez L, Núñez F, Calvo F, Berenjeno IM, Bustelo XR, Crespo P. Transcriptomal profiling of site-specific Ras signals. Cell Signal 2007; 19:2264-76. [PMID: 17714917 PMCID: PMC2085357 DOI: 10.1016/j.cellsig.2007.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
Ras proteins are distributed in distinct plasma-membrane microdomains and endomembranes. The biochemical signals generated by Ras therein differ qualitatively and quantitatively, but the extent to which this spatial variability impacts on the genetic program switched-on by Ras is unknown. We have used microarray technology to identify the transcriptional targets of localization-specific Ras subsignals in NIH3T3 cells expressing H-RasV12 selectively tethered to distinct cellular microenvironments. We report that the transcriptomes resulting from site-specific Ras activation show a significant overlap. However, distinct genetic signatures can also be found for each of the Ras subsignals. Our analyses unveil 121 genes uniquely regulated by Ras signals emanating from plasma-membrane microdomains. Interestingly, not a single gene is specifically controlled by lipid raft-anchored Ras. Furthermore, only 9 genes are exclusive for Ras signals from endomembranes. Also, we have identified 31 genes common to the site-specific Ras subsignals capable of inducing cellular transformation. Among these are the genes coding for Vitamin D receptor and for p120-GAP and we have assessed their impact in Ras-induced transformation. Overall, this report reveals the complexity and variability of the different genetic programs orchestrated by Ras from its main sublocalizations.
Collapse
Affiliation(s)
- Lorena Agudo-Ibáñez
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Biología Molecular, Unidad de Biomedicina, CSIC-Universidad de Cantabria, Santander, E-39011, Spain
| | - Fátima Núñez
- Centro de Investigación del Cancer, CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
| | - Fernando Calvo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Biología Molecular, Unidad de Biomedicina, CSIC-Universidad de Cantabria, Santander, E-39011, Spain
| | - Inmaculada M. Berenjeno
- Centro de Investigación del Cancer, CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cancer, CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
| | - Piero Crespo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Biología Molecular, Unidad de Biomedicina, CSIC-Universidad de Cantabria, Santander, E-39011, Spain
- * Corresponding author. Tel.: +34 942 200959; fax: +34 942 201945. E-mail address: (P. Crespo)
| |
Collapse
|
6
|
Schäfer R, Tchernitsa OI, Györffy B, Serra V, Abdul-Ghani R, Lund P, Sers C. Functional transcriptomics: an experimental basis for understanding the systems biology for cancer cells. ACTA ACUST UNITED AC 2007; 47:41-62. [PMID: 17335873 DOI: 10.1016/j.advenzreg.2006.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Reinhold Schäfer
- Laboratory of Molecular Tumor Pathology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Luo F, Hamoudi R, Brooks DG, Patek CE, Arends MJ. Stem cell gene expression changes induced specifically by mutated K-ras. Gene Expr 2007; 14:101-15. [PMID: 18257393 PMCID: PMC6042043 DOI: 10.3727/105221607783417583] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
K-Ras proteins transduce signals from membrane-bound receptors via multiple downstream effector pathways and thereby regulate fundamental stem cell processes that affect neoplasia, including proliferation, apoptosis, and differentiation, but their contribution to tumourigenesis is unclear. Because cancers develop from stem cells, we set out to determine the characteristic changes in gene expression brought about by mutated K-ras (without interference from normal K-ras) in otherwise normal stem cells. cDNA microarrays were used to analyze gene expression profiles comparing wild-type murine embryonic stem (ES) cells with K-ras(Val12) expressing ES cells (previously made null for both endogenous K-ras alleles and transfected with K-ras(Val12), with valine for glycine at codon 12). K-ras(Val12) was expressed at 1.2-fold normal K-ras levels and produced transcripts for both activated K-Ras4A and 4B isoforms. The array expression data were confirmed by real-time quantitative PCR analysis of selected genes expressed both in the K-ras(Val12) expressing ES cells (R = 0.91 with array data) and in the normal intestinal tissues of K-ras(Val12) transgenic mice (R = 0.91 with array data). Changes in gene expression were correlated with the effects of K-ras(Val12) expression on ES cells of enhancing self-renewal in an undifferentiated state, increasing susceptibility to DNA damage-induced apoptosis, and increased proliferation. These expression data may explain, at least in part, some neoplasia-related aspects of the phenotypic changes brought about in this ES cell line by mutated K-ras, in that upregulation of cell growth-related proteins and DNA-associated proteins is consistent with increased proliferation; upregulation of certain apoptosis-related proteins is consistent with a greater susceptibility to DNA damage-induced apoptosis; and downregulation of structural proteins, extracellular matrix components, secretory proteins and receptors is consistent with a less differentiated phenotype.
Collapse
Affiliation(s)
- Feijun Luo
- *Department of Pathology, Addenbrooke’s Hospital, Hills Road, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Rifat Hamoudi
- *Department of Pathology, Addenbrooke’s Hospital, Hills Road, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - David G. Brooks
- *Department of Pathology, Addenbrooke’s Hospital, Hills Road, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Charles E. Patek
- †Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Mark J. Arends
- *Department of Pathology, Addenbrooke’s Hospital, Hills Road, University of Cambridge, Cambridge, CB2 2QQ, UK
| |
Collapse
|
8
|
Martínez-Solano L, Nombela C, Molero G, Gil C. Differential protein expression of murine macrophages upon interaction with Candida albicans. Proteomics 2006; 6 Suppl 1:S133-44. [PMID: 16544287 DOI: 10.1002/pmic.200500581] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous studies highlight the importance of macrophages for optimal host protection against systemic Candida albicans infections. We chose the murine macrophage cell line RAW 264.7 and the wild-type strain C. albicans SC5314 to study of the induced expression/repression of proteins in macrophages when they are in contact with C. albicans, based on 2-DE, comparison between different gels and protein identification. RAW 264.7 cells were allowed to interact with C. albicans cells for 45 min, and a significant differential protein expression was observed in these macrophages compared to controls. Gels were stained with SYPRO Ruby, allowing a better quantification of the intensity of the protein spots. Fifteen spots were up-regulated, whereas 32 were down-regulated; 60 spots appeared and 49 disappeared. Among them, we identified 11 proteins: annexin I, LyGDI (GDID4), Hspa5 (Grp78, Bip), tropomyosin 5 and L-plastin, that augment; and Eif3s5, Hsp60, Hspa9a, Grp58 (ER75), and Hspa8a (Hsc70), that decrease. The translation elongation factor (Eef2p) is modified in some of its different protein species. Many processes seem to be affected: cytoskeletal organisation, oxidative responses (superoxide and nitric oxide production) and protein biosynthesis and refolding.
Collapse
Affiliation(s)
- Laura Martínez-Solano
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
9
|
Lund P, Weisshaupt K, Mikeska T, Jammas D, Chen X, Kuban RJ, Ungethüm U, Krapfenbauer U, Herzel HP, Schäfer R, Walter J, Sers C. Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene 2006; 25:4890-903. [PMID: 16568090 DOI: 10.1038/sj.onc.1209502] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Silencing of gene expression by methylation of CpG islands in regulatory elements is frequently observed in cancer. However, an influence of the most common oncogenic signalling pathways onto DNA methylation has not yet been investigated thoroughly. To address this issue, we identified genes suppressed in HRAS-transformed rat fibroblasts but upregulated after treatment with the demethylating agent 5-Aza-2-deoxycytidine and with the MEK1,2 inhibitor U0126. Analysis of gene expression by microarray and Northern blot analysis revealed the MEK/ERK target genes clusterin, matrix metalloproteinase 2 (Mmp2), peptidylpropyl isomerase C-associated protein, syndecan 4, Timp2 and Thbs1 to be repressed in the HRAS-transformed FE-8 cells in a MEK/ERK- and methylation-dependent manner. Hypermethylation of putative regulatory elements in HRAS-transformed cells as compared to immortalized fibroblasts was detected within a CpG island 14.5 kb upstream of clusterin, within the clusterin promoter and within a CpG island of the Mmp2 promoter by bisulphite sequencing. Furthermore, hypermethylation of the clusterin promoter was observed 10 days after induction of HRAS in immortalized rat fibroblasts and a clear correlation between reduced clusterin expression and hypermethlyation could also be observed in distinct rat tissues. These results suggest that silencing of individual genes by DNA methylation is controlled by oncogenic signalling pathways, yet the mechanisms responsible for initial target gene suppression are variable.
Collapse
Affiliation(s)
- P Lund
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen Y, Zhang YZ, Zhou ZG, Wang G, Yi ZN. Identification of differently expressed genes in human colorectal adenocarcinoma. World J Gastroenterol 2006; 12:1025-32. [PMID: 16534841 PMCID: PMC4087892 DOI: 10.3748/wjg.v12.i7.1025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differently expressed genes in human colorectal adenocarcinoma.
METHODS: The integrated approach for gene expression profiling that couples suppression subtractive hybridization, high-throughput cDNA array, sequencing, bioinformatics analysis, and reverse transcriptase real-time quantitative polymerase chain reaction (PCR) was carried out. A set of cDNA clones including 1260 SSH inserts amplified by PCR was arrayed using robotic printing. The cDNA arrays were hybridized with florescent-labeled probes prepared from RNA of human colorectal adenocarcinoma (HCRAC) and normal colorectal tissues.
RESULTS: A total of 86 genes were identified, 16 unknown genes and 70 known genes. The transcription factor Sox9 influencing cell differentiation was downregulated. At the same time, Heat shock protein 10 KDis downregulated and Calmoulin is up-regulated.
CONCLUSION: Downregulation of heat shock protein 10 KD lost its inhibition of Ras, and then attenuated the Ras GTPase signaling pathway, increased cell proliferation and inhibited cell apoptosis. Down-regulated transcription factor So x 9 influences cell differentiation and cell-specific gene expression. Down-regulated So x 9 also decreases its binding to calmodulin, accumulates calmodulin as receptor-activated kinase and phosphorylase kinase due to the activation of PhK.
Collapse
Affiliation(s)
- Yao Chen
- Department of Anatomy, Basic and Legal Medical Institute, West China Medical Center, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | | | | | | | | |
Collapse
|
11
|
Noske A, Denkert C, Schober H, Sers C, Zhumabayeva B, Weichert W, Dietel M, Wiechen K. Loss of Gelsolin expression in human ovarian carcinomas. Eur J Cancer 2005; 41:461-9. [PMID: 15691647 DOI: 10.1016/j.ejca.2004.10.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 10/21/2004] [Indexed: 11/25/2022]
Abstract
The ubiquitously expressed actin-binding protein, gelsolin, is known to play a role in the modulation of the actin network and in the regulation of cell growth and cell motility. In the present study, we analysed the expression of gelsolin in 241 matched cDNA pairs from human normal and tumour tissues using a Cancer Profiling Array. We found a decreased expression of gelsolin in cancer tissue from female reproductive organs, including the ovary. On a protein level, we examined the expression of gelsolin in human ovarian cancer cell lines and in a set of 110 cases of human benign and malignant ovarian tumours. Low levels of gelsolin protein were observed in four of six ovarian carcinoma cell lines, in contrast to its expression in normal ovarian surface epithelial cells. In addition, we found a reduced expression of gelsolin in borderline tumours and ovarian carcinomas compared with the epithelium of normal ovaries and benign adenomas. Decreased gelsolin expression was associated with poorly differentiated carcinomas (p=0.014). No significant association between gelsolin expression and other clinicopathological markers or patient survival could be established. In addition, we investigated the growth regulatory function of gelsolin in human ovarian cancer cell lines using cDNA transfections. Re-expression of gelsolin in OAW42 and ES-2 cells resulted in a suppression of tumour cell survival in vitro. To explore the mechanism responsible for the downregulation of gelsolin expression in ovarian carcinoma cells, we treated cells with inhibitors of DNA methylation and histone deacetylation. We observed an upregulation of gelsolin in ovarian cancer cells after treatment with both types of inhibitor. Our results suggest that gelsolin might be involved in the growth regulation of human ovarian cancer.
Collapse
Affiliation(s)
- Aurelia Noske
- Institute of Pathology, University Hospital Charité, Schumannstr. 20/21, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Raudies O, Kuban RJ, Hamacher F, Klein-Hitpass L, Tchernitsa OI, Sers C, Herzel HP, Schäfer R. Functional analysis and secondary expression profiling of candidate genes deregulated in conjunction with oncogenic Ras signaling. ACTA ACUST UNITED AC 2005; 45:63-84. [PMID: 16023704 DOI: 10.1016/j.advenzreg.2005.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Oliver Raudies
- Laboratory of Molecular Tumor Pathology, Charité, Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tao AL, He SH. Bridging PCR and partially overlapping primers for novel allergen gene cloning and expression insert decoration. World J Gastroenterol 2004; 10:2103-8. [PMID: 15237444 PMCID: PMC4572343 DOI: 10.3748/wjg.v10.i14.2103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To obtain the entire gene open reading frame (ORF) and to construct the expression vectors for recombinant allergen production.
METHODS: Gene fragments corresponding to the gene specific region and the cDNA ends of pollen allergens of short ragweed (Rg, Ambrosia artemisiifolia L.) were obtained by pan-degenerate primer-based PCR and rapid amplification of the cDNA ends (RACE), and the products were mixed to serve as the bridging PCR (BPCR) template. The full-length gene was then obtained. Partially overlapping primer-based PCR (POP-PCR) method was developed to overcome the other problem, i.e., the non-specific amplification of the ORF with routine long primers for expression insert decoration. Northern blot was conducted to confirm pollen sources of the gene. The full-length coding region was evaluated for its gene function by homologue search in GenBank database and Western blotting of the recombinant protein Amb a 8 (D106) expressed in Escherichia coli pET-44 system.
RESULTS: The full-length cDNA sequence of Amb a 8(D106) was obtained by using the above procedure and deduced to encode a 131 amino acid polypeptide. Multiple sequence alignment exhibited the gene D106 sharing a homology as high as 54%-89% and 79%-89% to profilin from pollen and food sources, respectively. The expression vector of the allergen gene D106 was successfully constructed by employing the combined method of BPCR and POP-PCR. Recombinant allergen rAmb a 8(D106) was then successfully generated. The allergenicity was hallmarked by immunoblotting with the allergic serum samples and its RNA source was confirmed by Northern blot.
CONCLUSION: The combined procedure of POP-PCR and BPCR is a powerful method for full-length allergen gene retrieval and expression insert decoration, which would be useful for recombinant allergen production and subsequent diagnosis and immunotherapy of pollen and food allergy.
Collapse
Affiliation(s)
- Ai-Lin Tao
- Allergy and Inflammation Research Institute, Medical College, Shantou University, 22 Xin-Ling Road, Shantou 515031, Guangdong Province, China
| | | |
Collapse
|
14
|
Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A, Marquez RT, Auersperg N, Yu Y, Hahn WC, Mills GB, Bast RC. A genetically defined model for human ovarian cancer. Cancer Res 2004; 64:1655-63. [PMID: 14996724 DOI: 10.1158/0008-5472.can-03-3380] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disruptions of the p53, retinoblastoma (Rb), and RAS signaling pathways and activation of human telomerase reverse transcriptase (hTERT) are common in human ovarian cancer; however, their precise role in ovarian cancer development is not clear. We thus introduced the catalytic subunit of hTERT, the SV40 early genomic region, and the oncogenic alleles of human HRAS or KRAS into human ovarian surface epithelial cells and examined the phenotype and gene expression profile of those cells. Disruption of p53 and Rb pathway by SV40 early genomic region and hTERT immortalized but did not transform the cells. Introduction of HRAS(V12) or KRAS(V12) into the immortalized cells, however, allowed them to form s.c. tumors after injection into immunocompromised mice. Peritoneal injection of the transformed cells produced undifferentiated carcinoma or malignant mixed Mullerian tumor and developed ascites; the tumor cells are focally positive for CA125 and mesothelin. Gene expression profile analysis of transformed cells revealed elevated expression of several cytokines, including interleukin (IL)-1beta, IL-6, and IL-8, that are up-regulated by the nuclear factor-kappaB pathway, which is known to contribute to the tumor growth of naturally ovarian cancer cells. Incubation with antibodies to IL-1beta or IL-8 led to apoptosis in the ras-transformed cells and ovarian cancer cells but not in immortalized cells that had not been transformed. Thus, the transformed human ovarian surface epithelial cells recapitulated many features of natural ovarian cancer including a subtype of ovarian cancer histology, formation of ascites, CA125 expression, and nuclear factor-kappaB-mediated cytokine activation. These cells provide a novel model system to study human ovarian cancer.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schäfer R, Tchernitsa OI, Zuber J, Sers C. Dissection of signal-regulated transcriptional modules by signaling pathway interference in oncogene-transformed cells. ADVANCES IN ENZYME REGULATION 2004; 43:379-91. [PMID: 12791398 DOI: 10.1016/s0065-2571(02)00040-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Reinhold Schäfer
- Laboratory of Molecular Tumor Pathology, Charité, Humboldt University, Schumannstr. 20/21, D-10117, Berlin, Germany
| | | | | | | |
Collapse
|
16
|
Vasseur S, Malicet C, Calvo EL, Labrie C, Berthezene P, Dagorn JC, Iovanna JL. Gene expression profiling by DNA microarray analysis in mouse embryonic fibroblasts transformed by rasV12 mutated protein and the E1A oncogene. Mol Cancer 2003; 2:19. [PMID: 12685932 PMCID: PMC153489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Accepted: 03/19/2003] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Ras is an area of intensive biochemical and genetic studies and characterizing downstream components that relay ras-induced signals is clearly important. We used a systematic approach, based on DNA microarray technology to establish a first catalog of genes whose expression is altered by ras and, as such, potentially involved in the regulation of cell growth and transformation. RESULTS We used DNA microarrays to analyze gene expression profiles of rasV12/E1A-transformed mouse embryonic fibroblasts. Among the approximately 12,000 genes and ESTs analyzed, 815 showed altered expression in rasV12/E1A-transformed fibroblasts, compared to control fibroblasts, of which 203 corresponded to ESTs. Among known genes, 202 were up-regulated and 410 were down-regulated. About one half of genes encoding transcription factors, signaling proteins, membrane proteins, channels or apoptosis-related proteins was up-regulated whereas the other half was down-regulated. Interestingly, most of the genes encoding structural proteins, secretory proteins, receptors, extracellular matrix components, and cytosolic proteins were down-regulated whereas genes encoding DNA-associated proteins (involved in DNA replication and reparation) and cell growth-related proteins were up-regulated. These data may explain, at least in part, the behavior of transformed cells in that down-regulation of structural proteins, extracellular matrix components, secretory proteins and receptors is consistent with reversion of the phenotype of transformed cells towards a less differentiated phenotype, and up-regulation of cell growth-related proteins and DNA-associated proteins is consistent with their accelerated growth. Yet, we also found very unexpected results. For example, proteases and inhibitors of proteases as well as all 8 angiogenic factors present on the array were down-regulated in transformed fibroblasts although they are generally up-regulated in cancers. This observation suggests that, in human cancers, proteases, protease inhibitors and angiogenic factors could be regulated through a mechanism disconnected from ras activation. CONCLUSIONS This study established a first catalog of genes whose expression is altered upon fibroblast transformation by rasV12/E1A. This catalog is representative of the genome but not exhaustive, because only one third of expressed genes was examined. In addition, contribution to ras signaling of post-transcriptional and post-translational modifications was not addressed. Yet, the information gathered should be quite useful to future investigations on the molecular mechanisms of oncogenic transformation.
Collapse
Affiliation(s)
- Sophie Vasseur
- Centre de Recherche INSERM EMI 0116, 163 Avenue de Luminy, BP172, 13009 Marseille, France
| | - Cédric Malicet
- Centre de Recherche INSERM EMI 0116, 163 Avenue de Luminy, BP172, 13009 Marseille, France
| | - Ezequiel L Calvo
- Molecular Endocrinology and Oncology Research Center, Laval University Medical Center 2705 Laurier Boulevard, Quebec, G1V 4G2, Canada
| | - Claude Labrie
- Molecular Endocrinology and Oncology Research Center, Laval University Medical Center 2705 Laurier Boulevard, Quebec, G1V 4G2, Canada
| | - Patrice Berthezene
- Centre de Recherche INSERM EMI 0116, 163 Avenue de Luminy, BP172, 13009 Marseille, France
| | - Jean Charles Dagorn
- Centre de Recherche INSERM EMI 0116, 163 Avenue de Luminy, BP172, 13009 Marseille, France
| | - Juan Lucio Iovanna
- Centre de Recherche INSERM EMI 0116, 163 Avenue de Luminy, BP172, 13009 Marseille, France
| |
Collapse
|
17
|
Vasseur S, Malicet C, Calvo EL, Labrie C, Berthezene P, Dagorn JC, Iovanna JL. Gene expression profiling by DNA microarray analysis in mouse embryonic fibroblasts transformed by rasV12 mutated protein and the E1A oncogene. Mol Cancer 2003. [PMID: 12685932 PMCID: PMC153489 DOI: 10.1186/1476-4598-2-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ras is an area of intensive biochemical and genetic studies and characterizing downstream components that relay ras-induced signals is clearly important. We used a systematic approach, based on DNA microarray technology to establish a first catalog of genes whose expression is altered by ras and, as such, potentially involved in the regulation of cell growth and transformation. RESULTS We used DNA microarrays to analyze gene expression profiles of rasV12/E1A-transformed mouse embryonic fibroblasts. Among the approximately 12,000 genes and ESTs analyzed, 815 showed altered expression in rasV12/E1A-transformed fibroblasts, compared to control fibroblasts, of which 203 corresponded to ESTs. Among known genes, 202 were up-regulated and 410 were down-regulated. About one half of genes encoding transcription factors, signaling proteins, membrane proteins, channels or apoptosis-related proteins was up-regulated whereas the other half was down-regulated. Interestingly, most of the genes encoding structural proteins, secretory proteins, receptors, extracellular matrix components, and cytosolic proteins were down-regulated whereas genes encoding DNA-associated proteins (involved in DNA replication and reparation) and cell growth-related proteins were up-regulated. These data may explain, at least in part, the behavior of transformed cells in that down-regulation of structural proteins, extracellular matrix components, secretory proteins and receptors is consistent with reversion of the phenotype of transformed cells towards a less differentiated phenotype, and up-regulation of cell growth-related proteins and DNA-associated proteins is consistent with their accelerated growth. Yet, we also found very unexpected results. For example, proteases and inhibitors of proteases as well as all 8 angiogenic factors present on the array were down-regulated in transformed fibroblasts although they are generally up-regulated in cancers. This observation suggests that, in human cancers, proteases, protease inhibitors and angiogenic factors could be regulated through a mechanism disconnected from ras activation. CONCLUSIONS This study established a first catalog of genes whose expression is altered upon fibroblast transformation by rasV12/E1A. This catalog is representative of the genome but not exhaustive, because only one third of expressed genes was examined. In addition, contribution to ras signaling of post-transcriptional and post-translational modifications was not addressed. Yet, the information gathered should be quite useful to future investigations on the molecular mechanisms of oncogenic transformation.
Collapse
Affiliation(s)
- Sophie Vasseur
- Centre de Recherche INSERM EMI 0116, 163 Avenue de Luminy, BP172, 13009 Marseille, France.
| | | | | | | | | | | | | |
Collapse
|