1
|
Fahrbach SE. Editorial Overview: Diverse Actions of GABA in Insect Nervous Systems. CURRENT OPINION IN INSECT SCIENCE 2024:101292. [PMID: 39490980 DOI: 10.1016/j.cois.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Affiliation(s)
- Susan E Fahrbach
- Wake Forest University, Department of Biology, 1834 Wake Forest Road, Winston Salem, NC 27109, United States.
| |
Collapse
|
2
|
Li J, Ning C, Liu Y, Deng B, Wang B, Shi K, Wang R, Fang R, Zhou C. The function of juvenile-adult transition axis in female sexual receptivity of Drosophila melanogaster. eLife 2024; 12:RP92545. [PMID: 39240259 PMCID: PMC11379460 DOI: 10.7554/elife.92545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic-pituitary-gonadal axis in mammals to trigger the juvenile-adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.
Collapse
Affiliation(s)
- Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yaohua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguancun Life Sciences Park, Beijing, China
| | - Bingcai Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixin Fang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chuan Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ma B, Wang R, Liu Y, Deng B, Wang T, Wu F, Zhou C. Serotonin Signaling Modulates Sexual Receptivity of Virgin Female Drosophila. Neurosci Bull 2022; 38:1277-1291. [PMID: 35788510 PMCID: PMC9672162 DOI: 10.1007/s12264-022-00908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
The choice of females to accept or reject male courtship is a critical decision for animal reproduction. Serotonin (5-hydroxytryptamine; 5-HT) has been found to regulate sexual behavior in many species, but it is unclear how 5-HT and its receptors function to regulate different aspects of sexual behavior. Here we used Drosophila melanogaster as the model animal to investigate how 5-HT and its receptors modulate female sexual receptivity. We found that knockout of tryptophan hydroxylase (Trh), which is involved in the biosynthesis of 5-HT, severely reduced virgin female receptivity without affecting post-mating behaviors. We identified a subset of sexually dimorphic Trh neurons that co-expressed fruitless (fru), in which the activity was correlated with sexual receptivity in females. We also found that 5-HT1A and 5-HT7 receptors regulate virgin female receptivity. Our findings demonstrate how 5-HT functions in sexually dimorphic neurons to promote virgin female receptivity through two of its receptors.
Collapse
Affiliation(s)
- Baoxu Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaohua Liu
- Department of Plant Protection, Shanxi Agricultural University, Jinzhong, 30801, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Zhongguancun Life Sciences Park, Beijing, 102206, China
| | - Tao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
4
|
Ramos CD, Bohnert KA, Johnson AE. Reproductive tradeoffs govern sexually dimorphic tubular lysosome induction in Caenorhabditis elegans. J Exp Biol 2022; 225:jeb244282. [PMID: 35620964 PMCID: PMC9250795 DOI: 10.1242/jeb.244282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022]
Abstract
Sex-specific differences in animal behavior commonly reflect unique reproductive interests. In the nematode Caenorhabditis elegans, hermaphrodites can reproduce without a mate and thus prioritize feeding to satisfy the high energetic costs of reproduction. However, males, which must mate to reproduce, sacrifice feeding to prioritize mate-searching behavior. Here, we demonstrate that these behavioral differences influence sexual dimorphism at the organelle level; young males raised on a rich food source show constitutive induction of gut tubular lysosomes, a non-canonical lysosome morphology that forms in the gut of hermaphrodites when food is limited or as animals age. We found that constitutive induction of gut tubular lysosomes in males results from self-imposed dietary restriction through DAF-7/TGFβ, which promotes exploratory behavior. In contrast, age-dependent induction of gut tubular lysosomes in hermaphrodites is stimulated by self-fertilization activity. Thus, separate reproductive tradeoffs influence tubular lysosome induction in each sex, potentially supporting different requirements for reproductive success.
Collapse
Affiliation(s)
| | - K. Adam Bohnert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alyssa E. Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
5
|
Ishimoto H, Kamikouchi A. Molecular and neural mechanisms regulating sexual motivation of virgin female Drosophila. Cell Mol Life Sci 2021; 78:4805-4819. [PMID: 33837450 PMCID: PMC11071752 DOI: 10.1007/s00018-021-03820-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023]
Abstract
During courtship, multiple information sources are integrated in the brain to reach a final decision, i.e., whether or not to mate. The brain functions for this complex behavior can be investigated by genetically manipulating genes and neurons, and performing anatomical, physiological, and behavioral analyses. Drosophila is a powerful model experimental system for such studies, which need to be integrated from molecular and cellular levels to the behavioral level, and has enabled pioneering research to be conducted. In male flies, which exhibit a variety of characteristic sexual behaviors, we have accumulated knowledge of many genes and neural circuits that control sexual behaviors. On the other hand, despite the importance of the mechanisms of mating decision-making in females from an evolutionary perspective (such as sexual selection), research on the mechanisms that control sexual behavior in females has progressed somewhat slower. In this review, we focus on the pre-mating behavior of female Drosophila melanogaster, and introduce previous key findings on the neuronal and molecular mechanisms that integrate sensory information and selective expression of behaviors toward the courting male.
Collapse
Grants
- JP20H03355 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04997 Ministry of Education, Culture, Sports, Science and Technology
- 19H04933 Ministry of Education, Culture, Sports, Science and Technology
- 17K19450 Ministry of Education, Culture, Sports, Science and Technology
- 15K07147 Ministry of Education, Culture, Sports, Science and Technology
- 18K06332 Ministry of Education, Culture, Sports, Science and Technology
- Naito Foundation
- Inamori Foundation
Collapse
Affiliation(s)
- Hiroshi Ishimoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
6
|
Schretter CE, Aso Y, Robie AA, Dreher M, Dolan MJ, Chen N, Ito M, Yang T, Parekh R, Branson KM, Rubin GM. Cell types and neuronal circuitry underlying female aggression in Drosophila. eLife 2020; 9:58942. [PMID: 33141021 PMCID: PMC7787668 DOI: 10.7554/elife.58942] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Aggressive social interactions are used to compete for limited resources and are regulated by complex sensory cues and the organism’s internal state. While both sexes exhibit aggression, its neuronal underpinnings are understudied in females. Here, we identify a population of sexually dimorphic aIPg neurons in the adult Drosophila melanogaster central brain whose optogenetic activation increased, and genetic inactivation reduced, female aggression. Analysis of GAL4 lines identified in an unbiased screen for increased female chasing behavior revealed the involvement of another sexually dimorphic neuron, pC1d, and implicated aIPg and pC1d neurons as core nodes regulating female aggression. Connectomic analysis demonstrated that aIPg neurons and pC1d are interconnected and suggest that aIPg neurons may exert part of their effect by gating the flow of visual information to descending neurons. Our work reveals important regulatory components of the neuronal circuitry that underlies female aggressive social interactions and provides tools for their manipulation.
Collapse
Affiliation(s)
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Alice A Robie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael-John Dolan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Current address: Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Nan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Kristin M Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
7
|
Watanabe T. Evolution of the neural sex-determination system in insects: does fruitless homologue regulate neural sexual dimorphism in basal insects? INSECT MOLECULAR BIOLOGY 2019; 28:807-827. [PMID: 31066110 DOI: 10.1111/imb.12590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the brain of holometabolous insects such as the fruit fly Drosophila melanogaster, the fruitless gene produces sex-specific gene products under the control of the sex-specific splicing cascade and contributes to the formation of the sexually dimorphic circuits. Similar sex-specific gene products of fruitless homologues have been identified in other holometabolous insects such as mosquitoes and a parasitic wasp, suggesting the fruitless-dependent neural sex-determination system is widely conserved amongst holometabolous insects. However, it remains obscure whether the fruitless-dependent neural sex-determination system is present in basal hemimetabolous insects. To address this issue, identification, characterization, and expression analyses of the fruitless homologue were conducted in the two-spotted cricket, Gryllus bimaculatus, as a model hemimetabolous insect. The Gryllus fruitless gene encodes multiple isoforms with a unique zinc finger domain, and does not encode a sex-specific gene product. The Gryllus Fruitless protein is broadly expressed in the neurones and glial cells in the brain, and there was no prominent sex-related difference in the expression levels of Gryllus fruitless isoforms. The results suggest that the Gryllus fruitless gene is not involved in the neural sex-determination in the cricket brain.
Collapse
Affiliation(s)
- T Watanabe
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Saurabh S, Vanaphan N, Wen W, Dauwalder B. High functional conservation of takeout family members in a courtship model system. PLoS One 2018; 13:e0204615. [PMID: 30261021 PMCID: PMC6160090 DOI: 10.1371/journal.pone.0204615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
takeout (to) is one of the male-specific genes expressed in the fat body that regulate male courtship behavior, and has been shown to act as a secreted protein in conjunction with courtship circuits. There are 23 takeout family members in Drosophila melanogaster, and homologues of this family are distributed across insect species. Sequence conservation among family members is low. Here we test the functional conservation of takeout family members by examining whether they can rescue the takeout courtship defect. We find that despite their sequence divergence takeout members from Aedes aegypti and Epiphas postvittana, as well as family members from D. melanogaster can substitute for takeout in courtship, demonstrating their functional conservation. Making use of the known E. postvittana Takeout structure, we used homology modeling and amphipathic helix analysis and found high overall structural conservation, including high conservation of the structure and amphipathic lining of an internal cavity that has been shown to accommodate hydrophobic ligands. Together these data suggest a high degree of structural conservation that likely underlies functional conservation in courtship. In addition, we have identified a role for a conserved exposed protein motif important for the protein’s role in courtship.
Collapse
Affiliation(s)
- Sumit Saurabh
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Nancy Vanaphan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Walter Wen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Garner SRC, Castellanos MC, Baillie KE, Lian T, Allan DW. Drosophila female-specific Ilp7 motoneurons are generated by Fruitless-dependent cell death in males and by a double-assurance survival role for Transformer in females. Development 2018; 145:dev.150821. [PMID: 29229771 DOI: 10.1242/dev.150821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023]
Abstract
Female-specific Ilp7 neuropeptide-expressing motoneurons (FS-Ilp7 motoneurons) are required in Drosophila for oviduct function in egg laying. Here, we uncover cellular and genetic mechanisms underlying their female-specific generation. We demonstrate that programmed cell death (PCD) eliminates FS-Ilp7 motoneurons in males, and that this requires male-specific splicing of the sex-determination gene fruitless (fru) into the FruMC isoform. However, in females, fru alleles that only generate FruM isoforms failed to kill FS-Ilp7 motoneurons. This blockade of FruM-dependent PCD was not attributable to doublesex gene function but to a non-canonical role for transformer (tra), a gene encoding the RNA splicing activator that regulates female-specific splicing of fru and dsx transcripts. In both sexes, we show that Tra prevents PCD even when the FruM isoform is expressed. In addition, we found that FruMC eliminated FS-Ilp7 motoneurons in both sexes, but only when Tra was absent. Thus, FruMC-dependent PCD eliminates female-specific neurons in males, and Tra plays a double-assurance function in females to establish and reinforce the decision to generate female-specific neurons.
Collapse
Affiliation(s)
- Sarah Rose C Garner
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Monica C Castellanos
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Katherine E Baillie
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
10
|
Sawala A, Gould AP. The sex of specific neurons controls female body growth in Drosophila. PLoS Biol 2017; 15:e2002252. [PMID: 28976974 PMCID: PMC5627897 DOI: 10.1371/journal.pbio.2002252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022] Open
Abstract
Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs.
Collapse
Affiliation(s)
| | - Alex P. Gould
- The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
julius seizure, a Drosophila Mutant, Defines a Neuronal Population Underlying Epileptogenesis. Genetics 2017; 205:1261-1269. [PMID: 28082408 DOI: 10.1534/genetics.116.199083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 11/18/2022] Open
Abstract
Epilepsy is a neural disorder characterized by recurrent seizures. Bang-sensitive Drosophila represent an important model for studying epilepsy and neuronal excitability. Previous work identified the bang-sensitive gene slamdance (sda) as an allele of the aminopeptidase N gene. Here we show through extensive genetic analysis, including recombination frequency, deficiency mapping, transposon insertion complementation testing, RNA interference (RNAi), and genetic rescue that the gene responsible for the seizure sensitivity is julius seizure (jus), formerly CG14509, which encodes a novel transmembrane domain protein. We also describe more severe genetic alleles of jus RNAi-mediated knockdown of jus revealed that it is required only in neurons and not glia, and that partial bang-sensitivity is caused by knockdown in GABAergic or cholinergic but not glutamatergic neurons. RNAi knockdown of jus at the early pupal stages leads to strong seizures in adult animals, implicating that stage as critical for epileptogenesis. A C-terminal-tagged version of Jus was generated from a fosmid genomic clone. This fosmid fusion rescued the bang-sensitive phenotype and was expressed in the optic lobes and the subesophageal and thoracic abdominal ganglia. The protein was primarily localized in axons, especially in the neck connectives, extending into the thoracic abdominal ganglion.
Collapse
|
12
|
Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons. G3-GENES GENOMES GENETICS 2016; 6:2455-65. [PMID: 27247289 PMCID: PMC4978899 DOI: 10.1534/g3.115.019265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2-5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.
Collapse
|
13
|
Balthazart J. Sex differences in partner preferences in humans and animals. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150118. [PMID: 26833838 PMCID: PMC4785903 DOI: 10.1098/rstb.2015.0118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 11/12/2022] Open
Abstract
A large number of morphological, physiological and behavioural traits are differentially expressed by males and females in all vertebrates including humans. These sex differences, sometimes, reflect the different hormonal environment of the adults, but they often remain present after subjects of both sexes are placed in the same endocrine conditions following gonadectomy associated or not with hormonal replacement therapy. They are then the result of combined influences of organizational actions of sex steroids acting early during development, or genetic differences between the sexes, or epigenetic mechanisms differentially affecting males and females. Sexual partner preference is a sexually differentiated behavioural trait that is clearly controlled in animals by the same type of mechanisms. This is also probably true in humans, even if critical experiments that would be needed to obtain scientific proof of this assertion are often impossible for pragmatic or ethical reasons. Clinical, epidemiological and correlative studies provide, however, converging evidence strongly suggesting, if not demonstrating, that endocrine, genetic and epigenetic mechanisms acting during the pre- or perinatal life control human sexual orientation, i.e. homosexuality versus heterosexuality. Whether they interact with postnatal psychosexual influences remains, however, unclear at present.
Collapse
Affiliation(s)
- Jacques Balthazart
- GIGA Neurosciences, University of Liège, 15 avenue Hippocrate, 4000 Liège, Belgium
| |
Collapse
|
14
|
Fear JM, Arbeitman MN, Salomon MP, Dalton JE, Tower J, Nuzhdin SV, McIntyre LM. The Wright stuff: reimagining path analysis reveals novel components of the sex determination hierarchy in Drosophila melanogaster. BMC SYSTEMS BIOLOGY 2015; 9:53. [PMID: 26335107 PMCID: PMC4558766 DOI: 10.1186/s12918-015-0200-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/20/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The Drosophila sex determination hierarchy is a classic example of a transcriptional regulatory hierarchy, with sex-specific isoforms regulating morphology and behavior. We use a structural equation modeling approach, leveraging natural genetic variation from two studies on Drosophila female head tissues--DSPR collection (596 F1-hybrids from crosses between DSPR sub-populations) and CEGS population (75 F1-hybrids from crosses between DGRP/Winters lines to a reference strain w1118)--to expand understanding of the sex hierarchy gene regulatory network (GRN). This approach is completely generalizable to any natural population, including humans. RESULTS We expanded the sex hierarchy GRN adding novel links among genes, including a link from fruitless (fru) to Sex-lethal (Sxl) identified in both populations. This link is further supported by the presence of fru binding sites in the Sxl locus. 754 candidate genes were added to the pathway, including the splicing factors male-specific lethal 2 and Rm62 as downstream targets of Sxl which are well-supported links in males. Independent studies of doublesex and transformer mutants support many additions, including evidence for a link between the sex hierarchy and metabolism, via Insulin-like receptor. CONCLUSIONS The genes added in the CEGS population were enriched for genes with sex-biased splicing and components of the spliceosome. A common goal of molecular biologists is to expand understanding about regulatory interactions among genes. Using natural alleles we can not only identify novel relationships, but using supervised approaches can order genes into a regulatory hierarchy. Combining these results with independent large effect mutation studies, allows clear candidates for detailed molecular follow-up to emerge.
Collapse
Affiliation(s)
- Justin M Fear
- Department of Molecular Genetics and Microbiology, University of Florida, CGRC Room 116, PO Box 100266, FL 32610-0266, Gainesville, FL, USA.
| | | | - Matthew P Salomon
- Molecular and Computational Biology, University of California, Los Angeles, CA, USA.
| | - Justin E Dalton
- Biomedical Science, Florida State University, Tallahassee, FL, USA.
| | - John Tower
- Molecular and Computational Biology, University of California, Los Angeles, CA, USA.
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of California, Los Angeles, CA, USA.
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, CGRC Room 116, PO Box 100266, FL 32610-0266, Gainesville, FL, USA.
| |
Collapse
|
15
|
Constraints on the evolution of a doublesex target gene arising from doublesex's pleiotropic deployment. Proc Natl Acad Sci U S A 2015; 112:E852-61. [PMID: 25675536 DOI: 10.1073/pnas.1501192112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
"Regulatory evolution," that is, changes in a gene's expression pattern through changes at its regulatory sequence, rather than changes at the coding sequence of the gene or changes of the upstream transcription factors, has been increasingly recognized as a pervasive evolution mechanism. Many somatic sexually dimorphic features of Drosophila melanogaster are the results of gene expression regulated by the doublesex (dsx) gene, which encodes sex-specific transcription factors (DSX(F) in females and DSX(M) in males). Rapid changes in such sexually dimorphic features are likely a result of changes at the regulatory sequence of the target genes. We focused on the Flavin-containing monooxygenase-2 (Fmo-2) gene, a likely direct dsx target, to elucidate how sexually dimorphic expression and its evolution are brought about. We found that dsx is deployed to regulate the Fmo-2 transcription both in the midgut and in fat body cells of the spermatheca (a female-specific tissue), through a canonical DSX-binding site in the Fmo-2 regulatory sequence. In the melanogaster group, Fmo-2 transcription in the midgut has evolved rapidly, in contrast to the conserved spermathecal transcription. We identified two cis-regulatory modules (CRM-p and CRM-d) that direct sexually monomorphic or dimorphic Fmo-2 transcription, respectively, in the midguts of these species. Changes of Fmo-2 transcription in the midgut from sexually dimorphic to sexually monomorphic in some species are caused by the loss of CRM-d function, but not the loss of the canonical DSX-binding site. Thus, conferring transcriptional regulation on a CRM level allows the regulation to evolve rapidly in one tissue while evading evolutionary constraints posed by other tissues.
Collapse
|
16
|
Zhou C, Pan Y, Robinett C, Meissner G, Baker B. Central Brain Neurons Expressing doublesex Regulate Female Receptivity in Drosophila. Neuron 2014; 83:149-63. [DOI: 10.1016/j.neuron.2014.05.038] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
|
17
|
Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation. Sci Rep 2014; 4:4412. [PMID: 24642956 PMCID: PMC3958720 DOI: 10.1038/srep04412] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/28/2014] [Indexed: 11/09/2022] Open
Abstract
The fruitless gene (fru) encodes a set of transcription factors (Fru) that display sexually dimorphic gene expression in the brain of the fruit-fly; Drosophila melanogaster. Behavioural studies have demonstrated that fru is essential for courtship behaviour in the male fly and is thought to act by directing the development of sex-specific neural circuitry that encodes this innate behavioural response. This study reports the identification of direct regulatory targets of the sexually dimorphic isoforms of the Fru protein using an in vitro model system. Genome wide binding sites were identified for each of the isoforms using Chromatin Immunoprecipitation coupled to deep sequencing (ChIP-Seq). Putative target genes were found to be involved in processes such as neurotransmission, ion-channel signalling and neuron development. All isoforms showed a significant bias towards genes located on the X-chromosome, which may reflect a specific role for Fru in regulating x-linked genes. Taken together with expression analysis carried out in Fru positive neurons specifically isolated from the male fly brain, it appears that the Fru protein acts as a transcriptional activator. Understanding the regulatory cascades induced by Fru will help to shed light on the molecular mechanisms that are important for specification of neural circuitry underlying complex behaviour.
Collapse
|
18
|
Dean KE, Fields A, Geer MJ, King EC, Lynch BT, Manohar RR, McCall JR, Palozola KC, Zhang Y, Liebl EC. An allele of sequoia dominantly enhances a trio mutant phenotype to influence Drosophila larval behavior. PLoS One 2014; 8:e84149. [PMID: 24376789 PMCID: PMC3869853 DOI: 10.1371/journal.pone.0084149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
The transition of Drosophila third instar larvae from feeding, photo-phobic foragers to non-feeding, photo-neutral wanderers is a classic behavioral switch that precedes pupariation. The neuronal network responsible for this behavior has recently begun to be defined. Previous genetic analyses have identified signaling components for food and light sensory inputs and neuropeptide hormonal outputs as being critical for the forager to wanderer transition. Trio is a Rho-Guanine Nucleotide Exchange Factor integrated into a variety of signaling networks including those governing axon pathfinding in early development. Sequoia is a pan-neuronally expressed zinc-finger transcription factor that governs dendrite and axon outgrowth. Using pre-pupal lethality as an endpoint, we have screened for dominant second-site enhancers of a weakly lethal trio mutant background. In these screens, an allele of sequoia has been identified. While these mutants have no obvious disruption of embryonic central nervous system architecture and survive to third instar larvae similar to controls, they retain forager behavior and thus fail to pupariate at high frequency.
Collapse
Affiliation(s)
- Kathryn E. Dean
- Department of Biology, Denison University, Talbot Hall of Biological Science, Granville, Ohio, United States of America
| | - April Fields
- Department of Biology, Denison University, Talbot Hall of Biological Science, Granville, Ohio, United States of America
| | - Marcus J. Geer
- Department of Biology, Denison University, Talbot Hall of Biological Science, Granville, Ohio, United States of America
| | - Eric C. King
- Department of Biology, Denison University, Talbot Hall of Biological Science, Granville, Ohio, United States of America
| | - Brian T. Lynch
- Department of Biology, Denison University, Talbot Hall of Biological Science, Granville, Ohio, United States of America
| | - Rohan R. Manohar
- Department of Biology, Denison University, Talbot Hall of Biological Science, Granville, Ohio, United States of America
| | - Julianne R. McCall
- Department of Biology, Denison University, Talbot Hall of Biological Science, Granville, Ohio, United States of America
| | - Katherine C. Palozola
- Department of Biology, Denison University, Talbot Hall of Biological Science, Granville, Ohio, United States of America
| | - Yan Zhang
- Department of Biology, Denison University, Talbot Hall of Biological Science, Granville, Ohio, United States of America
| | - Eric C. Liebl
- Department of Biology, Denison University, Talbot Hall of Biological Science, Granville, Ohio, United States of America
- * E-mail:
| |
Collapse
|
19
|
Castellanos MC, Tang JCY, Allan DW. Female-biased dimorphism underlies a female-specific role for post-embryonic Ilp7 neurons in Drosophila fertility. Development 2013; 140:3915-26. [PMID: 23981656 DOI: 10.1242/dev.094714] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Drosophila melanogaster, much of our understanding of sexually dimorphic neuronal development and function comes from the study of male behavior, leaving female behavior less well understood. Here, we identify a post-embryonic population of Insulin-like peptide 7 (Ilp7)-expressing neurons in the posterior ventral nerve cord that innervate the reproductive tracts and exhibit a female bias in their function. They form two distinct dorsal and ventral subsets in females, but only a single dorsal subset in males, signifying a rare example of a female-specific neuronal subset. Female post-embryonic Ilp7 neurons are glutamatergic motoneurons innervating the oviduct and are required for female fertility. In males, they are serotonergic/glutamatergic neuromodulatory neurons innervating the seminal vesicle but are not required for male fertility. In both sexes, these neurons express the sex-differentially spliced fruitless-P1 transcript but not doublesex. The male fruitless-P1 isoform (fruM) was necessary and sufficient for serotonin expression in the shared dorsal Ilp7 subset, but although it was necessary for eliminating female-specific Ilp7 neurons in males, it was not sufficient for their elimination in females. By contrast, sex-specific RNA-splicing by female-specific transformer is necessary for female-type Ilp7 neurons in females and is sufficient for their induction in males. Thus, the emergence of female-biased post-embryonic Ilp7 neurons is mediated in a subset-specific manner by a tra- and fru-dependent mechanism in the shared dorsal subset, and a tra-dependent, fru-independent mechanism in the female-specific subset. These studies provide an important counterpoint to studies of the development and function of male-biased neuronal dimorphism in Drosophila.
Collapse
Affiliation(s)
- Monica C Castellanos
- Department of Cellular and Physiological Sciences, 2401 Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
20
|
Fujita N, Nagata Y, Nishiuchi T, Sato M, Iwami M, Kiya T. Visualization of neural activity in insect brains using a conserved immediate early gene, Hr38. Curr Biol 2013; 23:2063-70. [PMID: 24120640 DOI: 10.1016/j.cub.2013.08.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 07/29/2013] [Accepted: 08/27/2013] [Indexed: 11/30/2022]
Abstract
Many insects exhibit stereotypic instinctive behavior [1-3], but the underlying neural mechanisms are not well understood due to difficulties in detecting brain activity in freely moving animals. Immediate early genes (IEGs), such as c-fos, whose expression is transiently and rapidly upregulated upon neural activity, are powerful tools for detecting behavior-related neural activity in vertebrates [4, 5]. In insects, however, this powerful approach has not been realized because no conserved IEGs have been identified. Here, we identified Hr38 as a novel IEG that is transiently expressed in the male silkmoth Bombyx mori by female odor stimulation. Using Hr38 expression as an indicator of neural activity, we mapped comprehensive activity patterns of the silkmoth brain in response to female sex pheromones. We found that Hr38 can also be used as a neural activity marker in the fly Drosophila melanogaster. Using Hr38, we constructed a neural activity map of the fly brain that partially overlaps with fruitless (fru)-expressing neurons in response to female stimulation. These findings indicate that Hr38 is a novel and conserved insect neural activity marker gene that will be useful for a wide variety of neuroethologic studies.
Collapse
Affiliation(s)
- Nozomi Fujita
- Division of Biological Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Dalton JE, Fear JM, Knott S, Baker BS, McIntyre LM, Arbeitman MN. Male-specific Fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains. BMC Genomics 2013; 14:659. [PMID: 24074028 PMCID: PMC3852243 DOI: 10.1186/1471-2164-14-659] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/20/2013] [Indexed: 11/25/2022] Open
Abstract
Background Drosophila melanogaster adult males perform an elaborate courtship ritual to entice females to mate. fruitless (fru), a gene that is one of the key regulators of male courtship behavior, encodes multiple male-specific isoforms (FruM). These isoforms vary in their carboxy-terminal zinc finger domains, which are predicted to facilitate DNA binding. Results By over-expressing individual FruM isoforms in fru-expressing neurons in either males or females and assaying the global transcriptional response by RNA-sequencing, we show that three FruM isoforms have different regulatory activities that depend on the sex of the fly. We identified several sets of genes regulated downstream of FruM isoforms, including many annotated with neuronal functions. By determining the binding sites of individual FruM isoforms using SELEX we demonstrate that the distinct zinc finger domain of each FruM isoforms confers different DNA binding specificities. A genome-wide search for these binding site sequences finds that the gene sets identified as induced by over-expression of FruM isoforms in males are enriched for genes that contain the binding sites. An analysis of the chromosomal distribution of genes downstream of FruM shows that those that are induced and repressed in males are highly enriched and depleted on the X chromosome, respectively. Conclusions This study elucidates the different regulatory and DNA binding activities of three FruM isoforms on a genome-wide scale and identifies genes regulated by these isoforms. These results add to our understanding of sex chromosome biology and further support the hypothesis that in some cell-types genes with male-biased expression are enriched on the X chromosome.
Collapse
Affiliation(s)
- Justin E Dalton
- Biomedical Sciences Department and Program in Neuroscience, Florida State University, College of Medicine, Tallahassee, FL 32303, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Sakai N, Iwata R, Yokoi S, Butcher RA, Clardy J, Tomioka M, Iino Y. A sexually conditioned switch of chemosensory behavior in C. elegans. PLoS One 2013; 8:e68676. [PMID: 23861933 PMCID: PMC3701651 DOI: 10.1371/journal.pone.0068676] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022] Open
Abstract
In sexually reproducing animals, mating is essential for transmitting genetic information to the next generation and therefore animals have evolved mechanisms for optimizing the chance of successful mate location. In the soil nematode C. elegans, males approach hermaphrodites via the ascaroside pheromones, recognize hermaphrodites when their tails contact the hermaphrodites' body, and eventually mate with them. These processes are mediated by sensory signals specialized for sexual communication, but other mechanisms may also be used to optimize mate location. Here we describe associative learning whereby males use sodium chloride as a cue for hermaphrodite location. Both males and hermaphrodites normally avoid sodium chloride after associative conditioning with salt and starvation. However, we found that males become attracted to sodium chloride after conditioning with salt and starvation if hermaphrodites are present during conditioning. For this conditioning, which we call sexual conditioning, hermaphrodites are detected by males through pheromonal signaling and additional cue(s). Sex transformation experiments suggest that neuronal sex of males is essential for sexual conditioning. Altogether, these results suggest that C. elegans males integrate environmental, internal and social signals to determine the optimal strategy for mate location.
Collapse
Affiliation(s)
- Naoko Sakai
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Iwata
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Saori Yokoi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Masahiro Tomioka
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Iino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
23
|
Hoxha V, Lama C, Chang PL, Saurabh S, Patel N, Olate N, Dauwalder B. Sex-specific signaling in the blood-brain barrier is required for male courtship in Drosophila. PLoS Genet 2013; 9:e1003217. [PMID: 23359644 PMCID: PMC3554526 DOI: 10.1371/journal.pgen.1003217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/20/2012] [Indexed: 01/12/2023] Open
Abstract
Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood–brain barrier (bbb) to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood–brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb–specific G-protein coupled receptor moody and bbb–specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior. Complex behaviors such as mating behavior are controlled by the brain. Ensembles of brain cells work in networks to ensure proper behavior at the right time. While the state of these cells plays an important role in whether and how the behavior is displayed, information from outside the brain is also required. Often, this information is provided by hormones that are present in the circulating fluid (such as the blood). However, the brain is protected by a layer of very tight cells, the so-called blood–brain barrier, that keeps unwanted molecules out. So how then do hormones and other regulatory factors “talk” to the brain? We are studying this question by examining the mating behavior of males of a model organism, the fruit fly Drosophila melanogaster. We have found that the blood–brain barrier cells themselves contain male-specific molecules that play an important role. When they are absent, courtship behavior is compromised. We have also identified how outside factors talk to the brain: by using a cellular signaling protein and a particular signaling pathway. Together they are well suited to pass on outside information to the brain network that regulates mating behavior.
Collapse
Affiliation(s)
- Valbona Hoxha
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Chamala Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Peter L. Chang
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Sumit Saurabh
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Naiya Patel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Nicole Olate
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Mellert DJ, Robinett CC, Baker BS. doublesex functions early and late in gustatory sense organ development. PLoS One 2012; 7:e51489. [PMID: 23240029 PMCID: PMC3519885 DOI: 10.1371/journal.pone.0051489] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/02/2012] [Indexed: 01/05/2023] Open
Abstract
Somatic sexual dimorphisms outside of the nervous system in Drosophila melanogaster are largely controlled by the male- and female-specific Doublesex transcription factors (DSX(M) and DSX(F), respectively). The DSX proteins must act at the right times and places in development to regulate the diverse array of genes that sculpt male and female characteristics across a variety of tissues. To explore how cellular and developmental contexts integrate with doublesex (dsx) gene function, we focused on the sexually dimorphic number of gustatory sense organs (GSOs) in the foreleg. We show that DSX(M) and DSX(F) promote and repress GSO formation, respectively, and that their relative contribution to this dimorphism varies along the proximodistal axis of the foreleg. Our results suggest that the DSX proteins impact specification of the gustatory sensory organ precursors (SOPs). DSX(F) then acts later in the foreleg to regulate gustatory receptor neuron axon guidance. These results suggest that the foreleg provides a unique opportunity for examining the context-dependent functions of DSX.
Collapse
Affiliation(s)
- David J. Mellert
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Biology Department, Stanford University, Stanford, California, United States of America
| | - Carmen C. Robinett
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| | - Bruce S. Baker
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Biology Department, Stanford University, Stanford, California, United States of America
| |
Collapse
|
25
|
Pikielny CW. Sexy DEG/ENaC Channels Involved in Gustatory Detection of Fruit Fly Pheromones. Sci Signal 2012; 5:pe48. [DOI: 10.1126/scisignal.2003555] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Constructing and random sequencing analysis of normalized cDNA library of testis tissue from oriental river prawn (Macrobrachium nipponense). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:268-76. [DOI: 10.1016/j.cbd.2012.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
|
27
|
Vanaphan N, Dauwalder B, Zufall RA. Diversification of takeout, a male-biased gene family in Drosophila. Gene 2012; 491:142-8. [DOI: 10.1016/j.gene.2011.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/20/2011] [Accepted: 10/01/2011] [Indexed: 01/01/2023]
|
28
|
The hector G-protein coupled receptor is required in a subset of fruitless neurons for male courtship behavior. PLoS One 2011; 6:e28269. [PMID: 22140564 PMCID: PMC3227663 DOI: 10.1371/journal.pone.0028269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
Male courtship behavior in Drosophila melanogaster is controlled by two main regulators, fruitless (fru) and doublesex (dsx). Their sex-specific expression in brain neurons has been characterized in detail, but little is known about the downstream targets of the sex-specific FRU and DSX proteins and how they specify the function of these neurons. While sexual dimorphism in the number and connections of fru and dsx expressing neurons has been observed, a majority of the neurons that express the two regulators are present in both sexes. This poses the question which molecules define the sex-specific function of these neurons. Signaling molecules are likely to play a significant role. We have identified a predicted G-protein coupled receptor (GPCR), CG4395, that is required for male courtship behavior. The courtship defect in the mutants can be rescued by expression of the wildtype protein in fru neurons of adult males. The GPCR is expressed in a subset of fru-positive antennal glomeruli that have previously been shown to be essential for male courtship. Expression of 4395-RNAi in GH146 projection neurons lowers courtship. This suggests that signaling through the CG4395 GPCR in this subset of fru neurons is critical for male courtship behavior.
Collapse
|
29
|
Kiya T, Iwami M. Identification and expression analysis of nervous wreck, which is preferentially expressed in the brain of the male silkworm moth, Bombyx mori. INSECT MOLECULAR BIOLOGY 2011; 20:667-674. [PMID: 21793956 DOI: 10.1111/j.1365-2583.2011.01096.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sexually dimorphic neural circuits are essential for reproductive behaviour. The molecular basis of sexual dimorphism in the silkworm moth (Bombyx mori) brain, however, is unclear. We conducted cDNA subtraction screening and identified nervous wreck (Bmnwk), a synaptic growth regulatory gene, whose expression is higher in the male brain than in the female brain of the silkworm. Bmnwk was preferentially expressed in the brain at the late pupae and adult stages. In situ hybridization revealed that Bmnwk is highly expressed in the optic lobe of the male moth brain. These findings suggest that Bmnwk has a role in the development and/or maintenance of the optic lobe in the male silkworm brain.
Collapse
Affiliation(s)
- Taketoshi Kiya
- Biology Course, School of Natural Systems, Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| | | |
Collapse
|
30
|
Dauwalder B. Systems behavior: of male courtship, the nervous system and beyond in Drosophila. Curr Genomics 2011; 9:517-24. [PMID: 19516958 PMCID: PMC2694563 DOI: 10.2174/138920208786847980] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 06/22/2008] [Accepted: 06/29/2008] [Indexed: 11/22/2022] Open
Abstract
Male courtship in fruit flies is regulated by the same major regulatory genes that also determine general sexual differentiation of the animal. Elaborate genetics has given us insight into the roles of these master genes. These findings have suggested two separate and independent pathways for the regulation of sexual behavior and other aspects of sexual differentiation. Only recently have molecular studies started to look at the downstream effector genes and how they might control sex-specific behavior. These studies have confirmed the essential role of the previously identified male specific products of the fruitless gene in the neuronal circuits in which it is expressed. But there is increasing evidence that a number of non-neuronal tissues and pathways play a pivotal role in modulating this circuit and assuring efficient courtship.
Collapse
Affiliation(s)
- B Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
31
|
Pan Y, Robinett CC, Baker BS. Turning males on: activation of male courtship behavior in Drosophila melanogaster. PLoS One 2011; 6:e21144. [PMID: 21731661 PMCID: PMC3120818 DOI: 10.1371/journal.pone.0021144] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/20/2011] [Indexed: 11/18/2022] Open
Abstract
The innate sexual behaviors of Drosophila melanogaster males are an attractive system for elucidating how complex behavior patterns are generated. The potential for male sexual behavior in D. melanogaster is specified by the fruitless (fru) and doublesex (dsx) sex regulatory genes. We used the temperature-sensitive activator dTRPA1 to probe the roles of fru(M)- and dsx-expressing neurons in male courtship behaviors. Almost all steps of courtship, from courtship song to ejaculation, can be induced at very high levels through activation of either all fru(M) or all dsx neurons in solitary males. Detailed characterizations reveal different roles for fru(M) and dsx in male courtship. Surprisingly, the system for mate discrimination still works well when all dsx neurons are activated, but is impaired when all fru(M) neurons are activated. Most strikingly, we provide evidence for a fru(M)-independent courtship pathway that is primarily vision dependent.
Collapse
Affiliation(s)
- Yufeng Pan
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Carmen C. Robinett
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Bruce S. Baker
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Salvemini M, Polito C, Saccone G. Fruitless alternative splicing and sex behaviour in insects: an ancient and unforgettable love story? J Genet 2011; 89:287-99. [PMID: 20876995 DOI: 10.1007/s12041-010-0040-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Courtship behaviours are common features of animal species that reproduce sexually. Typically, males are involved in courting females. Insects display an astonishing variety of courtship strategies primarily based on innate stereotyped responses to various external stimuli. In Drosophila melanogaster, male courtship requires proteins encoded by the fruitless (fru) gene that are produced in different sex-specific isoforms via alternative splicing. Drosophila mutant flies with loss-of-function alleles of the fru gene exhibit blocked male courtship behaviour. However, various individual steps in the courtship ritual are disrupted in fly strains carrying different fru alleles. These findings suggest that fru is required for specific steps in courtship. In distantly related insect species, various fru paralogues were isolated, which shows conservation of sex-specific alternative splicing and protein expression in neural tissues and suggests an evolutionary functional conservation of fru in the control of male-specific courtship behaviour. In this review, we report the seminal findings regarding the fru gene, its splicing regulation and evolution in insects.
Collapse
Affiliation(s)
- Marco Salvemini
- Department of Biological Sciences, University of Naples Federico II, 80134, Naples, Italy
| | | | | |
Collapse
|
33
|
Robinett CC, Vaughan AG, Knapp JM, Baker BS. Sex and the single cell. II. There is a time and place for sex. PLoS Biol 2010; 8:e1000365. [PMID: 20454565 PMCID: PMC2864297 DOI: 10.1371/journal.pbio.1000365] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/25/2010] [Indexed: 01/28/2023] Open
Abstract
In both male and female Drosophila, only a subset of cells have the potential to sexually differentiate, making both males and females mosaics of sexually differentiated and sexually undifferentiated cells. The Drosophila melanogaster sex hierarchy controls sexual differentiation of somatic cells via the activities of the terminal genes in the hierarchy, doublesex (dsx) and fruitless (fru). We have targeted an insertion of GAL4 into the dsx gene, allowing us to visualize dsx-expressing cells in both sexes. Developmentally and as adults, we find that both XX and XY individuals are fine mosaics of cells and tissues that express dsx and/or fruitless (fruM), and hence have the potential to sexually differentiate, and those that don't. Evolutionary considerations suggest such a mosaic expression of sexuality is likely to be a property of other animal species having two sexes. These results have also led to a major revision of our view of how sex-specific functions are regulated by the sex hierarchy in flies. Rather than there being a single regulatory event that governs the activities of all downstream sex determination regulatory genes—turning on Sex lethal (Sxl) RNA splicing activity in females while leaving it turned off in males—there are, in addition, elaborate temporal and spatial transcriptional controls on the expression of the terminal regulatory genes, dsx and fru. Thus tissue-specific aspects of sexual development are jointly specified by post-transcriptional control by Sxl and by the transcriptional controls of dsx and fru expression. Morphologically, fruit flies are either male or female. The specification of sex is a multi-step process that depends on whether the fertilized egg has only one X chromosome (will develop as male) or two X chromosomes (will develop as female). This initial assessment of sex activates a cascade of regulatory genes that ultimately results in expression of either the male or female version of the protein encoded by the doublesex gene (dsx). These sex-specific proteins from the dsx gene direct most aspects of somatic sexual development, including the development of all of the secondary sexual characteristics that visibly distinguish males and females. In flies, as in most animal species, only some tissues are obviously different between the two sexes, so we asked the question of whether all cells in the animal nevertheless know which sex they are. That is, do all cells express dsx? We have developed a genetic tool that lets us visualize the cells in which the dsx is expressed. Strikingly, dsx is only expressed in a subset of tissues. Thus, adult flies of both sexes appear to be mosaics of cells that do know their sex and cells that do not know their sex.
Collapse
Affiliation(s)
- Carmen C. Robinett
- Biology Department, Stanford University, Stanford, California, United States of America
| | - Alexander G. Vaughan
- Biology Department, Stanford University, Stanford, California, United States of America
| | - Jon-Michael Knapp
- Biology Department, Stanford University, Stanford, California, United States of America
- Neuroscience Program, Stanford University, Stanford, California, United States of America
| | - Bruce S. Baker
- Biology Department, Stanford University, Stanford, California, United States of America
- Neuroscience Program, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Sirot LK, LaFlamme BA, Sitnik JL, Rubinstein CD, Avila FW, Chow CY, Wolfner MF. Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study. ADVANCES IN GENETICS 2010; 68:23-56. [PMID: 20109658 PMCID: PMC3925388 DOI: 10.1016/s0065-2660(09)68002-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of social behavior generally focus on interactions between two or more individual animals. However, these interactions are not simply between whole animals, but also occur between molecules that were produced by the interacting individuals. Such "molecular social interactions" can both influence and be influenced by the organismal-level social interactions. We illustrate this by reviewing the roles played by seminal fluid proteins (Sfps) in molecular social interactions between males and females of the fruit fly Drosophila melanogaster. Sfps, which are produced by males and transferred to females during mating, are involved in inherently social interactions with female-derived molecules, and they influence social interactions between males and females and between a female's past and potential future mates. Here, we explore four examples of molecular social interactions involving D. melanogaster Sfps: processes that influence mating, sperm storage, ovulation, and ejaculate transfer. We consider the molecular and organismal players involved in each interaction and the consequences of their interplay for the reproductive success of both sexes. We conclude with a discussion of the ways in which Sfps can both shape and be shaped by (in an evolutionary sense) the molecular social interactions in which they are involved.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariana F. Wolfner
- Corresponding author: Department of Molecular Biology & Genetics, 421 Biotechnology Building, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
35
|
Mellert DJ, Knapp JM, Manoli DS, Meissner GW, Baker BS. Midline crossing by gustatory receptor neuron axons is regulated by fruitless, doublesex and the Roundabout receptors. Development 2010; 137:323-32. [PMID: 20040498 PMCID: PMC2799163 DOI: 10.1242/dev.045047] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2009] [Indexed: 01/22/2023]
Abstract
Although nervous system sexual dimorphisms are known in many species, relatively little is understood about the molecular mechanisms generating these dimorphisms. Recent findings in Drosophila provide the tools for dissecting how neurogenesis and neuronal differentiation are modulated by the Drosophila sex-determination regulatory genes to produce nervous system sexual dimorphisms. Here we report studies aimed at illuminating the basis of the sexual dimorphic axonal projection patterns of foreleg gustatory receptor neurons (GRNs): only in males do GRN axons project across the midline of the ventral nerve cord. We show that the sex determination genes fruitless (fru) and doublesex (dsx) both contribute to establishing this sexual dimorphism. Male-specific Fru (Fru(M)) acts in foreleg GRNs to promote midline crossing by their axons, whereas midline crossing is repressed in females by female-specific Dsx (Dsx(F)). In addition, midline crossing by these neurons might be promoted in males by male-specific Dsx (Dsx(M)). Finally, we (1) demonstrate that the roundabout (robo) paralogs also regulate midline crossing by these neurons, and (2) provide evidence that Fru(M) exerts its effect on midline crossing by directly or indirectly regulating Robo signaling.
Collapse
Affiliation(s)
- David J Mellert
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
36
|
Koganezawa M, Matsuo T, Kimura KI, Yamamoto D. Shaping of Drosophila male courtship posture by a gustatory pheromone. Ann N Y Acad Sci 2009; 1170:497-501. [PMID: 19686184 DOI: 10.1111/j.1749-6632.2009.03889.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drosophila melanogaster males display stereotypical courtship ritual in courting potential mates. The fruitless (fru) gene plays a pivotal role in the generation of male-typical courtship behavior by instructing the formation of the central circuitry underlying this behavior during development. The fru gene expression can be monitored by a reporter, fruNP21, that labels approximately 800 neurons in the adult male brain. Among these fru-expressing neurons, a male-specific neural cluster called P1 initiated male-typical courtship behavior; when the P1 cluster was ectopically produced in the female brain, many such females displayed male-typical courtship behavior toward a target female. To further elucidate the central circuitry for courtship behavior, we examined central projections of sensory neurons that appear to perceive sex pheromones sensed in the foreleg gustatory receptors. The central terminals of these sensory neurons are located near dendrites of the fru-expressing interneurons named mAL. These results suggest that different subsets of fru-expressing neurons are involved in both the sensory integration of sexual cues and the activation of motor centers that generate motor outputs for courtship behavior in the Drosophila brain.
Collapse
Affiliation(s)
- Masayuki Koganezawa
- Division of Neurogenetics, Department of Developmental Biology and Neurosciences, Tohoku University Graduate School of Life Science, Sendai, Japan
| | | | | | | |
Collapse
|
37
|
Bertossa RC, van de Zande L, Beukeboom LW. The Fruitless gene in Nasonia displays complex sex-specific splicing and contains new zinc finger domains. Mol Biol Evol 2009; 26:1557-69. [PMID: 19349644 DOI: 10.1093/molbev/msp067] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transcription factor Fruitless exerts a broad range of functions during Drosophila development, the most apparent of which is the determination of sexual behavior in males. Although fruitless sequences are found in other insect orders, little is known about fruitless structure and function outside Diptera. We have performed a thorough analysis of fruitless transcripts in the haplo-diploid wasp Nasonia vitripennis and found both sex-specific and non-sex-specific transcripts similar to those found in Drosophila. In Nasonia, however, a novel, large fruitless transcript is present in females only. Putative binding sites for sex-specific splicing factors found in Nasonia fruitless and doublesex as well as Apis mellifera doublesex transcripts were sufficient to identify a corresponding female-specific fruitless exon in A. mellifera, suggesting that similar factors in both hymenopteran species could be responsible for sex-specific splicing of both genes. Furthermore, new C(2)H(2) zinc finger domains found in Nasonia fruitless transcripts were also identified in the fruitless locus of major holometabolous insect species but not in drosophilids. Conservation of important domains and sex-specific splicing in Diptera and Hymenoptera support the hypothesis that fruitless is an ancient gene and has conserved functions in insects. Considerable divergences in other parts of the gene are expected to underlie species-specific differences and may help to explain diversity observed in insect sexual behaviors.
Collapse
Affiliation(s)
- Rinaldo C Bertossa
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, The Netherlands.
| | | | | |
Collapse
|
38
|
Chapter 3 Mapping and Manipulating Neural Circuits in the Fly Brain. ADVANCES IN GENETICS 2009; 65:79-143. [DOI: 10.1016/s0065-2660(09)65003-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
39
|
LEVAN KE, FEDINA TY, LEWIS SM. Testing multiple hypotheses for the maintenance of male homosexual copulatory behaviour in flour beetles. J Evol Biol 2009; 22:60-70. [DOI: 10.1111/j.1420-9101.2008.01616.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Kimura KI, Hachiya T, Koganezawa M, Tazawa T, Yamamoto D. Fruitless and doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron 2008; 59:759-69. [PMID: 18786359 DOI: 10.1016/j.neuron.2008.06.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 05/29/2008] [Accepted: 06/02/2008] [Indexed: 11/29/2022]
Abstract
Biologists postulate that sexual dimorphism in the brain underlies gender differences in behavior, yet direct evidence for this has been sparse. We identified a male-specific, fruitless (fru)/doublesex (dsx)-coexpressing neuronal cluster, P1, in Drosophila. The artificial induction of a P1 clone in females effectively provokes male-typical behavior in such females even when the other parts of the brain are not masculinized. P1, located in the dorsal posterior brain near the mushroom body, is composed of 20 interneurons, each of which has a primary transversal neurite with extensive ramifications in the bilateral protocerebrum. P1 is fated to die in females through the action of a feminizing protein, DsxF. A masculinizing protein Fru is required in the male brain for correct positioning of the terminals of P1 neurites. Thus, the coordinated actions of two sex determination genes, dsx and fru, confer the unique ability to initiate male-typical sexual behavior on P1 neurons.
Collapse
Affiliation(s)
- Ken-Ichi Kimura
- Laboratory of Biology, Iwamizawa Campus, Hokkaido University of Education, Iwamizawa 068-8642, Japan.
| | | | | | | | | |
Collapse
|