1
|
Puasri P, Dechkhajorn W, Dekumyoy P, Yoonuan T, Ampawong S, Reamtong O, Boonyuen U, Benjathummarak S, Maneerat Y. Regulation of immune response against third-stage Gnathostoma spinigerum larvae by human genes. Front Immunol 2023; 14:1218965. [PMID: 37600806 PMCID: PMC10436992 DOI: 10.3389/fimmu.2023.1218965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Background Gnathostomiasis is an important zoonosis in tropical areas that is mainly caused by third-stage Gnathostoma spinigerum larvae (G. spinigerum L3). Objectives This study aimed to prove whether G. spinigerum L3 produces extracellular vesicles (EVs) and investigate human gene profiles related to the immune response against the larvae. Methods We created an immune cell model using normal human peripheral blood mononuclear cells (PBMCs) co-cultured with the larvae for 1 and 3 days, respectively. The PBMCs were harvested for transcriptome sequencing analysis. The EV ultrastructure was examined in the larvae and the cultured medium. Results Extracellular vesicle-like particles were observed under the larval teguments and in the pellets in the medium. RNA-seq analysis revealed that 2,847 and 3,118 genes were significantly expressed on days 1 and 3 after culture, respectively. The downregulated genes on day 1 after culture were involved in pro-inflammatory cytokines, the complement system and apoptosis, whereas those on day 3 were involved in T cell-dependent B cell activation and wound healing. Significantly upregulated genes related to cell proliferation, activation and development, as well as cytotoxicity, were observed on day 1, and genes regulating T cell maturation, granulocyte function, nuclear factor-κB and toll-like receptor pathways were predominantly observed on day 3 after culture. Conclusion G. spinigerum L3 produces EV-like particles and releases them into the excretory-secretory products. Overall, genotypic findings during our 3-day observation revealed that most significant gene expressions were related to T and B cell signalling, driving T helper 2 cells related to chronic infection, immune evasion of the larvae, and the pathogenesis of gnathostomiasis. Further in-depth studies are necessary to clarify gene functions in the pathogenesis and immune evasion mechanisms of the infective larvae.
Collapse
Affiliation(s)
- Pattarasuda Puasri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wilanee Dechkhajorn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tippayarat Yoonuan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research (CEAR), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Cheng Y, Li F, Zhang WS, Zou GY, Shen YX. Silencing BLNK protects against interleukin-1β-induced chondrocyte injury through the NF-κB signaling pathway. Cytokine 2021; 148:155686. [PMID: 34521030 DOI: 10.1016/j.cyto.2021.155686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is the most common joint disease in the elderly and is characterized by the progressive degeneration of articular cartilage. It is necessary to study the molecular pathology of OA. This study aimed to explore the role and mechanism of BLNK in regulating interleukin-1β (IL-1β)-induced chondrocyte injury and OA progression. METHODS GSE1919 (5 normal samples and 5 OA samples) was downloaded from the Gene Expression Omnibus (GEO) database. The limma package in R software was used to identify differentially expressed genes (DEGs) between control and OA-affected cartilage. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the differentially expressed genes were also performed. Apoptosis was assessed by flow cytometry. An OA rat model was established, and the relative expression of BLNK was assessed by real time quantitative PCR (qRT-PCR) and immunohistochemical staining. The expression of collagen II, MMP9, p65 and p-p65 was measured by Western blot analysis. Moreover, inflammatory factors (TNF-α and IL-18) were assessed by ELISA. The NF-κB inhibitor JSH-23 was used to assess the impact of BLNK on the NF-κB signaling pathway. RESULTS In total, 1318 DEGs were identified between normal and OA-affected cartilage according to the criteria (P-value <0.05 and |logFC > 1|). These DEGs were mainly enriched in the NF-κB pathway. BLNK was highly expressed in OA cartilage tissue and injured chondrocytes. Silencing BLNK significantly downregulated the IL-1β-induced apoptosis of chondrocytes. Silencing BLNK partially increased collagen II expression and downregulated MMP13 expression. Moreover, silencing BLNK partially decreased TNF-α and IL-18 expression. BLNK silencing inhibited the activation of NF-κB in OA. Silencing BLNK delayed OA progression through the NF-κB signaling pathway. CONCLUSION Silencing BLNK delayed OA progression and IL-1β-induced chondrocyte injury by regulating the NF-κB pathway.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China; Department of Orthopaedics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng 224005, PR China
| | - Feng Li
- Department of Orthopaedics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng 224005, PR China
| | - Wen-Sheng Zhang
- Department of Orthopaedics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng 224005, PR China
| | - Guo-You Zou
- Department of Orthopaedics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng 224005, PR China
| | - Yi-Xin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| |
Collapse
|
3
|
Xiao B, Li J, Zhou M, Li X, Huang X, Hang J, Sun Z, Li L. [Structure and function of B-cell linker and its role in the development of B cell-related diseases]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:253-256. [PMID: 30890517 DOI: 10.12122/j.issn.1673-4254.2019.02.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
B cell linker (BLNK) is a key linker protein of B cell receptor (BCR) signaling pathway. BLNK participates in the regulation of PLC-γactivity and the activation of Ras pathway through its typical structure and interaction network with other proteins, and is thus widely involved in the regulation of B cell proliferation, differentiation, apoptosis and signal transduction. Furthermore, it is closely related to anaphylactic diseases, multiple sclerosis, chromosomal aneuploidy, aneuglobulinemia, B lymphocytic leukemia and lymphoma. Herein we review the structure and biological function of BLNK and its role in B cell-related diseases. BLNK can cooperate with a series of effective proteins to activate BCR signaling pathway, thereby regulating the development, maturation and function of B cells. The functional mutation of BLNK can destroy the homeostasis of B cells and affect the development and maturation of B cells, which leads to the occurrence of B cell related diseases. A comprehensive understanding of the biological functions of BLNK not only provides insights into the pathogenesis of B cell-related diseases, but also inspires new ideas and helps to find breakthroughs for the treatment of these diseases with BLNK as the therapeutic target.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Jiaying Li
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengsi Zhou
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Li
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Xiaoyan Huang
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Jianfeng Hang
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Zhaohui Sun
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Linhai Li
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| |
Collapse
|
4
|
Evans EK, Tester R, Aslanian S, Karp R, Sheets M, Labenski MT, Witowski SR, Lounsbury H, Chaturvedi P, Mazdiyasni H, Zhu Z, Nacht M, Freed MI, Petter RC, Dubrovskiy A, Singh J, Westlin WF. Inhibition of Btk with CC-292 Provides Early Pharmacodynamic Assessment of Activity in Mice and Humans. J Pharmacol Exp Ther 2013; 346:219-28. [DOI: 10.1124/jpet.113.203489] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Huang KC, Cheng HT, Pai MT, Tzeng SR, Cheng JW. Solution structure and phosphopeptide binding of the SH2 domain from the human Bruton's tyrosine kinase. JOURNAL OF BIOMOLECULAR NMR 2006; 36:73-8. [PMID: 16969585 DOI: 10.1007/s10858-006-9064-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/05/2006] [Accepted: 07/12/2006] [Indexed: 05/11/2023]
Affiliation(s)
- Kuo-Chun Huang
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | | | | | |
Collapse
|
6
|
Glassford J, Vigorito E, Soeiro I, Madureira PA, Zoumpoulidou G, Brosens JJ, Turner M, Lam EWF. Phosphatidylinositol 3-kinase is required for the transcriptional activation of cyclin D2 in BCR activated primary mouse B lymphocytes. Eur J Immunol 2005; 35:2748-61. [PMID: 16114097 DOI: 10.1002/eji.200425812] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Induction of cyclin D2 is essential for mediating cell cycle entry in B cells activated by BCR cross-linking. In the present study we show that, like B lymphocytes lacking cyclin D2, the p85alpha subunit of phosphatidylinositol 3-kinase (PI3K) or other components of the B cell signalosome, p110delta-null B cells fail to induce cyclin D2 and enter early G1 but not S phase of the cell cycle. The inhibitors of PI3K activity, LY294002 and Wortmannin, also abrogate cyclin D2 induction by BCR cross-linking, confirming that the class IA PI3K is necessary for cyclin D2 induction in response to BCR stimulation. Furthermore, using both p85alpha-null and p110delta-null B cells and inhibitors of PI3K, this study demonstrates for the first time, that BCR cross-linking induces cyclin D2 mRNA expression via transcriptional activation of the cyclin D2 promoter and that this transcriptional activation of cyclin D2 requires PI3K activity. Moreover, we identify a region between nucleotides -1624 and -1303 of the cyclin D2 promoter containing elements responsive to anti-IgM, which are PI3K dependent. Further characterisation of signalling intermediates downstream of the BCR revealed a perturbation of MAPK signalling pathways in p85alpha-null and p110delta-null B cells, and our data suggests that cross-talk exists between the PI3K and JNK pathways.
Collapse
Affiliation(s)
- Janet Glassford
- Cancer Research-UK laboratories, Department of Cancer Medicine, MRC Cyclotron Building, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hirano M, Kikuchi Y, Nisitani S, Yamaguchi A, Satoh A, Ito T, Iba H, Takatsu K. Bruton's tyrosine kinase (Btk) enhances transcriptional co-activation activity of BAM11, a Btk-associated molecule of a subunit of SWI/SNF complexes. Int Immunol 2004; 16:747-57. [PMID: 15096481 DOI: 10.1093/intimm/dxh076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Bruton's tyrosine kinase (Btk) is required for B cell development and signal transduction through cell-surface molecules such as BCR and IL-5 receptor. We have identified a Btk-associated molecule, BAM11 (hereafter referred to as BAM) that binds to the pleckstrin homology (PH) domain of Btk, and inhibits Btk activity both in vivo and in vitro. In this study, we demonstrate BAM's transcriptional co-activation activity and its functional interaction with Btk. By using transient transcription assays, we demonstrate that the enforced expression of BAM enhances transcriptional activity of the synthetic reporter gene. The C-terminus of BAM is essential for the transcriptional co-activation activity. The ectopic expression of Btk together with BAM enhances BAM's transcriptional co-activation activity. BAM's transcriptional co-activation activity is enhanced through interaction with Btk, and requires both its intact PH domain and functional kinase activity. We also show that enforced expression of TFII-I, another Btk-binding protein with transcriptional activity, together with BAM and Btk, further augments BAM- and Btk-dependent transcriptional co-activation. Furthermore, BAM can be co-immunoprecipitated with the INI1/SNF5 protein, a member of the SWI/SNF complex that remodels chromatin and activates transcription. We propose a model in which Btk regulates gene transcription in B cells by activating BAM and the SWI/SNF transcriptional complex via TFII-I activation.
Collapse
Affiliation(s)
- Masayuki Hirano
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Glassford J, Soeiro I, Skarell SM, Banerji L, Holman M, Klaus GGB, Kadowaki T, Koyasu S, Lam EWF. BCR targets cyclin D2 via Btk and the p85alpha subunit of PI3-K to induce cell cycle progression in primary mouse B cells. Oncogene 2003; 22:2248-59. [PMID: 12700661 DOI: 10.1038/sj.onc.1206425] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The p85alpha subunit of PI3-K and Btk are two crucial components of the B-cell receptor (BCR) signalling pathway. In the present study, we showed that primary splenic B cells from p85alpha null and xid (Btk-deficient) mice fail to induce cyclin D2 expression and enter early G1, but not S phase of the cell cycle in response to BCR engagement. Furthermore, these Btk or p85alpha null B cells displayed increased cell death compared with wild type following BCR engagement. These findings are further confirmed by studies showing that specific pharmacological inhibitors of Btk (LFM-A13), PI3-K (LY294002 and Wortmannin) and PLCgamma (U73122) also block cyclin D2 expression and S phase entry following BCR stimulation, as well as triggering apoptosis. Collectively, these data provide evidence for the concept that the B-cell signalosome (p85alpha, Btk, BLNK and PLCgamma) is involved in regulating cyclin D2 expression in response to BCR engagement. PKC and intracellular calcium are two major downstream effectors of the B-cell signalosome and can be activated by PMA and ionomycin, respectively. In small resting (G0) B cells, costimulation with PMA and ionomycin, but not PMA or ionomycin alone, induces cyclin D2 expression and cell-cycle progression. Consistent with this, we also showed that the BCR-mediated cyclin D2 induction could be abolished by pretreatment of resting B cells with specific inhibitors of capacitative Ca(2+) entry (SK&F 96365) or PKC (Gö6850). Our present results lead us to propose a model in which the B-cell signalosome targets cyclin D2 via the Ca(2+) and PKC-dependent signalling cascades to mediate cell-cycle progression in response to BCR engagement.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Agammaglobulinaemia Tyrosine Kinase
- Amides/pharmacology
- Animals
- Antibodies, Anti-Idiotypic/immunology
- Apoptosis
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Carrier Proteins/physiology
- Cell Cycle/physiology
- Chromones/pharmacology
- Class Ib Phosphatidylinositol 3-Kinase
- Crosses, Genetic
- Cyclin D2
- Cyclins/biosynthesis
- Cyclins/genetics
- Enzyme Inhibitors/pharmacology
- Female
- Imidazoles/pharmacology
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/pathology
- Indoles/pharmacology
- Ionomycin/pharmacology
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Isoenzymes/physiology
- Macromolecular Substances
- Male
- Maleimides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Mutant Strains
- Models, Immunological
- Morpholines/pharmacology
- Nitriles/pharmacology
- Phenotype
- Phosphatidylinositol 3-Kinases/deficiency
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phospholipase C gamma
- Phosphoproteins/physiology
- Phosphorylation
- Protein Interaction Mapping
- Protein Processing, Post-Translational
- Protein Subunits
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tetradecanoylphorbol Acetate/pharmacology
- Type C Phospholipases/physiology
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Janet Glassford
- Cancer Research-UK Labs and Section of Cancer Cell Biology, Department of Cancer Medicine, Imperial College School of Medicine at Hammersmith Hospital, Londom, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Suzuki H, Matsuda S, Terauchi Y, Fujiwara M, Ohteki T, Asano T, Behrens TW, Kouro T, Takatsu K, Kadowaki T, Koyasu S. PI3K and Btk differentially regulate B cell antigen receptor-mediated signal transduction. Nat Immunol 2003; 4:280-6. [PMID: 12563258 DOI: 10.1038/ni890] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Accepted: 01/02/2003] [Indexed: 12/13/2022]
Abstract
Phosphoinositide-3 kinase (PI3K) is thought to activate the tyrosine kinase Btk. However, through analysis of PI3K-/- and Btk-/- mice, B cell antigen receptor (BCR)-induced activation of Btk in mouse B cells was found to be unaffected by PI3K inhibitors or by a lack of PI3K. Consistent with this observation, PI3K-/- Btk-/- double-deficient mice had more severe defects than either single-mutant mouse. NF-kappaB activation along with Bcl-xL and cyclin D2 induction were severely blocked in both PI3K-/- and Btk-/- single-deficient B cells. Transgenic expression of Bcl-xL restored the development and BCR-induced proliferation of B cells in PI3K-/- mice. Our results indicate that PI3K and Btk have unique roles in proximal BCR signaling and that they have a common target further downstream in the activation of NF-kappaB.
Collapse
Affiliation(s)
- Harumi Suzuki
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yankee TM, Solow SA, Draves KD, Clark EA. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:349-55. [PMID: 12496419 DOI: 10.4049/jimmunol.170.1.349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Down-Regulation/genetics
- Down-Regulation/immunology
- GRB2 Adaptor Protein
- Humans
- Interphase/genetics
- Interphase/immunology
- Lymphocyte Activation/genetics
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- MAP Kinase Signaling System/immunology
- Mutagenesis, Site-Directed
- Palatine Tonsil
- Phosphoproteins/metabolism
- Protein Biosynthesis
- Protein Serine-Threonine Kinases/metabolism
- Proteins/physiology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-cbl
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Tumor Cells, Cultured
- Ubiquitin-Protein Ligases
- src Homology Domains/genetics
Collapse
Affiliation(s)
- Thomas M Yankee
- Department of Microbiology, University of Washington, Seattle WA 98195, USA.
| | | | | | | |
Collapse
|
11
|
Joliat MJ, Shultz LD. The molecular bases of spontaneous immunological mutations in the mouse and their homologous human diseases. Clin Immunol 2001; 101:113-29. [PMID: 11683570 DOI: 10.1006/clim.2001.5120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- M J Joliat
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | |
Collapse
|
12
|
|