1
|
Kartal Y, Bozdemir Özel C, Çakmak A, Sonbahar Ulu H, İnal İnce D, Ademhan Tural D, Eryılmaz Polat S, Hızal M, Özçelik U, Karahan S, Budak MT, Girgin G, Arıkan H, Sabuncuoğlu S. The relationship between lung function, exercise capacity, oxidant and antioxidant response in primary ciliary dyskinesia and cystic fibrosis. Turk J Pediatr 2024; 66:309-322. [PMID: 39024596 DOI: 10.24953/turkjpediatr.2024.4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/14/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND There is a need to identify the complex interplay between various physiological mechanisms in primary ciliary dyskinesia (PCD) and cystic fibrosis (CF). The study investigated the interaction between respiratory function, exercise capacity, muscle strength, and inflammatory and oxidant/antioxidant responses in patients with PCD and CF. METHODS The study included 30 PCD patients, 30 CF patients, and 29 age and sex-matched healthy subjects. Exercise capacity was assessed using the modified shuttle walk test (MSWT). Handgrip strength (HGS) was used to evaluate general muscle strength. Oxidative stress-inflammatory parameters were also assessed. Pulmonary function test was performed by spirometry. Regarding the forced expiratory volume in 1 second (FEV1) z-score, patients with PCD and CF were subdivided into normal, mild, and severe/moderate groups. RESULTS Forced vital capacity (FVC) z-scores were lower in PCD and CF patients than controls. FEV1, FEV1/FVC, peak expiratory flow (PEF), and forced mid expiratory flow (FEF25-75%) z-scores were lower in PCD than in the other groups. HGS was lower in both mild PCD and normal CF patients relative to the controls. MSWT distance was lower in severe/moderate PCD patients than controls. Catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels did not differ significantly among the study groups, but superoxide dismutase (SOD) level in severe/moderate PCD, and glutathione (GSH) level in normal CF were higher than in controls. Interleukin-6 (IL-6) level was higher in patients with normal PCD and CF compared to the controls. IL-1β level was higher in PCD compared to controls. Additionally, correlations among these parameters were also determined in some patient groups. CONCLUSION Homeostasis related to respiratory function, aerobic performance, muscle strength, inflammatory response, and oxidant/antioxidant balance were affected in PCD and CF. Evaluating these mechanisms together may contribute to elucidating the pathophysiology of these rare diseases.
Collapse
Affiliation(s)
- Yasemin Kartal
- Department of Physiology, Faculty of Medicine, Kırklareli University, Kırklareli, Türkiye
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Cemile Bozdemir Özel
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Aslıhan Çakmak
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye
| | - Hazal Sonbahar Ulu
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Akdeniz University, Antalya, Türkiye
| | - Deniz İnal İnce
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye
| | - Dilber Ademhan Tural
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Sanem Eryılmaz Polat
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Mina Hızal
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Uğur Özçelik
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Sevilay Karahan
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Murat Timur Budak
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Gözde Girgin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Hülya Arıkan
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye
- Department of Physiotheraphy and Rehabilitation, Faculty of Health Sciences, Atılım University, Ankara, Türkiye
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
2
|
Sun X, Chen Q, Zhang L, Chen J, Zhang X. Exploration of prognostic biomarkers and therapeutic targets in the microenvironment of bladder cancer based on CXC chemokines. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6262-6287. [PMID: 34517533 DOI: 10.3934/mbe.2021313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bladder cancer (BLCA) has a high rate of morbidity and mortality, and is considered as one of the most malignant tumors of the urinary system. Tumor cells interact with surrounding interstitial cells, playing a key role in carcinogenesis and progression, which is partly mediated by chemokines. CXC chemokines exert anti-tumor biological roles in the tumor microenvironment and affect patient prognosis. Nevertheless, their expression and prognostic values patients with BLCA remain unclear. METHODS We used online tools, including Oncomine, UALCAN, GEPIA, GEO databases, cBioPortal, GeneMANIA, DAVID 6.8, Metascape, TRUST (version 2.0), LinkedOmics, TCGA, and TIMER2.0 to perform the relevant analysis. RESULTS The mRNA levels of C-X-C motif chemokine ligand (CXCL)1, CXCL5, CXCL6, CXCL7, CXCL9, CXCL10, CXCL11, CXCL13, CXCL16, and CXCL17 were increased significantly increased, and those of CXCL2, CXCL3, and CXCL12 were decreased significantly in BLCA tissues as assessed using the Oncomine, TCGA, and GEO databases. GEO showed that high levels of CXCL1, CXCL6, CXCL10, CXCL11, and CXCL13 mRNA expression are associated significantly with the poor overall survival (all p < 0.05), and similarly, those of CXCL2 and CXCL12 in the TCGA database (p < 0.05). The predominant signaling pathways involving the differentially expressed CXC chemokines are cell cycle, chemokine, and cytokine-cytokine receptor interaction. Moreover, transcription factors such as Sp1 transcription factor (SP1), nuclear factor kappa B subunit 1 (NFKB1), and RELA proto-oncogene, NF-KB subunit (RELA) were likely play critical roles in regulating CXC chemokine expression. LYN proto-oncogene, src family tyrosine kinase (LYN) and LCK proto-oncogene, src family tyrosine kinase (LCK) were identified as the key targets of these CXC chemokines. MicroRNAs miR200 and miR30 were identified as the main microRNAs that interact with several CXC chemokines through an miRNA-target network. The expression of these chemokines is closely associated with the infiltration of six categories of immune cells. CONCLUSION We explored the CXC chemokines superfamily-based biomarkers associated with BLCA prognosis using public databases, and provided possible chemokine targets for patients with BLCA.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Urology, Kaiping Central Hospital, Kaiping 529300, China
| | - Qunxi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lihong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiewei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
3
|
Li Y, Wu T, Gong S, Zhou H, Yu L, Liang M, Shi R, Wu Z, Zhang J, Li S. Analysis of the Prognosis and Therapeutic Value of the CXC Chemokine Family in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 10:570736. [PMID: 33489879 PMCID: PMC7820708 DOI: 10.3389/fonc.2020.570736] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
The CXC chemokines belong to a family which includes 17 different CXC members. Accumulating evidence suggests that CXC chemokines regulate tumor cell proliferation, invasion, and metastasis in various types of cancers by influencing the tumor microenvironment. The different expression profiles and specific function of each CXC chemokine in head and neck squamous cell carcinoma (HNSCC) are not yet clarified. In our work, we analyzed the altered expression, interaction network, and clinical data of CXC chemokines in patients with HNSCC by using the following: the Oncomine dataset, cBioPortal, Metascape, String analysis, GEPIA, and the Kaplan–Meier plotter. The transcriptional level analysis suggested that the mRNA levels of CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, CXCL9, CXCL10, CXCL11, and CXCL13 increased in HNSCC tissue samples when compared to the control tissue samples. The expression levels of CXCL9, CXCL10, CXCL11, CXCL12, and CXCL14 were associated with various tumor stages in HNSCC. Clinical data analysis showed that high transcription levels of CXCL2, CXCL3, and CXCL12, were linked with low relapse-free survival (RFS) in HNSCC patients. On the other hand, high CXCL14 levels predicted high RFS outcomes in HNSCC patients. Meanwhile, increased gene transcription levels of CXCL9, CXCL10, CXCL13, CXCL14, and CXCL17 were associated with a higher overall survival (OS) advantage in HNSCC patients, while high levels of CXCL1, and CXCL8 were associated with poor OS in all HNSCC patients. This study implied that CXCL1, CXCL2, CXCL3, CXCL8, and CXCL12 could be used as prognosis markers to identify low survival rate subgroups of patients with HNSCC as well as be potential suitable therapeutic targets for HNSCC patients. Additionally, CXCL9, CXCL10, CXCL13, CXCL14, and CXCL17 could be used as functional prognosis biomarkers to identify better survival rate subgroups of patients with HNSCC.
Collapse
Affiliation(s)
- Yongchao Li
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Tinghui Wu
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Shujuan Gong
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Hangzheng Zhou
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Lufei Yu
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Meiyan Liang
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Ruijun Shi
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Zhenhui Wu
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Jinpei Zhang
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Shuwei Li
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| |
Collapse
|
4
|
Kher M, Beri S, Rehan HS, Prakash A, Gupta LK. Effect of metformin and insulin combination on monocyte chemoattractant protein-1 and cathepsin-D in type 2 diabetes mellitus. Diabetes Metab Syndr 2020; 14:1703-1710. [PMID: 32911202 DOI: 10.1016/j.dsx.2020.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Monocyte chemoattractant protein-1 (MCP-1) and cathepsin-D are progressively raised in type 2 diabetes mellitus (T2DM) with both non proliferative and proliferative retinal disease. This study aimed to evaluate the effect of antidiabetic medications on MCP-1 and cathepsin-D. METHODS 60 patients of T2DM without retinopathy and 60 of diabetic retinopathy were enrolled to receive metformin (500 mg-1000 mg) combined with either glimepiride (1 mg-2 mg) or insulin. The effect of antidiabetic medications on serum MCP-1 and cathepsin-D was assessed. RESULTS Mean MCP-1 (pg/ml) and cathepsin-D (ng/ml) levels were significantly lower in patients of T2DM with and without retinopathy treated with metformin + insulin (468.52 ± 272.84 vs 234.30 ± 180.58; p < 0.01 and 460.15 ± 128.52 vs 517.33 ± 213.49; p = 0.214) as compared to patients treated with metformin + glimepiride (1434.02 ± 105.27 vs 1256.27 ± 76.76; p < 0.01 and 1689.36 ± 752.57 vs 919.69 ± 675.05; p = < 0.01). No significant correlation of MCP-1 and cathepsin-D with HbA1c, fasting and post prandial blood glucose were found. CONCLUSION Patients treated with metformin and insulin combination had lower serum MCP-1 and cathepsin-D levels which suggests that this combination may be more effective in reducing the progression of diabetic retinopathy. (CTRI/2018/05/013601).
Collapse
Affiliation(s)
- Mohit Kher
- Department of Pharmacology, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India
| | - Sarita Beri
- Department of Ophthalmology, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India
| | - Harmeet S Rehan
- Department of Pharmacology, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India
| | - Anupam Prakash
- Department of Medicine, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India
| | - Lalit K Gupta
- Department of Pharmacology, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India.
| |
Collapse
|
5
|
Yin X, Wang Z, Wu T, Ma M, Zhang Z, Chu Z, Hu Q, Ding H, Han X, Xu J, Shang H, Jiang Y. The combination of CXCL9, CXCL10 and CXCL11 levels during primary HIV infection predicts HIV disease progression. J Transl Med 2019; 17:417. [PMID: 31836011 PMCID: PMC6909626 DOI: 10.1186/s12967-019-02172-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Chemokines are small chemotactic cytokines involved in inflammation, cell migration, and immune regulation in both physiological and pathological contexts. Here, we investigated the profile of chemokines during primary HIV infection (PHI). Methods Fifty-four participants with blood samples before and during HIV infection and clinical information available were selected from an HIV-negative man who have sex with men (MSM) prospective cohort. Thirty chemokines and 10 cytokines were measured pre- and post-HIV infection in the same individuals using a Bio-Plex Pro™ Human Chemokine Panel. Results Levels of 18 chemokines/cytokines changed significantly during PHI relative to pre-HIV infection levels; 14 were up-regulated and 4 down-regulated. Among them, CXCL9, CXCL10, and CXCL11 were the most prominently raised. Levels of CXCL9 and CXCL10 were much higher in the high-set point group (log viral load (lgVL) ≥ 4.5) than those in the low-set point group (lgVL < 4.5) and levels of CXCL9, CXCL10, and CXCL11 were higher in the low-CD4+ T-cell count group (CD4+ T-cell count ≥ 500). A formula to predict HIV disease progression using a combination panel comprising CXCL9, CXCL10, and CXCL11 was developed, where risk score = 0.007 × CXCL9 + 0.004 × CXCL10 − 0.033 × CXCL11 − 1.724, with risk score values higher than the cutoff threshold (0.5211) indicating more rapid HIV disease progression. Conclusions A panel of plasma CXCL9, CXCL10, and CXCL11 measured during primary HIV-1 infection could predict long-term HIV disease prognosis in an MSM group and has potential as a novel biomarker in the clinic.
Collapse
Affiliation(s)
- Xiaowan Yin
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Zhuo Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tong Wu
- National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Meichen Ma
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Qinghai Hu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
6
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
7
|
How post-translational modifications influence the biological activity of chemokines. Cytokine 2018; 109:29-51. [DOI: 10.1016/j.cyto.2018.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
|
8
|
Ruytinx P, Proost P, Struyf S. CXCL4 and CXCL4L1 in cancer. Cytokine 2018; 109:65-71. [DOI: 10.1016/j.cyto.2018.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
|
9
|
Gouwy M, De Buck M, Abouelasrar Salama S, Vandooren J, Knoops S, Pörtner N, Vanbrabant L, Berghmans N, Opdenakker G, Proost P, Van Damme J, Struyf S. Matrix Metalloproteinase-9-Generated COOH-, but Not NH 2-Terminal Fragments of Serum Amyloid A1 Retain Potentiating Activity in Neutrophil Migration to CXCL8, With Loss of Direct Chemotactic and Cytokine-Inducing Capacity. Front Immunol 2018; 9:1081. [PMID: 29915572 PMCID: PMC5994419 DOI: 10.3389/fimmu.2018.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A1 (SAA1) is a prototypic acute phase protein, induced to extremely high levels by physical insults, including inflammation and infection. Human SAA and its NH2-terminal part have been studied extensively in the context of amyloidosis. By contrast, little is known about COOH-terminal fragments of SAA. Intact SAA1 chemoattracts leukocytes via the G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPR2). In addition to direct leukocyte activation, SAA1 induces chemokine production by signaling through toll-like receptor 2. We recently discovered that these induced chemokines synergize with intact SAA1 to chemoattract leukocytes in vitro and in vivo. Gelatinase B or matrix metalloproteinase-9 (MMP-9) is also induced by SAA1 during infection and inflammation and processes many substrates in the immune system. We demonstrate here that MMP-9 rapidly cleaves SAA1 at a known consensus sequence that is also present in gelatins. Processing of SAA1 by MMP-9 at an accessible loop between two alpha helices yielded predominantly three COOH-terminal fragments: SAA1(52–104), SAA1(57–104), and SAA1(58–104), with a relative molecular mass of 5,884.4, 5,327.3, and 5,256.3, respectively. To investigate the effect of proteolytic processing on the biological activity of SAA1, we chemically synthesized the COOH-terminal SAA fragments SAA1(52–104) and SAA1(58–104) and the complementary NH2-terminal peptide SAA1(1–51). In contrast to intact SAA1, the synthesized SAA1 peptides did not induce interleukin-8/CXCL8 in monocytes or fibroblasts. Moreover, these fragments possessed no direct chemotactic activity for neutrophils, as observed for intact SAA1. However, comparable to intact SAA1, SAA1(58–104) cooperated with CXCL8 in neutrophil activation and migration, whereas SAA1(1–51) lacked this potentiating activity. This cooperative interaction between the COOH-terminal SAA1 fragment and CXCL8 in neutrophil chemotaxis was mediated by FPR2. Hence, proteolytic cleavage of SAA1 by MMP-9 fine tunes the inflammatory capacity of this acute phase protein in that only the synergistic interactions with chemokines remain to prolong the duration of inflammation.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round. Immunol Lett 2018; 205:1-8. [PMID: 29870759 DOI: 10.1016/j.imlet.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH2- or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response.
Collapse
|
11
|
Peng Y, Ma J, Lin J. Activation of the CXCL16/CXCR6 Axis by TNF-α Contributes to Ectopic Endometrial Stromal Cells Migration and Invasion. Reprod Sci 2018; 26:420-427. [PMID: 29779473 DOI: 10.1177/1933719118776797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The activation of systemic and local inflammatory mechanisms, including elevated levels of chemokines and proinflammatory cytokines in endometriosis progression, is becoming more evident in the recent years. Here, we report the involvement of CXC chemokine 16 (CXCL16) and its sole receptor, CXC chemokine receptor 6 (CXCR6), in pathophysiology of endometriosis. Expression of CXCL16, but not CXCR6, was significantly upregulated in endometriotic lesions when compared to control endometrium. Additionally, serum CXCL16 was significantly elevated in women with endometriosis when compared to control group. Moreover, blockade of the CXCL16/CXCR6 axis by CXCR6 small-interfering RNA reduced the migration and invasion of ectopic endometrial stromal cells (EESCs) followed by decreased phosphorylation of ERK1/2. Furthermore, TNF-α treatment induced the expression of CXCL16 in EESCs. In conclusion, these results suggest that CXCL16/CXCR6 axis, whose expression was enhanced by TNF-α, may be associated with the increased motility of EESCs, through regulation of ERK1/2 signaling, thus contributing to the development of endometriosis. These findings indicate that the CXCL16/CXCR6 axis may contribute to the progression of endometriosis and could be served as a potential target for diagnosis and treatment.
Collapse
Affiliation(s)
- Yaoming Peng
- 1 Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou, People's Republic of China
| | - Junyan Ma
- 2 Key Laboratory of women's Reproductive Health of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jun Lin
- 1 Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Zhang Y, Xu L, Peng M. CXCR3 is a prognostic marker and a potential target for patients with solid tumors: a meta-analysis. Onco Targets Ther 2018; 11:1045-1054. [PMID: 29520155 PMCID: PMC5833761 DOI: 10.2147/ott.s157421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To deeply verify the clinical significance of CXCR3 in prediction of cancer patients' prognosis. DATA SOURCES We performed a meta-analysis including 12 studies searched from PubMed, Web of Science, Embase, and Cochrane databases. A total of 1,751 patients were used to analyze the association between CXCR3 and patients' prognosis, based on either overall survival or time to tumor progression. STUDY SELECTION Studies evaluating CXCR3 expression for predicting prognosis in human solid tumors were included. RESULTS It showed that patients with higher expression of CXCR3 had significantly shorter OS (pooled hazard ratio =2.315, 95% CI: 1.162-4.611, P=0.017). In addition, higher CXCR3 expression was associated with distant metastasis (yes vs no: pooled relative ratio [RR] =1.828, 95% CI: 1.140-2.931, P=0.012) in solid tumors and indicated advanced tumor stage (III/IV vs I/II, RR =2.656, 95% CI: 1.809-3.900, P<0.001) and lymph node metastasis (yes vs no: RR =2.28, 95% CI: 1.61-3.25, P<0.001) in colorectal cancer. CONCLUSION Our study highlights the role of CXCR3 as a potential prognostic marker and a promising therapeutic target in solid tumors.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linjuan Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minggang Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Relative distribution and biological characterization of CXCL4L1 isoforms in platelets from healthy donors. Biochem Pharmacol 2017; 145:123-131. [DOI: 10.1016/j.bcp.2017.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
14
|
Cockx M, Gouwy M, Van Damme J, Struyf S. Chemoattractants and cytokines in primary ciliary dyskinesia and cystic fibrosis: key players in chronic respiratory diseases. Cell Mol Immunol 2017; 15:312-323. [PMID: 29176750 DOI: 10.1038/cmi.2017.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Patients with primary ciliary dyskinesia (PCD) and cystic fibrosis (CF), two inherited disorders, suffer from recurrent airway infections characterized by persistent bacterial colonization and uncontrollable inflammation. Although present in high counts, neutrophils fail to clear infection in the airways. High levels of C-X-C motif chemokine ligand 8/interleukin-8 (CXCL8/IL-8), the most potent chemokine to attract neutrophils to sites of infection, are detected in the sputum of both patient groups and might cause the high neutrophil influx in the airways. Furthermore, in CF, airway neutrophils are highly activated because of the genetic defect and the high levels of proinflammatory chemoattractants and cytokines (e.g., CXCL8/IL-8, tumor necrosis factor-α and IL-17). The overactive state of neutrophils leads to lung damage and fuels the vicious circle of infection, excessive inflammation and tissue damage. The inflammatory process in CF airways is well characterized, whereas the lung pathology in PCD is far less studied. The knowledge of CF lung pathology could be useful to guide molecular investigations of the inflammatory processes in PCD lungs. Current available therapies can not completely remedy the chronic airway infections in these diseases. This review gives an overview of the role that chemoattractants and cytokines play in these neutrophil-dominated lung pathologies. Finally, the most frequently applied treatments in CF and PCD and new experimental therapies to reduce neutrophil-dominated airway inflammation are described.
Collapse
Affiliation(s)
- Maaike Cockx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| |
Collapse
|
15
|
Proost P, Struyf S, Van Damme J, Fiten P, Ugarte-Berzal E, Opdenakker G. Chemokine isoforms and processing in inflammation and immunity. J Autoimmun 2017; 85:45-57. [PMID: 28684129 DOI: 10.1016/j.jaut.2017.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
The first dimension of chemokine heterogeneity is reflected by their discovery and purification as natural proteins. Each of those chemokines attracted a specific inflammatory leukocyte type. With the introduction of genomic technologies, a second wave of chemokine heterogeneity was established by the discovery of putative chemokine-like sequences and by demonstrating chemotactic activity of the gene products in physiological leukocyte homing. In the postgenomic era, the third dimension of chemokine heterogeneity is the description of posttranslational modifications on most chemokines. Proteolysis of chemokines, for instance by dipeptidyl peptidase IV (DPP IV/CD26) and by matrix metalloproteinases (MMPs) is already well established as a biological control mechanism to activate, potentiate, dampen or abrogate chemokine activities. Other posttranslational modifications are less known. Theoretical N-linked and O-linked attachment sites for chemokine glycosylation were searched with bio-informatic tools and it was found that most chemokines are not glycosylated. These findings are corroborated with a low number of experimental studies demonstrating N- or O-glycosylation of natural chemokine ligands. Because attached oligosaccharides protect proteins against proteolytic degradation, their absence may explain the fast turnover of chemokines in the protease-rich environments of infection and inflammation. All chemokines interact with G protein-coupled receptors (GPCRs) and glycosaminoglycans (GAGs). Whether lectin-like GAG-binding induces cellular signaling is not clear, but these interactions are important for leukocyte migration and have already been exploited to reduce inflammation. In addition to selective proteolysis, citrullination and nitration/nitrosylation are being added as biologically relevant modifications contributing to functional chemokine heterogeneity. Resulting chemokine isoforms with reduced affinity for GPCRs reduce leukocyte migration in various models of inflammation. Here, these third dimension modifications are compared, with reflections on the biological and pathological contexts in which these posttranslational modifications take place and contribute to the repertoire of chemokine functions and with an emphasis on autoimmune diseases.
Collapse
Affiliation(s)
- Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Pierre Fiten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
16
|
Lu X, Li Y, Li X, Aisa HA. Luteolin induces apoptosis in vitro through suppressing the MAPK and PI3K signaling pathways in gastric cancer. Oncol Lett 2017; 14:1993-2000. [PMID: 28789432 PMCID: PMC5530081 DOI: 10.3892/ol.2017.6380] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/10/2017] [Indexed: 12/15/2022] Open
Abstract
Luteolin, an active component of traditional Chinese medicine, exhibits potential for anti-tumor proliferation; however, the molecular events occurring in such process and the signal transduction pathways involved are currently unknown. Our group previously reported that luteolin inhibited proliferation and induced apoptosis in the gastric cancer cell line BGC-823. The aim of the present study was to investigate the mechanism by which the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling pathways regulate the apoptosis in vitro of BGC-823 cells following treatment with luteolin. It was observed that luteolin induced apoptosis through the intrinsic pathway by increasing the levels of caspase-3, caspase-9 and cytochrome c, and the ratio of B-cell lymphoma (Bcl)-2 associated X protein (Bax) to Bcl-2. Luteolin suppressed the phosphorylation of extracellular signal-regulated kinase in the MAPK signaling pathway, as well as suppressing the phosphorylation of AKT, PI3K and mechanistic target of rapamycin in the PI3K signaling pathway. In addition, luteolin combined with LY294002 markedly increased the Bax/Bcl-2 ratio, while when combined with U0126, luteolin had less effects on the Bax/Bcl-2 ratio compared with luteolin treatment alone, suggesting that both the MAPK and PI3K signaling pathways are involved in the apoptosis induced by luteolin. Furthermore, luteolin attenuated the MAPK and PI3K signaling pathways by increasing the expression of specific dual-specificity phosphatases and decreasing the expression of chemokine (C-X-C motif) ligand 16 at the messenger RNA level, respectively. Taken together, the present results demonstrate that luteolin is a potential chemotherapeutic agent against gastric cancer by exerting a dual inhibition on the MAPK and PI3K signaling pathways.
Collapse
Affiliation(s)
- Xueying Lu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P.R. China.,State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi, Xinjiang 830011, P.R. China
| | - Yanhong Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiaobo Li
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P.R. China.,State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi, Xinjiang 830011, P.R. China
| | - Haji Akber Aisa
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P.R. China.,State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
17
|
Reddy S, Amutha A, Rajalakshmi R, Bhaskaran R, Monickaraj F, Rangasamy S, Anjana RM, Abhijit S, Gokulakrishnan K, Das A, Mohan V, Balasubramanyam M. Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complications 2017; 31:804-809. [PMID: 28336215 DOI: 10.1016/j.jdiacomp.2017.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023]
Abstract
AIM Young onset type 2 diabetes patients (T2DM-Y) have been shown to possess an increased risk of developing microvascular complications particularly diabetic retinopathy. However, the molecular mechanisms are not clearly understood. In this study, we investigated the serum levels of monocyte chemotactic protein 1 (MCP-1) and cathepsin-D in patients with T2DM-Y without and with diabetic retinopathy. METHODS In this case-control study, participants comprised individuals with normal glucose tolerance (NGT=40), patients with type 2 diabetes mellitus (T2DM=35), non-proliferative diabetic retinopathy (NPDR=35) and proliferative diabetic retinopathy (PDR=35). Clinical characterization of the study subjects was done by standard procedures and MCP-1 and cathepsin-D were measured by ELISA. RESULTS Compared to control individuals, patients with T2DM-Y, NPDR and PDR exhibited significantly (p<0.001) higher levels of MCP-1. Cathepsin-D levels were also significantly (p<0.001) higher in patients with T2DM-Y without and with diabetic retinopathy. Correlation analysis revealed a positive association (p<0.001) between MCP-1 and cathepsin-D levels. There was also a significant negative correlation of MCP1/cathepsin-D with C-peptide levels. The association of increased levels of MCP-1/cathepsin-D in patients with DR persisted even after adjusting for all the confounding factors. CONCLUSION As both MCP-1 and cathepsin-D are molecular signatures of cellular senescence, we suggest that these biomarkers might be useful to predict the development of retinopathy in T2DM-Y patients.
Collapse
Affiliation(s)
- Sruthi Reddy
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Anandakumar Amutha
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Ramachandran Rajalakshmi
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Regin Bhaskaran
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Finny Monickaraj
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Translational Genomics Research Institute, (TGen), Phoenix, AZ, USA
| | - Ranjit Mohan Anjana
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Shiny Abhijit
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Kuppan Gokulakrishnan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Arup Das
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India..
| |
Collapse
|
18
|
Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol 2016; 7:483. [PMID: 27891127 PMCID: PMC5104965 DOI: 10.3389/fimmu.2016.00483] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning of the immune system. After introducing the chemokine family together with the GPCRs and GAGs, as main interaction partners of chemokines, and discussing the different forms of posttranslational modifications, this review will focus on the intriguing relationship of chemokines with the serine protease CD26.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| |
Collapse
|
19
|
Mortier A, Gouwy M, Van Damme J, Proost P, Struyf S. CD26/dipeptidylpeptidase IV-chemokine interactions: double-edged regulation of inflammation and tumor biology. J Leukoc Biol 2016; 99:955-69. [PMID: 26744452 PMCID: PMC7166560 DOI: 10.1189/jlb.3mr0915-401r] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022] Open
Abstract
Review of how chemokine processing by CD26/DPP IV regulates leukocyte trafficking. Post‐translational modification of chemokines is an essential regulatory mechanism to enhance or dampen the inflammatory response. CD26/dipeptidylpeptidase IV, ubiquitously expressed in tissues and blood, removes NH2‐terminal dipeptides from proteins with a penultimate Pro or Ala. A large number of human chemokines, including CXCL2, CXCL6, CXCL9, CXCL10, CXCL11, CXCL12, CCL3L1, CCL4, CCL5, CCL11, CCL14, and CCL22, are cleaved by CD26; however, the efficiency is clearly influenced by the amino acids surrounding the cleavage site and although not yet proven, potentially affected by the chemokine concentration and interactions with third molecules. NH2‐terminal cleavage of chemokines by CD26 has prominent effects on their receptor binding, signaling, and hence, in vitro and in vivo biologic activities. However, rather than having a similar result, the outcome of NH2‐terminal truncation is highly diverse. Either no difference in activity or drastic alterations in receptor recognition/specificity and hence, chemotactic activity are observed. Analogously, chemokine‐dependent inhibition of HIV infection is enhanced (for CCL3L1 and CCL5) or decreased (for CXCL12) by CD26 cleavage. The occurrence of CD26‐processed chemokine isoforms in plasma underscores the importance of the in vitro‐observed CD26 cleavages. Through modulation of chemokine activity, CD26 regulates leukocyte/tumor cell migration and progenitor cell release from the bone marrow, as shown by use of mice treated with CD26 inhibitors or CD26 knockout mice. As chemokine processing by CD26 has a significant impact on physiologic and pathologic processes, application of CD26 inhibitors to affect chemokine function is currently explored, e.g., as add‐on therapy in viral infection and cancer.
Collapse
Affiliation(s)
- Anneleen Mortier
- KU Leuven University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Leuven, Belgium
| | - Mieke Gouwy
- KU Leuven University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Leuven, Belgium
| | - Jo Van Damme
- KU Leuven University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Leuven, Belgium
| | - Paul Proost
- KU Leuven University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Leuven, Belgium
| | - Sofie Struyf
- KU Leuven University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Leuven, Belgium
| |
Collapse
|
20
|
Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2015; 99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
|
21
|
De Buck M, Berghmans N, Pörtner N, Vanbrabant L, Cockx M, Struyf S, Opdenakker G, Proost P, Van Damme J, Gouwy M. Serum amyloid A1α induces paracrine IL-8/CXCL8 via TLR2 and directly synergizes with this chemokine via CXCR2 and formyl peptide receptor 2 to recruit neutrophils. J Leukoc Biol 2015; 98:1049-60. [PMID: 26297794 DOI: 10.1189/jlb.3a0315-085r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/23/2015] [Indexed: 11/24/2022] Open
Abstract
Cell migration depends on the ability of leukocytes to sense an external gradient of chemotactic proteins produced during inflammation. These proteins include chemokines, complement factors, and some acute phase proteins, such as serum amyloid A. Serum amyloid A chemoattracts neutrophils, monocytes, and T lymphocytes via its G protein-coupled receptor formyl peptide receptor 2. We demonstrate that serum amyloid A1α more potently chemoattracts neutrophils in vivo than in vitro. In contrast to CD14(+) monocytes, no rapid (within 2 h) induction of interleukin-8/CXC chemokine ligand 8 or macrophage-inflammatory protein-1α/CC chemokine ligand 3 was observed in purified human neutrophils after stimulation of the cells with serum amyloid A1α or lipopolysaccharide. Moreover, interleukin-8/CXC chemokine ligand 8 induction in monocytes by serum amyloid A1α was mediated by toll-like receptor 2 and was inhibited by association of serum amyloid A1α with high density lipoprotein. This indicates that the potent chemotactic response of neutrophils toward intraperitoneally injected serum amyloid A1α is indirectly enhanced by rapid induction of chemokines in peritoneal cells, synergizing in a paracrine manner with serum amyloid A1α. We observed direct synergy between IL-8/CXC chemokine ligand 8 and serum amyloid A1α, but not lipopolysaccharide, in chemotaxis and shape change assays with neutrophils. Furthermore, the selective CXC chemokine receptor 2 and formyl peptide receptor 2 antagonists, SB225002 and WRW4, respectively, blocked the synergy between IL-8/CXC chemokine ligand 8 and serum amyloid A1α in neutrophil chemotaxis in vitro, indicating that for synergy their corresponding G protein-coupled receptors are required. Additionally, SB225002 significantly inhibited serum amyloid A1α-mediated peritoneal neutrophil influx. Taken together, endogenous (e.g., IL-1β) and exogenous (e.g., lipopolysaccharide) inflammatory mediators induce primary chemoattractants such as serum amyloid A that synergize in an autocrine (monocyte) or a paracrine (neutrophil) fashion with secondary chemokines induced in stromal cells.
Collapse
Affiliation(s)
- Mieke De Buck
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Maaike Cockx
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Paul Proost
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Ehrhart J, Smith AJ, Kuzmin-Nichols N, Zesiewicz TA, Jahan I, Shytle RD, Kim SH, Sanberg CD, Vu TH, Gooch CL, Sanberg PR, Garbuzova-Davis S. Humoral factors in ALS patients during disease progression. J Neuroinflammation 2015; 12:127. [PMID: 26126965 PMCID: PMC4487852 DOI: 10.1186/s12974-015-0350-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/19/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons in the CNS and leading to paralysis and death. There are currently no effective treatments for ALS due to the complexity and heterogeneity of factors involved in motor neuron degeneration. A complex of interrelated effectors have been identified in ALS, yet systemic factors indicating and/or reflecting pathological disease developments are uncertain. The purpose of the study was to identify humoral effectors as potential biomarkers during disease progression. METHODS Thirteen clinically definite ALS patients and seven non-neurological controls enrolled in the study. Peripheral blood samples were obtained from each ALS patient and control at two visits separated by 6 months. The Revised ALS Functional Rating Scale (ALSFRS-R) was used to evaluate overall ALS-patient functional status at each visit. Eleven humoral factors were analyzed in sera. Cytokine levels (GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNF-α) were determined using the Bio-Rad Bio-Plex® Luminex 200 multiplex assay system. Nitrite, a breakdown product of NO, was quantified using a Griess Reagent System. Glutathione (GSH) concentrations were measured using a Glutathione Fluorometric Assay Kit. RESULTS ALS patients had ALSFRS-R scores of 30.5 ± 1.9 on their first visit and 27.3 ± 2.7 on the second visit, indicating slight disease progression. Serum multiplex cytokine panels revealed statistically significant changes in IL-2, IL-5, IL-6, and IL-8 levels in ALS patients depending on disease status at each visit. Nitrite serum levels trended upwards in ALS patients while serum GSH concentrations were drastically decreased in sera from ALS patients versus controls at both visits. CONCLUSIONS Our results demonstrated a systemic pro-inflammatory state and impaired antioxidant system in ALS patients during disease progression. Increased levels of pro-inflammatory IL-6, IL-8, and nitrite and significantly decreased endogenous antioxidant GSH levels could identify these humoral constituents as systemic biomarkers for ALS. However, systemic changes in IL-2, IL-5, and IL-6 levels determined between visits in ALS patients might indicate adaptive immune system responses dependent on current disease stage. These novel findings, showing dynamic changes in humoral effectors during disease progression, could be important for development of an effective treatment for ALS.
Collapse
Affiliation(s)
| | - Adam J Smith
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | | | - Theresa A Zesiewicz
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Israt Jahan
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - R Douglas Shytle
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA.
| | - Seol-Hee Kim
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | | | - Tuan H Vu
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Clifton L Gooch
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA. .,Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
23
|
The role of inflammation in the pathogenesis of macular edema secondary to retinal vascular diseases. Mediators Inflamm 2014; 2014:432685. [PMID: 25152567 PMCID: PMC4134827 DOI: 10.1155/2014/432685] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/05/2014] [Accepted: 07/09/2014] [Indexed: 12/17/2022] Open
Abstract
Macular edema (ME) is a nonspecific sign of numerous retinal vascular diseases. This paper is an updated overview about the role of inflammatory processes in the genesis of both diabetic macular edema (DME) and ME secondary to retinal vein occlusion (RVO). We focus on the inflammatory mediators implicated, the effect of the different intravitreal therapies, the recruitment of leukocytes mediated by adhesion molecules, and the role of retinal Müller glial (RMG) cells.
Collapse
|
24
|
Zhen J, Li Q, Zhu Y, Yao X, Wang L, Zhou A, Sun S. Increased serum CXCL16 is highly correlated with blood lipids, urine protein and immune reaction in children with active nephrotic syndrome. Diagn Pathol 2014; 9:23. [PMID: 24460887 PMCID: PMC3915750 DOI: 10.1186/1746-1596-9-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/15/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Primary nephrotic syndrome (NS) is a common disease in children. Lipid nephrotoxicity and cellular immune dysfunction are known features of this disease. Recently, CXCL16 was found to participate in inflammation and mediate cellular uptake of lipids. Here, we investigated the involvement of CXCL16 in the occurrence and development of primary NS. METHODS Serum CXCL16, blood lipids and albumin, 24-hour urine protein, interferon-γ and immune cells were detected in 25 children with steroid sensitive NS during their active nephrotic and remissive stages. Twenty healthy children served as the control group. RESULTS Levels of serum CXCL16, blood lipids, interferon-γ and CXCR6+ T cells were significantly increased and albumin and NK cell number were significantly decreased in the active status group compared with remissive status and control groups. Correlation analysis showed that serum CXCL16 was positively correlated with blood lipids, 24-hour urine protein, interferon-γ and CXCR6+ T cells but negatively correlated with albumin in patients with active NS. CONCLUSION Serum CXCL16 was increased in patients with active NS and correlated with blood lipids, urine protein and immune and inflammation responses, suggesting that CXCL16 may serve as a useful index or biomarker for disease activity in children with nephrotic syndrome. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1120468411154766.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuzhen Sun
- School of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
25
|
Cyr61 induces the expression of monocyte chemoattractant protein-1 via the integrin ανβ3, FAK, PI3K/Akt, and NF-κB pathways in retinal vascular endothelial cells. Cell Signal 2014; 26:133-40. [DOI: 10.1016/j.cellsig.2013.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/04/2013] [Accepted: 08/27/2013] [Indexed: 11/23/2022]
|
26
|
Chemokines and cytokines as salivary biomarkers for the early diagnosis of oral cancer. Int J Dent 2013; 2013:813756. [PMID: 24376459 PMCID: PMC3860143 DOI: 10.1155/2013/813756] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/31/2013] [Indexed: 01/19/2023] Open
Abstract
Chemokines have been shown to be important in both inflammation and carcinogenesis and are able to be measured in saliva with relatively robust methods including enzyme-linked immunosorbent assays (ELISA). Thus it has been hypothesized that patients with oral cancer and oral potentially malignant lesions will have elevated levels of specific chemokines in oral fluids and that this may be used as a marker of both the early detection of malignant disease and progression to malignancy. The concept that salivary biomarkers can be easily measured and indicate disease states has profound consequences for clinical practice and may open up new strategies for the diagnosis, prognosis, and potential therapy of oral squamous cell carcinoma (OSCC). This review focuses on our understanding of cytokines and chemokines and the potential role that they may have in clinical practice.
Collapse
|
27
|
De Astis S, Corradini I, Morini R, Rodighiero S, Tomasoni R, Lenardi C, Verderio C, Milani P, Matteoli M. Nanostructured TiO2 surfaces promote polarized activation of microglia, but not astrocytes, toward a proinflammatory profile. NANOSCALE 2013; 5:10963-10974. [PMID: 24065287 DOI: 10.1039/c3nr03534d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Activation of glial cells, including astrocytes and microglia, has been implicated in the inflammatory responses underlying brain injury and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The classic activation state (M1) is characterized by high capacity to present antigens, high production of nitric oxide (NO) and reactive oxygen species (ROS) and proinflammatory cytokines. Classically activated cells act as potent effectors that drive the inflammatory response and may mediate detrimental effects on neural cells. The second phenotype (M2) is an alternative, apparently beneficial, activation state, more related to a fine tuning of inflammation, scavenging of debris, promotion of angiogenesis, tissue remodeling and repair. Specific environmental chemical signals are able to induce these different polarization states. We provide here evidence that nanostructured substrates are able, exclusively in virtue of their physical properties, to push microglia toward the proinflammatory activation phenotype, with an efficacy which reflects the graded nanoscale rugosity. The acquisition of a proinflammatory phenotype appears specific for microglia and not astrocytes, indicating that these two cell types, although sharing common innate immune responses, respond differently to external physical stimuli.
Collapse
|
28
|
Hagan S, Tomlinson A. Tear Fluid Biomarker Profiling: A Review of Multiplex Bead Analysis. Ocul Surf 2013; 11:219-35. [DOI: 10.1016/j.jtos.2013.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/19/2013] [Accepted: 04/01/2013] [Indexed: 11/30/2022]
|
29
|
Lombardi L, Tavano F, Morelli F, Latiano TP, Di Sebastiano P, Maiello E. Chemokine receptor CXCR4: role in gastrointestinal cancer. Crit Rev Oncol Hematol 2013; 88:696-705. [PMID: 24120239 DOI: 10.1016/j.critrevonc.2013.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 01/29/2023] Open
Abstract
Chemokines (CK)s, small proinflammatory chemoattractant cytokines that bind to specific G-protein coupled seven-span transmembrane receptors, are major regulators of cell trafficking and adhesion. The CXCL12 [stromal cell-derived factor-1 (SDF-1)] binds primarily to CXC receptor 4 (CXCR4; CD184). The binding of CXCL12 to CXCR4 induces intracellular signaling through several divergent pathways initiating signals related to chemotaxis, cell survival and/or proliferation, increase in intracellular calcium, and gene transcription. CXCR4 is expressed on multiple cell types including lymphocytes, hematopoietic stem cells, endothelial and epithelial cells, and cancer cells. One of the most intriguing and perhaps important roles that CKs and the CK receptors have is in regulating metastasis. Here, CK receptors may potentially facilitate tumor dissemination at each of the key steps of metastasis, including adherence of tumor cells to endothelium, extravasation from blood vessels, metastatic colonization, angiogenesis, proliferation, and protection from the host response via activation of key survival pathways such as ERK/MAPK, PI-3K/Akt/mTOR, or Jak/STAT, etc. In addition, it is increasingly recognized that CKs play an important role in facilitating communication between cancer cells and non-neoplatic cells in the tumor microenvironment (TME), including endothelial cells and fibroblasts, promoting the infiltration, activation of neutrophils, and tumor-associated macrophages within the TME. In this review, we mainly focus on the roles of chemokines CXCL12 and its cognate receptors CXCR4 as they pertain to cancer progression. In particular, we summarizes our current understanding regarding the contribution of CXCR4 and SDF-1 to gastrointestinal tumor behavior and its role in local progression, dissemination, and immune evasion of tumor cells. Also, describes recent therapeutic approaches that target these receptors or their ligands.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Herlihy SE, Pilling D, Maharjan AS, Gomer RH. Dipeptidyl peptidase IV is a human and murine neutrophil chemorepellent. THE JOURNAL OF IMMUNOLOGY 2013; 190:6468-77. [PMID: 23677473 DOI: 10.4049/jimmunol.1202583] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Dictyostelium discoideum, AprA is a secreted protein that inhibits proliferation and causes chemorepulsion of Dictyostelium cells, yet AprA has little sequence similarity to any human proteins. We found that a predicted structure of AprA has similarity to human dipeptidyl peptidase IV (DPPIV). DPPIV is a serine protease present in extracellular fluids that cleaves peptides with a proline or alanine in the second position. In Insall chambers, DPPIV gradients below, similar to, and above the human serum DPPIV concentration cause movement of human neutrophils away from the higher concentration of DPPIV. A 1% DPPIV concentration difference between the front and back of the cell is sufficient to cause chemorepulsion. Neutrophil speed and viability are unaffected by DPPIV. DPPIV inhibitors block DPPIV-mediated chemorepulsion. In a murine model of acute respiratory distress syndrome, aspirated bleomycin induces a significant increase in the number of neutrophils in the lungs after 3 d. Oropharyngeal aspiration of DPPIV inhibits the bleomycin-induced accumulation of mouse neutrophils. These results indicate that DPPIV functions as a chemorepellent of human and mouse neutrophils, and they suggest new mechanisms to inhibit neutrophil accumulation in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Sarah E Herlihy
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
31
|
De Buck M, Gouwy M, Proost P, Struyf S, Van Damme J. Identification and characterization of MIP-1α/CCL3 isoform 2 from bovine serum as a potent monocyte/dendritic cell chemoattractant. Biochem Pharmacol 2013; 85:789-97. [DOI: 10.1016/j.bcp.2012.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 02/05/2023]
|
32
|
Vitreous mediators in retinal hypoxic diseases. Mediators Inflamm 2013; 2013:935301. [PMID: 23365490 PMCID: PMC3556845 DOI: 10.1155/2013/935301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 10/19/2012] [Accepted: 12/01/2012] [Indexed: 12/31/2022] Open
Abstract
The causes of retinal hypoxia are many and varied. Under hypoxic conditions, a variety of soluble factors are secreted into the vitreous cavity including growth factors, cytokines, and chemokines. Cytokines, which usually serve as signals between neighboring cells, are involved in essentially every important biological process, including cell proliferation, inflammation, immunity, migration, fibrosis, tissue repair, and angiogenesis. Cytokines and chemokines are multifunctional mediators that can direct the recruitment of leukocytes to sites of inflammation, promote the process, enhance immune responses, and promote stem cell survival, development, and homeostasis. The modern particle-based flow cytometric analysis is more direct, stable and sensitive than the colorimetric readout of the conventional ELISA but, similar to ELISA, is influenced by vitreous hemorrhage, disruption of the blood-retina barrier, and high serum levels of a specific protein. Finding patterns in the expression of inflammatory cytokines specific to a particular disease can substantially contribute to the understanding of its basic mechanism and to the development of a targeted therapy.
Collapse
|
33
|
Markwick LJ, Clements D, Roberts ME, Ceresa CC, Knox AJ, Johnson SR. CCR3 induced-p42/44 MAPK activation protects against staurosporine induced-DNA fragmentation but not apoptosis in airway smooth muscle cells. Clin Exp Allergy 2012; 42:1040-50. [PMID: 22702503 DOI: 10.1111/j.1365-2222.2012.04019.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chemokine receptors (CCRs) are expressed on airway smooth muscle (ASM) cells. As their ligands are present in the airways in asthma, we hypothesized that ASM CCR activation could promote the increase in ASM mass seen in patients with chronic asthma. OBJECTIVE To determine which CCRs are expressed by ASM cells and their potential functional relevance to the chronic airway changes seen in asthma. METHODS CCR expression in primary ASM cell cultures and airway biopsies from patients with and without asthma was examined by RT-PCR, fluorescence-activated cell sorting and immunohistochemistry. ASM p42/44 MAPK activity, proliferation, migration and apoptosis were examined by western blotting, thymidine incorporation, transwell assay and TUNEL assay respectively. RESULTS CCR3 was the most frequently expressed CCR protein and was present on 79 ± 14% of cells. CX3CR1 and CXCR6 were present on 6% and 11% of cells respectively. CCR3 ligands CCL11 and CCL24 caused rapid activation of p42/44 MAPK but not Akt. CCR3 activation did not affect ASM proliferation, migration or VEGF secretion. DNA fragmentation detected by TUNEL staining could be induced by staurosporine and Fas activation although only Fas activation resulted in caspase 3 cleavage. CCL11 and CCL24 protected ASM cells against DNA fragmentation dependent upon p42/44 MAPK activity only via caspase 3 independent pathways. CCR3 was expressed in the smooth muscle and epithelium in the airways of patients with and without asthma. Smooth muscle cell DNA fragmentation in the airways of patients with stable asthma and controls was very uncommon. CONCLUSIONS AND CLINICAL RELEVANCE CCR3 is strongly expressed by ASM cells in vitro and in vivo. Protection against cell death by CCR3 activation is dependent on p42/44 MAPK but does not affect caspase 3 mediated apoptosis.
Collapse
Affiliation(s)
- L J Markwick
- Division of Therapeutics and Molecular Medicine and Nottingham NIHR Respiratory Biomedical Research Unit, University Hospital Queens Medical Centre, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
34
|
Lee JT, Lee SD, Lee JZ, Chung MK, Ha HK. Expression analysis and clinical significance of CXCL16/CXCR6 in patients with bladder cancer. Oncol Lett 2012; 5:229-235. [PMID: 23255926 DOI: 10.3892/ol.2012.976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/02/2012] [Indexed: 11/06/2022] Open
Abstract
The interactions between chemokines and their receptors are closely involved in the progression and metastasis of cancer. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in bladder cancer progression. To evaluate this hypothesis, the expression levels of CXCL16 and CXCR6 were evaluated in 160 patients, including 155 patients with bladder cancer and 5 patients with benign bladder disease. The tissues were analyzed by immunohistochemical (IHC) staining and real-time reverse-transcription polymerase chain reaction. We compared the expression of CXCL16/CXCR6 in bladder cancer and benign bladder disease. The expression of CXCR6 was increased in patients with bladder cancer compared with benign bladder disease in RT-PCR. The mRNA expression levels of CXCL16 and CXCR6 were 1.75×10(-2) and 1.99×10(-2) in benign bladder tissue and 1.39×10(-2) and 2.32×10(-2) in bladder cancer tissue, respectively. In IHC staining, the expression of CXCL16/CXCR6 in bladder cancer tissues was higher compared with benign bladder tissues. On multivariate analysis, the IHC staining of CXCL16 was correlated with the 2004 WHO grade and lymphovascular invasion (P=0.021 and P=0.011, respectively). CXCR6 was correlated with the 1973 WHO grade (P=0.001), 2004 WHO grade (P<0.001), pathological T stage (P=0.002) and perineural invasion (P=0.031). However, Cox regression analysis revealed that the expression of CXCL16 and CXCR6 was not correlated with cancer recurrence and cancer-specific survival (P=0.142 and P=0.324, respectively). The expression of CXCL16/CXCR6 was higher in bladder cancer compared to benign disease and correlated with aggressive cancer behavior. Based on our results, the CXCL16/CXCR6 axis appears to be important in the progression of bladder cancer. Thus, CXCL16 and CXCR6 serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Jun Taik Lee
- Department of Urology, Busan Saint Mary General Hospital
| | | | | | | | | |
Collapse
|
35
|
Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, Enaida H, Ishibashi T. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology 2012; 120:100-5. [PMID: 22986109 DOI: 10.1016/j.ophtha.2012.07.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/29/2012] [Accepted: 07/05/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To study the nature of inflammatory reaction in eyes of patients with retinitis pigmentosa (RP) and its possible role in the pathogenesis of RP. DESIGN Retrospective, observational study. PARTICIPANTS AND CONTROLS Three hundred seventy-one consecutive patients diagnosed with typical RP were included in this study. We included 165 patients without active inflammatory diseases, including 20 patients diagnosed with cataract, and 36 patients diagnosed with idiopathic epiretinal membrane as controls. METHODS Density of the inflammatory cells in the anterior vitreous cavity was measured and graded by slit-lamp biomicroscopy. A multiplex enzyme-linked immunosorbent assay (ELISA) was performed to evaluate the concentration of cytokines and chemokines in aqueous humor and vitreous fluid of patients with RP and controls. In addition, we investigated the relationship between visual function and anterior vitreous cells in these patients. MAIN OUTCOME MEASURES Slit-lamp biomicroscopic analysis, best-corrected visual acuity, visual field analysis, and multiplex ELISA. RESULTS In 190 of 509 eyes with RP (37.3%), "1+" (5-9 cells per field) or more cells were observed in the anterior vitreous cavity. Strong inflammatory reaction with "2+" cells (10-30 cells per field) was associated with younger age. In the elderly patients with RP, significantly decreased visual function was seen in a group with "1+" or more cells (P<0.05). Moreover, the levels of a variety of proinflammatory cytokines and chemokines, including monocyte chemotactic protein-1, were increased both in the aqueous humor and vitreous fluid of RP patients compared with the levels in control patients. CONCLUSIONS Sustained chronic inflammatory reaction may underlie the pathogenesis of RP, suggesting interventions for ocular inflammatory reaction as a potential treatment for patients with RP. FINANCIAL DISCLOSURE(S) The authors have no proprietary or commercial interest in any of the materials discussed in this article.
Collapse
Affiliation(s)
- Noriko Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liao WC, Wang HP, Huang HY, Wu MS, Chiang H, Tien YW, Lin YL, Lin JT. CXCR4 expression predicts early liver recurrence and poor survival after resection of pancreatic adenocarcinoma. Clin Transl Gastroenterol 2012; 3:e22. [PMID: 23238349 PMCID: PMC3464805 DOI: 10.1038/ctg.2012.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Liver metastasis develops in 60% of patients after resection of pancreatic adenocarcinoma (PAC) and carries a dismal prognosis, but factors predictive of liver recurrence are poorly understood. Experimental evidence suggests that liver metastasis of PAC is mediated by CXCL12/CXCR4 signaling and can be inhibited by CXCR4 antagonist. We aimed to verify whether CXCR4 expression predicts early liver recurrence and poor survival after resection, and to explore the usefulness of CXCR4 status for prognosis prediction. METHODS Ninety-seven consecutive PAC patients undergoing R0 resection were analyzed. CXCR4 expression was analyzed by immunohistochemistry, and its associations with liver recurrence-free survival and overall survival were analyzed by Kaplan-Meier estimates and multivariable Cox and accelerated failure time regression models. RESULTS CXCR4-positive patients had a worse prognosis than CXCR4-negative patients, with a shorter liver recurrence-free survival (median: 8.7 vs. 39.7 months; P=0.004) and overall survival (median: 10.2 vs. 22.3 months; P<0.001). Overall survival for CXCR4-positive stage IIa patients was similar to that for stage IIb patients and significantly shorter than that for CXCR4-negative stage IIa patients (median: 9.7 vs. 27.4 months; P=0.002). CXCR4 positivity was significantly associated with liver recurrence (adjusted hazard ratio 2.22, 95% confidence interval (CI) 1.15-4.30; P=0.018) and predicted a 46% (95% CI 9-68%) and 35% (95% CI 7-54%) reduction in liver recurrence-free survival and overall survival, respectively. CONCLUSIONS Tumor CXCR4 expression independently predicts early liver recurrence and poor overall survival after resection of PAC. CXCR4 status stratifies stage IIa patients into two groups with a striking difference in prognosis.
Collapse
Affiliation(s)
- Wei-Chih Liao
- 1] Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan [2] Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cytokine and CXC chemokine expression patterns in aqueous humor of patients with presumed tuberculous uveitis. Cytokine 2012; 59:377-81. [DOI: 10.1016/j.cyto.2012.04.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/28/2012] [Accepted: 04/18/2012] [Indexed: 12/20/2022]
|
38
|
Kunikata H, Shimura M, Nakazawa T, Sonoda KH, Yoshimura T, Ishibashi T, Nishida K. Chemokines in aqueous humour before and after intravitreal triamcinolone acetonide in eyes with macular oedema associated with branch retinal vein occlusion. Acta Ophthalmol 2012; 90:162-7. [PMID: 20456252 DOI: 10.1111/j.1755-3768.2010.01892.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To determine the aqueous humour levels of chemokines before and after an intravitreal injection of triamcinolone acetonide (IVTA) in eyes with macular oedema associated with a branch retinal vein occlusion (ME-BRVO). DESIGN Single-centre, prospective, consecutive interventional case series. PARTICIPANTS Seventeen eyes of 17 consecutive patients with ME-BRVO who underwent IVTA were studied. Seven eyes without retinal vascular disease served as control. INTERVENTION All patients with ME-BRVO underwent IVTA. MAIN OUTCOME MEASURES The optical coherence tomographically determined foveal thickness (FT) and the aqueous humour levels of inflammatory chemokines of the C-C subfamily, including eotaxin, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), β (MIP-1β), and RANTES was determined before the IVTA (baseline) and at 1 week after the IVTA. RESULTS At the baseline, only MCP-1 and MIP-1β were detected in the aqueous, and MIP-1β was significantly higher in eyes with a ME-BRVO than in controls (p = 0.004). The level of both of these chemokines was not correlated with the FT (p = 0.654 and p = 0.608, respectively). One week after IVTA, the FT was significantly decreased (p < 0.001), and the levels of MCP-1 and MIP-1β were also significantly reduced (p < 0.001 and p = 0.044, respectively). The decrease in the FT was correlated with the decrease in only MIP-1β (r = 0.58, p = 0.020). CONCLUSIONS Alterations of the aqueous level of MIP-1β reflect the improvement of the macular oedema after IVTA in eyes with ME-BRVO. This indicates that the steroid-dependent ME-BRVO was closely related with the level of MIP-1β.
Collapse
Affiliation(s)
- Hiroshi Kunikata
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Verbeke H, Geboes K, Van Damme J, Struyf S. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta Rev Cancer 2011; 1825:117-29. [PMID: 22079531 DOI: 10.1016/j.bbcan.2011.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 12/12/2022]
Abstract
Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile.
Collapse
Affiliation(s)
- Hannelien Verbeke
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven (K.U.Leuven), Belgium
| | | | | | | |
Collapse
|
40
|
Verbeke H, Struyf S, Laureys G, Van Damme J. The expression and role of CXC chemokines in colorectal cancer. Cytokine Growth Factor Rev 2011; 22:345-58. [PMID: 22000992 DOI: 10.1016/j.cytogfr.2011.09.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/06/2011] [Indexed: 12/14/2022]
Abstract
Cancer is a life-threatening disease world-wide and colorectal cancer is the second common cause of cancer mortality. The interaction between tumor cells and stromal cells plays a crucial role in tumor initiation and progression and is partially mediated by chemokines. Chemokines predominantly participate in the chemoattraction of leukocytes to inflammatory sites. Nowadays, it is clear that CXC chemokines and their receptors (CXCR) may also modulate tumor behavior by several important mechanisms: regulation of angiogenesis, activation of a tumor-specific immune response by attracting leukocytes, stimulation of tumor cell proliferation and metastasis. Here, we review the expression and complex roles of CXC chemokines (CXCL1 to CXCL16) and their receptors (CXCR1 to CXCR6) in colorectal cancer. Overall, increased expression levels of CXC chemokines correlate with poor prognosis.
Collapse
Affiliation(s)
- Hannelien Verbeke
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven (K.U. Leuven), Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
41
|
Molecular mechanism and structural basis of interactions of dipeptidyl peptidase IV with adenosine deaminase and human immunodeficiency virus type-1 transcription transactivator. Eur J Cell Biol 2011; 91:265-73. [PMID: 21856036 DOI: 10.1016/j.ejcb.2011.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/31/2011] [Accepted: 06/11/2011] [Indexed: 11/21/2022] Open
Abstract
Dipeptidyl peptidase IV (DPPIV or CD26) is a multifunctional membrane glycoprotein. As an exopeptidase it regulates the activity of a series of biologically important peptides. Through its interaction with specific proteins and peptides, DPPIV is also involved in a wide range of biologically relevant processes such as cell adhesion, T cell activation and apoptosis. In this paper, we review our recent studies on the interactions of DPPIV with adenosine deaminase (ADA) and the transcription transactivator of the human immunodeficiency virus type-1 (HIV-1 Tat) as revealed by three-dimensional structure reconstructed by single particle analysis of cryo-electron microscopy (EM) and crystal structures of the human DPPIV-bovine ADA complex as well as the crystal structures of DPPIV in complex with HIV-1 Tat-derived nonapeptides. These results contribute importantly to the clarification of the molecular mechanisms of this multifunctional protein. The biological relevance of these interactions is discussed.
Collapse
|
42
|
Manabe S, Iwase A, Goto M, Kobayashi H, Takikawa S, Nagatomo Y, Nakahara T, Bayasula, Nakamura T, Hirokawa W, Kikkawa F. Expression and localization of CXCL16 and CXCR6 in ovarian endometriotic tissues. Arch Gynecol Obstet 2011; 284:1567-72. [DOI: 10.1007/s00404-011-2002-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/08/2011] [Indexed: 12/18/2022]
|
43
|
El-Asrar AMA, Al-Obeidan SS, Kangave D, Geboes K, Opdenakker G, Van Damme J, Struyf S. CXC chemokine expression profiles in aqueous humor of patients with different clinical entities of endogenous uveitis. Immunobiology 2011; 216:1004-9. [PMID: 21531038 DOI: 10.1016/j.imbio.2011.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/30/2011] [Indexed: 01/01/2023]
Abstract
Aqueous humor (AH) samples from patients with Behçet's disease (BD) (n=29), Vogt-Koyanagi-Harada (VKH) disease (n=21), and HLA-B27-associated uveitis (n=8), and 42 control patients were assayed for the neutrophil chemoattractants CXCL1/GRO-α and CXCL8/IL-8 and the lymphocyte chemoattractants CXCL9/MIG, CXCL10/IP-10 and CXCL12/SDF-1 with the use of a multiplex chemokine assay. Chemokine levels except SDF-1 were significantly higher in the 3 disease groups than in normal controls. Considering all patients, mean GRO-α levels were 15-fold higher than IL-8 levels and mean IP-10 levels were 22-fold higher than MIG levels. In patients with the same disease activity, AH levels of GRO-α and IP-10 were significantly higher in patients with BD than in patients with VKH disease and HLA-B27-associated uveitis (p=0.0474; p<0.001, respectively). These data suggest that GRO-α and IP-10 are the predominant CXC chemokines involved in neutrophil and activated T lymphocyte chemoattraction in endogenous uveitis, particularly in BD.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Xu QQ, Chang MX, Sun RH, Xiao FS, Nie P. The first non-mammalian CXCR5 in a teleost fish: molecular cloning and expression analysis in grass carp (Ctenopharyngodon idella). BMC Immunol 2010; 11:25. [PMID: 20504365 PMCID: PMC2889864 DOI: 10.1186/1471-2172-11-25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 05/26/2010] [Indexed: 11/17/2022] Open
Abstract
Background Chemokines, a group of small and structurally related proteins, mediate chemotaxis of various cell types via chemokine receptors. In mammals, seven different CXC chemokine receptors denoted as CXCR1 to CXCR7 have been reported. However, the chemokine receptor CXCR5 has not been reported in other vertebrates. Results In the present study, the genomic sequence of CXCR5 was isolated from the grass carp Ctenopharyngodon idella. The cDNA sequence of grass carp CXCR5 (gcCXCR5) consists of 1518 bp with a 43 bp 5' untranslated region (UTR) and a 332 bp 3' UTR, with an open reading frame of 1143 bp encoding 381 amino acids which are predicted to have seven transmembrane helices. The characteristic residues (DRYLAIVHA) and conserved cysteine residues are located in the extracellular regions and in the third to seventh transmembrane domains. The deduced amino acid sequence shows 37.6-66.6% identities with CXCR5 of mammals, avian and other fish species. The grass carp gene consists of two exons, with one intervening intron, spaced over 2081 bp of genomic sequence. Phylogenetic analysis clearly demonstrated that the gcCXCR5 is clustered with those in other teleost fish and then in chicken and mammals. Real-time PCR analysis showed that gcCXCR5 was expressed in all tested organs/tissues and its expression level was the highest in trunk kidney, followed by in the spleen. The expression of gcCXCR5 was significantly modulated by immunostimulants such as peptidoglycan (PGN), lipopolysaccharide (LPS), polyinosinic-polycytidylic acid sodium salt (Poly I:C) and phytohaemagglutinin (PHA). Conclusion The cDNA and genomic sequences of CXCR5 have been successfully characterized in a teleost fish, the grass carp. The CXCR5 has in general a constitutive expression in organs/tissues examined, whereas its expression was significantly up-regulated in immune organs and down-regulated in brain, indicating its potential role in immune response and central nervous system.
Collapse
Affiliation(s)
- Qiao Q Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, PR China
| | | | | | | | | |
Collapse
|
46
|
Deng L, Chen N, Li Y, Zheng H, Lei Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta Rev Cancer 2010; 1806:42-9. [PMID: 20122997 DOI: 10.1016/j.bbcan.2010.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/12/2010] [Accepted: 01/24/2010] [Indexed: 02/05/2023]
Abstract
Metastasis is considered the obvious mark for most aggressive cancers. However, little is known about the molecular mechanism of the regulation of cancer metastasis. Recent evidence increasingly suggests that the interaction between chemokines and chemokine receptors is pivotal in the process of metastasis. The chemokine receptor CXCR4 and its ligand CXCL12, for example, have been reported to play a vital role in cancer metastasis. Another chemokine and chemokine receptor pair, the CXCL16/CXCR6 axis, has been studied by several independent research groups. Here, we summarize recent advances in our knowledge of the function of CXC chemokine receptor CXCR6 and its ligand CXCL16 in regulating metastasis and invasion of cancer. CXCR6 and CXCL16 are up-regulated in multiple cancer tissue types and cancer cell lines relative to normal tissues and cell lines. In addition, both CXCR6 and CXCL16 levels increase as tumor malignancy increases. Trans-membranous CXCL16 chemokine reduces proliferation while soluble CXCL16 chemokine enhances proliferation and migration. TM-CXCL16 functions as an inducer for lymphocyte build-up around tumor sites. High trans-membranous CXCL16 expression correlates with a good prognosis. Moreover, the Akt/mTOR signal pathway is involved in activating the CXCR6/CXCL16 axis. These findings suggest multiple opportunities for blocking the CXCR6/CXCL16 axis and the Akt/mTOR signal pathway in novel cancer therapies.
Collapse
Affiliation(s)
- Ling Deng
- Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | |
Collapse
|
47
|
Narter K, Agachan B, Sozen S, Cincin Z, Isbir T. CCR2-64I is a risk factor for development of bladder cancer. GENETICS AND MOLECULAR RESEARCH 2010; 9:685-92. [DOI: 10.4238/vol9-2gmr829] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Yoshimura T, Sonoda KH, Sugahara M, Mochizuki Y, Enaida H, Oshima Y, Ueno A, Hata Y, Yoshida H, Ishibashi T. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One 2009; 4:e8158. [PMID: 19997642 PMCID: PMC2780733 DOI: 10.1371/journal.pone.0008158] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 11/11/2009] [Indexed: 11/19/2022] Open
Abstract
Inflammation affects the formation and the progression of various vitreoretinal diseases. We performed a comprehensive analysis of inflammatory immune mediators in the vitreous fluids from total of 345 patients with diabetic macular edema (DME, n = 92), proliferative diabetic retinopathy (PDR, n = 147), branch retinal vein occlusion (BRVO, n = 30), central retinal vein occlusion (CRVO, n = 13) and rhegmatogenous retinal detachment (RRD, n = 63). As a control, we selected a total of 83 patients with either idiopathic macular hole (MH) or idiopathic epiretinal membrane (ERM) that were free of major pathogenic intraocular changes, such as ischemic retina and proliferative membranes. The concentrations of 20 soluble factors (nine cytokines, six chemokines, and five growth factors) were measured simultaneously by multiplex bead analysis system. Out of 20 soluble factors, three factors: interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1) were significantly elevated in all groups of vitreoretinal diseases (DME, PDR, BRVO, CRVO, and RRD) compared with control group. According to the correlation analysis in the individual patient's level, these three factors that were simultaneously increased, did not show any independent upregulation in all the examined diseases. Vascular endothelial growth factor (VEGF) was significantly elevated in patients with PDR and CRVO. In PDR patients, the elevation of VEGF was significantly correlated with the three factors: IL-6, IL-8, and MCP-1, while no significant correlation was observed in CRVO patients. In conclusion, multiplex bead system enabled a comprehensive soluble factor analysis in vitreous fluid derived from variety of patients. Major three factors: IL-6, IL-8, and MCP-1 were strongly correlated with each other indicating a common pathway involved in inflammation process in vitreoretinal diseases.
Collapse
Affiliation(s)
- Takeru Yoshimura
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Mika Sugahara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasutaka Mochizuki
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Enaida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Oshima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akifumi Ueno
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuaki Hata
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Yoshida
- Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
Cordero OJ, Salgado FJ, Nogueira M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother 2009; 58:1723-47. [PMID: 19557413 PMCID: PMC11031058 DOI: 10.1007/s00262-009-0728-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/02/2009] [Indexed: 12/23/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV), assigned to the CD26 cluster, is expressed on epithelial cells and lymphocytes and is a multifunctional or pleiotropic protein. Its peptidase activity causes degradation of many biologically active peptides, e.g. some incretins secreted by the enteroendocrine system. DPP-IV has, therefore, become a novel therapeutic target for inhibitors that extend endogenously produced insulin half-life in diabetics, and several reviews have appeared in recent months concerning the clinical significance of CD26/DPP-IV. Biological fluids contain relatively high levels of soluble CD26 (sCD26). The physiological role of sCD26 and its relation, if any, to CD26 functions, remain poorly understood because whether the process for CD26 secretion and/or shedding from cell membranes is regulated or not is not known. Liver epithelium and lymphocytes are often cited as the most likely source of sCD26. It is important to establish which tissue or organ is the protein source as well as the circumstances that can provoke an abnormal presence/absence or altered levels in many diseases including cancer, so that sCD26 can be validated as a clinical marker or a therapeutic target. For example, we have previously reported low levels of sCD26 in the blood of colorectal cancer patients, which indicated the potential usefulness of the protein as a biomarker for this cancer in early diagnosis, monitoring and prognosis. Through this review, we envisage a role for sCD26 and the alteration of normal peptidase capacity (in clipping enteroendocrine or other peptides) in the complex crosstalk between the lymphoid lineage and, at least, some malignant tumours.
Collapse
Affiliation(s)
- Oscar J Cordero
- Department of Biochemistry and Molecular Biology, CIBUS, University of Santiago de Compostela, r/Lopez de Marzoa s/n, Campus Sur, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
50
|
Savino B, Borroni EM, Torres NM, Proost P, Struyf S, Mortier A, Mantovani A, Locati M, Bonecchi R. Recognition versus adaptive up-regulation and degradation of CC chemokines by the chemokine decoy receptor D6 are determined by their N-terminal sequence. J Biol Chem 2009; 284:26207-15. [PMID: 19632987 PMCID: PMC2758019 DOI: 10.1074/jbc.m109.029249] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/23/2009] [Indexed: 11/06/2022] Open
Abstract
The chemokine decoy receptor D6 controls inflammatory responses by selective recognition and degradation of most CCR1 to CCR5 agonistic ligands. CCL14 is a homeostatic chemokine present at high concentrations in the serum with a weak agonist activity on CCR1. Under inflammatory conditions, plasmin and UPA-mediated truncation of 8 amino acids generates the potent CCR1/CCR3/CCR5 isoform CCL14(9-74), which is further processed and inactivated by dipeptidyl peptidase IV/CD26 that generates CCL14(11-74). Here we report that D6 efficiently binds both CCL14 and its truncated isoforms. Like other D6 ligands, the biologically active CCL14(9-74) induces adaptive up-regulation of D6 expression on the cell membrane and is rapidly and efficiently degraded. In contrast, the D6-mediated degradation of the biologically inactive isoforms CCL14(1-74) and CCL14(11-74) is very inefficient. Thus, D6 cooperates with CD26 in the negative regulation of CCL14 by the selective degradation of its biologically active isoform. Analysis of a panel of CC chemokines and their truncated isoforms revealed that D6-mediated chemokine degradation does not correlate with binding affinity. Conversely, degradation efficiency is positively correlated with D6 adaptive up-regulation. Sequence analysis indicated that a proline residue in position 2 of D6 ligands is dispensable for binding but crucial for D6 adaptive up-regulation and efficient degradation.
Collapse
Affiliation(s)
- Benedetta Savino
- From the Department of Translational Medicine, University of Milan, 20089 Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Clinico Humanitas, I-20089 Rozzano (Milan), Italy, and
| | - Elena Monica Borroni
- From the Department of Translational Medicine, University of Milan, 20089 Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Clinico Humanitas, I-20089 Rozzano (Milan), Italy, and
| | - Nina Machado Torres
- From the Department of Translational Medicine, University of Milan, 20089 Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Clinico Humanitas, I-20089 Rozzano (Milan), Italy, and
| | - Paul Proost
- the Laboratory of Molecular Immunology, Rega Institute, K. U. Leuven, B-3000 Leuven, Belgium
| | - Sofie Struyf
- the Laboratory of Molecular Immunology, Rega Institute, K. U. Leuven, B-3000 Leuven, Belgium
| | - Anneleen Mortier
- the Laboratory of Molecular Immunology, Rega Institute, K. U. Leuven, B-3000 Leuven, Belgium
| | - Alberto Mantovani
- From the Department of Translational Medicine, University of Milan, 20089 Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Clinico Humanitas, I-20089 Rozzano (Milan), Italy, and
| | - Massimo Locati
- From the Department of Translational Medicine, University of Milan, 20089 Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Clinico Humanitas, I-20089 Rozzano (Milan), Italy, and
| | - Raffaella Bonecchi
- From the Department of Translational Medicine, University of Milan, 20089 Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Clinico Humanitas, I-20089 Rozzano (Milan), Italy, and
| |
Collapse
|