1
|
Drexel VEM, Göbel TW, Früh SP. Characterization of a novel chicken γδ TCR-specific marker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105250. [PMID: 39159844 DOI: 10.1016/j.dci.2024.105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Chickens are a species with a high number of γδ T cells in various tissues. Despite their abundance, γδ T cells are poorly characterized in chickens, partially due to a lack of specific reagents to characterize these cells. Up until now, the TCR1 clone has been the only γδ T cell-specific monoclonal antibody (mAb) in chickens and additional reagents for γδ T cell subsets are needed. In order to address this issue, new mAb were generated in our laboratory by immunizing mice with in vitro cultured γδ T cells. In an initial flow cytometric screen a new mAb, clone "8D2", displayed an interesting staining pattern that mirrored γδ TCR up- and downregulation in the γδ T cell line D4 over time, prompting us to characterize this antibody further. We compared the expression of the unknown 8D2 epitope in combination with TCR1 staining across various primary cells. In splenocytes, peripheral blood lymphocytes and intestinal epithelial cells, 8D2 consistently labeled a subset of TCR1+ cells. To determine, whether specific γδ T cell receptors were recognized by 8D2, we sorted γδ T cells according to their 8D2 and TCR1 expression and analyzed their TCR V(D)J gene usage by TCR profiling. Strikingly, sorted 8D2+ cells preferentially expressed Vγ3 genes, whereas the TCR Vγ genes used by TCR1+ 8D2- cells were more variable. γδ TCR in 8D2+ cells were most frequently comprised of gamma chain VJ genes TRGV3-8 and TRGJ3, and delta chain VDJ genes TRDV1-2, TRDD2, TRDJ1. To confirm binding of 8D2 to specific γδ TCR, the preferentially utilized combination of TRG and TRD was expressed in HEK293 cells in combination with CD3, demonstrating surface binding of the 8D2 mAb to this Vγ3 γδ TCR-expressing cell line. Conversely, HEK293 cells expressing either Vγ1 or Vγ2 TCR did not react with 8D2. In conclusion, 8D2 is a novel tool for identifying specific Vγ3 bearing γδ T cells.
Collapse
Affiliation(s)
- Veronika E M Drexel
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany
| | - Thomas W Göbel
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany.
| | - Simon P Früh
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany; Department of Veterinary Medicine, Institute of Virology, FU Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| |
Collapse
|
2
|
Linti AE, Göbel TW, Früh SP. Chicken γδ T cells proliferate upon IL-2 and IL-12 treatment and show a restricted receptor repertoire in cell culture. Front Immunol 2024; 15:1325024. [PMID: 38420118 PMCID: PMC10900522 DOI: 10.3389/fimmu.2024.1325024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
In chickens, γδ T cells represent a large fraction of peripheral T cells; however, their function remains largely unknown. Here, we describe the selective in vitro expansion of γδ T cells from total splenocytes by stimulation with the cytokines IL-2 and IL-12. Under these conditions, γδ T cells proliferated preferentially and reached frequencies of >95% within three weeks. Although IL-2 alone also triggered proliferation, an increased proliferation rate was observed in combination with IL-12. Most of the expanded cells were γδ TCR and CD8 double-positive. Splenocytes sorted into TCR1+CD8+, TCR1highCD8-, and TCR1lowCD8- subsets proliferated well upon dual stimulation with IL-2/IL-12, indicating that none of the three γδ T cell subsets require bystander activation for proliferation. TCR1+CD8+ cells maintained CD8 surface expression during stimulation, whereas CD8- subpopulations showed varied levels of CD8 upregulation, with the highest upregulation observed in the TCR1high subset. Changes in the γδ T-cell receptor repertoire during cell culture from day 0 to day 21 were analyzed by next-generation sequencing of the γδ variable regions. Overall, long-term culture led to a restricted γ and δ chain repertoire, characterized by a reduced number of unique variable region clonotypes, and specific V genes were enriched at day 21. On day 0, the δ chain repertoire was highly diverse, and the predominant clonotypes differed between animals, while the most frequent γ-chain clonotypes were shared between animals. However, on day 21, the most frequent clonotypes in both the γ and δ chain repertoires were different between animals, indicating that selective expansion of dominant clonotypes during stimulation seems to be an individual outcome. In conclusion, IL-2 and IL-12 were sufficient to stimulate the in vitro outgrowth of γδ T cells. Analyses of the TCR repertoire indicate that the culture leads to an expansion of individual T cell clones, which may reflect previous in vivo activation. This system will be instrumental in studying γδ T cell function.
Collapse
Affiliation(s)
- Antonia E. Linti
- Department of Veterinary Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas W. Göbel
- Department of Veterinary Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon P. Früh
- Department of Veterinary Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Caecal microbiota composition of experimental inbred MHC-B lines infected with IBV differs according to genetics and vaccination. Sci Rep 2022; 12:9995. [PMID: 35705568 PMCID: PMC9199466 DOI: 10.1038/s41598-022-13512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions between the gut microbiota and the immune system may be involved in vaccine and infection responses. In the present study, we studied the interactions between caecal microbiota composition and parameters describing the immune response in six experimental inbred chicken lines harboring different MHC haplotypes. Animals were challenge-infected with the infectious bronchitis virus (IBV), and half of them were previously vaccinated against this pathogen. We explored to what extent the gut microbiota composition and the genetic line could be related to the immune response, evaluated through flow cytometry. To do so, we characterized the caecal bacterial communities with a 16S rRNA gene amplicon sequencing approach performed one week after the IBV infectious challenge. We observed significant effects of both the vaccination and the genetic line on the microbiota after the challenge infection with IBV, with a lower bacterial richness in vaccinated chickens. We also observed dissimilar caecal community profiles among the different lines, and between the vaccinated and non-vaccinated animals. The effect of vaccination was similar in all the lines, with a reduced abundance of OTU from the Ruminococcacea UCG-014 and Faecalibacterium genera, and an increased abundance of OTU from the Eisenbergiella genus. The main association between the caecal microbiota and the immune phenotypes involved TCRϒδ expression on TCRϒδ+ T cells. This phenotype was negatively associated with OTU from the Escherichia-Shigella genus that were also less abundant in the lines with the highest responses to the vaccine. We proved that the caecal microbiota composition is associated with the IBV vaccine response level in inbred chicken lines, and that the TCRϒδ+ T cells (judged by TCRϒδ expression) may be an important component involved in this interaction, especially with bacteria from the Escherichia-Shigella genus. We hypothesized that bacteria from the Escherichia-Shigella genus increased the systemic level of bacterial lipid antigens, which subsequently mitigated poultry γδ T cells.
Collapse
|
4
|
Zhang T, Li Q, Li X, Kang L, Jiang Y, Sun Y. Characterization of the chicken T cell receptor γ repertoire by high-throughput sequencing. BMC Genomics 2021; 22:683. [PMID: 34548028 PMCID: PMC8456604 DOI: 10.1186/s12864-021-07975-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As one of "γδ-high" species, chicken is an excellent model for the study of γδ T cells in non-mammalian animals. However, a comprehensive characterization of the TCRγδ repertoire is still missing in chicken. The objective of this study was to characterize the expressed TCRγ repertoire in chicken thymus using high-throughput sequencing. METHODS In this study, we first obtained the detailed genomic organization of the TCRγ locus of chicken based on the latest assembly of the red jungle fowl genome sequences (GRCg6a) and then characterized the TCRγ repertoire in the thymus of four chickens by using 5' Rapid Amplification of cDNA Ends (5' RACE) along with high-throughput sequencing (HTS). RESULTS The chicken TCRγ locus contains a single Cγ gene, three functional Jγ segments and 44 Vγ segments that could be classified into six subgroups, each containing six, nineteen, nine, four, three and three members. Dot-plot analysis of the chicken TCRγ locus against itself showed that almost all the entire zone containing Vγ segments had arisen through tandem duplication events, and the main homology unit, containing 9 or 10 Vγ gene segments, has tandemly duplicated for four times. For the analysis of chicken TCRγ repertoire, more than 100,000 unique Vγ-region nucleotide sequences were obtained from the thymus of each chicken. After alignment to the germline Vγ and Jγ segments identified above, we found that the four chickens had similar repertoire profile of TCRγ. In brief, four Vγ segments (including Vγ3.7, Vγ2.13, Vγ1.6 and Vγ1.3) and six Vγ-Jγ pairs (including Vγ3.7-Jγ3, Vγ2.13-Jγ1, Vγ2.13-Jγ3, Vγ1.6-Jγ3, Vγ3.7-Jγ1 and Vγ1.6-Jγ1) were preferentially utilized by all four individuals, and vast majority of the unique CDR3γ sequences encoded 4 to 22 amino acids with mean 12.90 amino acids, which exhibits a wider length distribution and/or a longer mean length than CDR3γ of human, mice and other animal species. CONCLUSIONS In this study, we present the first in-depth characterization of the TCRγ repertoire in chicken thymus. We believe that these data will facilitate the studies of adaptive immunology in birds.
Collapse
Affiliation(s)
- Tongtong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China
| | - Qian Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China
| | - Xiaoqing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China.
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China.
| |
Collapse
|
5
|
Zhang L, Liu Y, Meng G, Liang R, Zhang B, Xia C. Structural and Biophysical Insights into the TCRαβ Complex in Chickens. iScience 2020; 23:101828. [PMID: 33305184 PMCID: PMC7711287 DOI: 10.1016/j.isci.2020.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 10/25/2022] Open
Abstract
In this work, chicken HPAIV H5N1 epitope-specific TCRαβ (ch-TCRαβ) was isolated and its structure was determined. The Cα domain of ch-TCRαβ does not exhibit the typical structure of human TCRαβ, and the DE loop extends outward, resulting in close proximity between the Cα domain of ch-TCRαβ and CD3εδ/γ. The FG loop of the Cβ domain of ch-TCRαβ is shorter. The changes in the C domains of ch-TCRαβ and the difference in chicken CD3εδ/γ confirm that the complexes formed by TCRαβ and CD3εδ/γ differ from those in humans. In the chicken complex, a positively charged cleft is formed between the two CDR3 loops that might accommodate the acidic side chains of the chicken pMHC-I-bound HPAIV epitope intermediate portion oriented toward ch-TCRαβ. This is the first reported structure of chicken TCRαβ, and it provides a structural model of the ancestral TCR system in the immune synapses between T cells and antigen-presenting cells in lower vertebrates.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China.,Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Geng Meng
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Bing Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
6
|
Antonacci R, Massari S, Linguiti G, Caputi Jambrenghi A, Giannico F, Lefranc MP, Ciccarese S. Evolution of the T-Cell Receptor (TR) Loci in the Adaptive Immune Response: The Tale of the TRG Locus in Mammals. Genes (Basel) 2020; 11:E624. [PMID: 32517024 PMCID: PMC7349638 DOI: 10.3390/genes11060624] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes are the principal actors of vertebrates' cell-mediated immunity. Like B cells, they can recognize an unlimited number of foreign molecules through their antigen-specific heterodimer receptors (TRs), which consist of αβ or γδ chains. The diversity of the TRs is mainly due to the unique organization of the genes encoding the α, β, γ, and δ chains. For each chain, multi-gene families are arranged in a TR locus, and their expression is guaranteed by the somatic recombination process. A great plasticity of the gene organization within the TR loci exists among species. Marked structural differences affect the TR γ (TRG) locus. The recent sequencing of multiple whole genome provides an opportunity to examine the TR gene repertoire in a systematic and consistent fashion. In this review, we report the most recent findings on the genomic organization of TRG loci in mammalian species in order to show differences and similarities. The comparison revealed remarkable diversification of both the genomic organization and gene repertoire across species, but also unexpected evolutionary conservation, which highlights the important role of the T cells in the immune response.
Collapse
Affiliation(s)
- Rachele Antonacci
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Giovanna Linguiti
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| | - Anna Caputi Jambrenghi
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.C.J.); (F.G.)
| | - Francesco Giannico
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.C.J.); (F.G.)
| | - Marie-Paule Lefranc
- IMGT, the International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR9002 CNRS, Université de Montpellier, CEDEX 5, 34396 Montpellier, France;
| | - Salvatrice Ciccarese
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| |
Collapse
|
7
|
Alkie TN, Yitbarek A, Hodgins DC, Kulkarni RR, Taha-Abdelaziz K, Sharif S. Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathol 2019; 48:288-310. [PMID: 31063007 DOI: 10.1080/03079457.2019.1607966] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Newly hatched chickens are confronted by a wide array of pathogenic microbes because their adaptive immune defences have limited capabilities to control these pathogens. In such circumstances, and within this age group, innate responses provide a degree of protection. Moreover, as the adaptive immune system is relatively naïve to foreign antigens, synergy with innate defences is critical. This review presents knowledge on the ontogeny of innate immunity in chickens pre-hatch and early post-hatch and provides insights into possible interventions to modulate innate responses early in the life of the bird. As in other vertebrate species, the chicken innate immune system which include cellular mediators, cytokine and chemokine repertoires and molecules involved in antigen detection, develop early in life. Comparison of innate immune systems in newly hatched chickens and mature birds has revealed differences in magnitude and quality, but responses in younger chickens can be boosted using innate immune system modulators. Functional expression of pattern recognition receptors and several defence molecules by innate immune system cells of embryos and newly hatched chicks suggests that innate responses can be modulated at this stage of development to combat pathogens. Improved understanding of innate immune system ontogeny and functionality in chickens is critical for the implementation of sound and safe interventions to provide long-term protection against pathogens. Next-generation tools for studying genetic and epigenetic regulation of genes, functional metagenomics and gene knockouts can be used in the future to explore and dissect the contributions of signalling pathways of innate immunity and to devise more efficacious disease control strategies.
Collapse
Affiliation(s)
- Tamiru N Alkie
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Alexander Yitbarek
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Douglas C Hodgins
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Raveendra R Kulkarni
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Khaled Taha-Abdelaziz
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada.,b Pathology Department, Faculty of Veterinary Medicine , Beni-Suef University , Beni-Suef , Egypt
| | - Shayan Sharif
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| |
Collapse
|
8
|
Hager-Theodorides A, Goliomytis M, Delis S, Deligeorgis S. Effects of dietary supplementation with quercetin on broiler immunological characteristics. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Dalloul RA, Lillehoj HS. Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccines 2014; 5:143-63. [PMID: 16451116 DOI: 10.1586/14760584.5.1.143] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coccidiosis is recognized as the major parasitic disease of poultry and is caused by the apicomplexan protozoan Eimeria. Coccidiosis seriously impairs the growth and feed utilization of infected animals resulting in loss of productivity. Conventional disease control strategies rely heavily on chemoprophylaxis and, to a certain extent, live vaccines. Combined, these factors inflict tremendous economic losses to the world poultry industry in excess of USD 3 billion annually. Increasing regulations and bans on the use of anticoccidial drugs coupled with the associated costs in developing new drugs and live vaccines increases the need for the development of novel approaches and alternative control strategies for coccidiosis. This paper aims to review the current progress in understanding the host immune response to Eimeria and discuss current and potential strategies being developed for coccidiosis control in poultry.
Collapse
Affiliation(s)
- Rami A Dalloul
- Animal & Natural Resources Institute, BARC-East, Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
10
|
Wang G, Wang Y, Yu L, Jiang Y, Liu J, Cheng Z. New pathogenetic characters of reticuloendotheliosis virus isolated from Chinese partridge in specific-pathogen-free chickens. Microb Pathog 2012; 53:57-63. [PMID: 22579709 DOI: 10.1016/j.micpath.2012.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/30/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
Avian reticuloendotheliosis virus (REV) infection can induce a runting syndrome, immunosuppression, acute reticulum cell neoplasia and lymphomas in a variety of domestic and wild birds. To evaluate the pathogenicity and oncogenicity of REV-JX0927 that isolated from Chinese partridge, experimental inoculated day-old specific-pathogen-free (SPF) White Leghorn chickens were examined at regular intervals. The examination procedures included hematology, serology and histopathology; also including immunohistochemistry and apoptosis assay. Body weight, relative immune organs weight and apoptosis assay results revealed that the immunosuppression of infected birds is associated with apoptosis of lymphocytes in lymphoid tissues, especially in thymus induced by REV-JX0927. Hematology and apoptosis assay results showed that the 7th week of post-infection is a critical time point for lymphocytes to be transformed into tumor cells. Histopathology evidences demonstrated that REV-JX0927 induced reticuloendotheliosis at early stage (1 week), and lymphosarcomas at middle stage (after 7 weeks). In addition, squamous-cell carcinoma, adenocarcinoma and aneurysm were found in infected birds. Arteritis was associated with concentration of serum protein and fat. REV antigen expression was observed in infected birds through the experimental period. REV has high tropism for proventriculus, kidney, liver, lymphoid tissues, pancreas, lymphosarcoma cells and blood vessels. Data from this study showed that several new pathogenitic characters caused by REV-JX0927 were observed. It indicated that REV-JX0927 is a multipotential oncogenic retrovirus.
Collapse
Affiliation(s)
- Guihua Wang
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Daizong ST, Tai'an, China
| | | | | | | | | | | |
Collapse
|
11
|
Mwangi WN, Smith LP, Baigent SJ, Beal RK, Nair V, Smith AL. Clonal structure of rapid-onset MDV-driven CD4+ lymphomas and responding CD8+ T cells. PLoS Pathog 2011; 7:e1001337. [PMID: 21573129 PMCID: PMC3088711 DOI: 10.1371/journal.ppat.1001337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 04/05/2011] [Indexed: 01/28/2023] Open
Abstract
Lymphoid oncogenesis is a life threatening complication associated with a number of persistent viral infections (e.g. EBV and HTLV-1 in humans). With many of these infections it is difficult to study their natural history and the dynamics of tumor formation. Marek's Disease Virus (MDV) is a prevalent α-herpesvirus of poultry, inducing CD4+ TCRαβ+ T cell tumors in susceptible hosts. The high penetrance and temporal predictability of tumor induction raises issues related to the clonal structure of these lymphomas. Similarly, the clonality of responding CD8 T cells that infiltrate the tumor sites is unknown. Using TCRβ repertoire analysis tools, we demonstrated that MDV driven CD4+ T cell tumors were dominated by one to three large clones within an oligoclonal framework of smaller clones of CD4+ T cells. Individual birds had multiple tumor sites, some the result of metastasis (i.e. shared dominant clones) and others derived from distinct clones of transformed cells. The smaller oligoclonal CD4+ cells may represent an anti-tumor response, although on one occasion a low frequency clone was transformed and expanded after culture. Metastatic tumor clones were detected in the blood early during infection and dominated the circulating T cell repertoire, leading to MDV associated immune suppression. We also demonstrated that the tumor-infiltrating CD8+ T cell response was dominated by large oligoclonal expansions containing both “public” and “private” CDR3 sequences. The frequency of CD8+ T cell CDR3 sequences suggests initial stimulation during the early phases of infection. Collectively, our results indicate that MDV driven tumors are dominated by a highly restricted number of CD4+ clones. Moreover, the responding CD8+ T cell infiltrate is oligoclonal indicating recognition of a limited number of MDV antigens. These studies improve our understanding of the biology of MDV, an important poultry pathogen and a natural infection model of virus-induced tumor formation. Many viral infections target the immune system, making use of the long lived, highly proliferative lymphocytes to propagate and survive within the host. This characteristic has led to an association between some viruses such as Epstein Barr Virus (EBV), Human T cell Lymphotrophic Virus-1 (HTLV-1) and Mareks Disease Virus (MDV) and lymphoid tumors. We employed methods for identifying the T cell receptor repertoire as a molecular bar-code to study the biology of MDV-induced tumors and the anti-tumor response. Each individual contained a small number of large (high frequency) tumor clones alongside some smaller (lower frequency) clones in the CD4+ T cell population. The tumor infiltrating CD8+ T cell response was highly focused with a small number of large clones, with one representing a public CDR3 sequence. This data is consistent with the recognition of a small number of dominant antigens and understanding the relationship between these and protective immunity is important to improve development of new vaccination strategies. Collectively, our results provide insights into the clonal structure of MDV driven tumors and in the responding CD8+ T cell compartment. These studies advance our understanding of MDV biology, an important poultry disease and a natural infection model of virus-induced tumor formation.
Collapse
Affiliation(s)
- William N. Mwangi
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Lorraine P. Smith
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Susan J. Baigent
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Richard K. Beal
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Venugopal Nair
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Adrian L. Smith
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Abstract
Approximately 500 million years ago, two types of recombinatorial adaptive immune systems (AISs) arose in vertebrates. The jawed vertebrates diversify their repertoire of immunoglobulin domain-based T and B cell antigen receptors mainly through the rearrangement of V(D)J gene segments and somatic hypermutation, but none of the fundamental AIS recognition elements in jawed vertebrates have been found in jawless vertebrates. Instead, the AIS of jawless vertebrates is based on variable lymphocyte receptors (VLRs) that are generated through recombinatorial usage of a large panel of highly diverse leucine-rich-repeat (LRR) sequences. Whereas the appearance of transposon-like, recombination-activating genes contributed uniquely to the origin of the AIS in jawed vertebrates, the use of activation-induced cytidine deaminase for receptor diversification is common to both the jawed and jawless vertebrates. Despite these differences in anticipatory receptor construction, the basic AIS design featuring two interactive T and B lymphocyte arms apparently evolved in an ancestor of jawed and jawless vertebrates within the context of preexisting innate immunity and has been maintained since as a consequence of powerful and enduring selection, most probably for pathogen defense purposes.
Collapse
Affiliation(s)
- Masayuki Hirano
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
13
|
Silva AB, Palmer DB. Evidence of conserved neuroendocrine interactions in the thymus: intrathymic expression of neuropeptides in mammalian and non-mammalian vertebrates. Neuroimmunomodulation 2011; 18:264-70. [PMID: 21952678 DOI: 10.1159/000329493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The function of lymphoid organs and immune cells is often modulated by hormones, steroids and neuropeptides produced by the neuroendocrine and immune systems. The thymus intrinsically produces these factors and a comparative analysis of the expression of neuropeptides in the thymus of different species would highlight the evolutionary importance of neuroendocrine interaction in T cell development. In this review, we highlight the evidence which describes the intrathymic expression and function of various neuropeptides and their receptors, in particular somatostatin, substance P, vasointestinal polypeptide, calcitonin gene-related peptide and neuropeptide Y, in mammals (human, rodent) and non-mammals (avian, amphibian and teleost), and conclude that neuropeptides play a conserved role in vertebrate thymocyte development.
Collapse
Affiliation(s)
- Alberto B Silva
- Infection and Immunity Group, Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK
| | | |
Collapse
|
14
|
Aita M, Benedetti F, Carafelli E, Caccia E, Romano N. Effects of hypophyseal or thymic allograft on thymus development in partially decerebrate chicken embryos: expression of PCNA and CD3 markers. Eur J Histochem 2010; 54:e37. [PMID: 20819775 PMCID: PMC3167313 DOI: 10.4081/ejh.2010.e37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022] Open
Abstract
Changes in chicken embryo thymus after partial decerebration (including the hypophysis) and after hypophyseal or thymic allograft were investigated. Chicken embryos were partially decerebrated at 36–40 h of incubation and on day 12 received a hypophysis or a thymus allograft from 18-day-old donor embryos. The thymuses of normal, sham-operated and partially decerebrate embryos were collected on day 12 and 18. The thymuses of the grafted embryos were collected on day 18. The samples were examined with histological method and tested for the anti-PCNA and anti-CD3 immune-reactions. After partial decerebration, the thymic cortical and medullary compartments diminished markedly in size. Anti-PCNA and anti-CD3 revealed a reduced immunereaction, verified also by statistical analysis. In hypophyseal or grafted embryos, the thymic morphological compartments improved, the anti-PCNA and anti-CD3 immune-reactions recovered much better after the thymic graft, probably due to the thymic growth factors and also by an emigration of thymocytes from the same grafted thymus.
Collapse
Affiliation(s)
- M Aita
- Department of Physiology and Pharmacology Vittorio Erspamer, Faculty of Medicine, University La Sapienza, Piazzale A. Moro 5, Rome, Italy.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
This article outlines my early start in medicine, a late start in immunology research, and my efforts to integrate the two activities. I first describe some of the background information, excitement, and implications of the recognition of T and B cells as separate but functionally intertwined arms of the adaptive immune system. The article continues with a brief account of my colleagues' and my efforts to use the model of hematopoietic stem cell differentiation along T and B cell lines to gain a better understanding of immunodeficiency diseases and lymphoid malignancies. It concludes with the discovery of a more ancient adaptive immune system in which T-like and B-like cells in jawless vertebrates use variable lymphocyte receptors constructed with leucine-rich-repeat sequences to recognize antigens.
Collapse
Affiliation(s)
- Max D Cooper
- Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
17
|
Embryonated eggs as an alternative infection model to investigate Aspergillus fumigatus virulence. Infect Immun 2010; 78:2995-3006. [PMID: 20421382 DOI: 10.1128/iai.00268-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection models are essential tools for studying microbial pathogenesis. Murine models are considered the "gold standard" for studying in vivo infections caused by Aspergillus species, such as A. fumigatus. Recently developed molecular protocols allow rapid construction of high numbers of fungal deletion mutants, and alternative infection models based on cell culture or invertebrates are widely used for screening such mutants to reduce the number of rodents in animal experiments. To bridge the gap between invertebrate models and mice, we have developed an alternative, low-cost, and easy-to-use infection model for Aspergillus species based on embryonated eggs. The outcome of infections in the egg model is dose and age dependent and highly reproducible. We show that the age of the embryos affects the susceptibility to A. fumigatus and that increased resistance coincides with altered chemokine production after infection. The progress of disease in the model can be monitored by using egg survival and histology. Based on pathological analyses, we hypothesize that invasion of embryonic membranes and blood vessels leads to embryonic death. Defined deletion mutant strains previously shown to be fully virulent or partially or strongly attenuated in a mouse model of bronchopulmonary aspergillosis showed comparable degrees of attenuation in the egg model. Addition of nutrients restored the reduced virulence of a mutant lacking a biosynthetic gene, and variations of the infectious route can be used to further analyze the role of distinct genes in our model. Our results suggest that embryonated eggs can be a very useful alternative infection model to study A. fumigatus virulence and pathogenicity.
Collapse
|
18
|
Mwangi WN, Beal RK, Powers C, Wu X, Humphrey T, Watson M, Bailey M, Friedman A, Smith AL. Regional and global changes in TCRalphabeta T cell repertoires in the gut are dependent upon the complexity of the enteric microflora. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:406-417. [PMID: 19945480 DOI: 10.1016/j.dci.2009.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 05/28/2023]
Abstract
The repertoire of gut associated T cells is shaped by exposure to microbes, including the natural enteric microflora. Previous studies compared the repertoire of gut associated T cell populations in germ free (GF) and conventional mammals often focussing on intra-epithelial lymphocyte compartments. Using GF, conventional and monocolonised (gnotobiotic) chickens and chicken TCRbeta-repertoire analysis techniques, we determined the influence of microbial status on global and regional enteric TCRbeta repertoires. The gut of conventionally reared chickens exhibited non-Gaussian distributions of CDR3-lengths with some shared over-represented peaks in neighbouring gut segments. Sequence analysis revealed local clonal over-representation. Germ-free chickens exhibited a polyclonal, non-selected population of T cells in the spleen and in the gut. In contrast, gnotobiotic chickens exhibited a biased repertoire with shared clones evident throughout the gut. These data indicate the dramatic influence of enteric microflora complexity on the profile of TCRbeta repertoire in the gut at local and global levels.
Collapse
Affiliation(s)
- William N Mwangi
- Division of Immunology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fair JM, Taylor-McCabe KJ, Shou Y, Marrone BL. Immunophenotyping of chicken peripheral blood lymphocyte subpopulations: Individual variability and repeatability. Vet Immunol Immunopathol 2008; 125:268-73. [DOI: 10.1016/j.vetimm.2008.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/07/2008] [Accepted: 05/19/2008] [Indexed: 10/22/2022]
|
20
|
Davis WC, Hamilton MJ. Use of flow cytometry to develop and characterize a set of monoclonal antibodies specific for rabbit leukocyte differentiation molecules. J Vet Sci 2008; 9:51-66. [PMID: 18296889 PMCID: PMC2839113 DOI: 10.4142/jvs.2008.9.1.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Flow cytometry was used to identify and characterize monoclonal antibodies (mAbs) that react with rabbit leukocyte differentiation molecules (LDM). Screening sets of mAbs, developed against LDM in other species, for reactivity with rabbit LDM yielded 11 mAbs that recognize conserved epitopes on rabbit LDM orthologues and multiple mAbs that recognize epitopes expressed on the major histocompatibility class I or class II molecules. Screening of mAbs submitted to the Animal Homologues Section of the Eighth Human Leukocyte Differentiation Workshop yielded 7 additional mAbs. Screening of mAbs generated from mice immunized with leukocytes from rabbit thymus or spleen or concanavalin A activated peripheral blood and/or spleen lymphocytes has yielded 42 mAbs that recognize species restricted epitopes expressed on one or more lineages of leukocytes. Screening of the anti-rabbit mAbs against leukocytes from other species yielded one additional mAb. The studies show that screening of existing sets of mAbs for reactivity with rabbit LDM will not be productive and that a direct approach will be needed to develop mAbs for research in rabbits. The flow cytometric approach we developed to screen for mAbs of interest offers a way for individual laboratories to identify and characterize mAbs to LDM in rabbits and other species. A web-based program we developed provides a source of information that will facilitate analysis. It contains a searchable data base on known CD molecules and a data base on mAbs, known to react with LDM in one or more species of artiodactyla, equidae, carnivora, and or lagomorpha.
Collapse
Affiliation(s)
- William C Davis
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | |
Collapse
|
21
|
Vaccarelli G, Miccoli MC, Antonacci R, Pesole G, Ciccarese S. Genomic organization and recombinational unit duplication-driven evolution of ovine and bovine T cell receptor gamma loci. BMC Genomics 2008; 9:81. [PMID: 18282289 PMCID: PMC2270265 DOI: 10.1186/1471-2164-9-81] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 02/18/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In humans and mice ("gammadelta low species") less than 5% of the peripheral blood T lymphocytes are gamma/delta T cells, whereas in chicken and artiodactyls ("gammadelta high species") gamma/delta T cells represent about half of the T cells in peripheral blood. In cattle and sheep (Bovidae) two paralogous T cell receptor gamma loci (TRG1 and TRG2) have been found. TRG1 is located on 4q3.1, within a region of homology with the human TRG locus on chromosome 7, while TRG2 localizes on 4q2.2 and appears to be unique to ruminants. The purpose of this study was the sequencing of the genomic regions encompassing both loci in a "gammadelta high" organism and the analysis of their evolutionary history. RESULTS We obtained the contiguous genomic sequences of the complete sheep TRG1 and TRG2 loci gene repertoire and we performed cattle/sheep sequence analysis comparison using data available through public databases. Dot plot similarity matrix comparing the two sheep loci with each other has shown that variable (V), joining (J) and constant (C) genes have evolved through a series of duplication events involving either entire cassettes, each containing the basic V-J-J-C recombinational unit, or single V genes. The phylogenetic behaviour of the eight enhancer-like elements found in the sheep, compared with the single copy present in the human TRG locus, and evidence from concordant insertions of repetitive elements in all analyzed TRGJ blocks allowed us to infer an evolutionary scenario which highlights the genetic "flexibility" of this region and the duplication-driven evolution of gene cassettes. The strong similarity of the human and Bovidae intergenic J-J-C regions, which display an enhancer-like element at their 3' ends, further supports their key role in duplications. CONCLUSION We propose that only duplications of entire J-J-C regions that possessed an enhancer-like element at their 3' end, and acquired at least one V segment at their 5' end, were selected and fixed as functional recombinational units.
Collapse
Affiliation(s)
- Giovanna Vaccarelli
- Department of Genetics and Microbiology, University of Bari, via Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | |
Collapse
|
22
|
Silva AB, Aw D, Palmer DB. Functional analysis of neuropeptides in avian thymocyte development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:410-20. [PMID: 17892898 DOI: 10.1016/j.dci.2007.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 07/09/2007] [Accepted: 08/01/2007] [Indexed: 05/17/2023]
Abstract
The function of lymphoid organs and immune cells is often modulated by peptides and hormones produced by the neuroendocrine and immune systems. We have previously reported the intrathymic expression of neuropeptides in the thymus of different species and that neuropeptides can influence murine thymocyte development in vitro. To further explore the evolutionary nature of neuroendocrine interactions in the thymus, we identified the expression of calcitonin-gene-related peptide, neuropeptide Y, somatostatin (SOM), substance P and vasointestinal polypeptide, as well as their receptors on chicken thymic epithelial cells (TEC) and thymocytes by immunofluorescence and reverse transcription polymerase chain reaction (RT-PCR). All the studied neuropeptides and their receptors were found to be expressed in both TEC and thymocytes, suggesting that intrathymic neuroendocrine interactions may take place within the avian thymus. In order to elucidate whether such interactions play a role in avian thymocyte development, neuropeptides and their antagonists were added to embryonic thymus organ cultures and found to influence chicken thymopoiesis. In particular, an antagonist of SOM increased the proportion of double-positive thymocytes, while SOM itself appeared to inhibit the early stages of thymocyte development. Taken together, these data provide further evidence to suggest that neuropeptides play a conserved role in vertebrate thymocyte development.
Collapse
Affiliation(s)
- Alberto B Silva
- Host Response and Genes and Development Groups, Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | | | | |
Collapse
|
23
|
Rudrappa SG, Humphrey BD. Energy metabolism in developing chicken lymphocytes is altered during the embryonic to posthatch transition. J Nutr 2007; 137:427-32. [PMID: 17237322 DOI: 10.1093/jn/137.2.427] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adequate energy status in lymphocytes is vital for their development. The ability of developing chicken lymphocytes to acquire and metabolize energy substrates was determined during embryonic days (e) and neonatal days (d) of life when primary-energy substrate metabolism is altered at the whole-animal level. In 3 experiments, bursacytes and thymocytes were isolated on e17, e20, d1, d3, d7, or d14 to analyze markers associated with glucose, glutamine, and lipid metabolism. Bursacyte glucose transporter-3 (Glut-3) mRNA abundance increased from d1 to d14 and hexokinase-1 (HK-1) mRNA abundance was maximum on e20 (P<0.05). Thymocyte Glut-1, Glut-3, and HK-1 mRNA abundance increased from e17 to d14 (P<0.05). HK enzyme activity increased from e20 to d3 in bursacytes and d3 to d7 in thymocytes (P<0.05). Glucose uptake by bursacytes and thymocytes was greater on d14 compared to d1 and d7 (P<0.05). Bursacyte and thymocyte sodium coupled neutral amino acid transporter-2 and glutaminase (GA) mRNA abundance increased from e20 to d7 (P<0.05). GA enzyme activity increased from e20 to d7 in bursacytes (P<0.05) and did not change in thymocytes. Carnitine palmitoyl transferase enzyme activity did not change over time in either cell type. These studies suggest that developing B and T lymphocytes adapt their metabolism during the first 2 wk after hatch. Developing lymphocytes increase glucose metabolism with no change in fatty acid metabolism and bursacytes, but not thymocytes, increase glutamine metabolism. Understanding the factors that regulate lymphocyte development in neonatal chicks may help promote their adaptive immune responses to pathogens in early life.
Collapse
Affiliation(s)
- Shashidhara G Rudrappa
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
24
|
Vickery K, Tohidi-Esfahani R, Pouliopoulos J, Welschinger R, Dixon R, Deva A, Cossart Y. The effect of surgical immunomodulation on liver inflammation and clearance of DHBV infection. J Med Virol 2007; 78:1572-8. [PMID: 17063509 DOI: 10.1002/jmv.20740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The key to developing a therapeutic vaccine for chronic hepadnavirus infection lies in the characteristics of the host-immune response which leads to clearance of acute infection. Groups of 28-day-old ducks which had been surgically bursectomized (n = 10) or thymectomized (n = 13) on the day of hatch or were untreated (n = 21) were inoculated with 10(9) viral genome equivalents (vge) DHBV, then bled twice a week, and euthanased 40 days later. Serum and liver were tested for DHBV DNA and total leukocytes and peripheral blood mononuclear cells (PBMCs) counted. Liver and spleen sections were either stained with hematoxylin and eosin, and graded for inflammation or stained with peroxidase-labeled anti-human CD3 antibody and examined for T lymphocyte distribution. PBMC counts were similar in all groups. DHBV infection combined with bursectomy increased significantly, while thymectomy decreased significantly the total leukocyte count. The spleen and liver bursectomy increased T lymphocyte number while B cells were decreased. Converse changes were observed in thymectomized ducks. Histological evidence of hepatitis was present in infected control and bursectomized ducks but not in the uninfected control or infected thymectomized ducks. In control animals, DHBV challenge caused viremia in 17 and persistent infection in 11 (56%). Fewer thymectomized ducks (3/13, 23%) and significantly more (100%) bursectomized ducks remained persistently infected (P < 0.001). Unexpectedly, bursectomy led to persistence of infection while clearance of infection occurred normally in thymectomized ducks despite decreased T lymphocyte numbers. This suggests that clearance requires T and B lymphocyte collaboration.
Collapse
Affiliation(s)
- K Vickery
- Department of Infectious Diseases and Immunology, The University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Jeklova E, Leva L, Faldyna M. Lymphoid organ development in rabbits: major lymphocyte subsets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:632-44. [PMID: 17126399 DOI: 10.1016/j.dci.2006.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/06/2006] [Accepted: 10/07/2006] [Indexed: 05/12/2023]
Abstract
Although rabbits represent an important animal model, little is known about the lymphoid organ development in this species. In the present study, lymphocyte subsets in peripheral blood, spleen, mesenteric and popliteal lymph nodes in newborn and 2-, 4-, 6- and 8-week old and adult were characterized. Lymphocyte subsets were detected using flow cytometry and monoclonal antibodies against rabbit CD4, CD8, T-cell-specific antigen and cross-reactive antibody against B-cell antigen CD79alpha. In neonates, lower numbers of T cells were detected in both peripheral blood and spleen than in mesenteric lymph nodes. In comparison with other compartments, CD79alpha(+) cells prevailed in the spleen. Post-natal development was characterized by a decreased CD4(+)/CD8(+) ratio due to increasing frequency of CD8(+) lymphocytes in all organs but mesenteric lymph nodes, where it was due to decreased numbers of CD4(+) lymphocytes. Another significant feature was the increase of B cells in peripheral blood and mesenteric lymph nodes.
Collapse
Affiliation(s)
- Edita Jeklova
- Department of Immunology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| | | | | |
Collapse
|
26
|
Bohls RL, Collisson EW, Gross SL, Silvy NJ, Phalen DN. Experimental Infection of Attwater's/Greater Prairie Chicken Hybrids with the Reticuloendotheliosis Virus. Avian Dis 2006; 50:613-9. [PMID: 17274303 DOI: 10.1637/7517-021306r.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reticuloendotheliosis virus (REV), a common pathogen of poultry, has been associated with runting and neoplasia in an endangered subspecies of grouse, the Attwater's prairie chicken. The pathogenesis of REV infection was examined in experimentally infected prairie chickens. Three groups of four Attwater's/greater prairie chicken hybrids were infected intravenously with varying doses (tissue culture infective dose [TCID50], 200, 1000, and 5000) of a prairie chicken-isolated REV. A fourth group of four birds was not infected. Blood was collected prior to infection, and at various times up to 37 wk following infection. Peripheral blood mononuclear cells were examined for integrated proviral DNA by a single-amplification polymerase chain reaction (PCR) and nested PCR of a region within the pol gene. The nested PCR identified REV proviral DNA in all REV-inoculated birds by 2 wk postinfection and confirmed chronic infection throughout the study. With the exception of a bird that died from bacterial pneumonia 8 wk postinfection, neoplasia, resembling that seen in naturally occurring infections, was observed in all birds, even those receiving as little as 200 TCID50 of virus.
Collapse
Affiliation(s)
- Ryan L Bohls
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
27
|
Haygreen L, Davison F, Kaiser P. DNA vaccines for poultry: the jump from theory to practice. Expert Rev Vaccines 2006; 4:51-62. [PMID: 15757473 DOI: 10.1586/14760584.4.1.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA vaccines could offer a solution to a number of problems faced by the poultry industry; they are relatively easy to manufacture, stable, potentially easy to administer, can overcome neonatal tolerance and the deleterious effects of maternal antibody, and do not cause disease pathology. Combined with this, in ovo vaccination offers the advantage of reduced labor costs, mass administration and the induction of an earlier immune response. Together, this list of advantages is impressive. However, this combined technology is still in its infancy and requires many improvements. The potential of CpG motifs, DNA vaccines and in ovo vaccination, however, can be observed by the increasing number of recent reports investigating their application in challenge experiments. CpG motifs have been demonstrated to be stimulatory both in vitro and in vivo. In addition, DNA vaccines have been successfully delivered via the in ovo route, albeit not yet through the amniotic fluid. Lastly, a recent report has demonstrated that a DNA vaccine against infectious bronchitis virus administered via in ovo vaccination, followed by live virus boost, can slightly improve on the protective effect induced by the live virus alone. Therefore, DNA vaccination via the in ovo route is promising and offers potential as a poultry vaccine, however, efficacy needs to be improved and the costs of production reduced before it is likely to be beneficial to the poultry industry in the long term.
Collapse
Affiliation(s)
- Liz Haygreen
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | | | | |
Collapse
|
28
|
Herzig CTA, Blumerman SL, Baldwin CL. Identification of three new bovine T-cell receptor delta variable gene subgroups expressed by peripheral blood T cells. Immunogenetics 2006; 58:746-57. [PMID: 16896832 DOI: 10.1007/s00251-006-0136-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 05/31/2006] [Indexed: 01/23/2023]
Abstract
To understand the biology of gammadelta T cells in ruminants, it is necessary to have a comprehensive picture of gammadelta T-cell receptor gene diversity and expression. In this study, three new subgroups of bovine T-cell receptor delta (TRD) variable genes were identified by RT-PCR and sequencing and homology with TRDV genes from other mammals determined. Previously unidentified TRDV subgroup genes described in this study include the bovine homologues of ovine TRDV2, TRDV3, and TRDV4 which were named accordingly. TRDV2 subgroup has two genes (TRDV2-1 and TRDV2-2) while we found the previously identified TRDV1 has at least eight genes corresponding to separate genomic sequences. Nucleotide and amino acid sequences for particular gene subgroups between cattle and sheep were more than 87% identical but identities among TRDV subgroups within a species were much less, with bovine TRDV4 having <45% identity to the other three bovine TRDV gene subgroups. Analysis of circulating bovine gammadelta T cells revealed that genes from all four TRDV subgroups were expressed in combination with TRDJ1, TRDJ3, and TRDC, although TRDV4 was the least represented, and all displayed a variety of CDR3 junctional lengths. Finally, some genes within the TRDV1, TRDV2, and TRDV3 subgroups recombined with TRAV incorporating TRAJs, suggesting dual use.
Collapse
Affiliation(s)
- Carolyn T A Herzig
- Department of Veterinary and Animal Sciences, Paige Laboratory, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
29
|
Tanimura N, Imada T, Kashiwazaki Y, Sharifah SH. Distribution of Viral Antigens and Development of Lesions in Chicken Embryos Inoculated with Nipah Virus. J Comp Pathol 2006; 135:74-82. [PMID: 16956618 DOI: 10.1016/j.jcpa.2006.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 05/01/2006] [Indexed: 11/27/2022]
Abstract
An isolate of Nipah virus was injected into fertile eggs via the allantoic cavity or yolk sac. Allantoic inoculation resulted in considerable pathological variation and only partial mortality. Dead embryos showed severe necrosis in the brain and congestion in the kidney and the subcutis of limbs. In contrast, yolk sac inoculation led to uniform infection and mortality, the dead embryos exhibiting the same lesions as those described above but without the subcutaneous congestion. Histological lesions in dead embryos inoculated by either route were similar and particularly severe in the central nervous system. Viral antigens were detected mainly in the vasculature and neurons. The results indicated that Nipah virus is highly pathogenic to chicken embryos, and that the route of inoculation is an important determinant of the course of disease. The findings also suggested that yolk sac inoculation can be used for viral titration, and that the chicken embryo represents a useful model for studying the vascular and neuronal tropisms of Nipah virus.
Collapse
Affiliation(s)
- N Tanimura
- National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan and (*)Veterinary Research Institute, 59 Jalan Sultan Azlan Shah, 31400 Ipoh, Perak, Malaysia
| | - T Imada
- National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan and (*)Veterinary Research Institute, 59 Jalan Sultan Azlan Shah, 31400 Ipoh, Perak, Malaysia
| | - Y Kashiwazaki
- National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan and (*)Veterinary Research Institute, 59 Jalan Sultan Azlan Shah, 31400 Ipoh, Perak, Malaysia
| | - S H Sharifah
- National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan and (*)Veterinary Research Institute, 59 Jalan Sultan Azlan Shah, 31400 Ipoh, Perak, Malaysia
| |
Collapse
|
30
|
Herzig C, Blumerman S, Lefranc MP, Baldwin C. Bovine T cell receptor gamma variable and constant genes: combinatorial usage by circulating gammadelta T cells. Immunogenetics 2006; 58:138-51. [PMID: 16541255 DOI: 10.1007/s00251-006-0097-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 01/29/2006] [Indexed: 10/24/2022]
Abstract
Studies here describe expression and sequence of several new bovine T cell receptor gamma (TRG) genes to yield a total of 11 TRG variable (TRGV) genes (in eight subgroups) and six TRG constant (TRGC) genes. Publicly available genomic sequences were annotated to show their placement. Homologous TRG genes in cattle and sheep were assigned, using four accepted criteria. New genes described here include the bovine TRGC6, TRGV2, and TRGV4, homologues of ovine TRGC4, TRGV2, and TRGV4, respectively. The bovine Vgamma7 and BTGV1 clones (previously TRGV4 and TRGV2, respectively) were reassigned to new subgroups TRGV7 and TRGV8, respectively, with approval by the IMGT Nomenclature Committee. Three TRGV subgroups (TRGV5, TRGV6, and TRGV8) were further designated as TRGV5-1 and TRGV5-2, TRGV6-1 and TRGV6-2, and TRGV8-1 and TRGV8-2 because each subgroup is comprised of two mapped genes. The complete sequence of bovine TRGC5 is also reported, for which a limited number of nucleotides was previously available, and shown to be most closely related to ovine TRGC5. Analysis of circulating gammadelta T cells revealed that rearrangement of TRGV genes with TRGC genes is largely dictated by their proximity within one of the six genomic V-J-C cassettes, with all TRG genes expressed by bovine peripheral blood gammadelta T cells. Cattle are useful models for gammadelta T cell biology because they have gammadelta T cells that respond to isopentenylpyrophosphate (IPP) antigens, while mice do not, and some bovine TRGV genes cluster closely with human genes.
Collapse
Affiliation(s)
- Carolyn Herzig
- Paige Laboratory, Department of Veterinary and Animal Sciences and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
31
|
Humphrey BD, Klasing KC. The acute phase response alters cationic amino acid transporter expression in growing chickens (Gallus gallus domesticus). Comp Biochem Physiol A Mol Integr Physiol 2005; 142:485-94. [PMID: 16321552 DOI: 10.1016/j.cbpa.2005.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 09/30/2005] [Accepted: 10/01/2005] [Indexed: 10/25/2022]
Abstract
The effect of an acute phase response (APR) on cationic amino acid transporter (CAT1-3) mRNA expression in liver, muscle, bursa and thymus was determined in broiler strain chickens. The APR was initiated by injecting Salmonella typhimurium lipopolysaccharide subcutaneously (LPS; 1 mg/kg bw). In Experiment 1, CAT1-3 mRNA expression was determined at multiple time points following LPS administration. LPS increased bursa and liver total and high affinity CAT mRNA expression (P<0.05) and transiently increased pectoralis total CAT mRNA expression (P<0.05). Total CAT mRNA expression in the thymus decreased 7.7-fold from 0 to 8 h after LPS injection (P<0.05). In Experiment 2, fasted chicks were uninjected or LPS-injected. LPS increased total and high affinity CAT mRNA 2-fold in both the bursa and liver (P<0.05) and did not change thymus total and high affinity CAT mRNA expression (P>0.05). LPS increased liver weight only (P<0.05) and did not alter the plasma lysine and arginine concentration (P>0.05). In Experiments 3 and 4, thymocyte proliferation and total protein content were dependent upon the media lysine concentration (P<0.001). The inability of the thymus to compete for lysine and arginine during the APR may limit the ability of thymocytes to develop during infections.
Collapse
Affiliation(s)
- Brooke D Humphrey
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
32
|
Cho KS, Zhai SK, Esteves PJ, Knight KL. Characterization of the T-cell receptor gamma locus and analysis of the variable gene segment expression in rabbit. Immunogenetics 2005; 57:352-63. [PMID: 15868143 DOI: 10.1007/s00251-005-0795-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 03/07/2005] [Indexed: 11/24/2022]
Abstract
The genomic organization and expression of genes of the T-cell receptor gamma (TRG) locus are described for mice and humans, but not for species such as rabbits (Oryctolagus cuniculus), in which gammadelta T cells compose a sizeable proportion of T cells in the periphery. We cloned 200 kb of the rabbit TRG locus and determined the TRGV gene usage in adult and newborn rabbits by RT-PCR. We identified two TRGJ genes, one TRGC gene, and 22 TRGV genes, all of which encoded functional variable regions. One TRGV gene is the unique member of the TRGV2 subgroup, whereas the other genes belong to the TRGV1 subgroup. Evolutionary analyses of TRGV1 genes identified three distinct groups that can be explained by separate duplication events in the rabbit genome. Evidence of gene conversion between TRGV1.1 and TRGV1.6 was observed. Both TRGV1 and TRGV2 subgroup genes were expressed in the spleen, intestine, and appendix of adult rabbits, and the repertoire of TRGV genes expressed in these tissues was similar. In these tissues from newborns, and in skin from adults, only the genes from the TRGV1 subgroup were expressed. Greater TRGV-J junctional diversity was found in tissues from adult compared to newborn rabbits. Our analyses indicate rabbits have a larger germ line encoded TRG repertoire compared with that of mice and humans. In addition, we found TRGV gene usage is alike in most tissues of rabbits similar to that found in humans but in contrast to that found in mice.
Collapse
Affiliation(s)
- Kathy S Cho
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 5-153, USA
| | | | | | | |
Collapse
|
33
|
Goff KF, Hull BE, Grasman KA. Effects of PCB 126 on primary immune organs and thymocyte apoptosis in chicken embryos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2005; 68:485-500. [PMID: 15799247 DOI: 10.1080/15287390590903720] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyl (PCB) 126 produce thymic atrophy and immunosuppression. This study explored the hypothesis that the thymic atrophy produced by developmental exposure to PCB 126 is associated with an increase in apoptotic thymocytes at the end of incubation in chicken embryos. Eggs were injected via the air cell with PCB 126 (0.05, 0.13, 0.32, 0.64, and 0.80 ng/g egg) on d 0 of incubation, and tissues were collected on d 20. Controls included noninjected and vehicle-injected (sunflower oil) eggs. Thymocytes were cultured for 6 h and analyzed by flow cytometry for decreased DNA content (propidium iodide staining) and cell size (forward scatter), which indicate apoptosis. PCB 126 induced dose-dependent mortality with an LD50 of 1.01 ng/g and lowest-observed-effect concentration (LOEC) of 0.32 ng/g. Teratogenic effects commonly associated with TCDD and planar PCBs, including cranial and foot deformities and subcutaneous edema, tended to increase with dose of PCB 126. PCB 126 reduced thymus mass by approximately 20% at 0.64 and 0.8 ng/g, the number of viable thymocytes by approximately 20-24% at and above 0.13 ng/g, and the number of bursal lymphoid cells by 57% at 0.64 ng/g. The percentage of apoptotic thymocytes increased with dose, reaching levels 2 times greater than controls at 0.8 ng/g. Electrophoresis of low-molecular-weight DNA from thymocytes of all doses demonstrated fragments in multiples of 180 bp. This DNA laddering is a hallmark of apoptosis. At all doses, thymocytes exhibited caspase-3 activation, another indicator of apoptosis. The results of this experiment supported the hypothesis that the thymic atrophy produced by developmental exposure to PCB 126 in chicken embryos is associated with an increase in apoptotic thymocytes on embryonic d 20.
Collapse
Affiliation(s)
- Kendra F Goff
- Department of Biological Sciences and Biomedical Sciences PhD Program, Wright State University, Dayton, Ohio 45435, USA
| | | | | |
Collapse
|
34
|
Shigeta A, Sato M, Kawashima T, Horiuchi H, Matsuda H, Furusawa S. Genomic organization of the chicken T-cell receptor beta chain D-J-C region. J Vet Med Sci 2005; 66:1509-15. [PMID: 15644600 DOI: 10.1292/jvms.66.1509] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined overlapping genomic clones containing the chicken T cell receptor (TCR) Dbeta-Jbeta-Cbeta complex, which contains a single diversity segment, four joining segments and four exons that encode the constant region. This sequence comprised 18.3 kb. All four Jbeta sequences possessed typical recombination signal sequences (RSS) with intervening 12-bp spacers at their 5'-ends and splice sites at their 3'-ends. No Jbeta-pseudogenes were identified. TGTG sequences in the RSS heptamer sequences were well conserved, as is the case in mammals. A chicken repeat 1-like sequence was found in the intron region between Jbeta-1336 and Cbeta, and several small repeat sequences were identified in intron regions throughout this cloned genome. As germline sequences revealed complete Jbeta sequences, the CDR3 (complementarity-determining region) sequences of TCRbeta from non-immunized splenocytes were analyzed. Non-coding (N) and palindromic (P) nucleotides were frequently observed at the Dbeta-Jbeta recombination sites. There were differences in length of deletion at the 5'-end of each Jbeta. Deletion of the 5'-end of Jbeta-1280 was particularly short when compared with that of Jbeta-1336, but there were no changes in the length of the CDR3 using any of the four Jbeta sequences.
Collapse
Affiliation(s)
- Akiko Shigeta
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Hiroshima 739-8528, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Antonacci R, Lanave C, Del Faro L, Vaccarelli G, Ciccarese S, Massari S. Artiodactyl emergence is accompanied by the birth of an extensive pool of diverse germline TRDV1 genes. Immunogenetics 2005; 57:254-66. [PMID: 15900497 DOI: 10.1007/s00251-005-0773-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Molecular cloning of cDNA from gamma/delta T cells has shown that in sheep, the variable domain of the delta chain is chiefly determined by the expression of the TRDV1 subgroup, apparently composed of a large number of genes. There are three other TRDV subgroups, but these include only one gene each. To evaluate the extent and the complexity of the genomic TRDV repertoire, we screened a sheep liver genomic library from a single individual of the Altamurana breed and sheep fibroblast genomic DNA from a single individual of the Gentile di Puglia breed. We identified a total of 22 TRDV1 genes and the TRDV4 gene. A sequence comparison between germline and the rearranged genes indicates that, in sheep, the TRDV repertoire is generated by the VDJ rearrangement of at least 40 distinct TRDV1 genes. All germline TRDV1 genes present a high degree of similarity in their coding as well as in 5' and 3' flanking regions. However, a systematic analysis of the translation products reveals that these genes present a broadly different and specific repertoire in the complementarity-determining regions or recognition loops, allowing us to organize the TRDV genes into sets. We assume that selection processes operating at the level of ligand recognition have shaped the sheep TRDV germline repertoire. A phylogenetic study based on a sequence analysis of the TRDV genes from different mammalian species shows that the diversification level of these genes is higher in artiodactyl species compared to humans and mice.
Collapse
Affiliation(s)
- R Antonacci
- Dipartimento di Anatomia Patologica e di Genetica, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Jaffredo T, Alais S, Bollerot K, Drevon C, Gautier R, Guezguez B, Minko K, Vigneron P, Dunon D. Avian HSC emergence, migration, and commitment toward the T cell lineage. ACTA ACUST UNITED AC 2004; 39:205-12. [PMID: 14642304 DOI: 10.1016/s0928-8244(03)00295-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To date three sites of emergence of hemopoietin cells have been identified during early avian development: the yolk sac, the intraaortic clusters and recently the allantois. However, the contributions of the hematopoietic stem cell (HSC) populations generated by these different sites to definitive hematopoiesis and their migration routes are not fully unraveled. Experimental embryology as well as the establishment of the genetic cascades involved in HSC emergence help now to draw a better scheme of these processes.
Collapse
Affiliation(s)
- Thierry Jaffredo
- UMR CNRS 7622, Université Pierre et Marie Curie, 9, Quai St Bernard, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fairbrother A, Smits J, Grasman K. Avian immunotoxicology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2004; 7:105-137. [PMID: 14769546 DOI: 10.1080/10937400490258873] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Methods for studying the avian immune system have matured during the past two decades, with laboratory studies predominating in earlier years and field studies being conducted only in the past decade. One application has been to determine the potential for environmental contaminants to produce immune suppression, while another research direction is looking at the evolutionary significance of a robust immune system, and the relationship between immune competence and fitness parameters. Laboratory studies of immunosuppression following exposure of birds to environmental contaminants have adapted conventional mammalian methods to the avian immune system, and both lines of research have developed field-deployable measures of immune function. This review describes the avian immune system with emphasis on how it differs from the better known mammalian system, reviews the literature on contaminant-induced immunosuppression, and discusses the work on evolutionary biology of avian immunocompetence. Evidence indicates that the field of avian immunology is technically robust, even for nontraditional species such as passerines, seabirds, raptors, and other free-ranging species. It is now possible to screen chemicals for immunotoxicological properties following the same tiered approach that has been established for mammals. Despite the increased capacity and interest in avian field studies, there has not yet been a reported study of measured immune suppression associated with an avian epizootic. It is more likely that the immune suppression in adult birds resulting from low-level chronic stress (e.g., crowding onto poor quality habitat, food reductions, or climate stress) and (or) environmental contaminants causes slow but consistent morbidity and mortality associated with multiple pathogens, rather than an acute epizootic with a single pathogen. Increased fitness costs associated with such stress may significantly alter genetic diversity and species survival over time.
Collapse
Affiliation(s)
- Anne Fairbrother
- Western Ecology Division, U.S. Environmental Protection Agency, Corvallis, Oregon 97333, USA.
| | | | | |
Collapse
|
38
|
Peters MA, Browning GF, Washington EA, Crabb BS, Kaiser P. Embryonic age influences the capacity for cytokine induction in chicken thymocytes. Immunology 2003; 110:358-67. [PMID: 14632664 PMCID: PMC1783060 DOI: 10.1046/j.1365-2567.2003.01744.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thymocyte responses to functional activation are of relevance to the evaluation of the efficacy of in ovo immunotherapies and vaccines in chickens. In this study we have demonstrated differences in chicken thymocyte responses according to developmental age. RNA samples from stimulated and unstimulated chicken thymocytes were assayed for messenger RNA encoding the cytokines interleukin-1beta (IL-1beta), IL-2, interferon-alpha (IFN-alpha), IFN-beta, IFN-gamma and transforming growth factor-beta4 (TGF-beta4), and also components of the major histocompatibility complex (MHC), beta2-microglobulin (beta2M) and the MHC class I alpha-chain (MHC IA). At embryonic day 14 thymocytes were least responsive to functional activation and differences existed even between thymocyte populations at embryonic day 18 and day 1 post-hatch. The duration of proliferation in response to stimulation was found to increase with increasing embryonic age. Mitogen stimulation of embryonic day 18 and day 1 post-hatch thymocytes induced up-regulation of IFN-gamma, IL-1beta and TGF-beta transcripts, and down-regulation of IFN-alpha, IFN-beta and IL-2 transcripts, with a higher induction of IFN-gamma, IL-1beta and TGF-beta transcripts in more immature T-cell-receptor-negative (TCR-) than TCR+ (TCR1+, TCR2+, or TCR3+) subsets. In contrast, in the mouse and human, both mature and immature thymocytes respond to mitogen stimulation with up-regulation of IL-2. Thymocytes from embryonic day 14 chicks responded to mitogen with a short burst of unsustained proliferation, and transcriptional down-regulation of the cytokines IL-2, IL-1beta, IFN-alpha, IFN-beta and IFN-gamma. These results suggest that embryonic day 14 thymocytes are largely unresponsive to mitogen. Transcripts encoding TGF-beta and type I interferons (IFN-alpha and IFN-beta) were constitutively expressed at high levels in very early thymocytes at embryonic day 14. Thymocytes at embryonic days 14 and 18 and day 1 post-hatch responded to mitogen stimulation with up-regulation of MHC IA transcript. The pattern of beta2M transcription following mitogen stimulation was distinct from that of the globally up-regulated MHC IA transcript, with up-regulation of beta2M transcription observed at embryonic day 18 and day 1 post-hatch but not at embryonic day 14. In thymocyte subsets, up-regulation of beta2M transcription was found to be specific to the CD8+ TCR+ population. The balance of responses in the embryonic thymus suggests that at all stages thymocytes have a reduced capacity for activation in comparison to mature thymocyte populations.
Collapse
Affiliation(s)
- Michelle A Peters
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
39
|
Uenishi H, Hiraiwa H, Yamamoto R, Yasue H, Takagaki Y, Shiina T, Kikkawa E, Inoko H, Awata T. Genomic structure around joining segments and constant regions of swine T-cell receptor alpha/delta (TRA/TRD) locus. Immunology 2003; 109:515-26. [PMID: 12871218 PMCID: PMC1783003 DOI: 10.1046/j.1365-2567.2003.01695.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Revised: 04/10/2003] [Accepted: 05/15/2003] [Indexed: 11/20/2022] Open
Abstract
A complete genomic region of 131.2 kb including the swine T-cell receptor alpha/delta constant region (TRAC/TRDC) and joining segments (TRAJ/TRDJ) was sequenced. The structure of this region was strikingly conserved in comparison to that of human or mouse. All of the 61 TRAJ segments detected in the human genomic sequence were detected in the swine sequence and the sequence of the protein binding site of T early alpha, the sequence of the alpha enhancer element and the conserved sequence block between TRAJ3 and TRAJ4 are highly conserved. Insertion of the repetitive sequences that interspersed after the differentiation of the species in mammals such as short interspersed nucleotide elements is markedly suppressed in comparison to other genomic regions, while the composition of the mammalian-wide interspersed sequences is relatively conserved in human and swine. This observation indicates the existence of a highly selective pressure to conserve this genomic region around TRAJ throughout the evolution of mammals.
Collapse
Affiliation(s)
- Hirohide Uenishi
- Genome Research Department, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou H, Bengtén E, Miller NW, Clem LW, Wilson M. The T cell receptor beta locus of the channel catfish, Ictalurus punctatus, reveals unique features. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2573-81. [PMID: 12594284 DOI: 10.4049/jimmunol.170.5.2573] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, a series of clonal alloantigen-dependent T cell lines established from the channel catfish revealed distinctly different TCR beta rearrangements. Here, a follow-up study of the junctional diversity of these TCR gene rearrangements focuses on characterization of the genomic organization of the TCRB locus. Surprisingly, a total of 29 JB genes and two substantially different CB genes were identified downstream of a single DB gene. This is in contrast to the situation in mammals, where two clusters of a DB gene, six or seven JB genes, and a CB gene are found in tandem. The catfish CB genes are approximately 36% identical at the amino acid level. All 29 catfish JB gene segments appear functional. Thirteen were used in the 19 cDNAs analyzed, of these eight were used by the 11 catfish clonal alloantigen-dependent T cell lines. As might be expected, CDR3 diversity is enhanced by N-nucleotide additions as well as nucleotide deletions at the V-D and D-J junctions. Taken together, compared with that in mammals, genomic sequencing of the catfish TCR DB-JB-CB region reveals a unique locus containing a greater number of JB genes and two distinct CB genes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Clone Cells
- Cloning, Molecular
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/isolation & purification
- Gene Library
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor beta
- Genetic Markers/immunology
- Ictaluridae/genetics
- Ictaluridae/immunology
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/isolation & purification
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- He Zhou
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | | | | | | | | |
Collapse
|
41
|
Yasuda M, Kajiwara E, Ekino S, Taura Y, Hirota Y, Horiuchi H, Matsuda H, Furusawa S. Immunobiology of chicken germinal center: I. Changes in surface Ig class expression in the chicken splenic germinal center after antigenic stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2003; 27:159-166. [PMID: 12543129 DOI: 10.1016/s0145-305x(02)00066-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The germinal center (GC) develops after antigenic stimulation and is thought to occur at the site of various immune responses. We separated a single GC from chicken spleen after antigenic stimulation. Flow cytometric analysis of the cells derived from a single GC and RT-PCR analysis of Ig mRNA expression in GC was performed. Direct evidence indicates that: (1) there was a considerable difference in the cell population of each GC, (2) the ratio of CD3(+) cells in a GC remains constant at 10-20%, (3) the highest proportion of sIgY(+) cells in a GC occurs 1 week after the time of highest proportion of sIgM(+) cells, and (4) RT-PCR analysis was used to detect IgY mRNA expression in a GC. The continuous existence of CD3(+) cells, the alterations in sIgM(+) and sIgY(+) cell ratios, and the expression of IgY mRNA strongly suggest that Ig class switching occurs in the GC during an immune response.
Collapse
Affiliation(s)
- Masahiro Yasuda
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Imagawa T, Kitagawa H, Uehara M. Appearance of T cell subpopulations in the chicken and embryo retina. J Vet Med Sci 2003; 65:23-8. [PMID: 12576700 DOI: 10.1292/jvms.65.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Under pathological conditions such as autoimmune encephalomyelitis or autoimmune uveoretinitis, many T cells infiltrate the central nervous system (CNS) and retina. Even in normal condition, a small number of T cells are detected in the CNS. However the characteristics of the T cells are not defined. To investigate the T cell characteristics in a healthy retina, the chicken and the embryo were observed by morphological and immunohistochemical methods. In the chicken retina, T cells were regularly detected, and the main subset was CD-8(+)/ gammadelta cells. Developmentally, CD positive cells appeared on embryonic day 13, and the constituent T cell repertoires became the same as in the chicken by embryonic day 17. Many T cell repertoires were detected on embryonic day 15 and 16. The present results confirm that the retina receives an immunological surveillance by T cells. The composition of T cells in retina is constructed after embryonic day 17. Many ganglion cells die in embryonic days 15 and 16. So the T cell subsets in these periods may involve in autoimmune diseases.
Collapse
Affiliation(s)
- Tomohiro Imagawa
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Japan
| | | | | |
Collapse
|
43
|
Abstract
Highlights in a 4-decade exploration of lymphocyte differentiation begin with comparative studies in birds and mammals leading to recognition of the separate T- and B-cell differentiation pathways and their cooperative interaction. The global effects of aborting IgM B-cell development with anti-mu antibodies indicated that B cells can undergo immunoglobulin isotype switching. A search for the mammalian bursa equivalent that began with an extended excursion through the gut-associated lymphoepithelial tissues ultimately led to the hematopoietic tissue origin of mammalian B cells. The identification of the precursors of B cells in hematopoietic tissues provided an expanded view of the life history of B cells. A recurring theme in this essay is the interplay between understanding normal lymphocyte differentiation and the defects that underlie immunodeficiency diseases and lymphoid malignancies.
Collapse
Affiliation(s)
- Max D Cooper
- Howard Hughes Medical Institute and Medicine, Pediatrics, Microbiology and Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| |
Collapse
|
44
|
Kong FK, Chen CLH, Cooper MD. Reversible disruption of thymic function by steroid treatment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6500-5. [PMID: 12055271 DOI: 10.4049/jimmunol.168.12.6500] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of steroid treatment on the thymic output of T cells was examined in an avian model. Recent thymic emigrants in chickens transiently express the chicken T cell Ag 1 thymocyte marker, and thymic function can be monitored indirectly by measuring the levels of TCR gene rearrangement excision circles in peripheral T cells. Both parameters were used to show that intensive steroid treatment induces thymic involution and a profound reduction in the supply of naive T cells to the periphery. Conversely, resident T cells in the peripheral lymphocyte pool were relatively spared. Thymopoiesis immediately recovered following cessation of steroid treatment, concurrent with restoration of the thymic output of newly formed T cells. Repopulation of the peripheral T cell pool recapitulated the ontogenetic pattern of gamma delta T cell replenishment before alpha beta T cell reseeding, thereby indicating the complete recovery of thymic function after a course of steroid treatment.
Collapse
Affiliation(s)
- Fan-Kun Kong
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- T Chtanova
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
46
|
Berndt A, Methner U. Gamma/delta T cell response of chickens after oral administration of attenuated and non-attenuated Salmonella typhimurium strains. Vet Immunol Immunopathol 2001; 78:143-61. [PMID: 11182154 DOI: 10.1016/s0165-2427(00)00264-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Poultry represents an important source of Salmonella infection in man. Despite intensive research on immunity, little is known about the involvement of T cell sub-populations in the immunological response of chickens against infection with non-host-adapted Salmonella (S.) serovars. In this study, the T cell composition of blood lymphocytes (CD4(+)CD8(+); CD4(+)CD8(-); CD4(-)CD8(+); CD8(+)TcR1(+); CD8(-)TcR1(+), CD8(+)TcR1(-)) after oral administration of the non-attenuated S. typhimurium wild-type strain 421 (infection) or the attenuated vaccine strain Salmonella vac((R)) T (immunization) to day-old chicks was investigated and compared with non-treated chickens by flow cytofluorometry. Additionally, the occurrence of T cell sub-populations (CD4(+); CD8(+); TcR1(+)(gammadelta); TcR2(+)(alphabeta(1))) in ceca, spleen and bursa of Fabricius of the birds was studied immunohistologically. Blood samples and tissues were examined between days 1 and 12 of age. Chicks inoculated with S. typhimurium 421 or Salmonella vac((R)) T showed significantly elevated percentages of CD8(+)TcR1(+) in blood on days 7, 8 and 9, or on day 8 in comparison to control animals. The CD4 to CD8 cell ratio was about 3:1 in infected animals on day 5 of age. In the organs of treated chicks the numbers of CD8(+)(gammadelta) and TcR1(+)(gammadelta) cells had markedly increased on days 4 and 5 in ceca, 8 and 9 in the bursa and 9 and 12 in the spleen. Moreover, infected or vaccinated birds revealed larger quantities of CD4(+) and TcR2(+) T cells in ceca on days 4 and 5. As shown by double staining, the TcR1(+) cells in the organs of infected animals additionally carried the CD8 antigen. In conclusion, immunization of day-old chicks with the attenuated Salmonella live vaccine strain resulted in the same changes in T cell composition as seen after infection with the non-attenuated Salmonella wild-type strain, but at a lower level. The remarkable increase of CD8(+)TcR1(+)(gammadelta) double positive cells in treated birds indicates an important role of this cell sub-population in the immunological defense of chickens against Salmonella exposure.
Collapse
Affiliation(s)
- A Berndt
- Federal Institute for Health Protection of Consumers and Veterinary Medicine, Division 4, Naumburger Strasse 96a, D-07743, Jena, Germany.
| | | |
Collapse
|
47
|
Imhof BA, Dunon D, Courtois D, Luhtala M, Vainio O. Intestinal CD8 alpha alpha and CD8 alpha beta intraepithelial lymphocytes are thymus derived and exhibit subtle differences in TCR beta repertoires. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6716-22. [PMID: 11120789 DOI: 10.4049/jimmunol.165.12.6716] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intraepithelial lymphocytes (IEL) of the small intestine are anatomically positioned to be in the first line of cellular defense against enteric pathogens. Therefore, determining the origin of these cells has important implications for the mechanisms of T cell maturation and repertoire selection. Recent evidence suggests that murine CD8 alpha alpha intestinal IELs (iIELs) can mature and undergo selection in the absence of a thymus. We analyzed IEL origin by cell transfer, using two congenic chicken strains. Embryonic day 14 and adult thymocytes did not contain any detectable CD8 alpha alpha T cells. However, when TCR(+) thymocytes were injected into congenic animals, they migrated to the gut and developed into CD8alphaalpha iIELs, while TCR(-) T cell progenitors did not. The TCR V beta 1 repertoire of CD8 alpha alpha(+) TCR V beta 1(+) iIELs contained only part of the TCR V beta 1 repertoire of total iIELs, and it exhibited no new members compared with CD8(+) T cells in the thymus. This indicated that these T cells emigrated from the thymus at an early stage in their developmental process. In conclusion, we show that while CD8 alpha alpha iIELs originate in the thymus, T cells acquire the expression of CD8 alpha alpha homodimers in the gut microenvironment.
Collapse
MESH Headings
- Animals
- Base Sequence
- CD8 Antigens/biosynthesis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cellular Senescence/genetics
- Cellular Senescence/immunology
- Chick Embryo
- Chickens
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- B A Imhof
- Department of Pathology, Geneva University, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The role of the thymus is to ensure the differentiation and selection of T lymphocytes, which are one of the major players in the immune system. Recent studies show that the establishment of the T lymphoid system requires a complex cell traffic. In this field, avian embryos yield particularly informative developmental models because they are amenable to many experimental approaches during the phases of morphogenesis, and, in addition, the immune system resembles that of mammals.
Collapse
Affiliation(s)
- D Dunon
- CNRS UMR 7622 Adhésion et Migration Cellulaires, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
49
|
Yun CH, Lillehoj HS, Lillehoj EP. Intestinal immune responses to coccidiosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2000; 24:303-324. [PMID: 10717295 DOI: 10.1016/s0145-305x(99)00080-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Intestinal parasitism is a major stress factor leading to malnutrition and lowered performance and production efficiency of livestock and poultry. Coccidiosis is an intestinal infection caused by intracellular protozoan parasites belonging to several different species of Eimeria. Infection with coccidia parasites seriously impairs the growth and feed utilization of chickens and costs the US poultry industry more than $1.5 billion in annual losses. Although acquired immunity to Eimeria develops following natural infection, due to the complex life cycle and intricate host immune response to Eimeria, vaccine development has been difficult and a better understanding of the basic immunobiology of pertinent host-parasite interactions is necessary for developing effective immunological control strategies against coccidiosis. Chickens infected with Eimeria produce parasite specific antibodies in both the circulation and mucosal secretions but humoral immunity plays only a minor role in protection against this disease. Rather, recent evidence implicates cell-mediated immunity as the major factor conferring resistance to coccidiosis. This review will summarize current understanding of the avian intestinal immune system and its response to Eimeria as well as provide a conceptual overview of the complex molecular and cellular events involved in intestinal immunity to coccidiosis. It is anticipated that increased knowledge of the interaction between parasites and host immunity will stimulate the birth of novel immunological and molecular biological concepts in the control of intestinal parasitism.
Collapse
Affiliation(s)
- C H Yun
- USDA, Agricultural Research Service, Immunology and Disease Resistance Laboratory, Livestock and Poultry Sciences Institute, Beltsville, MD 20705, USA
| | | | | |
Collapse
|
50
|
Kubota T, Wang JY, Göbel TWF, Hockett RD, Cooper MD, Chen CLH. Characterization of an Avian ( Gallus gallus domesticus) TCR αδ Gene Locus. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.7.3858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Mammalian TCRδ genes are located in the midst of the TCRα gene locus. In the chicken, one large Vδ gene family, two Dδ gene segments, two Jδ gene segments, and one Cδ gene have been identified. The TCRδ genes were deleted on both alleles in αβ T cell lines, thereby indicating conservation of the combined TCRαδ locus in birds. Vα and Vδ gene segments were found to rearrange with one, both or neither of the Dδ segments and either of the two Jδ segments. Exonuclease activity, P-addition, and N-addition during VDJδ rearrangement contributed to TCRδ repertoire diversification in the first embryonic wave of T cells. An unbiased Vδ1 repertoire was observed at all ages, but an acquired Jδ1 usage bias occurred in the TCRδ repertoire. The unrestricted combinatorial diversity of relatively complex TCRγ and δ loci may contribute to the remarkable abundance of γδ T cells in this avian representative.
Collapse
Affiliation(s)
- Takayuki Kubota
- *Medicine,
- Division of Developmental and Clinical Immunology, Departments of
| | - Jin-yi Wang
- *Medicine,
- Division of Developmental and Clinical Immunology, Departments of
| | - Thomas W. F. Göbel
- ∥Basel Institute for Immunology, Basel, Switzerland
- Division of Developmental and Clinical Immunology, Departments of
| | - Richard D. Hockett
- §Pathology, and the
- Division of Developmental and Clinical Immunology, Departments of
| | - Max D. Cooper
- *Medicine,
- Division of Developmental and Clinical Immunology, Departments of
- †Pediatrics,
- Division of Developmental and Clinical Immunology, Departments of
- ‡Microbiology, and
- Division of Developmental and Clinical Immunology, Departments of
- ¶Howard Hughes Medical Institute, University of Alabama, Birmingham, AL 35294; and
- Division of Developmental and Clinical Immunology, Departments of
| | - Chen-lo H. Chen
- *Medicine,
- Division of Developmental and Clinical Immunology, Departments of
- ‡Microbiology, and
- Division of Developmental and Clinical Immunology, Departments of
| |
Collapse
|