1
|
van Anken E, Bakunts A, Hu CCA, Janssens S, Sitia R. Molecular Evaluation of Endoplasmic Reticulum Homeostasis Meets Humoral Immunity. Trends Cell Biol 2021; 31:529-541. [PMID: 33685797 DOI: 10.1016/j.tcb.2021.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
The biosynthesis of about one third of the human proteome, including membrane receptors and secreted proteins, occurs in the endoplasmic reticulum (ER). Conditions that perturb ER homeostasis activate the unfolded protein response (UPR). An 'optimistic' UPR output aims at restoring homeostasis by reinforcement of machineries that guarantee efficiency and fidelity of protein biogenesis in the ER. Yet, once the UPR 'deems' that ER homeostatic readjustment fails, it transitions to a 'pessimistic' output, which, depending on the cell type, will result in apoptosis. In this article, we discuss emerging concepts on how the UPR 'evaluates' ER stress, how the UPR is repurposed, in particular in B cells, and how UPR-driven counter-selection of cells undergoing homeostatic failure serves organismal homeostasis and humoral immunity.
Collapse
Affiliation(s)
- Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Anush Bakunts
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Sophie Janssens
- Laboratory for Endoplasmic Reticulum (ER) Stress and Inflammation, VIB Center for Inflammation Research, and Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Barajas-Mora EM, Feeney AJ. Enhancers as regulators of antigen receptor loci three-dimensional chromatin structure. Transcription 2019; 11:37-51. [PMID: 31829768 DOI: 10.1080/21541264.2019.1699383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enhancers are defined as regulatory elements that control transcription in a cell-type and developmental stage-specific manner. They achieve this by physically interacting with their cognate gene promoters. Significantly, these interactions can occur through long genomic distances since enhancers may not be near their cognate promoters. The optimal coordination of enhancer-regulated transcription is essential for the function and identity of the cell. Although great efforts to fully understand the principles of this type of regulation are ongoing, other potential functions of the long-range chromatin interactions (LRCIs) involving enhancers are largely unexplored. We recently uncovered a new role for enhancer elements in determining the three-dimensional (3D) structure of the immunoglobulin kappa (Igκ) light chain receptor locus suggesting a structural function for these DNA elements. This enhancer-mediated locus configuration shapes the resulting Igκ repertoire. We also propose a role for enhancers as critical components of sub-topologically associating domain (subTAD) formation and nuclear spatial localization.
Collapse
Affiliation(s)
- E Mauricio Barajas-Mora
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
3
|
Ludwig J, Federico G, Prokosch S, Küblbeck G, Schmitt S, Klevenz A, Gröne HJ, Nitschke L, Arnold B. Dickkopf-3 Acts as a Modulator of B Cell Fate and Function. THE JOURNAL OF IMMUNOLOGY 2015; 194:2624-34. [DOI: 10.4049/jimmunol.1402160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
|
5
|
|
6
|
Bruton's tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL). Blood 2013; 123:1207-13. [PMID: 24311722 DOI: 10.1182/blood-2013-07-515361] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by constitutive activation of the B-cell receptor (BCR) signaling pathway, but variable responsiveness of the BCR to antigen ligation. Bruton's tyrosine kinase (BTK) shows constitutive activity in CLL and is the target of irreversible inhibition by ibrutinib, an orally bioavailable kinase inhibitor that has shown outstanding activity in CLL. Early clinical results in CLL with other reversible and irreversible BTK inhibitors have been less promising, however, raising the question of whether BTK kinase activity is an important target of ibrutinib and also in CLL. To determine the role of BTK in CLL, we used patient samples and the Eμ-TCL1 (TCL1) transgenic mouse model of CLL, which results in spontaneous leukemia development. Inhibition of BTK in primary human CLL cells by small interfering RNA promotes apoptosis. Inhibition of BTK kinase activity through either targeted genetic inactivation or ibrutinib in the TCL1 mouse significantly delays the development of CLL, demonstrating that BTK is a critical kinase for CLL development and expansion and thus an important target of ibrutinib. Collectively, our data confirm the importance of kinase-functional BTK in CLL.
Collapse
|
7
|
Han D, Zhang M, Ma J, Hong J, Chen C, Zhang B, Huang L, Lv W, Yin L, Zhang A, Zhang H, Zhang Z, Vidyasagar S, Okunieff P, Zhang L. Transition pattern and mechanism of B-lymphocyte precursors in regenerated mouse bone marrow after subtotal body irradiation. PLoS One 2012; 7:e46560. [PMID: 23082125 PMCID: PMC3474760 DOI: 10.1371/journal.pone.0046560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 12/31/2022] Open
Abstract
Little is known about the effects of ionizing radiation on the transition and the related signal transduction of progenitor B cells in the bone marrow. Thus, using an NIH Swiss mouse model, we explored the impact of ionizing radiation on the early stage of B-cell development via an examination of the transition of CLP to pro-B to pre-B cells within bone marrow as a function of radiation doses and times. Our results showed that while the total number of bone marrow lymphoid cells at different stages were greatly reduced by subtotal body irradiation (sub-TBI), the surviving cells continued to transition from common lymphoid progenitors to pro-B and then to pre-B in a reproducible temporal pattern. The rearrangement of the immunoglobulin heavy chain increased significantly 1-2 weeks after irradiation, but no change occurred after 3-4 weeks. The rearrangement of the immunoglobulin light chain decreased significantly 1-2 weeks after sub-TBI but increased dramatically after 3-4 weeks. In addition, several key transcription factors and signaling pathways were involved in B-precursor transitions after sub-TBI. The data indicate that week 2 after irradiation is a critical time for the transition from pro-B cells to pre-B cells, reflecting that the functional processes for different B-cell stages are well preserved even after high-dose irradiation.
Collapse
Affiliation(s)
- Deping Han
- First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- * E-mail: (DH); (LZ)
| | - Mei Zhang
- Department of Radiation Oncology, UF Shands Cancer Center, Gainesville, Florida, United States of America
| | - Jun Ma
- Institute of Digestive Diseases, Zhengzhou University, Henan, China
| | - Jingshen Hong
- First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Chun Chen
- First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Bingrong Zhang
- Department of Radiation Oncology, UF Shands Cancer Center, Gainesville, Florida, United States of America
| | - Luqiang Huang
- Department of Radiation Oncology, UF Shands Cancer Center, Gainesville, Florida, United States of America
| | - Wenlong Lv
- First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Liangjie Yin
- Department of Radiation Oncology, UF Shands Cancer Center, Gainesville, Florida, United States of America
| | - Amy Zhang
- Department of Radiation Oncology, UF Shands Cancer Center, Gainesville, Florida, United States of America
| | - Hengshan Zhang
- First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhenhuan Zhang
- Department of Radiation Oncology, UF Shands Cancer Center, Gainesville, Florida, United States of America
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, UF Shands Cancer Center, Gainesville, Florida, United States of America
| | - Paul Okunieff
- Department of Radiation Oncology, UF Shands Cancer Center, Gainesville, Florida, United States of America
| | - Lurong Zhang
- Department of Radiation Oncology, UF Shands Cancer Center, Gainesville, Florida, United States of America
- * E-mail: (DH); (LZ)
| |
Collapse
|
8
|
A novel mechanism for the autonomous termination of pre-B cell receptor expression via induction of lysosome-associated protein transmembrane 5. Mol Cell Biol 2012; 32:4462-71. [PMID: 22949502 DOI: 10.1128/mcb.00531-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The expression of the pre-B cell receptor (BCR) is confined to the early stage of B cell development, and its dysregulation is associated with anomalies of B-lineage cells, including leukemogenesis. Previous studies suggested that the pre-BCR signal might trigger the autonomous termination of pre-BCR expression even before the silencing of pre-BCR gene expression to prevent sustained pre-BCR expression. However, the underlying mechanism remains ill defined. Here we demonstrate that the pre-BCR signal induces the expression of lysosome-associated protein transmembrane 5 (LAPTM5), which leads to the prompt downmodulation of the pre-BCR. While LAPTM5 induction had no significant impact on the internalization of cell surface pre-BCR, it elicited the translocation of a large pool of intracellular pre-BCR from the endoplasmic reticulum to the lysosomal compartment concomitantly with a drastic reduction of the level of intracellular pre-BCR proteins. This reduction was inhibited by lysosomal inhibitors, indicating the lysosomal degradation of the pre-BCR. Notably, the LAPTM5 deficiency in pre-B cells led to the augmented expression level of surface pre-BCR. Collectively, the pre-BCR induces the prompt downmodulation of its own expression through the induction of LAPTM5, which promotes the lysosomal transport and degradation of the intracellular pre-BCR pool and, hence, limits the supply of pre-BCR to the cell surface.
Collapse
|
9
|
B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol 2012; 30:423-33. [PMID: 22565972 DOI: 10.1038/nbt.2197] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Failure of immunization with the HIV-1 envelope to induce broadly neutralizing antibodies against conserved epitopes is a major barrier to producing a preventive HIV-1 vaccine. Broadly neutralizing monoclonal antibodies (BnAbs) from those subjects who do produce them after years of chronic HIV-1 infection have one or more unusual characteristics, including polyreactivity for host antigens, extensive somatic hypermutation and long, variable heavy-chain third complementarity-determining regions, factors that may limit their expression by host immunoregulatory mechanisms. The isolation of BnAbs from HIV-1-infected subjects and the use of computationally derived clonal lineages as templates provide a new path for HIV-1 vaccine immunogen design. This approach, which should be applicable to many infectious agents, holds promise for the construction of vaccines that can drive B cells along rare but desirable maturation pathways.
Collapse
|
10
|
Samitas K, Lötvall J, Bossios A. B Cells: From Early Development to Regulating Allergic Diseases. Arch Immunol Ther Exp (Warsz) 2010; 58:209-25. [DOI: 10.1007/s00005-010-0073-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/27/2009] [Indexed: 01/22/2023]
|
11
|
Herzog S, Reth M, Jumaa H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 2009; 9:195-205. [PMID: 19240758 DOI: 10.1038/nri2491] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pre-B-cell receptor (pre-BCR) is expressed following the productive recombination of the immunoglobulin heavy chain gene. Signals through the pre-BCR are required for initiating diverse processes in pre-B cells, including proliferation and recombination of the light chain gene, which eventually lead to the differentiation of pre-B cells to immature B cells. However, the molecular mechanisms by which the pre-BCR promotes these processes remain largely unresolved. Recent findings suggest that forkhead box O (FOXO) transcription factors connect pre-BCR signalling to the activation of the recombination machinery. In this Review, we discuss how FOXO transcription factors are regulated by the pre-BCR to allow the progression of the cell cycle and the recombination of the light chain gene.
Collapse
Affiliation(s)
- Sebastian Herzog
- Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
12
|
Cain D, Kondo M, Chen H, Kelsoe G. Effects of acute and chronic inflammation on B-cell development and differentiation. J Invest Dermatol 2009; 129:266-77. [PMID: 19148216 DOI: 10.1038/jid.2008.286] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, our understanding of hematopoiesis and the development of the immune system has fundamentally changed, leading to significant discoveries with important clinical relevance. Hematopoiesis, once described in terms of irreversible and discrete developmental branch points, is now understood to exist as a collection of alternative developmental pathways capable of generating functionally identical progeny. Developmental commitment to a particular blood-cell lineage is gradually acquired and reflects both cell intrinsic and extrinsic signals. Chief among the extrinsic factors are the environmental cues of hematopoietic microenvironments that comprise specific "developmental niches" that support hematopoietic stem and progenitor cells. Most of this new understanding comes from the study of normal, steady-state hematopoiesis, but there is ample reason to expect that special developmental and/or differentiative mechanisms operate in response to inflammation. For example, both stem and progenitor cells are now known to express Toll-like receptors that can influence hematopoietic cell fates in response to microbial products. Likewise, proinflammatory cytokines mobilize hematopoietic stem cells to peripheral tissues. In this Perspective, we review inflammation's effects on central and extramedullary B lymphopoiesis and discuss the potential consequences of peripheral B-cell development in the context of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Derek Cain
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Pre-B-cell leukemia spontaneously develops in BLNK-deficient mice, and pre-B-cell acute lymphoblastic leukemia cells in children often lack BLNK protein expression, demonstrating that BLNK functions as a tumor suppressor. However, the mechanism by which BLNK suppresses pre-B-cell leukemia, as well as the identification of other genetic alterations that collaborate with BLNK deficiency to cause leukemogenesis, are still unknown. Here, we demonstrate that the JAK3/STAT5 signaling pathway is constitutively activated in pre-B leukemia cells derived from BLNK(-/-) mice, mostly due to autocrine production of IL-7. Inhibition of IL-7R signaling or JAK3/STAT5 activity resulted in the induction of p27(kip1) expression and cell-cycle arrest, accompanied by apoptosis in the leukemia cells. Transgene-derived constitutively active STAT5 (STAT5b-CA) strongly synergized with the loss of BLNK to initiate leukemia in vivo. In the leukemia cells, exogenously expressed BLNK inhibited autocrine JAK3/STAT5 signaling, resulting in p27(kip1) induction, cell-cycle arrest, and apoptosis. BLNK-inhibition of JAK3 was dependent on the binding of BLNK to JAK3. These data indicate that BLNK normally regulates IL-7-dependent proliferation and survival of pre-B cells through direct inhibition of JAK3. Thus, somatic loss of BLNK and concomitant mutations leading to constitutive activation of Jak/STAT5 pathway result in the generation of pre-B-cell leukemia.
Collapse
|
14
|
Yoshikawa S, Kawano Y, Minegishi Y, Karasuyama H. The skewed heavy-chain repertoire in peritoneal B-1 cells is predetermined by the selection via pre-B cell receptor during B cell ontogeny in the fetal liver. Int Immunol 2008; 21:43-52. [DOI: 10.1093/intimm/dxn122] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Oda A, Ono T, Yamamoto M, Goitsuka R, Kitamura D. PKC eta directs induction of IRF-4 expression and Ig kappa gene rearrangement in pre-BCR signaling pathway. Int Immunol 2008; 20:1417-26. [PMID: 18780722 DOI: 10.1093/intimm/dxn101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pre-B cell receptor (pre-BCR) signals promote pre-B cell differentiation, in which the adaptor protein B-cell linker (BLNK) plays a crucial role. However, the molecular pathways downstream of BLNK are currently unclear. Utilizing pre-B leukemia cell lines (BKO84 and others) derived from BLNK-deficient mice as in vitro models of the pre-B cell differentiation, we have demonstrated that reconstitution of BLNK as well as an active form of protein kinase C (PKC)eta induces the differentiation events, such as pre-BCR down-regulation and kappa gene rearrangement. Here we show that the same events are induced by cross-linking of pre-BCR with anti-mu antibody in these pre-B cell lines, as well as in ex vivo pre-B cells from BLNK-deficient mice, suggesting a function of BLNK as an internal cross-linker of pre-BCR. Anti-mu treatment of BKO84 cells up-regulated membrane recruitment of PKC eta and the expression of IRF-4, a transcription factor known to promote light chain gene rearrangements. Anti-mu induction of surface kappa chain on BKO84 cells was blocked by reagents that inhibit phospholipase C or PKC. Enforced expression of the active PKC eta in BKO84 cells resulted in up-regulation of IRF-4 expression. Conversely, siRNA-mediated silencing of PKC eta expression strikingly attenuated the anti-mu-induced IRF-4 expression and kappa gene rearrangement, which were restored by PKC eta reconstitution. Finally, enforced expression of IRF-4, but not of BLNK, in the PKC eta-silenced BKO84 cells resulted in kappa gene rearrangement. These results indicate that PKC eta directs the induction of IRF-4 expression downstream of BLNK in the pre-BCR signaling pathway promoting kappa gene rearrangement.
Collapse
Affiliation(s)
- Akihisa Oda
- Division of Molecular Biology, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | | | | | | | | |
Collapse
|
16
|
Martin DA, Lu L, Cascalho M, Wu GE. Maintenance of Surrogate Light Chain Expression Induces Developmental Delay in Early B Cell Compartment. THE JOURNAL OF IMMUNOLOGY 2007; 179:4996-5005. [PMID: 17911584 DOI: 10.4049/jimmunol.179.8.4996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The production of a mature B cell requires passage through a number of developmental checkpoints. The pre-BCR plays a critical role in passage through the pro-B cell/pre-B cell checkpoint, and thus plays a central role in regulating the differentiation of a B cell. Due to the significance of this receptor, it is imperative that pre-BCR expression and function are precisely regulated. In this study, we have investigated a system in which the regulation of the pre-BCR is altered. We have found that continued expression of components of the pre-BCR (lambda5) resulted in a delay in the kinetics of B cell maturation. Pro-B cells from normal mouse bone marrow retrovirally infected with lambda5 exhibited a delay in differentiation. As compared with wild-type cells at the same time point, there is a reduction in the presence of cell surface markers that indicate developmental progression, and there is a 6- to 16-fold decrease in the production of Ig-positive cells in B cell maturation assays. The capacity to alter B cell progression by modifying and extending pre-BCR expression argues that the receptor and its associated signals play a unique role in directing developmental outcomes.
Collapse
Affiliation(s)
- Denise A Martin
- Department of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Abstract
In adult mammals, bone marrow pluripotent hematopoietic stem cells generate B lymphoid-specified progeny that progress through a series of well-characterized stages before generating B-cell receptor expressing B lymphocytes. These functionally immature B lymphocytes then migrate to the spleen wherein they differentiate through transitional stages into follicular or marginal zone B lymphocytes capable of responding to T-dependent and -independent antigens, respectively. During the terminal stages of B lymphocyte development in the bone marrow, as well as immediately following egress into the peripheral compartments, B lymphocytes are counterselected to eliminate B lymphocytes with potentially dangerous self-reactivity. These developmental and selection events in the bone marrow and periphery are dependent on the integration of intrinsic genetic programs with extrinsic microenvironmental signals that drive progenitors toward increasing B lineage commitment and maturation. This chapter provides a comprehensive overview of the various stages of primary and secondary B lymphocyte development with an emphasis on the selection processes that affect decisions at critical checkpoints. Our intent is to stress the concept that at many steps in the developmental process leading to a mature immunocompetent B lymphocyte, B lineage cells are integrating multiple and different signaling inputs that are translated into specific and appropriate cell fate decisions.
Collapse
MESH Headings
- Aging
- Animals
- Antigens, Differentiation, B-Lymphocyte/analysis
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/physiology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/physiology
- Cell Lineage
- Humans
- Lymphopoiesis/genetics
- Models, Immunological
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/physiology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Recombination, Genetic
- Signal Transduction
Collapse
Affiliation(s)
- John G Monroe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
18
|
Kawano Y, Yoshikawa S, Minegishi Y, Karasuyama H. Pre-B cell receptor assesses the quality of IgH chains and tunes the pre-B cell repertoire by delivering differential signals. THE JOURNAL OF IMMUNOLOGY 2006; 177:2242-9. [PMID: 16887984 DOI: 10.4049/jimmunol.177.4.2242] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well understood how a variety of Ig H and L chains, components of BCR, are generated in the DNA level during B cell development. However, it has remained largely unknown whether and how each component is monitored for its quality and selected before the assembly into the BCR. Here we show that muH chains produced by pre-B cells display a wide spectrum of ability to form the pre-BCR, which is composed of muH and surrogate light (SL) chains and is crucial for B cell development. The level of surface pre-BCR expression varies among pre-B cells, depending on the ability of their muH chains to pair with SL chains. The higher the level of pre-BCR expression by pre-B cells, the stronger their pre-BCR signaling, and the better they proliferate and differentiate. Thus, the extent of survival, proliferation, and differentiation of individual pre-B cells is primarily determined by the SL-pairing ability of their muH chains. Furthermore, IgH chains with higher potential to assemble with IgL chains appear to be positively selected and amplified through the assessment of their ability to pair with SL chains at the pre-BCR checkpoint before the assembly into the BCR. These results indicate that the pre-BCR assesses the quality of muH chains and tunes the pre-B cell repertoire by driving the preferential expansion and differentiation of cells with the higher quality of muH chains.
Collapse
Affiliation(s)
- Yohei Kawano
- Department of Immune Regulation, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
19
|
Yamamoto M, Hayashi K, Nojima T, Matsuzaki Y, Kawano Y, Karasuyama H, Goitsuka R, Kitamura D. BASH-novel PKC-Raf-1 pathway of pre-BCR signaling induces kappa gene rearrangement. Blood 2006; 108:2703-11. [PMID: 16794253 DOI: 10.1182/blood-2006-05-024968] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pre-B-cell receptor (pre-BCR) is thought to signal transcriptional activation of the immunoglobulin light (L) chain gene locus, proceeding to its V-J rearrangement. The pre-BCR signaling pathway for this process is largely unknown but may involve the adaptor protein BASH (BLNK/SLP-65). Here we report that the pre-B leukemia cell lines established from affected BASH-deficient mice rearrange kappaL-chain gene locus and down-regulate pre-BCR upon PMA treatment or BASH reconstitution. Analyses with specific inhibitors revealed that activation of novel PKC (nPKC) and MEK, but not Ras, is necessary for the rearrangement. Accordingly, retroviral transduction of active PKCeta, PKCepsilon, or Raf-1, but not Ras, induced the kappa gene rearrangement and expression in the pre-B-cell line. Tamoxifen-mediated BASH reconstitution resulted in the translocation of PKCeta to the plasma membrane and kappa chain expression. These data make evident that the Ras-independent BASH-nPKC-Raf-1 pathway of pre-BCR signaling induces the L-chain gene rearrangement and expression.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Base Sequence
- Cell Differentiation
- Cell Line, Tumor
- DNA, Neoplasm/genetics
- Gene Rearrangement, B-Lymphocyte, Light Chain
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/metabolism
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Preleukemia/genetics
- Preleukemia/immunology
- Preleukemia/metabolism
- Protein Kinase C/metabolism
- Proto-Oncogene Proteins c-raf/metabolism
- Signal Transduction
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Mutsumi Yamamoto
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Verkoczy L, Aїt-Azzouzene D, Skog P, Märtensson A, Lang J, Duong B, Nemazee D. A role for nuclear factor kappa B/rel transcription factors in the regulation of the recombinase activator genes. Immunity 2005; 22:519-31. [PMID: 15845455 PMCID: PMC3792720 DOI: 10.1016/j.immuni.2005.03.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 03/04/2005] [Accepted: 03/16/2005] [Indexed: 01/25/2023]
Abstract
In developing B cells, expression of surface immunoglobulin is an important signal to terminate recombinase activator gene (RAG) expression and V(D)J recombination. However, autoreactive antigen receptors instead promote continued gene rearrangement and receptor editing. The regulation by B cell receptor (BCR) signaling of RAG expression and editing is poorly understood. We report that in editing-competent cells BCR ligand-induced RAG mRNA expression is regulated at the level of RAG transcription, rather than mRNA stability. In immature B cells carrying innocuous receptors, RAG expression appears to be under rapidly reversible negative regulation. Studies involving transduction of a superrepressive (sr) I kappa B alpha protein indicate that NF-kappaB/Rel proteins promote RAG transcription. Interestingly, NF kappa B1-deficient cells overexpress RAG and undergo an exaggerated receptor editing response. Our data implicate NF kappa B transcription factors in the BCR-mediated regulation of RAG locus transcription. Rapidly activated NF kappa B pathways may facilitate prompt antigen receptor-regulated changes in RAG expression important for editing and haplotype exclusion.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
| | - Djemel Aїt-Azzouzene
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
| | - Patrick Skog
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
| | - Annica Märtensson
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
| | - Julie Lang
- Barbara Davis Center 4200 East Ninth Avenue Denver, Colorado 80262
| | - Bao Duong
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
- The Kellogg School of Science and Technology, Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037
| | - David Nemazee
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
- Barbara Davis Center 4200 East Ninth Avenue Denver, Colorado 80262
- Correspondence:
| |
Collapse
|
21
|
Kawano Y, Yoshikawa S, Minegishi Y, Karasuyama H. Selection of stereotyped VH81X-{micro}H chains via pre-B cell receptor early in ontogeny and their conservation in adults by marginal zone B cells. Int Immunol 2005; 17:857-67. [PMID: 15908445 DOI: 10.1093/intimm/dxh265] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pre-B cell receptor (preBCR) plays critical roles in early B cell differentiation. It has been shown that not all muH chains are capable of pairing with surrogate light (SL) chains to form preBCR. Here, we established a novel system to differentially identify two types of early pre-B cell populations in bone marrow and fetal liver of mice, one producing SL-pairing muH chains and the other producing SL-non-pairing muH chains. The former population accounted for 80% of all the early pre-B cells in adult bone marrow, while it accounted for only 20% of those in fetal liver. Comparison of the two types of pre-B cell populations in fetal liver revealed the structural difference between SL-pairing and -non-pairing muH chains encoded by the V(H)81X segment that was most frequently utilized in fetal liver pre-B cells but rarely expressed by B cells generated in adults. PreBCR played an important role in the positive selection of V(H)81X-muH chains carrying the characteristic sequences of the complementarity-determining region 3 with little or no nibbling or N nucleotide addition, leading to their predominance in neonatal splenic B cells. These fetal-type V(H)81X-muH chains were also detected in adult spleen, but almost exclusively in marginal zone (MZ) B cells in contrast to the adult-type V(H)81X-muH chains. This strongly suggests that neonatally generated and selected B cells expressing the stereotyped V(H)81X-muH chains are maintained in the adult MZ and could function as innate-like lymphocytes.
Collapse
Affiliation(s)
- Yohei Kawano
- Department of Immune Regulation, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
22
|
Abstract
Similar to the expression of antigen receptor genes in lymphocytes, the mammalian odorant receptor (OR) genes are expressed in a mutually exclusive and monoallelic manner in olfactory sensory neurons (OSNs). DNA rearrangement has long been regarded as a possible mechanism for the allelic exclusion of the OR genes. However, mice cloned from mature OSN nuclei expressed the full repertoire of ORs, and the possibility of irreversible gene translocation was excluded as a mechanism to activate a single OR gene in each OSN. How is allelic exclusion achieved in the olfactory system? Recent transgenic experiments indicated an inhibitory role of the OR protein in preventing further activation of other OR genes. Stochastic activation of an OR gene and negative-feedback regulation by the OR gene product might ensure the maintenance of the one neuron-one receptor rule in the mammalian olfactory system.
Collapse
Affiliation(s)
- Shou Serizawa
- PRESTO program of Japan Science and Technology Agency, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
23
|
Cannon JP, Haire RN, Pancer Z, Mueller MG, Skapura D, Cooper MD, Litman GW. Variable domains and a VpreB-like molecule are present in a jawless vertebrate. Immunogenetics 2005; 56:924-9. [PMID: 15650874 PMCID: PMC3689217 DOI: 10.1007/s00251-004-0766-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 11/29/2004] [Indexed: 10/25/2022]
Abstract
Immunoglobulins (Igs) and T cell antigen receptors (TCRs) that undergo somatic diversification have not been identified in the two extant orders of jawless vertebrates, which occupy essential positions in terms of understanding the evolution of the emergence of adaptive immunity. Using a single motif-dependent PCR-based approach coupled with a vector that allows selection of cDNAs encoding secretion signal sequences, four different genes encoding Ig V-type domains were identified in the sea lamprey (Petromyzon marinus). One of the predicted proteins encoded by these genes shares structural characteristics with mammalian VpreB molecules, including the absence of a recognizable transmembrane region, a relatively high proportion of charged amino acids in its C-terminal tail and distinctive features of its secretion signal peptide. This is the first indication of a molecule related to the B cell receptor (BCR) complex in a species that diverged prior to the jawed vertebrates in which RAG-mediated adaptive immunity is first encountered.
Collapse
Affiliation(s)
- John P. Cannon
- Department of Molecular Genetics, All Children's Hospital, 801 Sixth Street South, St. Petersburg, FL, 33701, USA, Tel.: +1-727-553-3601, Fax: +1-727-553-3610; H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Avenue, Tampa, FL, 33612, USA, Department of Pediatrics, USF/ACH Children's Research, Institute, University of South Florida College of Medicine, 830 First Street South, St. Petersburg, FL, 33701, USA
| | - Robert N. Haire
- Department of Pediatrics, USF/ACH Children's Research, Institute, University of South Florida College of Medicine, 830 First Street South, St. Petersburg, FL, 33701, USA
| | - Zeev Pancer
- Howard Hughes Medical Institute, University of Alabama at Birmingham, 378 Wallace Tumor Institute, Birmingham, AL, 35294, USA
| | - M. Gail Mueller
- Department of Pediatrics, USF/ACH Children's Research, Institute, University of South Florida College of Medicine, 830 First Street South, St. Petersburg, FL, 33701, USA
| | - Diana Skapura
- Department of Pediatrics, USF/ACH Children's Research, Institute, University of South Florida College of Medicine, 830 First Street South, St. Petersburg, FL, 33701, USA
| | - Max D. Cooper
- Howard Hughes Medical Institute, University of Alabama at Birmingham, 378 Wallace Tumor Institute, Birmingham, AL, 35294, USA
| | - Gary W. Litman
- Department of Molecular Genetics, All Children's Hospital, 801 Sixth Street South, St. Petersburg, FL, 33701, USA, Tel.: +1-727-553-3601, Fax: +1-727-553-3610; H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Avenue, Tampa, FL, 33612, USA; Department of Pediatrics, USF/ACH Children's Research, Institute, University of South Florida College of Medicine, 830 First Street South, St. Petersburg, FL, 33701, USA
| |
Collapse
|
24
|
Abstract
Lateral compartmentalization of the plasma membrane into domains is a key feature of immune cell activation and subsequent immune effector functions. Here, we will review the high diversity of membrane domains, ranging from elementary lipid rafts, envisioned as dynamic and small domains (in the tens of nm), to relatively stable microm-scale membrane domains, which form the immunologic synapse of T lymphocytes. We will discuss the relationship between these different types of plasma membrane domains and how raft lipid- and protein-controlled interactions and cell biological processes cooperate to generate functional domains that mediate lymphocyte activity.
Collapse
Affiliation(s)
- Thomas Harder
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
25
|
Abstract
First observed in mouse pre-B-cell lines and then in knock-in mice carrying self-reactive IgH transgenes, VH replacement has now been shown to contribute to the primary B-cell repertoire in humans. Through recombination-activating gene (RAG)-mediated recombination between a cryptic recombination signal sequence (RSS) present in almost all VH genes and the flanking 23 base pair RSS of an upstream VH gene, VH replacement renews the entire VH-coding region, while leaving behind a short stretch of nucleotides as a VH replacement footprint. In addition to extending the CDR3 region, the VH replacement footprints preferentially contribute charged amino acids. VH replacement rearrangement in immature B cells may either eliminate a self-reactive B-cell receptor or contribute to the generation of self-reactive antibodies. VH replacement may also rescue non-productive or dysfunctional VHDJH rearrangement in pro-B and pre-B cells. Conversely, VH replacement of a productive immunoglobulin H gene may generate non-productive VH replacement to disrupt or temporarily reverse the B-cell differentiation process. VH replacement can thus play a complex role in the generation of the primary B-cell repertoire.
Collapse
Affiliation(s)
- Zhixin Zhang
- Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| | | | | |
Collapse
|
26
|
Taguchi T, Kiyokawa N, Takenouch H, Matsui J, Tang WR, Nakajima H, Suzuki K, Shiozawa Y, Saito M, Katagiri YU, Takahashi T, Karasuyama H, Matsuo Y, Okita H, Fujimoto J. Deficiency of BLNK hampers PLC-gamma2 phosphorylation and Ca2+ influx induced by the pre-B-cell receptor in human pre-B cells. Immunology 2004; 112:575-82. [PMID: 15270728 PMCID: PMC1782531 DOI: 10.1111/j.1365-2567.2004.01918.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
B-cell linker protein (BLNK) is a component of the B-cell receptor (BCR) as well as of the pre-BCR signalling pathway, and BLNK(-/-) mice have a block in B lymphopoiesis at the pro-B/pre-B cell stage. A recent report described the complete loss or drastic reduction of BLNK expression in approximately 50% of human childhood pre-B acute lymphoblastic leukaemias (ALL), therefore we investigated BLNK expression in human pre-B ALL cell lines. One of the four cell lines tested, HPB-NULL cells, was found to lack BLNK expression, and we used these human pre-B ALL cell lines that express and do not express BLNK to investigate the intracellular signalling events following pre-BCR cross-linking. When pre-BCR was cross-linked with anti-micro heavy-chain antibodies, significant phosphorylation of intracellular molecules, including Syk, Shc, ERK MAP kinase, and AKT, and an activation of Ras were observed without regard to deficiency of BLNK expression, suggesting that BLNK is not required for pre-BCR-mediated activation of MAP kinase and phosphatidyl-inositol 3 (PI3) kinase signalling. By contrast, phospholipase C-gamma2 (PLC-gamma2) phosphorylation and an increase in intracellular Ca(2+) level mediated by pre-BCR cross-linking were observed only in the BLNK-expressing cells, indicating that BLNK is essential for PLC-gamma2-induced Ca(2+) influx. Human pre-B cell lines expressing and not expressing BLNK should provide an in vitro model for investigation of the role of BLNK in the pre-BCR-mediated signalling mechanism.
Collapse
Affiliation(s)
- Tomoko Taguchi
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
- Department of Pediatrics, Keio University, School of MedicineShinjuku-ku, Tokyo
| | - Nobutaka Kiyokawa
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| | - Hisami Takenouch
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| | - Jun Matsui
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| | - Wei-Ran Tang
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| | - Hideki Nakajima
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| | - Kyoko Suzuki
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| | - Yusuke Shiozawa
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| | - Masahiro Saito
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| | - Yohko U Katagiri
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| | - Takao Takahashi
- Department of Pediatrics, Keio University, School of MedicineShinjuku-ku, Tokyo
| | - Hajime Karasuyama
- Department of Immune Regulation, Tokyo Medical and Dental University, Graduate SchoolTokyo
| | - Yoshinobu Matsuo
- Fujisaki Cell Center, Hayashibara Biochemical Laboratories IncFujisaki, Okayama, Japan
| | - Hajime Okita
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| | - Junichiro Fujimoto
- Department of Developmental Biology, National Research Institute for Child Health and DevelopmentSetagaya-ku, Tokyo
| |
Collapse
|
27
|
Yu PW, Tabuchi RS, Kato RM, Astrakhan A, Humblet-Baron S, Kipp K, Chae K, Ellmeier W, Witte ON, Rawlings DJ. Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer. Blood 2004; 104:1281-90. [PMID: 15142874 DOI: 10.1182/blood-2003-09-3044] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
X-linked agammaglobulinemia (XLA) is a human immunodeficiency caused by mutations in Bruton tyrosine kinase (Btk) and characterized by an arrest in early B-cell development, near absence of serum immunoglobulin, and recurrent bacterial infections. Using Btk- and Tec-deficient mice (BtkTec–/–) as a model for XLA, we determined if Btk gene therapy could correct this disorder. Bone marrow (BM) from 5-fluorouracil (5FU)–treated BtkTec–/– mice was transduced with a retroviral vector expressing human Btk and transplanted into BtkTec–/– recipients. Mice engrafted with transduced hematopoietic cells exhibited rescue of both primary and peripheral B-lineage development, recovery of peritoneal B1 B cells, and correction of serum immunoglobulin M (IgM) and IgG3 levels. Gene transfer also restored T-independent type II immune responses, and B-cell antigen receptor (BCR) proliferative responses. B-cell progenitors derived from Btk-transduced stem cells exhibited higher levels of Btk expression than non-B cells; and marking studies demonstrated a selective advantage for Btk-transduced B-lineage cells. BM derived from primary recipients also rescued Btk-dependent function in secondary hosts that had received a transplant. Together, these data demonstrate that gene transfer into hematopoietic stem cells can reconstitute Btk-dependent B-cell development and function in vivo, and strongly support the feasibility of pursuing Btk gene transfer for XLA.
Collapse
Affiliation(s)
- Phyllis W Yu
- Children's Hospital and Regional Medical Center, 307 Westlake Ave North, Suite 300, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 2003; 302:2088-94. [PMID: 14593185 DOI: 10.1126/science.1089122] [Citation(s) in RCA: 390] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the mouse olfactory system, each olfactory sensory neuron (OSN) expresses only one odorant receptor (OR) gene in a monoallelic and mutually exclusive manner. Such expression forms the genetic basis for OR-instructed axonal projection of OSNs to the olfactory bulb of the brain during development. Here, we identify an upstream cis-acting DNA region that activates the OR gene cluster in mouse and allows the expression of only one OR gene within the cluster. Deletion of the coding region of the expressed OR gene or a naturally occurring frame-shift mutation allows a second OR gene to be expressed. We propose that stochastic activation of only one OR gene within the cluster and negative feedback regulation by that OR gene product are necessary to ensure the one receptor-one neuron rule.
Collapse
Affiliation(s)
- Shou Serizawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Apoptotic cell death plays a critical role in the development and functioning of the immune system. During differentiation, apoptosis weeds out lymphocytes lacking useful antigen receptors and those expressing dangerous ones. Lymphocyte death is also involved in limiting the magnitude and duration of immune responses to infection. In this review, we describe the role of the Bcl-2 protein family, and to a lesser extent that of death receptors (members of the tumor necrosis factor receptor family with a death domain), in the control of lymphoid and myeloid cell survival. We also consider the pathogenic consequences of failure of apoptosis in the immune system.
Collapse
Affiliation(s)
- Vanessa S Marsden
- Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | |
Collapse
|
30
|
Hayashi K, Yamamoto M, Nojima T, Goitsuka R, Kitamura D. Distinct signaling requirements for Dmu selection, IgH allelic exclusion, pre-B cell transition, and tumor suppression in B cell progenitors. Immunity 2003; 18:825-36. [PMID: 12818163 DOI: 10.1016/s1074-7613(03)00142-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pre-B cell receptor triggers expansion and differentiation of pre-B cells (the pre-B cell transition), as well as inhibition of V(H) to DJ(H) recombination (allelic exclusion). The latter also accounts for counter-selection of pro-B cells expressing Dmu protein (Dmu selection). However, the signaling pathways responsible for these events remain poorly defined. Here we show complete arrest of B cell development at the pre-B cell transition in BASH/CD19 double mutant mice, indicating partial redundancy of the two B cell-specific adaptors. Allelic exclusion remained intact in the double mutant mice, whereas Dmu selection was abolished in BASH mutant mice. Thus, distinct signals are required for these events. In addition, both mutant mice succumbed to pre-B cell leukemia, indicating that BASH and CD19 contribute to tumor suppression.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Yamazaki 2669, Noda, 278-0022, Chiba, Japan
| | | | | | | | | |
Collapse
|
31
|
Elkabetz Y, Kerem A, Tencer L, Winitz D, Kopito RR, Bar-Nun S. Immunoglobulin light chains dictate vesicular transport-dependent and -independent routes for IgM degradation by the ubiquitin-proteasome pathway. J Biol Chem 2003; 278:18922-9. [PMID: 12754269 DOI: 10.1074/jbc.m208730200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Degradation of IgM mu heavy chains in light chain-negative pre-B cells is independent of vesicular transport, as is evident by its insensitivity to brefeldin A or cell permeabilization. Conversely, by the same criteria, degradation of the secretory mu heavy chain in light chain-expressing B cells depends on vesicular transport. To investigate whether the presence of conventional light chains or the developmental stage of the B-lymphocytes dictates the degradative route taken by mu, we express in 70Z/3 pre-B cells either lambda ectopically or kappa by lipopolysaccharides-stimulated differentiation into B cells and show their assembly with mu heavy chains. The resulting sensitivity of mu degradation to brefeldin A and cell permeabilization demonstrates that conventional light chains, a hallmark of B cell differentiation, are necessary and sufficient to divert mu from a vesicular transport-independent to a vesicular transport-dependent degradative route. Although both routes converge at the ubiquitin-proteasome degradation pathway, only in light chain-expressing cells is vesicular transport a prerequisite for mu ubiquitination.
Collapse
Affiliation(s)
- Yechiel Elkabetz
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Saijo K, Schmedt C, Su IH, Karasuyama H, Lowell CA, Reth M, Adachi T, Patke A, Santana A, Tarakhovsky A. Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol 2003; 4:274-9. [PMID: 12563261 DOI: 10.1038/ni893] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 01/13/2003] [Indexed: 02/02/2023]
Abstract
The nature of signals that govern the development of immunoglobulin heavy chain-dependent B cells is largely unknown. Using mice deficient for the B cell-expressed Src-family protein tyrosine kinases (SFKs) Blk, Fyn and Lyn, we show an essential role of these kinases in pre-B cell receptor (pre-BCR)- mediated NF-kappaB activation and B cell development. This signaling defect is SFK specific, as a deficiency in Syk, which controls pre-B cell development, does not affect NF-kappaB induction. Impaired NF-kappaB induction was overcome by the activation of protein kinase C (PKC)-lambda, thus suggesting the involvement of PKC-lambda in pre-BCR-mediated SFK-dependent activation of NF-kappaB. Our data show the existence of a functionally distinct SFK signaling module responsible for pre-BCR-mediated NF-kappaB activation and B cell development.
Collapse
Affiliation(s)
- Kaoru Saijo
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tsuchiya K, Kawano Y, Kojima T, Nagata K, Takao T, Okada M, Shinohara H, Maki K, Toyama-Sorimachi N, Miyasaka N, Watanabe M, Karasuyama H. Molecular cloning and characterization of TPP36 and its isoform TPP32, novel substrates of Abl tyrosine kinase. FEBS Lett 2003; 537:203-9. [PMID: 12606058 DOI: 10.1016/s0014-5793(03)00127-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have molecularly cloned TPP36, a novel 36 kDa protein with 281 amino acids that was identified as a protein phosphorylated in B progenitor cells following stimulation with pervanadate/H(2)O(2). Analysis with anti-TPP36 antiserum revealed that TPP36 was expressed ubiquitously and had an isoform with 236 amino acids, designated TPP32. TPP36/32 were localized mainly in cytoplasm despite the presence of a typical nuclear localization signal sequence. These proteins were phosphorylated preferentially by Abl among a panel of tyrosine kinases examined. Phosphorylation of tyrosine 120 in TPP36/32 led to an apparent mobility shift in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting conformational change in the phosphorylated protein. Thus, TPP36/32 appear to be novel substrates of Abl tyrosine kinase.
Collapse
Affiliation(s)
- Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University Graduate School, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang YH, Zhang Z, Burrows PD, Kubagawa H, Bridges SL, Findley HW, Cooper MD. V(D)J recombinatorial repertoire diversification during intraclonal pro-B to B-cell differentiation. Blood 2003; 101:1030-7. [PMID: 12393550 DOI: 10.1182/blood-2002-06-1828] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial B-cell repertoire is generated by combinatorial immunoglobulin V(D)J gene segment rearrangements that occur in a preferential sequence. Because cellular proliferation occurs during the course of these rearrangement events, it has been proposed that intraclonal diversification occurs during this phase of B-cell development. An opportunity to examine this hypothesis directly was provided by the identification of a human acute lymphoblastic leukemic cell line that undergoes spontaneous differentiation from pro-B cell to the pre-B and B-cell stages with concomitant changes in the gene expression profile that normally occur during B-cell differentiation. After confirming the clonality of the progressively differentiating cells, an analysis of immunoglobulin genes and transcripts indicated that pro-B cell members marked by the same DJ rearrangement generated daughter B cells with multiple V(H) and V(L) gene segment rearrangements. These findings validate the principle of intraclonal V(D)J diversification during B-cell generation and define a manipulable model of human B-cell differentiation.
Collapse
Affiliation(s)
- Yui-Hsi Wang
- Division of Developmental and Clinical Immunology, and Department of Medicine, University of Alabama at Birmingham and the Howard Hughes Medical Institute, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Taguchi T, Kiyokawa N, Mimori K, Suzuki T, Sekino T, Nakajima H, Saito M, Katagiri YU, Matsuo N, Matsuo Y, Karasuyama H, Fujimoto J. Pre-B cell antigen receptor-mediated signal inhibits CD24-induced apoptosis in human pre-B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:252-60. [PMID: 12496407 DOI: 10.4049/jimmunol.170.1.252] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that the cross-linking of cluster of differentiation (CD)24 induces apoptosis in Burkitt's lymphoma cells and that this phenomenon can be enhanced by a B cell Ag receptor (BCR)-mediated signal. In this study, we extend our previous observation and report that CD24 also mediated apoptosis in human precursor-B acute lymphoblastic leukemia cell lines in the pro-B and pre-B stages accompanying activation of multiple caspases. Interestingly, simultaneous cross-linking of pre-BCR clearly inhibited CD24-mediated apoptosis in pre-B cells. We also observed that mitogen-activated protein kinases (MAPKs) were involved in the regulation of this apoptotic process. Pre-BCR cross-linking induced prompt and strong activation of extracellular signal-regulated kinase 1, whereas CD24 cross-linking induced the sustained activation of p38 MAPK, following weak extracellular signal-regulated kinase 1 activation. SC68376, a specific inhibitor of p38 MAPK, inhibited apoptosis induction by CD24 cross-linking, whereas anisomycin, an activator of p38 MAPK, enhanced the apoptosis. In addition, PD98059, a specific inhibitor of MEK-1, enhanced apoptosis induction by CD24 cross-linking and reduced the antiapoptotic effects of pre-BCR cross-linking. Collectively, whether pre-B cells survive or die may be determined by the magnitude of MAPK activation, which is regulated by cell surface molecules. Our findings should be important to understanding the role of CD24-mediated cell signaling in early B cell development.
Collapse
Affiliation(s)
- Tomoko Taguchi
- Department of Developmental Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Burrows PD, Stephan RP, Wang YH, Lassoued K, Zhang Z, Cooper MD. The transient expression of pre-B cell receptors governs B cell development. Semin Immunol 2002; 14:343-9. [PMID: 12220935 DOI: 10.1016/s1044-5323(02)00067-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Only a subpopulation of relatively large pre-B cells express pre-B cell receptors (preBCR) that can be seen with very sensitive immunofluorescence methods. Inefficient assembly of the multicomponent preBCR coupled with their ligand-induced endocytosis may account for the remarkably low in vivo levels of preBCR expression. Signaling initiated via the preBCR promotes cellular proliferation and RAG-1 and RAG-2 downregulation to interrupt the immunoglobulin V(D)J gene rearrangement process. Silencing of the surrogate light chain genes, VpreB and lambda5, then terminates preBCR expression to permit cell cycle exit, recombinase gene upregulation, and VJ(L) rearrangement by small pre-B cells destined to become B cells.
Collapse
Affiliation(s)
- Peter D Burrows
- Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, WTI 378, 1824 6th Avenue South, Birmingham, AL 35294-3300, USA
| | | | | | | | | | | |
Collapse
|
37
|
Nemazee D, Mårtensson A, Verkoczy L. Haplotype exclusion and receptor editing: irreconcilable differences? Semin Immunol 2002; 14:191-8; discussion 222-4. [PMID: 12160646 DOI: 10.1016/s1044-5323(02)00042-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Features of antibody genes and their regulation hinder two properties thought to be critical for clonal selection: haplotype exclusion and receptor diversity. These properties include: (1) the retention of multiple independent L-chain isotypes, which compounds the problem of allelic exclusion with one of isotype exclusion; (2) the process of receptor editing, in which recombination continues in cells already expressing antigen receptors; and (3) non-random associations and quasi-ordered rearrangements of the elements that generate light chain genes, which promote editing at the expense of allelic exclusion and receptor diversification. In contrast, heavy chain gene structure seems to promote haplotype exclusion and receptor diversity. It appears that requirements of receptor selection, such as the need for receptor editing as an immune tolerance mechanism and positive selection as a quality control checkpoint for receptor functionality, impose independent selections that shape the organization and regulation of the antibody genes. Despite these features, B cell development still achieves a significant level of phenotypic haplotype exclusion, suggesting that there is indeed significant selection for antibody monospecificity that is accommodated along with receptor editing. Thus, the immune system achieves both receptor selection and clonal selection, despite their partly antagonistic mechanisms.
Collapse
Affiliation(s)
- David Nemazee
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
38
|
Gisler R, Sigvardsson M. The human V-preB promoter is a target for coordinated activation by early B cell factor and E47. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5130-8. [PMID: 11994467 DOI: 10.4049/jimmunol.168.10.5130] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of mature B lymphoid cells involves a highly orchestrated regulation of stage- and lineage-specific genes. In this study, we report an analysis of the human surrogate L chain VpreB promoter. The promoter has an overall homology of 56% to the mouse counterpart and displays a preB cell-restricted activity in transient transfections in cell lines. The promoter harbors three independent binding sites for early B cell factor (EBF) as defined by EMSA and supershift experiments. These sites were important for the full function of the promoter in a preB cell line, and chromatin immunoprecipitation experiments indicate that EBF interacts with the promoter in vivo. In addition to this, ectopic expression of EBF induces the activity of a reporter gene under control of the VpreB promoter in epithelioid HeLa cells, an effect augmented by coexpression of the basic-helix-loop helix transcription factor E47. The ability to interact directly with E47 was shared by the promoters controlling the human mb-1 and B29 genes. These data indicate that the human VpreB promoter is a direct target for activation by EBF and E47 and that functional collaboration between these proteins may be of great importance in human B cell development.
Collapse
Affiliation(s)
- Ramiro Gisler
- Laboratory for Cellular Differentiation, Department for Stem Cell Biology, BMC B12, 22184 Lund, Sweden.
| | | |
Collapse
|
39
|
Petersson K, Mårtensson A, Mertsching E, Winkler T, Ceredig R, Mårtensson IL, Ivars F. A pTalpha-negative subpopulation of CD25+ TN thymocytes revealed by a transgenic marker. Scand J Immunol 2002; 55:119-28. [PMID: 11896928 DOI: 10.1046/j.1365-3083.2002.01022.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have recently generated 5'lambda5-huTAC mice, which express the human CD25 (huTAC) gene under the control of the 5'-flanking region of the mouse lambda5-gene. The huTAC-transgene was expressed in pre-B cells but neither in mature B cells nor in T cells of these mice. In this report we demonstrate that the transgene is also transiently expressed by adult CD25+ CD3-CD4-CD8- (triple negative, TN) thymocytes and in fetal thymocytes. The huTAC+, in contrast to the huTAC- subpopulation of the CD44+CD25+ TN cells, was unexpectedly found not to express the pTalpha-gene. Still the huTAC+CD44+CD25+ TN cells reconstituted the development of both alphabeta and gammadelta lineage cells equally efficiently as the pTalpha-expressing huTAC- fraction, demonstrating that this pTalpha-negative subpopulation contained precursors for both T-cell lineages. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments demonstrated that also in normal mice only a fraction of CD44+CD25+ and CD44-CD25+ TN cells expressed this gene. Taken together, these data indicate that huTAC transgene expression revealed a truly pTalpha-negative fraction of the CD44+CD25+ TN cells. The observation that not all precursors in the CD25+ TN population express the pTalpha-gene has important implications for the understanding of early T-cell development and T-cell lineage commitment.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- Fetus/cytology
- Fetus/immunology
- Gene Expression
- Genes, Reporter
- Genetic Markers
- Hematopoietic Stem Cells/immunology
- Hyaluronan Receptors/metabolism
- Liver/cytology
- Liver/immunology
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/metabolism
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- K Petersson
- Section for Immunology, Department of Cell and Molecular Biology, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Malynn BA, Shaw AC, Young F, Stewart V, Alt FW. Truncated immunoglobulin Dmu causes incomplete developmental progression of RAG-deficient pro-B cells. Mol Immunol 2002; 38:547-56. [PMID: 11750656 DOI: 10.1016/s0161-5890(01)00085-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early stages of B cell development are dependent on the expression of a pre-B cell receptor (BCR), composed of a mu heavy chain (HC) in association with surrogate light chain (SLC) proteins and the signaling molecules, Igalpha and Igbeta. During the formation of the variable region of the mu chain by somatic gene rearrangement, a truncated form of the mu protein (called Dmu) is sometimes produced by the rearrangement of a D(H) segment to a J(H) segment using one of three reading frames (designated rf2). When a Dmu protein is formed, subsequent B cell development is blocked by down-regulation of further HC rearrangements, so that a full-length muHC cannot be formed. In this study, we demonstrate that in recombinase activating gene (RAG)-2-deficient B220(+) CD43(+) pro-B cells in which B lymphopoiesis has been arrested at fraction C, transgenic expression of Dmu promoted partial developmental progression to fraction C', but was unable to mediate the pro-B to pre-B cell transition to fraction D effected by full-length muHC protein. These data suggest that the intracellular signaling pathways engaged by the Dmu pre-BCR are insufficient to facilitate the expansion and/or survival of pre-B cells, and are distinct from those engaged by the pre-BCR-containing full-length muHC.
Collapse
Affiliation(s)
- Barbara A Malynn
- The Center for Blood Research, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Martínez-M JA, Minguet S, Gonzalo P, Soro PG, de Andrés B, Izcue A, Marcos MA, Gaspar ML. Long-lived polyclonal B-cell lines derived from midgestation mouse embryo lymphohematopoietic progenitors reconstitute adult immunodeficient mice. Blood 2001; 98:1862-71. [PMID: 11535523 DOI: 10.1182/blood.v98.6.1862] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphohematopoietic progenitors derived from midgestation mouse embryos were established in long-term cultures with stromal cell monolayers and interleukin 7 (IL-7), giving rise to B-lineage cell lines. The initial emergence and in vitro establishment of these early embryo cell lines were highly sensitive to IL-7-mediated signals, in comparison to cell lines similarly obtained using precursors from late fetal liver (> 13 days postcoitum) and adult bone marrow. The early embryo-derived progenitors spontaneously differentiated in vitro to CD19(+)IgM(+) immature B cells in the presence of optimal concentrations of IL-7, in contrast to those progenitors obtained from late gestation and adult mice, whose differentiation only occurred in the absence of IL-7. The newly in vitro-generated B cells of the early embryo cell lines repopulated adult immunodeficient severe combined immunodeficient mice on their adoptive transfer in vivo and generated specific humoral immune responses after immunization.
Collapse
Affiliation(s)
- J A Martínez-M
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III (ISCIII), Majadahonda 28220, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- S Tsukada
- Department of Molecular Medicine, Osaka University Medical School, Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | |
Collapse
|
43
|
Abstract
B cell development is a highly regulated process whereby functional peripheral subsets are produced from hematopoietic stem cells, in the fetal liver before birth and in the bone marrow afterward. Here we review progress in understanding some aspects of this process in the mouse bone marrow, focusing on delineation of the earliest stages of commitment, on pre-B cell receptor selection, and B cell tolerance during the immature-to-mature B cell transition. Then we note some of the distinctions in hematopoiesis and pre-B selection between fetal liver and adult bone marrow, drawing a connection from fetal development to B-1/CD5(+) B cells. Finally, focusing on CD5(+) cells, we consider the forces that influence the generation and maintenance of this distinctive peripheral B cell population, enriched for natural autoreactive specificities that are encoded by particular germline V(H)-V(L) combinations.
Collapse
Affiliation(s)
- R R Hardy
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, Pennsylvania 19111, USA.
| | | |
Collapse
|
44
|
Sinkora J, Rehakova Z, Samankova L, Haverson K, Butler JE, Zwart R, Boersma W. Characterization of monoclonal antibodies recognizing immunoglobulin kappa and lambda chains in pigs by flow cytometry. Vet Immunol Immunopathol 2001; 80:79-91. [PMID: 11445220 DOI: 10.1016/s0165-2427(01)00277-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The existence of two types of the immunoglobulin (Ig) light chain in pigs was documented>30 years ago and has been confirmed by the cloning of porcine light chain genes homologous to human and murine Ig kappa (Igkappa) and Ig lambda (Iglambda). However, immunochemical reagents defining these two light chain isotypes have not been characterized. Here, we show that rabbit antisera specific for human Igkappa and Iglambda and certain anti-porcine light chain monoclonal antibodies (mAb) are useful in distinguishing light chain isotypes by flow cytometry (FCM). Porcine B cell lines L23 and L35 stained positive only with anti-human Iglambda antiserum and were negative when tested using anti-human Igkappa antiserum. While mAbs K139.3E1, 1G6 and 27.7.1 also tested positive on these cell lines, mAb 27.2.1 did not. Therefore, FCM was used to examine the hypothesis that K139.3E1, 1G6 and 27.7.1 are Iglambda-specific whereas mAb 27.2.1 recognizes the Igkappa chain in pigs. Double staining of peripheral blood mononuclear cells (PBMC) with pairs of anti-light chain mAbs and using cocktails of anti-light chain mAbs and anti-human polyclonal antiserum, confirmed this hypothesis with the exception that mAb K139.3E1 appears to recognize only a subset of Iglambda(+) B cells in most pigs. In summary, we identified two pan-specific anti-pig Iglambda mAbs, one anti-lambda mAb that recognizes a lambda-light chain subset and one anti-pig Igkappa mAb.
Collapse
Affiliation(s)
- J Sinkora
- Institute of Microbiology, Department of Immunology and Gnotobiology, Novy Hradek, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
45
|
Minegishi Y, Conley ME. Negative Selection at the Pre-BCR Checkpoint Elicited by Human μ Heavy Chains with Unusual CDR3 Regions. Immunity 2001; 14:631-41. [PMID: 11371364 DOI: 10.1016/s1074-7613(01)00131-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Approximately 9% of in-frame mu heavy chain transcripts found in normal human pro-B cells encode proteins that can be expressed on the cell surface in the absence of surrogate or conventional light chains. These unusual mu heavy chains demonstrate preferential use of certain VH genes (VH3-23), frequent expression of DH regions in underrepresented reading frames, and an increased number of positively charged amino acids within the CDR3 region. Transcripts for these proteins are not found in pre-B cells or in mature B cells. When expressed in Jurkat T cells with the Ig(alpha)/Ig(beta) signal transduction module, these aberrant mu heavy chains induce cell activation and apoptosis. These results suggest that some mu heavy chains elicit negative selection at the pro-B cell to pre-B cell transition.
Collapse
Affiliation(s)
- Y Minegishi
- Department of Immunology, St. Jude Children's Research Hospital, University of Tennessee College of Medicine, Memphis, TN 38105, USA
| | | |
Collapse
|
46
|
Igarashi H, Kuwata N, Kiyota K, Sumita K, Suda T, Ono S, Bauer SR, Sakaguchi N. Localization of recombination activating gene 1/green fluorescent protein (RAG1/GFP) expression in secondary lymphoid organs after immunization with T-dependent antigens in rag1/gfp knockin mice. Blood 2001; 97:2680-7. [PMID: 11313258 DOI: 10.1182/blood.v97.9.2680] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secondary rearrangements of immunoglobulin gene segments that generate a new antibody repertoire in peripheral B cells have been described as receptor revision and occur by as yet unknown mechanisms. To determine the importance of recombination activating gene (RAG) expression in receptor revision, heterozygous rag1/green fluorescent protein (gfp) knockin mice were used to examine the location of RAG1 expression in the germinal centers (GCs) of lymphoid follicles after immunization with a variety of T-cell-dependent antigens. Immunization of rag1/gfp heterozygous mice or rag1 homozygous knockout mice reconstituted with rag1/gfp heterozygous spleen cells caused the down-regulation of RAG1/GFP signal in GCs. Although some RAG1/GFP(+) cells appeared in regions surrounding the peanut agglutinin (PNA)(+)GL-7(+) GC area, RAG1/GFP(+) cells did not accumulate in the central region. In addition, the stimulation of spleen B cells with anti-mu antibody plus interleukin-4 (IL-4) or with anti-CD40 monoclonal antibody plus IL-7 did not induce GFP signals at detectable levels in vitro. These results clearly demonstrate that RAG1 re-expression either does not occur or is at extremely low levels in antigen-driven B cells in GCs of secondary lymphoid follicles, suggesting that other mechanisms may mediate the gene rearrangements observed in receptor revision.
Collapse
Affiliation(s)
- H Igarashi
- Departments of Immunology, Pediatrics, and Cell Differentiation (Institute of Molecular Embryology and Genetics), Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kouro T, Nagata K, Takaki S, Nisitani S, Hirano M, Wahl MI, Witte ON, Karasuyama H, Takatsu K. Bruton's tyrosine kinase is required for signaling the CD79b-mediated pro-B to pre-B cell transition. Int Immunol 2001; 13:485-93. [PMID: 11282988 DOI: 10.1093/intimm/13.4.485] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formation of the pre-BCR complex is a critical check point during B cell development and induces the transition of pro-B to pre-B cells. CD79b (Igbeta) is a signaling component in the pre-BCR complex, since differentiation to the pre-B phenotype is induced by cross-linking the CD79b expressed on developmentally arrested pro-B cells from recombination-activating gene (RAG)-2-deficient mice. Bruton's tyrosine kinase (BTK) plays important roles in B cell development. However, its molecular mechanisms in early B cell development are not fully understood. To examine whether BTK functions in CD79b-mediated signaling for the pro-B/pre-B transition, we utilized RAG2/BTK double-knockout (DKO) mice. Pro-B cells from RAG2/BTK-DKO mice did not differentiate into pre-B cells following CD79b cross-linking, although tyrosine phosphorylation of cellular proteins including Erk1/2 and phospholipase C-gamma2 was induced in the same manner as RAG2-KO mice. BTK is phosphorylated after cross-linking of CD79b on RAG2-deficient pro-B cells. These findings suggest that BTK-dependent pathways downstream of CD79b are critical for the pro-B/pre-B transition and BTK-independent signaling pathways are also activated via the pre-BCR complex.
Collapse
Affiliation(s)
- T Kouro
- Department of Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Williams CJ, Grandal I, Vesprini DJ, Wojtyra U, Danska JS, Guidos CJ. Irradiation promotes V(D)J joining and RAG-dependent neoplastic transformation in SCID T-cell precursors. Mol Cell Biol 2001; 21:400-13. [PMID: 11134329 PMCID: PMC86582 DOI: 10.1128/mcb.21.2.400-413.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Accepted: 10/17/2000] [Indexed: 11/20/2022] Open
Abstract
Defects in the nonhomologous end-joining (NHEJ) pathway of double-stranded DNA break repair severely impair V(D)J joining and selectively predispose mice to the development of lymphoid neoplasia. This connection was first noted in mice with the severe combined immune deficient (SCID) mutation in the DNA-dependent protein kinase (DNA-PK). SCID mice spontaneously develop thymic lymphoma with low incidence and long latency. However, we and others showed that low-dose irradiation of SCID mice dramatically increases the frequency and decreases the latency of thymic lymphomagenesis, but irradiation does not promote the development of other tumors. We have used this model to explore the mechanistic basis by which defects in NHEJ confer selective and profound susceptibility to lymphoid oncogenesis. Here, we show that radiation quantitatively and qualitatively improves V(D)J joining in SCID cells, in the absence of T-cell receptor-mediated cellular selection. Furthermore, we show that the lymphocyte-specific endonuclease encoded by the recombinase-activating genes (RAG-1 and RAG-2) is required for radiation-induced thymic lymphomagenesis in SCID mice. Collectively, these data suggest that irradiation induces a DNA-PK-independent NHEJ pathway that facilitates V(D)J joining, but also promotes oncogenic misjoining of RAG-1/2-induced breaks in SCID T-cell precursors.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Division/radiation effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/radiation effects
- Complementarity Determining Regions/genetics
- DNA Damage
- DNA Nucleotidyltransferases/metabolism
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Deletion
- Gene Rearrangement, T-Lymphocyte/genetics
- Gene Rearrangement, T-Lymphocyte/radiation effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Lymphoma/genetics
- Lymphoma/pathology
- Mice
- Mice, Knockout
- Mice, SCID
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Recombination, Genetic/genetics
- Recombination, Genetic/radiation effects
- Stem Cells/metabolism
- Stem Cells/pathology
- Stem Cells/radiation effects
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- T-Lymphocytes/radiation effects
- Thymus Neoplasms/genetics
- Thymus Neoplasms/pathology
- Transgenes/genetics
- Tumor Cells, Cultured
- VDJ Recombinases
Collapse
Affiliation(s)
- C J Williams
- Hospital for Sick Children Research Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Berger MA, Carleton M, Rhodes M, Sauder JM, Trop S, Dunbrack RL, Hugo P, Wiest DL. Identification of a novel pre-TCR isoform in which the accessibility of the TCR beta subunit is determined by occupancy of the 'missing' V domain of pre-T alpha. Int Immunol 2000; 12:1579-91. [PMID: 11058578 DOI: 10.1093/intimm/12.11.1579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have identified a novel pre-TCR isoform that is structurally distinct from conventional pre-TCR complexes and whose TCR beta chains are inaccessible to anti-TCR beta antibodies. We term this pre-TCR isoform the MB (masked beta)-pre-TCR. Pre-T alpha (pT alpha) subunits of MB-pre-TCR complexes have a larger apparent mol. wt due to extensive modification with O:-linked carbohydrates; however, preventing addition of O-glycans does not restore antibody recognition of the TCR beta subunits of MB-pre-TCR complexes. Importantly, accessibility of TCR beta chains in MB-pre-TCR complexes is restored by filling in the 'missing' variable (V) domain of pT alpha with a V domain from TCR alpha. Moreover, the proportion of pre-TCR complexes in which the TCR beta subunits are accessible to anti-TCR beta antibody varies with the cellular context, suggesting that TCR beta accessibility is controlled by a trans-acting factor. The way in which this factor might control TCR beta accessibility as well as the physiologic relevance of TCR beta masking for pre-TCR function are discussed.
Collapse
MESH Headings
- Animals
- Carbohydrate Sequence
- Dimerization
- Gene Transfer Techniques
- Glycosylation
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Molecular
- Molecular Sequence Data
- Protein Isoforms/biosynthesis
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/isolation & purification
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/isolation & purification
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M A Berger
- Immunobiology Working Group, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Takaki S, Sauer K, Iritani BM, Chien S, Ebihara Y, Tsuji K, Takatsu K, Perlmutter RM. Control of B cell production by the adaptor protein lnk. Definition Of a conserved family of signal-modulating proteins. Immunity 2000; 13:599-609. [PMID: 11114373 PMCID: PMC5291696 DOI: 10.1016/s1074-7613(00)00060-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lnk is an SH2 domain-containing adaptor protein expressed preferentially in lymphocytes. To illuminate the importance of Lnk, we generated lnk(-/-) mice. Whereas T cell development was unaffected, pre-B and immature B cells accumulated in the spleens. In the bone marrow, B-lineage cells were proportionately increased, reflecting enhanced production of pro-B cells that resulted in part from hypersensitivity of precursors to SCF, the ligand for c-kit. Hence, Lnk ordinarily acts to regulate B cell production. Further characterization of lnk(-/-) mice also revealed that full-length Lnk is a 68 kDa protein containing a conserved proline-rich region and a PH domain. Lnk is a representative of a multigene adaptor protein family whose members act, by analogy with Lnk, to modulate intracellular signaling.
Collapse
Affiliation(s)
- Satoshi Takaki
- Department of Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108, Japan
- Department of Clinical Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108, Japan
- Department of Immunology, University of Washington Seattle, Washington 98195
| | - Karsten Sauer
- Merck Research Laboratories Rahway, New Jersey 07065
| | - Brian M. Iritani
- Department of Immunology, University of Washington Seattle, Washington 98195
| | - Sylvia Chien
- Howard Hughes Medical Institute, University of Washington Seattle, Washington 98195
| | - Yasuhiro Ebihara
- Department of Clinical Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108, Japan
| | - Kohichiro Tsuji
- Department of Clinical Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108, Japan
| | - Kiyoshi Takatsu
- Department of Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108, Japan
| | - Roger M. Perlmutter
- Howard Hughes Medical Institute, University of Washington Seattle, Washington 98195
- Department of Immunology, University of Washington Seattle, Washington 98195
- Merck Research Laboratories Rahway, New Jersey 07065
- To whom correspondence should be addressed ()
| |
Collapse
|