1
|
Xie C, Xu Z, Zheng Y, Wang S, Dai M, Xiao C. Research Progress on the Preparation of Manganese Dioxide Nanomaterials and Their Electrochemical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1283. [PMID: 39120387 PMCID: PMC11313769 DOI: 10.3390/nano14151283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Manganese dioxide (MnO2) nanomaterials have shown excellent performance in catalytic degradation and other fields because of their low density and great specific surface area, as well as their tunable chemical characteristics. However, the methods used to synthesize MnO2 nanomaterials greatly affect their structures and properties. Therefore, the present work systematically illustrates common synthetic routes and their advantages and disadvantages, as well as examining research progress relating to electrochemical applications. In contrast to previous reviews, this review summarizes approaches for preparing MnO2 nanoparticles and describes their respective merits, demerits, and limitations. The aim is to help readers better select appropriate preparation methods for MnO2 nanomaterials and translate research results into practical applications. Finally, we also point out that despite the significant progress that has been made in the development of MnO2 nanomaterials for electrochemical applications, the related research remains in the early stages, and the focus of future research should be placed on the development of green synthesis methods, as well as the composition and modification of MnO2 nanoparticles with other materials.
Collapse
Affiliation(s)
- Chunsheng Xie
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China
| | - Zesheng Xu
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
| | - Yujian Zheng
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
| | - Shuo Wang
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Min Dai
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China
| | - Chun Xiao
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China
| |
Collapse
|
2
|
Bharose AA, Hajare ST, H. P. G, Soni M, Prajapati KK, Singh SC, Upadhye V. Bacteria-mediated green synthesis of silver nanoparticles and their antifungal potentials against Aspergillus flavus. PLoS One 2024; 19:e0297870. [PMID: 38527060 PMCID: PMC10962810 DOI: 10.1371/journal.pone.0297870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/04/2024] [Indexed: 03/27/2024] Open
Abstract
The best biocontroller Bacillus subtilis produced silver nanoparticles (AgNPs) with a spherical form and a 62 nm size through green synthesis. Using UV-vis spectroscopy, PSA, and zeta potential analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy, the properties of synthesized silver nanoparticles were determined. Silver nanoparticles were tested for their antifungicidal efficacy against the most virulent isolate of the Aspergillus flavus fungus, JAM-JKB-BHA-GG20, and among the 10 different treatments, the treatment T6 [PDA + 1 ml of NP (19: 1)] + Pathogen was shown to be extremely significant (82.53%). TG-51 and GG-22 were found to be the most sensitive groundnut varieties after 5 and 10 days of LC-MS QTOF infection when 25 different groundnut varieties were screened using the most toxic Aspergillus flavus isolate JAM- JKB-BHA-GG20, respectively. In this research, the most susceptible groundnut cultivar, designated GG-22, was tested. Because less aflatoxin (1651.15 g.kg-1) was observed, treatment T8 (Seed + Pathogen + 2 ml silver nanoparticles) was determined to be much more effective. The treated samples were examined by Inductively Coupled Plasma Mass Spectrometry for the detection of metal ions and the fungicide carbendazim. Ag particles (0.8 g/g-1) and the fungicide carbendazim (0.025 g/g-1) were found during Inductively Coupled Plasma Mass Spectrometry analysis below detectable levels. To protect plants against the invasion of fungal pathogens, environmentally friendly green silver nanoparticle antagonists with antifungal properties were able to prevent the synthesis of mycotoxin by up to 82.53%.
Collapse
Affiliation(s)
| | | | - Gajera H. P.
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Mukesh Soni
- Dr D.Y Patil Vidyapeeth, Pune and Department of CSE, University Centre for Research & Development Chandigarh University, Mohali, Punjab, India
| | | | | | - Vijay Upadhye
- Institute of Applied Sciences, Research & Development Cell, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
3
|
Tomah AA, Zhang Z, Alamer ISA, Khattak AA, Ahmed T, Hu M, Wang D, Xu L, Li B, Wang Y. The Potential of Trichoderma-Mediated Nanotechnology Application in Sustainable Development Scopes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2475. [PMID: 37686983 PMCID: PMC10490099 DOI: 10.3390/nano13172475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The environmental impact of industrial development has been well-documented. The use of physical and chemical methods in industrial development has negative consequences for the environment, raising concerns about the sustainability of this approach. There is a growing need for advanced technologies that are compatible with preserving the environment. The use of fungi products for nanoparticle (NP) synthesis is a promising approach that has the potential to meet this need. The genus Trichoderma is a non-pathogenic filamentous fungus with a high degree of genetic diversity. Different strains of this genus have a variety of important environmental, agricultural, and industrial applications. Species of Trichoderma can be used to synthesize metallic NPs using a biological method that is environmentally friendly, low cost, energy saving, and non-toxic. In this review, we provide an overview of the role of Trichoderma metabolism in the synthesis of metallic NPs. We discuss the different metabolic pathways involved in NP synthesis, as well as the role of metabolic metabolites in stabilizing NPs and promoting their synergistic effects. In addition, the future perspective of NPs synthesized by extracts of Trichoderma is discussed, as well as their potential applications in biomedicine, agriculture, and environmental health.
Collapse
Affiliation(s)
- Ali Athafah Tomah
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, College of Agriculture, University of Misan, Al-Amarah 62001, Iraq
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| | - Iman Sabah Abd Alamer
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, Agriculture Directorate, Al-Amarah 62001, Iraq
| | - Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Minjun Hu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China;
| | - Daoze Wang
- Hangzhou Rural Revitalization Service Center, Hangzhou 310020, China;
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| |
Collapse
|
4
|
Beltrán Pineda ME, Lizarazo Forero LM, Sierra YCA. Mycosynthesis of silver nanoparticles: a review. Biometals 2023; 36:745-776. [PMID: 36482125 DOI: 10.1007/s10534-022-00479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Metallic nanoparticles currently show multiple applications in the industrial, clinical and environmental fields due to their particular physicochemical characteristics. Conventional approaches for the synthesis of silver nanoparticles (AgNPs) are based on physicochemical processes which, although they show advantages such as high productivity and good monodispersity of the nanoparticles obtained, have disadvantages such as the high energy cost of the process and the use of harmful radiation or toxic chemical reagents that can generate highly polluting residues. Given the current concern about the environment and the potential cytotoxic effects of AgNPs, once they are released into the environment, a new green chemistry approach to obtain these nanoparticles called biosynthesis has emerged. This new alternative process counteracts some limitations of conventional synthesis methods, using the metabolic capabilities of living beings to manufacture nanomaterials, which have proven to be more biocompatible than their counterparts obtained by traditional methods. Among the organisms used, fungi are outstanding and are therefore being explored as potential nanofactories in an area of research known as mycosynthesis. For all the above, this paper aims to illustrate the advances in state of the art in the mycosynthesis of AgNPs, outlining the two possible mechanisms involved in the process, as well as the AgNPs stabilizing substances produced by fungi, the variables that can affect mycosynthesis at the in vitro level, the applications of AgNPs obtained by mycosynthesis, the patents generated to date in this field, and the limitations encountered by researchers in the area.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Universidad Nacional de Colombia- Doctorado en Biotecnología- Grupo de Investigación en Macromoléculas UN- Grupo de Investigación Biología Ambiental UPTC. Grupo de Investigación Gestión Ambiental Universidad de Boyacá, Tunja, Colombia.
| | - Luz Marina Lizarazo Forero
- Universidad Pedagógica y Tecnológica de Colombia- Grupo de Investigación Biología Ambiental, Tunja, Colombia
| | - Y Cesar A Sierra
- Universidad Nacional de Colombia. Grupo de Investigación en Macromoléculas, Bogotá, Colombia
| |
Collapse
|
5
|
Verma V, Al-Dossari M, Singh J, Rawat M, Kordy MGM, Shaban M. A Review on Green Synthesis of TiO2 NPs: Synthesis and Applications in Photocatalysis and Antimicrobial. Polymers (Basel) 2022; 14:polym14071444. [PMID: 35406317 PMCID: PMC9002645 DOI: 10.3390/polym14071444] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Nanotechnology is a fast-expanding area with a wide range of applications in science, engineering, health, pharmacy, and other fields. Nanoparticles (NPs) are frequently prepared via a variety of physical and chemical processes. Simpler, sustainable, and cost-effective green synthesis technologies have recently been developed. The synthesis of titanium dioxide nanoparticles (TiO2 NPs) in a green/sustainable manner has gotten a lot of interest in the previous quarter. Bioactive components present in organisms such as plants and bacteria facilitate the bio-reduction and capping processes. The biogenic synthesis of TiO2 NPs, as well as the different synthesis methods and mechanistic perspectives, are discussed in this review. A range of natural reducing agents including proteins, enzymes, phytochemicals, and others, are involved in the synthesis of TiO2 NPs. The physics of antibacterial and photocatalysis applications were also thoroughly discussed. Finally, we provide an overview of current research and future concerns in biologically mediated TiO2 nanostructures-based feasible platforms for industrial applications.
Collapse
Affiliation(s)
- Vishal Verma
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (V.V.); (M.R.)
| | - Mawaheb Al-Dossari
- Department of Physics, Dhahran Aljanoub, King Khalid University, Abha 61421, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
- Correspondence: or
| | - Mohit Rawat
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (V.V.); (M.R.)
| | - Mohamed G. M. Kordy
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.G.M.K.); (M.S.)
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.G.M.K.); (M.S.)
- Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
| |
Collapse
|
6
|
Sadeghi-Aghbash M, Rahimnejad M. Zinc phosphate nanoparticles: A review on physical, chemical, and biological synthesis and their applications. Curr Pharm Biotechnol 2021; 23:1228-1244. [PMID: 34779369 DOI: 10.2174/1389201022666211015115753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology is considered one of the emerging fields of science that has influenced diverse applications, including food, biomedicine, and cosmetics. The production and usage of materials with nanoscale dimensions like nanoparticles are attractive parts of nanotechnology. Among different nanoparticles, zinc phosphate nanoparticles have attracted attention due to their biocompatibility, biosafety, non-toxicity, and environmental compatibility. These nanoparticles could be employed in various applications like anticorrosion, antibacterial, dental cement, glass ceramics, tissue engineering, and drug delivery. A variety of physical, chemical, and green synthesis methods have been used to synthesize zinc phosphate nanoparticles. All these methods have some limitations along with certain advantages. Chemical approaches may cause health risks and environmental problems due to the toxicity of hazardous chemicals used in these techniques. Moreover, physical methods require high amounts of energy as well as expensive instruments. However, biological methods are free of chemical contaminants and eco-friendly. This review is aimed to explore different methods for the synthesis of zinc phosphate nanoparticles, including physical, chemical, and more recently, biological approaches (using various sources such as plants, algae, and microorganisms). Also, it summarizes the practicable applications of zinc phosphate nanoparticles as anticorrosion pigment, dental cement, and drug delivery agents.
Collapse
Affiliation(s)
- Mona Sadeghi-Aghbash
- Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Mazandaran. Iran
| | - Mostafa Rahimnejad
- Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Mazandaran. Iran
| |
Collapse
|
7
|
Priya, Naveen, Kaur K, Sidhu AK. Green Synthesis: An Eco-friendly Route for the Synthesis of Iron Oxide Nanoparticles. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.655062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Green approach has received major attention for the synthesis of metal oxide nanoparticles. One such metal oxide nanoparticles are iron oxide nanoparticles (IONPs). IONPs have fetched a great deal of interest in recent era because of their magnetic nature, as they can be easily recovered from the reaction mixture by applying an external magnetic field. Although, a variety of chemical and physical methods of synthesis are known, green synthesis is safer, sustainable and biologically acceptable. Plants and microbes are the main biological materials used for the green synthesis. In present review, the synthesis of IONPs by using plants, bacteria, fungi and algae have been highlighted. IONPs produced by plants, fungi, bacteria and algae usually falls in 1–100 nm range and are of distinct shapes like cubic, tetragonal crystalline, spherical, cylindrical, elliptical, octahedral, orthorhombic, hexagonal rods, nanosphere and quasi spherical. Furthermore, these biomaterials play role of reducing, capping, stabilizing and fabricating agents in green synthesis of nanoparticles. The review put forward a comprehensive report of various routes used for synthesizing IONP, biologically. Intuition into the procedures for synthesis of nanoparticles will help to nourish our learning in the area of nanotechnology.
Collapse
|
8
|
Southam HM, Williamson MP, Chapman JA, Lyon RL, Trevitt CR, Henderson PJF, Poole RK. 'Carbon-Monoxide-Releasing Molecule-2 (CORM-2)' Is a Misnomer: Ruthenium Toxicity, Not CO Release, Accounts for Its Antimicrobial Effects. Antioxidants (Basel) 2021; 10:antiox10060915. [PMID: 34198746 PMCID: PMC8227206 DOI: 10.3390/antiox10060915] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Carbon monoxide (CO)-releasing molecules (CORMs) are used to deliver CO, a biological ‘gasotransmitter’, in biological chemistry and biomedicine. CORMs kill bacteria in culture and in animal models, but are reportedly benign towards mammalian cells. CORM-2 (tricarbonyldichlororuthenium(II) dimer, Ru2Cl4(CO)6), the first widely used and commercially available CORM, displays numerous pharmacological, biochemical and microbiological activities, generally attributed to CO release. Here, we investigate the basis of its potent antibacterial activity against Escherichia coli and demonstrate, using three globin CO sensors, that CORM-2 releases negligible CO (<0.1 mol CO per mol CORM-2). A strong negative correlation between viability and cellular ruthenium accumulation implies that ruthenium toxicity underlies biocidal activity. Exogenous amino acids and thiols (especially cysteine, glutathione and N-acetyl cysteine) protected bacteria against inhibition of growth by CORM-2. Bacteria treated with 30 μM CORM-2, with added cysteine and histidine, exhibited no significant loss of viability, but were killed in the absence of these amino acids. Their prevention of toxicity correlates with their CORM-2-binding affinities (Cys, Kd 3 μM; His, Kd 130 μM) as determined by 1H-NMR. Glutathione is proposed to be an important intracellular target of CORM-2, with CORM-2 having a much higher affinity for reduced glutathione (GSH) than oxidised glutathione (GSSG) (GSH, Kd 2 μM; GSSG, Kd 25,000 μM). The toxicity of low, but potent, levels (15 μM) of CORM-2 was accompanied by cell lysis, as judged by the release of cytoplasmic ATP pools. The biological effects of CORM-2 and related CORMs, and the design of biological experiments, must be re-examined in the light of these data.
Collapse
Affiliation(s)
- Hannah M. Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Michael P. Williamson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Jonathan A. Chapman
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Rhiannon L. Lyon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Clare R. Trevitt
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Peter J. F. Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK;
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
- Correspondence:
| |
Collapse
|
9
|
Mabrouk M, Elkhooly TA, Amer SK. Actinomycete strain type determines the monodispersity and antibacterial properties of biogenically synthesized silver nanoparticles. J Genet Eng Biotechnol 2021; 19:57. [PMID: 33860859 PMCID: PMC8052398 DOI: 10.1186/s43141-021-00153-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Bio-nanotechnology is considered as one of the low-cost approaches that have been utilized in production of nanomaterials. The current research aimed at investigating the influence of different types of Actinomycete strains on the final properties of silver nanoparticles (AgNPs) such as size, shape, polydispersity, and antibacterial properties. For this purpose, the following techniques were employed UV spectrophotometer, SDS-PAGE electrophoresis, TEM, FTIR, antibacterial agar diffusion test, and Zetasizer. RESULTS It was found that among 34 Streptomyces isolates collected from the soil, Streptomyces spiralis and Streptomyces rochei were able to reduce silver nitrate into sliver nanoparticles. The diversity and molecular weights of extracellular proteins secreted by these stains were different as proved by SDS-PAGE technique. This consequently resulted in differences in polydispersity of AgNPs which indicate that the sizes of AgNPs were highly dependent on the amount, molecular sizes, and diversity of extracellular matrix proteins of the microorganism. CONCLUSION This article might give an insight about the importance of molecular sizes of biomacromolecules such as proteins on the physical properties of biogenic synthesized nanoparticles.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.),- Dokki, Giza, P.O.12622 Egypt
| | - Tarek A. Elkhooly
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.),- Dokki, Giza, P.O.12622 Egypt
- Biochemistry Department, Faculty of Medicine, Delta University for Science and Technology, Mansoura, Gamasa, Egypt
| | - Shaimaa K. Amer
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Alahmad A, Feldhoff A, Bigall NC, Rusch P, Scheper T, Walter JG. Hypericum perforatum L.-Mediated Green Synthesis of Silver Nanoparticles Exhibiting Antioxidant and Anticancer Activities. NANOMATERIALS 2021; 11:nano11020487. [PMID: 33673018 PMCID: PMC7918618 DOI: 10.3390/nano11020487] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
This contribution focuses on the green synthesis of silver nanoparticles (AgNPs) with a size < 100 nm for potential medical applications by using silver nitrate solution and Hypericum Perforatum L. (St John’s wort) aqueous extracts. Various synthesis methods were used and compared with regard to their yield and quality of obtained AgNPs. Monodisperse spherical nanoparticles were generated with a size of approximately 20 to 50 nm as elucidated by different techniques (SEM, TEM). XRD measurements showed that metallic silver was formed and the particles possess a face-centered cubic structure (fcc). SEM images and FTIR spectra revealed that the AgNPs are covered by a protective surface layer composed of organic components originating from the plant extract. Ultraviolet-visible spectroscopy, dynamic light scattering, and zeta potential were also measured for biologically synthesized AgNPs. A potential mechanism of reducing silver ions to silver metal and protecting it in the nanoscale form has been proposed based on the obtained results. Moreover, the AgNPs prepared in the present study have been shown to exhibit a high antioxidant activity for 2, 2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, and super oxide anion radical and 2,2-diphenyl-1-picrylhydrazyl. Synthesized AgNPs showed high cytotoxicity by inhibiting cell viability for Hela, Hep G2, and A549 cells.
Collapse
Affiliation(s)
- Abdalrahim Alahmad
- Institut für Technische Chemie, Leibniz Universität Hannover, 30167 Lower Saxony, Germany;
- Correspondence: (A.A.); (J.-G.W.); Tel.: +49-511-762-2773 (A.A.)
| | - Armin Feldhoff
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, 30167 Lower Saxony, Germany; (A.F.); (N.C.B.); (P.R.)
| | - Nadja C. Bigall
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, 30167 Lower Saxony, Germany; (A.F.); (N.C.B.); (P.R.)
| | - Pascal Rusch
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, 30167 Lower Saxony, Germany; (A.F.); (N.C.B.); (P.R.)
| | - Thomas Scheper
- Institut für Technische Chemie, Leibniz Universität Hannover, 30167 Lower Saxony, Germany;
| | - Johanna-Gabriela Walter
- Institut für Technische Chemie, Leibniz Universität Hannover, 30167 Lower Saxony, Germany;
- Correspondence: (A.A.); (J.-G.W.); Tel.: +49-511-762-2773 (A.A.)
| |
Collapse
|
11
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123401. [PMID: 32763697 PMCID: PMC7606836 DOI: 10.1016/j.jhazmat.2020.123401] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 05/18/2023]
Abstract
Numerous hazardous environmental pollutants in water bodies, both organic and inorganic, have become a critical global issue. As greener and bio-synthesized versions of nanoparticles exhibit significant promise for wastewater treatment, this review discusses trends and future prospects exploiting the sustainable applications of green-synthesized nanocatalysts and nanomaterials for the removal of contaminants and metal ions from aqueous solutions. Recent trends and challenges about these nanocatalysts and nanomaterials and their potential applications in wastewater treatment and water purification are highlighted including toxicity and biosafety issues. This review delineates the pros and cons and critical issues pertaining to the deployment of these nanomaterials endowed with their superior surface area, mechanical properties, significant chemical reactivity, and cost-effectiveness with low energy consumption, for removal of hazardous materials and contaminants from water; comprehensive coverage of these materials for industrial wastewater remediation, and their recovery is underscored by recent advancements in nanofabrication, encompassing intelligent and smart nanomaterials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
12
|
Fernandez M, Paulucci NS, Reynoso E, Morales GM, Agostini E, González PS. Morphological and structural response of Bacillus sp. SFC 500-1E after Cr(VI) and phenol treatment. J Basic Microbiol 2020; 60:679-690. [PMID: 32378234 DOI: 10.1002/jobm.202000076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
Bacillus sp. SFC 500-1E, a bacterial strain isolated from tannery sediments, is able to remove Cr(VI) and simultaneously tolerate high concentrations of phenol. In this study, we used high-resolution microscopies, fluorescence polarization techniques, and several biochemical approaches to improve our understanding about the adaptive mechanisms of this strain to survive in the presence of Cr(VI) and phenol, both individually and simultaneously. Among adaptive strategies developed by Bacillus sp. SFC 500-1E, an increase in bacterial size, such as length, width, and height, and ultrastructural alterations, such as electron-dense precipitates, the presence of exopolymers, and cell lysis, are noteworthy. The exopolymers observed were consistent with the extensive biofilm formation and exopolysaccharides and extracellular protein quantification. At the cell membrane level, a rapid rigidity was induced in Cr(VI) + phenol treatment. This effect was counteracted after 16 h by changes at the level of phospholipids, mainly in the composition of fatty acids (FAs); in particular, an increase in the unsaturated fatty acid/saturated fatty acid ratio was detected. This study shows evidence of some adaptive responses displayed by Bacillus sp. SFC 500-1E, which allows it to survive in stressful conditions.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Natalia S Paulucci
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Eugenia Reynoso
- Departamento de Química- FCEFQyN, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Río Cuarto, Córdoba, Argentina
| | - Gustavo M Morales
- Departamento de Química- FCEFQyN, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
13
|
Bioaccumulation of lead, chromium, and nickel by bacteria from three different genera isolated from industrial effluent. Int Microbiol 2019; 23:253-261. [DOI: 10.1007/s10123-019-00098-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
|
14
|
Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0337-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Kratošová G, Holišová V, Konvičková Z, Ingle AP, Gaikwad S, Škrlová K, Prokop A, Rai M, Plachá D. From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnol Adv 2018; 37:154-176. [PMID: 30481544 DOI: 10.1016/j.biotechadv.2018.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Chemical, physical and mechanical methods of nanomaterial preparation are still regarded as mainstream methods, and the scientific community continues to search for new ways of nanomaterial preparation. The major objective of this review is to highlight the advantages of using green chemistry and bionanotechnology in the preparation of functional low-cost catalysts. Bionanotechnology employs biological principles and processes connected with bio-phase participation in both design and development of nano-structures and nano-materials, and the biosynthesis of metallic nanoparticles is becoming even more popular due to; (i) economic and ecologic effectiveness, (ii) simple one-step nanoparticle formation, stabilisation and biomass support and (iii) the possibility of bio-waste valorisation. Although it is quite difficult to determine the precise mechanisms in particular biosynthesis and research is performed with some risk in all trial and error experiments, there is also the incentive of understanding the exact mechanisms involved. This enables further optimisation of bionanoparticle preparation and increases their application potential. Moreover, it is very important in bionanotechnological procedures to ensure repeatability of the methods related to the recognised reaction mechanisms. This review, therefore, summarises the current state of nanoparticle biosynthesis. It then demonstrates the application of biosynthesised metallic nanoparticles in heterogeneous catalysis by identifying the many examples where bionanocatalysts have been successfully applied in model reactions. These describe the degradation of organic dyes, the reduction of aromatic nitro compounds, dehalogenation of chlorinated aromatic compounds, reduction of Cr(VI) and the synthesis of important commercial chemicals. To ensure sustainability, it is important to focus on nanomaterials that are capable of maintaining the important green chemistry principles directly from design inception to ultimate application.
Collapse
Affiliation(s)
- Gabriela Kratošová
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic.
| | - Veronika Holišová
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| | - Zuzana Konvičková
- ENET Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| | - Avinash P Ingle
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Lorena, Brazil
| | - Swapnil Gaikwad
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Tathawade, Pune, India
| | - Kateřina Škrlová
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| | - Aleš Prokop
- Chemical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, S.G.B. Amravati University, Amravati 444602, Maharashtra, India
| | - Daniela Plachá
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic; ENET Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| |
Collapse
|
16
|
Mathew BB, Biju VG, Nideghatta Beeregowda K. Accumulation of lead (Pb II) metal ions by Bacillus toyonensis SCE1 species, innate to industrial-area ground water and nanoparticle synthesis. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0892-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Lotlikar NP, Damare SR, Meena RM, Linsy P, Mascarenhas B. Potential of Marine-Derived Fungi to Remove Hexavalent Chromium Pollutant from Culture Broth. Indian J Microbiol 2018; 58:182-192. [PMID: 29651177 DOI: 10.1007/s12088-018-0719-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/08/2018] [Indexed: 01/26/2023] Open
Abstract
Chromium (Cr) released from industrial units such as tanneries, textile and electroplating industries is detrimental to the surrounding ecosystems and human health. The focus of the present study was to check the Cr(VI) removal efficiency by marine-derived fungi from liquid broth. Amongst the three Cr(VI) tolerant isolates, #NIOSN-SK56-S19 (Aspergillus sydowii) showed Cr-removal efficiency of 0.01 mg Cr mg-1 biomass resulting in 26% abatement of total Cr with just 2.8 mg of biomass produced during the growth in 300 ppm Cr(VI). Scanning Electron Microscopy revealed aggregation of mycelial biomass with exopolysaccharide, while Electron Dispersive Spectroscopy showed the presence of Cr2O3 inside the biomass indicating presence of active Cr(VI) removal mechanisms. This was further supported when the Cr(VI) removal was monitored using DPC (1,5-diphenylcarbazide) method. The results of this study point to the potential of marine-derived fungal isolates for Cr(VI) removal.
Collapse
Affiliation(s)
- Nikita P Lotlikar
- 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Samir R Damare
- 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Ram Murti Meena
- 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - P Linsy
- 2Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Brenda Mascarenhas
- 2Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| |
Collapse
|
18
|
Acaricidal, pediculicidal and larvicidal activity of synthesized ZnO nanoparticles using Momordica charantia leaf extract against blood feeding parasites. Exp Parasitol 2017; 181:47-56. [PMID: 28760358 DOI: 10.1016/j.exppara.2017.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to evaluate the acaricidal, pediculicidal and larvicidal effect of synthesized zinc oxide nanoparticles (ZnO NPs) using Momordica charantia leaf extract against the larvae of Rhipicephalus (Boophilus) microplus, adult of Pediculus humanus capitis, and the larvae of Anopheles stephensi, Culex quinquefasciatus. The ZnO NPs were characterized by using UV, XRD, FTIR and SEM-EDX. The SEM image confirms that the synthesized nanoparticles were spherical in shape with a size of 21.32 nm. The results of GC-MS analysis indicates the presence of the major compound of Nonacosane (C29H60) in the M. charantia leaf extract. Cattle tick, head lice and mosquito larvae were exposed to a varying concentrations of the synthesized ZnO NPs and M. charantia leaf extract for 24 h. Compared to the leaf aqueous extract, biosynthesized ZnO NPs showed higher toxicity against R. microplus, P. humanus capitis, An. stephensi, and Cx. Quinquefasciatus with the LC50 values of 6.87, 14.38, 5.42, and 4.87 mg/L, respectively. The findings revealed that synthesized ZnO NPs possess excellent anti-parasitic activity. These results suggest that the green synthesized ZnO NPs has the potential to be used as an ideal ecofriendly approach for the control of R. microplus, P. humanus capitis and the mosquito larvae of An. Stephensi and Cx. quinquefasciatus.
Collapse
|
19
|
Sathish Kumar SR, Bhaskara Rao KV. Postprandial anti-hyperglycemic activity of marine Streptomyces coelicoflavus SRBVIT13 mediated gold nanoparticles in streptozotocin induced diabetic male albino Wister rats. IET Nanobiotechnol 2016; 10:308-314. [PMID: 27676379 PMCID: PMC8676180 DOI: 10.1049/iet-nbt.2015.0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/23/2016] [Accepted: 02/18/2016] [Indexed: 11/20/2022] Open
Abstract
The present study focuses on the biosynthesis of gold nanoparticles (AuNPs) using Streptomyces coelicoflavus (S. coelicoflavus) SRBVIT13 isolated from marine salt pan soils collected from Ongole, Andhra Pradesh, India. The biosynthesised AuNPs are characterised by UV-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray analysis. Transmission electron microscopy study suggests that the biosynthesised AuNPs are spherical in shape within a size range of 12-20 nm (mean diameter as 14 nm). The anti-type II diabetes activity of AuNPs is carried out by testing it in vitro α-glucosidase and α-amylase enzyme inhibition activity and in vivo postprandial anti-hyperglycemic activity in sucrose and glucose-loaded streptozotocin induced diabetic albino Wister rats. AuNPs has shown a significant inhibitory activity of 84.70 and 87.82% with IC50 values of 67.65 and 65.59 μg/mL to α-glucosidase and α-amylase enzymes, while the diabetic rats have shown significant reduction in the post postprandial blood glucose level by 57.80 and 88.09%, respectively compared with control group after AuNPs treatment at the concentration of 300 and 600 mg/kg body weight. Hence, this biosynthesised AuNPs might be useful in combating type II diabetes mellitus for the betterment of human life.
Collapse
Affiliation(s)
- Sathyanarayanan Ravi Sathish Kumar
- Molecular and Microbiology Research Laboratory, Environmental Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - Kokati Venkata Bhaskara Rao
- Molecular and Microbiology Research Laboratory, Environmental Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
20
|
Schweitzer MH, Lindgren J, Moyer AE. Melanosomes and ancient coloration re-examined: A response to Vinther 2015 (DOI 10.1002/bies.201500018). Bioessays 2015; 37:1174-83. [PMID: 26434749 DOI: 10.1002/bies.201500061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Round to elongate microbodies associated with fossil vertebrate soft tissues were interpreted as microbial traces until 2008, when they were re-described as remnant melanosomes - intracellular, pigment-containing eukaryotic organelles. Since then, multiple claims for melanosome preservation and inferences of organismal color, behavior, and physiology have been advanced, based upon the shape and size of these microstructures. Here, we re-examine evidence for ancient melanosomes in light of information reviewed in Vinther (2015), and literature regarding the preservation potential of microorganisms and their exopolymeric secretions. We: (i) address statements in Vinther's recent (2015) review that are incorrect or which misrepresent published data; (ii) discuss the need for caution in interpreting "voids" and microbodies associated with degraded fossil soft tissues; (iii) present evidence that microorganisms are in many cases an equally parsimonious source for these "voids" as are remnant melanosomes; and (iv) suggest methods/criteria for differentiating melanosomes from microbial traces in the fossil record.
Collapse
Affiliation(s)
- Mary H Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,North Carolina Museum of Natural Sciences, Raleigh, NC, USA.,Department of Geology, Lund University, Lund, Sweden
| | | | - Alison E Moyer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
21
|
Anand BG, Thomas CN, Prakash S, Kumar CS. Biosynthesis of silver nano-particles by marine sediment fungi for a dose dependent cytotoxicity against HEp2 cell lines. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review. Crit Rev Microbiol 2014; 42:209-21. [PMID: 25430521 DOI: 10.3109/1040841x.2014.917069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanotechnology is gaining tremendous attention in the present century due to its expected impact on many important areas such as medicine, energy, electronics, and space industries. In this context, actinobacterial biosynthesis of nanoparticles is a reliable, eco-friendly, and important aspect of green chemistry approach that interconnects microbial biotechnology and nanobiotechnology. Antibiotics produced by actinobacteria are popular in almost all the therapeutic measures and it is known that these microbes are also helpful in the biosynthesis of nanoparticles with good surface and size characteristics. In fact, actinobacteria are efficient producers of nanoparticles that show a range of biological properties, namely, antibacterial, antifungal, anticancer, anti-biofouling, anti-malarial, anti-parasitic, antioxidant, etc. This review describes the potential use of the actinobacteria as the novel sources for the biosynthesis of nanoparticles with improved biomedical applications.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- a Department of Chemistry , Marine Bioprocess Research Centre, Pukyong National University , Busan , Republic of Korea and
| | - Jayachandran Venkatesan
- a Department of Chemistry , Marine Bioprocess Research Centre, Pukyong National University , Busan , Republic of Korea and
| | - Kannan Sivakumar
- b Faculty of Marine Sciences , CAS in Marine Biology , Chidambaram , India
| | - Se-Kwon Kim
- a Department of Chemistry , Marine Bioprocess Research Centre, Pukyong National University , Busan , Republic of Korea and
| |
Collapse
|
23
|
Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:359316. [PMID: 27355054 PMCID: PMC4897565 DOI: 10.1155/2014/359316] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 11/17/2022]
Abstract
Microbial metal reduction can be a strategy for remediation of metal contaminations and wastes. Bacteria are capable of mobilization and immobilization of metals and in some cases, the bacteria which can reduce metal ions show the ability to precipitate metals at nanometer scale. Biosynthesis of nanoparticles (NPs) using bacteria has emerged as rapidly developing research area in green nanotechnology across the globe with various biological entities being employed in synthesis of NPs constantly forming an impute alternative for conventional chemical and physical methods. Optimization of the processes can result in synthesis of NPs with desired morphologies and controlled sizes, fast and clean. The aim of this review is, therefore, to make a reflection on the current state and future prospects and especially the possibilities and limitations of the above mentioned bio-based technique for industries.
Collapse
|
24
|
Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. ACTA ACUST UNITED AC 2014. [PMID: 28626661 PMCID: PMC5466127 DOI: 10.1016/j.btre.2014.08.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study reports the in vitro cytotoxic effect of biologically synthesized silver and gold nanoparticles against MDA-MB-231, human breast cancer cells. Formation of silver and gold nanoparticles was observed within 30 min and the various characterization techniques such as UV–vis spectrophotometer, FE-SEM, TEM and XRD studies were confirmed the synthesis of nanoparticles. Further, MTT, acridine orange and ethidium bromide (AO/EB) dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver and gold nanoparticles ranging from 1 to 100 μg/ml. At 100 μg/ml concentration, the plant extract derived nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Thus, the results of the present study indicate that biologically synthesized silver and gold nanoparticles might be used to treat breast cancer; however, it necessitates clinical studies to ascertain their potential as anticancer agents.
Collapse
Affiliation(s)
- C Krishnaraj
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - P Muthukumaran
- Centre for Biotechnology, Anna University, Guindy, Chennai 600 025, Tamil Nadu, India
| | - R Ramachandran
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - M D Balakumaran
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - P T Kalaichelvan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
25
|
Wang R, Wang W, Ren H, Chae J. Detection of copper ions in drinking water using the competitive adsorption of proteins. Biosens Bioelectron 2014; 57:179-85. [DOI: 10.1016/j.bios.2014.01.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
26
|
Hynninen A, Virta M. Whole-cell bioreporters for the detection of bioavailable metals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 118:31-63. [PMID: 19543702 DOI: 10.1007/10_2009_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Whole-cell bioreporters are living microorganisms that produce a specific, quantifiable output in response to target chemicals. Typically, whole-cell bioreporters combine a sensor element for the substance of interest and a reporter element coding for an easily detectable protein. The sensor element is responsible for recognizing the presence of an analyte. In the case of metal bioreporters, the sensor element consists of a DNA promoter region for a metal-binding transcription factor fused to a promoterless reporter gene that encodes a signal-producing protein. In this review, we provide an overview of specific whole-cell bioreporters for heavy metals. Because the sensing of metals by bioreporter microorganisms is usually based on heavy metal resistance/homeostasis mechanisms, the basis of these mechanisms will also be discussed. The goal here is not to present a comprehensive summary of individual metal-specific bioreporters that have been constructed, but rather to express views on the theory and applications of metal-specific bioreporters and identify some directions for future research and development.
Collapse
Affiliation(s)
- Anu Hynninen
- Department of Applied Chemistry and Microbiology, University of Helsinki, 56, 00014, Helsinki, Finland
| | | |
Collapse
|
27
|
Kupryashina MA, Vetchinkina EP, Burov AM, Ponomareva EG, Nikitina VE. Biosynthesis of gold nanoparticles by Azospirillum brasilense. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171401007x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Lin IWS, Lok CN, Che CM. Biosynthesis of silver nanoparticles from silver(i) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chem Sci 2014. [DOI: 10.1039/c4sc00138a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The periplasmic nitrate reductase c-type cytochrome subunit NapC plays a major role in the biosynthesis of silver nanoparticles from the reduction of silver ions in a silver-resistantE. coli.
Collapse
Affiliation(s)
- Iris Wing-Shan Lin
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- HKU Shenzhen Institute of Research and Innovation
- Chemical Biology Centre
- The University of Hong Kong
| | - Chun-Nam Lok
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- HKU Shenzhen Institute of Research and Innovation
- Chemical Biology Centre
- The University of Hong Kong
| | - Chi-Ming Che
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- HKU Shenzhen Institute of Research and Innovation
- Chemical Biology Centre
- The University of Hong Kong
| |
Collapse
|
29
|
Howard JL, Dubay BR, Daniels WL. Artifact weathering, anthropogenic microparticles and lead contamination in urban soils at former demolition sites, Detroit, Michigan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 179:1-12. [PMID: 23624265 DOI: 10.1016/j.envpol.2013.03.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
A chronological sequence of urban soils 3-92 years old was studied to determine the effects of time on morphogenesis, artifact weathering, and the geochemical partitioning of Pb. Key chronofunctions determined are an increase in ˆA horizon Development Index (defined herein based on soil color) and water-soluble Pb, and a decrease in pH and C/N, with increasing soil age. Key artifact weathering reactions are: 1) portlandite in mortar altered to calcite, 2) ferrite in wrought-iron altered to ferrihydrite and goethite, and 3) carbonaceous materials altered to water-soluble organic substances. Mortar and wrought-iron were found to be Pb-bearing, but weather to produce immobilizing agents. Hence, they are both a source and a sink for Pb. The origin and mobilization of water-soluble Pb is complex and probably includes microbial extracellular polymeric substances, biodegraded soil organic matter, and solubilized organic substances derived from carbonaceous anthropogenic microparticles (soot, char and coal-related wastes).
Collapse
Affiliation(s)
- Jeffrey L Howard
- Department of Geology, 0224 Old Main Bldg., Wayne State University, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
30
|
Comparative Analysis of Antibiotic Effect of AgNO 3 and Silver Nanoparticles Synthesized from Penicillium fellutanum. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/msf.760.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed study was to synthesize silver nanoparticles by using filamentous fungus Penicillium fellutanum. From the ancient period, silver has been used against microorganisms due to its own antibacterial properties. The fungal culture of Penicillium fellutanum was isolated from the soil samples of Sathyabama University, Chennai, Tamil Nadu, India. The fungal isolates were inoculated in culture medium and incubated at room temperature for three days and the culture filtrate was separated and divided into two parts. One part of the culture filtrate was mixed with equal volume of 1mM silver nitrate [AgNO3,(1 mM)] and agitated at room temperature in dark condition. And the second half was kept as such. In the other hand only 1mM silver nitrate was added into the equal volume of Milli Q water and one half was plain Milli Q water. All the four samples were tested against pathogens like Bacillus cereus, E. coli, Proteus vulgaris, Staphylococcus aureus, Staphylococcus epidermidis and the results were compared. Proteus vulgaris showed the highest zone where E coli showed the least zone of inhibition, in the culture filtrate added with silver nitrate. The cell filtrate on treatment with silver nitrate and prior incubation were observed for change in color and characterized by UV-Vis spectrophotometer which detected AgNPs in the solution. The maximum absorbance 410nm confirmed the formation of silver nanoparticles. Size and morphology of silver nanoparticle were investigated using Atomic Force microscopy (AFM). The silver Nanoparticles after confirmation were checked for its antibacterial activity against selected pathogenic bacteria. The biologically synthesized Nanoparticles from Penicillium fellutanum showed the good inhibitory effect against the selected pathogens, which would be the novel remedy substituent in the place of high dose antibiotics.
Collapse
|
31
|
|
32
|
Singh S, Vidyarthi AS, Nigam VK, Dev A. Extracellular facile biosynthesis, characterization and stability of gold nanoparticles byBacillus licheniformis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:6-12. [DOI: 10.3109/21691401.2012.759122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Lançoni MD, Taketani RG, Kavamura VN, de Melo IS. Microbial community biogeographic patterns in the rhizosphere of two Brazilian semi-arid leguminous trees. World J Microbiol Biotechnol 2013; 29:1233-41. [PMID: 23435935 DOI: 10.1007/s11274-013-1286-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/08/2013] [Indexed: 11/25/2022]
Abstract
Arid environments are regular and well distributed over all continents and display drought characteristics whether full-time or seasonal. This study aims to characterize how the microbial communities of the rhizosphere of two leguminous trees from the Brazilian semi-arid biome the Caatinga are geographically and seasonally shaped, as well as the factors driving this variation. With that purpose, the soil rhizosphere from two leguminous trees (Mimosa tenuiflora and Piptadenia stipulacea (Benth.) Ducke) were sampled in two different seasons: rainy and drought at five different sites. Assessment of bacterial and archaeal communities occurred by T-RFLP analysis of 16S rRNA and archaeal amoA genes. By these means, it was observed that the seasons (wet and dry periods) are the factors that most influence the composition of the microbial community from both analyzed plants, except for the results obtained from the CCA applied to Archaeas. Furthermore, soil physical-chemical factors also had a significant influence on the community and indicated a geographical pattern of the bacterial community. It was not possible to observe significant modifications in the composition in relation to the plant species. We have seen that soil characteristics and rainfall were the factors that most influenced the microbial composition. Also, the bacterial community had a significant correlation with soil characteristics that indicates that these rhizosphere communities might be selected by environmental characteristics. Furthermore, the data suggest that climate plays a key role in structuring the microbial community of this biome.
Collapse
Affiliation(s)
- Milena Duarte Lançoni
- Environmental Microbiology Laboratory, Empresa Brasileira de Pesquisa Agropecuária, Rodovia SP-340 km 127.5, Jaguariúna, SP, 13820-000, Brazil.
| | | | | | | |
Collapse
|
34
|
Strontium-induced genomic responses of Cupriavidus metallidurans and strontium bioprecipitation as strontium carbonate. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0462-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
35
|
Mohamed Hamouda I. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res 2012; 26:143-51. [PMID: 23554743 PMCID: PMC3596063 DOI: 10.7555/jbr.26.20120027] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/02/2012] [Accepted: 04/25/2012] [Indexed: 11/20/2022] Open
Abstract
Nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Nanoparticles have been introduced as materials with good potential to be extensively used in biological and medical applications. Nanoparticles are clusters of atoms in the size range of 1-100 nm. Inorganic nanoparticles and their nano-composites are applied as good antibacterial agents. Due to the outbreak of infectious diseases caused by different pathogenic bacteria and the development of antibiotic resistance, pharmaceutical companies and researchers are searching for new antibacterial agents. The metallic nanoparticles are the most promising as they show good antibacterial properties due to their large surface area to volume ratios, which draw growing interest from researchers due to increasing microbial resistance against metal ions, antibiotics and the development of resistant strains. Metallic nanoparticles can be used as effective growth inhibitors in various microorganisms and thereby are applicable to diverse medical devices. Nanotechnology discloses the use of elemental nanoparticles as active antibacterial ingredient for dental materials. In dentistry, both restorative materials and oral bacteria are believed to be responsible for restoration failure. Secondary caries is found to be the main reason to restoration failure. Secondary caries is primarily caused by invasion of plaque bacteria (acid-producing bacteria) such as Streptococcus mutans and lactobacilli in the presence of fermentable carbohydrates. To make long-lasting restorations, antibacterial materials should be made. The potential of nanoparticles to control the formation of biofilms within the oral cavity is also coming under increasing scrutiny. Possible uses of nanoparticles as topically applied agents within dental materials and the application of nanoparticles in the control of oral infections are also reviewed.
Collapse
Affiliation(s)
- Ibrahim Mohamed Hamouda
- Department of Dental Biomaterials and Restorative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura, Dakahleya 35516, Egypt
| |
Collapse
|
36
|
Pshennikova ES, Filippovich SY, Bachurina GP, Ponomareva VD, Malygin AG. The different effects of carbon dioxide on the toxicity of silver ions for prokaryotic and eukaryotic microorganisms. BIOL BULL+ 2011. [DOI: 10.1134/s1062359011030113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Karmakar S, Kundu S, Kundu K. Bioconversion of silver salt into silver nanoparticles using different microorganisms. ACTA ACUST UNITED AC 2011; 38:259-66. [PMID: 20670108 DOI: 10.3109/10731199.2010.488633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract: Recently, silver nanoparticles have generated enough interest due to their immense usage. Until now chemical synthesis has been a fast method to produce nanoparticles, but the release of environmental pollutants has raised caution. So a more subtle biochemical approach is in research. Three microorganisms, Aspergillus flavus, Phoma exigua and Bacillus megaterium, were selected to reduce silver nitrate to silver nanoparticles in aqueous form. All three microorganisms showed varying reducing capacity, of which Phoma exigua showed the highest, when their biomass was incubated in silver nitrate for 48 hours. The nanoparticles showed all the optical and physical properties, which were analyzed by measuring the surface plasmon resonance and TEM. It was also observed that the fungal species have varied growth in silver nitrate and can be used to produce silver nanoparticles, directly incubating the inocula of fungus in the media containing silver nitrate. On comparing all the characteristics and results produced, Aspergillus flavus was found to be the most effective microorganism, which can convert the silver nitrate to silver nanoparticles in aqueous condition. The bacterial species showed no growth with incubation with silver nitrate.
Collapse
Affiliation(s)
- Sourish Karmakar
- School of Biochemical Engineering, Institute of Technology, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
38
|
Kannan N, Subbalaxmi S. Green Synthesis of Silver Nanoparticles using Bacillus subtillus IA751 and its Antimicrobial Activity. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/rjnn.2011.87.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Kiran GS, Selvin J, Manilal A, Sujith S. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles. Crit Rev Biotechnol 2011; 31:354-64. [DOI: 10.3109/07388551.2010.539971] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 2010; 156:1-13. [PMID: 20181326 DOI: 10.1016/j.cis.2010.02.001] [Citation(s) in RCA: 776] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 11/26/2022]
Abstract
An array of physical, chemical and biological methods have been used to synthesize nanomaterials. In order to synthesize noble metal nanoparticles of particular shape and size specific methodologies have been formulated. Although ultraviolet irradiation, aerosol technologies, lithography, laser ablation, ultrasonic fields, and photochemical reduction techniques have been used successfully to produce nanoparticles, they remain expensive and involve the use of hazardous chemicals. Therefore, there is a growing concern to develop environment-friendly and sustainable methods. Since the synthesis of nanoparticles of different compositions, sizes, shapes and controlled dispersity is an important aspect of nanotechnology new cost-effective procedures are being developed. Microbial synthesis of nanoparticles is a green chemistry approach that interconnects nanotechnology and microbial biotechnology. Biosynthesis of gold, silver, gold-silver alloy, selenium, tellurium, platinum, palladium, silica, titania, zirconia, quantum dots, magnetite and uraninite nanoparticles by bacteria, actinomycetes, fungi, yeasts and viruses have been reported. However, despite the stability, biological nanoparticles are not monodispersed and the rate of synthesis is slow. To overcome these problems, several factors such as microbial cultivation methods and the extraction techniques have to be optimized and the combinatorial approach such as photobiological methods may be used. Cellular, biochemical and molecular mechanisms that mediate the synthesis of biological nanoparticles should be studied in detail to increase the rate of synthesis and improve properties of nanoparticles. Owing to the rich biodiversity of microbes, their potential as biological materials for nanoparticle synthesis is yet to be fully explored. In this review, we present the current status of microbial synthesis and applications of metal nanoparticles.
Collapse
|
41
|
Abstract
Anaerobic cultures of Shewanella oneidensis MR-1 reduced toxic Ag(I), forming nanoparticles of elemental Ag(0), as confirmed by X-ray diffraction analyses. The addition of 1 to 50 microM Ag(I) had a limited impact on growth, while 100 microM Ag(I) reduced both the doubling time and cell yields. At this higher Ag(I) concentration transmission electron microscopy showed the accumulation of elemental silver particles within the cell, while at lower concentrations the metal was exclusively reduced and precipitated outside the cell wall. Whole organism metabolite fingerprinting, using the method of Fourier transform infrared spectroscopy analysis of cells grown in a range of silver concentrations, confirmed that there were significant physiological changes at 100 microM silver. Principal component-discriminant function analysis scores and loading plots highlighted changes in certain functional groups, notably, lipids, amides I and II, and nucleic acids, as being discriminatory. Molecular analyses confirmed a dramatic drop in cellular yields of both the phospholipid fatty acids and their precursor molecules at high concentrations of silver, suggesting that the structural integrity of the cellular membrane was compromised at high silver concentrations, which was a result of intracellular accumulation of the toxic metal.
Collapse
|
42
|
Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:452-6. [DOI: 10.1016/j.nano.2009.01.012] [Citation(s) in RCA: 415] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/25/2008] [Accepted: 01/23/2009] [Indexed: 11/29/2022]
|
43
|
Iron sources used by the nonpathogenic lactic acid bacterium Lactobacillus sakei as revealed by electron energy loss spectroscopy and secondary-ion mass spectrometry. Appl Environ Microbiol 2009; 76:560-5. [PMID: 19933352 DOI: 10.1128/aem.02205-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus sakei is a lactic acid bacterium naturally found on meat. Although it is generally acknowledged that lactic acid bacteria are rare species in the microbial world which do not have iron requirements, the genome sequence of L. sakei 23K has revealed quite complete genetic equipment dedicated to transport and use of this metal. Here, we aimed to investigate which iron sources could be used by this species as well as their role in the bacterium's physiology. Therefore, we developed a microscopy approach based on electron energy loss spectroscopy (EELS) analysis and nano-scale secondary-ion mass spectrometry (SIMS) in order to analyze the iron content of L. sakei cells. This revealed that L. sakei can use iron sources found in its natural ecosystem, myoglobin, hemoglobin, hematin, and transferrin, to ensure long-term survival during stationary phase. This study reveals that analytical image methods (EELS and SIMS) are powerful complementary tools for investigation of metal utilization by bacteria.
Collapse
|
44
|
Gyliene O, Binkiene R, Butkiene R. Sorption of Cu(II) complexes with ligands tartrate, glycine and quadrol by chitosan. JOURNAL OF HAZARDOUS MATERIALS 2009; 171:133-139. [PMID: 19540041 DOI: 10.1016/j.jhazmat.2009.05.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/29/2009] [Accepted: 05/25/2009] [Indexed: 05/27/2023]
Abstract
The sorption by chitosan in Cu(II) solutions containing tartrate, glycine (amino acetic acid) and quadrol (N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine) as ligands has been investigated. The degree of sorbate removal strongly depends on pH. In solutions containing tartrate almost complete sorption of both Cu(II) and tartrate proceeds in mildly acidic and neutral solutions. The sorption of Cu(II) is also complete in alkaline solutions containing glycine; meanwhile a substantial sorption of glycine proceeds at pH approximately 6. The Cu(II) sorption in solutions containing quadrol is insignificant. Any sorption of quadrol does not proceed in the whole range of pH investigated. The investigations under equilibrium conditions showed that the Cu(II) sorption from tartrate containing solutions obeys Freundlich equation and in solutions containing glycine and quadrol it fits Langmuir equation. Supposedly, Cu(II) sorption onto chitosan proceeds with formation of amino complexes onto the surface of chitosan; the sorption of tartrate proceeds as electrostatic as well as with formation of amide bonds. Applying of electrolysis enables a complete removal of sorbed Cu(II) and ligands without changes in physical and chemical properties of chitosan. This is confirmed by sorption ability of regenerated chitosan, measurements of its molecular weight, the deacetylation degree and FT-IR spectra.
Collapse
Affiliation(s)
- Ona Gyliene
- Institute of Chemistry, Vilnius LT 01108, Lithuania.
| | | | | |
Collapse
|
45
|
Roane TM, Rensing C, Pepper IL, Maier RM. Microorganisms and Metal Pollutants. Environ Microbiol 2009. [DOI: 10.1016/b978-0-12-370519-8.00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
46
|
Lloyd JR, Pearce CI, Coker VS, Pattrick RAD, van der Laan G, Cutting R, Vaughan DJ, Paterson-Beedle M, Mikheenko IP, Yong P, Macaskie LE. Biomineralization: linking the fossil record to the production of high value functional materials. GEOBIOLOGY 2008; 6:285-297. [PMID: 18462384 DOI: 10.1111/j.1472-4669.2008.00162.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The microbial cell offers a highly efficient template for the formation of nanoparticles with interesting properties including high catalytic, magnetic and light-emitting activities. Thus biomineralization products are not only important in global biogeochemical cycles, but they also have considerable commercial potential, offering new methods for material synthesis that eliminate toxic organic solvents and minimize expensive high-temperature and pressure processing steps. In this review we describe a range of bacterial processes that can be harnessed to make precious metal catalysts from waste streams, ferrite spinels for biomedicine and catalysis, metal phosphates for environmental remediation and biomedical applications, and biogenic selenides for a range of optical devices. Recent molecular-scale studies have shown that the structure and properties of bionanominerals can be fine-tuned by subtle manipulations to the starting materials and to the genetic makeup of the cell. This review is dedicated to the late Terry Beveridge who contributed much to the field of biomineralization, and provided early models to rationalize the mechanisms of biomineral synthesis, including those of geological and commercial potential.
Collapse
Affiliation(s)
- J R Lloyd
- School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Manchester M13 9PL, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gorby Y, McLean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ. Redox-reactive membrane vesicles produced by Shewanella. GEOBIOLOGY 2008; 6:232-41. [PMID: 18498526 DOI: 10.1111/j.1472-4669.2008.00158.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This manuscript is dedicated to our friend, mentor, and coauthor Dr Terry Beveridge, who devoted his scientific career to advancing fundamental aspects of microbial ultrastructure using innovative electron microscopic approaches. During his graduate studies with Professor Robert Murray, Terry provided some of the first glimpses and structural evaluations of the regular surface arrays (S-layers) of Gram-negative bacteria (Beveridge & Murray, 1974, 1975, 1976a). Beginning with his early electron microscopic assessments of metal binding by cell walls from Gram-positive bacteria (Beveridge & Murray, 1976b, 1980) and continuing with more than 30 years of pioneering research on microbe-mineral interactions (Hoyle & Beveridge, 1983, 1984; Ferris et al., 1986; Gorby et al., 1988; Beveridge, 1989; Mullen et al., 1989; Urrutia Mera et al., 1992; Mera & Beveridge, 1993; Brown et al., 1994; Konhauser et al., 1994; Beveridge et al., 1997; Newman et al., 1997; Lower et al., 2001; Glasauer et al., 2002; Baesman et al., 2007), Terry helped to shape the developing field of biogeochemistry. Terry and his associates are also widely regarded for their research defining the structure and function of outer membrane vesicles from Gram-negative bacteria that facilitate processes ranging from the delivery of pathogenic enzymes to the possible exchange of genetic information. The current report represents the confluence of two of Terry's thematic research streams by demonstrating that membrane vesicles produced by dissimilatory metal-reducing bacteria from the genus Shewanella catalyze the enzymatic transformation and precipitation of heavy metals and radionuclides. Under low-shear conditions, membrane vesicles are commonly tethered to intact cells by electrically conductive filaments known as bacterial nanowires. The functional role of membrane vesicles and associated nanowires is not known, but the potential for mineralized vesicles that morphologically resemble nanofossils to serve as palaeontological indicators of early life on Earth and as biosignatures of life on other planets is recognized.
Collapse
Affiliation(s)
- Y Gorby
- J. Craig Venter Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Chen X, Chen L, Shi J, Wu W, Chen Y. Immobilization of heavy metals by Pseudomonas putida CZ1/goethite composites from solution. Colloids Surf B Biointerfaces 2008; 61:170-5. [PMID: 17869490 DOI: 10.1016/j.colsurfb.2007.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 07/09/2007] [Accepted: 08/03/2007] [Indexed: 10/23/2022]
Abstract
Bacterial-mineral composites are important in the retention of heavy metals due to their large sorption capacity under a wide range of environmental conditions. This study provides the first quantitative comparison of the metal-binding capacities of P. putida CZ1-goethite composite to its individual components. When the same amount (on a dry weight basis) of living and nonliving cells of P. putida CZ1, goethite or their composites was separately exposed to solutions of 0.5 mM Cu(II) and Zn(II) in 0.01 M KNO(3), the living cells removed the largest quantity of heavy metals. The results of calculated metal retention values indicated that the adsorption of goethite to bacteria has not mask or neutralize chemically reactive adsorption sites normally available to metal ions. Moreover, the nonliving cells-goethite composite retained approximately 82% more Zn than that predicted by their individual behavior. The preferential association of Zn with P. putida CZ1 was observed by TEM and EDS analyses of a mixture consisting of the bacteria and goethite. Desorption of Cu and Zn with 1.0M CH(3)COOK solution from P. putida CZ1 and goethite indicated the differences in the functional groups able to bind heavy metals.
Collapse
Affiliation(s)
- XinCai Chen
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | |
Collapse
|
49
|
Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 67:1003-6. [PMID: 17084659 DOI: 10.1016/j.saa.2006.09.028] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/18/2006] [Indexed: 05/12/2023]
Abstract
Pseudomonas aeruginosa were used for extra-cellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginosa ATCC 90271, P. aeruginosa (2) and P. aeruginosa (1). The UV-vis and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extra-cellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.
Collapse
Affiliation(s)
- M I Husseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | | | | |
Collapse
|
50
|
Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9291-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|