1
|
Ye X, Yang Y, Zhao X, Fang Q, Ye G. The state of parasitoid wasp genomics. Trends Parasitol 2024; 40:914-929. [PMID: 39227194 DOI: 10.1016/j.pt.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Parasitoid wasps represent a group of parasitic insects with high species diversity that have played a pivotal role in biological control and evolutionary studies. Over the past 20 years, developments in genomics have greatly enhanced our understanding of the biology of these species. Technological leaps in sequencing have facilitated the improvement of genome quality and quantity, leading to the availability of hundreds of parasitoid wasp genomes. Here, we summarize recent progress in parasitoid wasp genomics, focusing on the evolution of genome size (GS) and the genomic basis of several key traits. We also discuss the contributions of genomics in studying venom evolution and endogenization of viruses. Finally, we advocate for increased sequencing and functional research to better understand parasitoid biology and enhance biological control.
Collapse
Affiliation(s)
- Xinhai Ye
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China.
| | - Yi Yang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xianxin Zhao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Gatti JL, Lemauf S, Belghazi M, Arthaud L, Poirié M. In Drosophila Hemolymph, Serine Proteases Are the Major Gelatinases and Caseinases. INSECTS 2024; 15:234. [PMID: 38667364 PMCID: PMC11050137 DOI: 10.3390/insects15040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
After separation on gel zymography, Drosophila melanogaster hemolymph displays gelatinase and caseinase bands of varying sizes, ranging from over 140 to 25 kDa. Qualitative and quantitative variations in these bands were observed during larval development and between different D. melanogaster strains and Drosophila species. The activities of these Drosophila hemolymph gelatinase and caseinase were strongly inhibited by serine protease inhibitors, but not by EDTA. Mass spectrometry identified over 60 serine proteases (SPs) in gel bands corresponding to the major D. melanogaster gelatinases and caseinases, but no matrix metalloproteinases (MMPs) were found. The most abundant proteases were tequila and members of the Jonah and trypsin families. However, the gelatinase bands did not show any change in the tequila null mutant. Additionally, no clear changes could be observed in D. melanogaster gel bands 24 h after injection of bacterial lipopolysaccharides (LPS) or after oviposition by Leptopilina boulardi endoparasitoid wasps. It can be concluded that the primary gelatinases and caseinases in Drosophila larval hemolymph are serine proteases (SPs) rather than matrix metalloproteinases (MMPs). Furthermore, the gelatinase pattern remains relatively stable even after short-term exposure to pathogenic challenges.
Collapse
Affiliation(s)
- Jean-Luc Gatti
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| | - Séverine Lemauf
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| | - Maya Belghazi
- Marseille-Protéomique (MaP), Plateforme Protéomique, Institut de Microbiologie de la Méditerranée UMR 3479 CNRS, Aix-Marseille Université, 13402 Marseille, France;
| | - Laury Arthaud
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| | - Marylène Poirié
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| |
Collapse
|
3
|
Kúthy-Sutus E, Kharrat B, Gábor E, Csordás G, Sinka R, Honti V. A Novel Method for Primary Blood Cell Culturing and Selection in Drosophila melanogaster. Cells 2022; 12:24. [PMID: 36611818 PMCID: PMC9818912 DOI: 10.3390/cells12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The blood cells of the fruit fly Drosophila melanogaster show many similarities to their vertebrate counterparts, both in their functions and their differentiation. In the past decades, a wide palette of immunological and transgenic tools and methods have been developed to study hematopoiesis in the Drosophila larva. However, the in vivo observation of blood cells is technically restricted by the limited transparency of the body and the difficulty in keeping the organism alive during imaging. Here we describe an improved ex vivo culturing method that allows effective visualization and selection of live blood cells in primary cultures derived from Drosophila larvae. Our results show that cultured hemocytes accurately represent morphological and functional changes following immune challenges and in case of genetic alterations. Since cell culturing has hugely contributed to the understanding of the physiological properties of vertebrate blood cells, this method provides a versatile tool for studying Drosophila hemocyte differentiation and functions ex vivo.
Collapse
Affiliation(s)
- Enikő Kúthy-Sutus
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Bayan Kharrat
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, P.O. Box 427, H-6720 Szeged, Hungary
| | - Erika Gábor
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Gábor Csordás
- Lysosomal Degradation Research Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Viktor Honti
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| |
Collapse
|
4
|
Lemauf S, Cazes D, Poirié M, Gatti JL. Amount of venom that Leptopilina species inject into Drosophila melanogaster larvae in relation to parasitic success. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104320. [PMID: 34634293 DOI: 10.1016/j.jinsphys.2021.104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The Drosophila endoparasitoid wasps Leptopilina boulardi and L. heterotoma (Hymenoptera: Cynipidae) are pro-ovigenic species, i.e., females contain their lifetime number of mature eggs at emergence. They are therefore able to immediately parasitize many hosts when present. In response to parasitoid oviposition, the larval host D. melanogaster can mount an immune response, encapsulation, that can destroy the parasitoid eggs. This response is counteracted by the venom the wasp injects during oviposition. Here, we estimated the amount of venom injected into a D. melanogaster host larva using immunodetection of venom proteins and we attempted to correlate this amount with the number of eggs a female can lay on successive days. The venom reservoir of L. boulardi contains enough venom for at least 100 ovipositions while that of L. heterotoma contains venom for about 16 ovipositions. While a female L. boulardi may have enough venom for three days of parasitism when 20 or 40 larval hosts were presented each day, L. heterotoma certainly needs to synthesize new venom to parasitize the number of hosts offered. Interestingly, parasitism stopped (L. boulardi), egg protection (L. heterotoma) and egg hatching decreased (both species) after three days of parasitism. Thus, although venom does not appear to be a limiting factor for parasitism, our data suggest that it may have less effectiveness on the egg protection and on egg/host development after high repetitive egg laying.
Collapse
Affiliation(s)
- Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, 06903 Sophia Antipolis, France
| | - Dominique Cazes
- Université Côte d'Azur, INRAE, CNRS, 06903 Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, 06903 Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, 06903 Sophia Antipolis, France.
| |
Collapse
|
5
|
Impact of Temperature on the Immune Interaction between a Parasitoid Wasp and Drosophila Host Species. INSECTS 2021; 12:insects12070647. [PMID: 34357307 PMCID: PMC8303993 DOI: 10.3390/insects12070647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Temperature is particularly important for ectotherms, including endoparasitoid wasps that develop inside another ectotherm host. In this study, we tested the impact of three temperatures (20 °C, 25 °C and 30 °C) on the host-parasitoid immune interaction using two Drosophila host species (Drosophila melanogaster and D. yakuba) and two parasitoid lines of Leptopilina boulardi. Drosophila's immune defense against parasitoids consists of the formation of a melanized capsule surrounding the parasitoid egg. To counteract this response, Leptopilina parasitoids rely on the injection of venom during oviposition. Here, we tested the effect of temperature on parasitic success and host encapsulation capacity in response to a parasitoid egg or other foreign body. Increased temperature either promoted or did not affect the parasitic success, depending on the parasitoid-host pairs considered. The mechanisms behind the higher success seemed to vary depending on whether the temperature primarily affected the host immune response or also affected the parasitoid counter-immune response. Next, we tested the effect of parasitoid rearing temperature on its success and venom composition. Venom composition varied strongly with temperature for both parasitoid lines, partially consistent with a change in their parasitic success. Overall, temperature may have a significant impact on the host-parasitoid immune interaction.
Collapse
|
6
|
Comparative transcriptome analysis reveals a potential mechanism for host nutritional manipulation after parasitization by Leptopilina boulardi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100862. [PMID: 34120097 DOI: 10.1016/j.cbd.2021.100862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023]
Abstract
Parasitoids have been extensively found to manipulate nutrient amounts of their hosts to benefit their own development and survival, but the underlying mechanisms are largely unknown. Leptopilina boulardi (Hymenoptera: Figitidae) is a larval-pupal endoparasitoid wasp of Drosophila melanogaster whose survival relies on the nutrients provided by its Drosophila host. Here, we used RNA-seq to compare the gene expression levels of the host midgut at 24 h and 48 h post L. boulardi parasitization. We obtained 95 and 191 differentially expressed genes (DEGs) in the parasitized host midgut at 24 h and 48 h post L. boulardi parasitization, respectively. A KEGG analysis revealed that several metabolic pathways were significantly enriched in the upregulated DEGs, and these pathways included "starch and sucrose metabolism" and "galactose metabolism". A functional annotation analysis showed that four classes of genes involved in carbohydrate digestion process had increased expression levels in the midgut post L.boulardi parasitization than nonparasitized groups: glucosidase, mannosidase, chitinase and amylase. Genes involved in protein digestion process were also found among the DEGs, and most of these genes, which belonged to the metallopeptidase and serine-type endopeptidase families, were found at higher expression levels in the parasitized host midgut comparing with nonparasitized hosts. Moreover, some immune genes, particularly those involved in the Toll and Imd pathways, also exhibited high expression levels after L.boulardi parasitization. Our study provides large-scale transcriptome data and identifies sets of DEGs between parasitized and nonparasitized host midgut tissues at 24 h and 48 h post L. boulardi parasitization. These resources help improve our understanding of how parasitoid infection affects the nutrient components in the hosts.
Collapse
|
7
|
Variation in Parasitoid Virulence of Tetrastichus brontispae during the Targeting of Two Host Beetles. Int J Mol Sci 2021; 22:ijms22073581. [PMID: 33808261 PMCID: PMC8036858 DOI: 10.3390/ijms22073581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
In host-parasitoid interactions, antagonistic relationship drives parasitoids to vary in virulence in facing different hosts, which makes these systems excellent models for stress-induced evolutionary studies. Venom compositions varied between two strains of Tetrastichus brontispae, Tb-Bl and Tb-On. Tb-Bl targets Brontispa longissima pupae as hosts, and Tb-On is a sub-population of Tb-Bl, which has been experimentally adapted to a new host, Octodonta nipae. Aiming to examine variation in parasitoid virulence of the two strains toward two hosts, we used reciprocal injection experiments to compare effect of venom/ovarian fluids from the two strains on cytotoxicity, inhibition of immunity and fat body lysis of the two hosts. We found that Tb-Onvenom was more virulent towards plasmatocyte spreading, granulocyte function and phenoloxidase activity than Tb-Blvenom. Tb-Blovary was able to suppress encapsulation and phagocytosis in both hosts; however, Tb-Onovary inhibition targeted only B. longissima. Our data suggest that the venom undergoes rapid evolution when facing different hosts, and that the wasp has good evolutionary plasticity.
Collapse
|
8
|
Trainor JE, KR P, Mortimer NT. Immune Cell Production Is Targeted by Parasitoid Wasp Virulence in a Drosophila-Parasitoid Wasp Interaction. Pathogens 2021; 10:49. [PMID: 33429864 PMCID: PMC7826891 DOI: 10.3390/pathogens10010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022] Open
Abstract
The interactions between Drosophila melanogaster and the parasitoid wasps that infect Drosophila species provide an important model for understanding host-parasite relationships. Following parasitoid infection, D. melanogaster larvae mount a response in which immune cells (hemocytes) form a capsule around the wasp egg, which then melanizes, leading to death of the parasitoid. Previous studies have found that host hemocyte load; the number of hemocytes available for the encapsulation response; and the production of lamellocytes, an infection induced hemocyte type, are major determinants of host resistance. Parasitoids have evolved various virulence mechanisms to overcome the immune response of the D. melanogaster host, including both active immune suppression by venom proteins and passive immune evasive mechanisms. We identified a previously undescribed parasitoid species, Asobara sp. AsDen, which utilizes an active virulence mechanism to infect D. melanogaster hosts. Asobara sp. AsDen infection inhibits host hemocyte expression of msn, a member of the JNK signaling pathway, which plays a role in lamellocyte production. Asobara sp. AsDen infection restricts the production of lamellocytes as assayed by hemocyte cell morphology and altered msn expression. Our findings suggest that Asobara sp. AsDen infection alters host signaling to suppress immunity.
Collapse
Affiliation(s)
| | | | - Nathan T. Mortimer
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA; (J.E.T.); (P.K.)
| |
Collapse
|
9
|
Wan B, Poirié M, Gatti JL. Parasitoid wasp venom vesicles (venosomes) enter Drosophila melanogaster lamellocytes through a flotillin/lipid raft-dependent endocytic pathway. Virulence 2020; 11:1512-1521. [PMID: 33135553 PMCID: PMC7605353 DOI: 10.1080/21505594.2020.1838116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Venosomes are extracellular vesicles found in the venom of Leptopilina endoparasitoids wasps, which transport and target virulence factors to impair the parasitoid egg encapsulation by the lamellocytes of their Drosophila melanogaster host larva. Using the co-immunolocalization of fluorescent L. boulardi venosomes and one of the putative-transported virulence factors, LbGAP, with known markers of cellular endocytosis, we show that venosomes endocytosis by lamellocytes is not a process dependent on clathrin or macropinocytosis and internalization seems to bypass the early endosomal compartment Rab5. After internalization, LbGAP colocalizes strongly with flotillin-1 and the GPI-anchored protein Atilla/L1 (a lamellocyte surface marker) suggesting that entry occurs via a flotillin/lipid raft-dependent pathway. Once internalized, venosomes reach all intracellular compartments, including late and recycling endosomes, lysosomes, and the endoplasmic reticulum network. Venosomes therefore enter their target cells by a specific mechanism and the virulence factors are widely distributed in the lamellocytes' compartments to impair their functions.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d’Azur, INRAE, CNRS, ISA, France
| | | | | |
Collapse
|
10
|
Wan B, Goguet E, Ravallec M, Pierre O, Lemauf S, Volkoff AN, Gatti JL, Poirié M. Venom Atypical Extracellular Vesicles as Interspecies Vehicles of Virulence Factors Involved in Host Specificity: The Case of a Drosophila Parasitoid Wasp. Front Immunol 2019; 10:1688. [PMID: 31379874 PMCID: PMC6653201 DOI: 10.3389/fimmu.2019.01688] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 01/30/2023] Open
Abstract
Endoparasitoid wasps, which lay eggs inside the bodies of other insects, use various strategies to protect their offspring from the host immune response. The hymenopteran species of the genus Leptopilina, parasites of Drosophila, rely on the injection of a venom which contains proteins and peculiar vesicles (hereafter venosomes). We show here that the injection of purified L. boulardi venosomes is sufficient to impair the function of the Drosophila melanogaster lamellocytes, a hemocyte type specialized in the defense against wasp eggs, and thus the parasitic success of the wasp. These venosomes seem to have a unique extracellular biogenesis in the wasp venom apparatus where they acquire specific secreted proteins/virulence factors and act as a transport system to deliver these compounds into host lamellocytes. The level of venosomes entry into lamellocytes of different Drosophila species was correlated with the rate of parasitism success of the wasp, suggesting that this venosome-cell interaction may represent a new evolutionary level of host-parasitoid specificity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Emilie Goguet
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Marc Ravallec
- INRA, Univ. Montpellier, UMR 1333 "Microorganism and Insect Diversity, Genomes and Interactions" (DGIMI), Montpellier, France
| | - Olivier Pierre
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Anne-Nathalie Volkoff
- INRA, Univ. Montpellier, UMR 1333 "Microorganism and Insect Diversity, Genomes and Interactions" (DGIMI), Montpellier, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|
11
|
Kim-Jo C, Gatti JL, Poirié M. Drosophila Cellular Immunity Against Parasitoid Wasps: A Complex and Time-Dependent Process. Front Physiol 2019; 10:603. [PMID: 31156469 PMCID: PMC6529592 DOI: 10.3389/fphys.2019.00603] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Host-parasitoid interactions are among the most studied interactions between invertebrates because of their fundamental interest - the evolution of original traits in parasitoids - and applied, parasitoids being widely used in biological control. Immunity, and in particular cellular immunity, is central in these interactions, the host encapsulation response being specific for large foreign bodies such as parasitoid eggs. Although already well studied in this species, recent data on Drosophila melanogaster have unquestionably improved knowledge of invertebrate cellular immunity. At the same time, the venomics of parasitoids has expanded, notably those of Drosophila. Here, we summarize and discuss these advances, with a focus on an emerging "time-dependent" view of interactions outcome at the intra- and interspecific level. We also present issues still in debate and prospects for study. Data on the Drosophila-parasitoid model paves the way to new concepts in insect immunity as well as parasitoid wasp strategies to overcome it.
Collapse
Affiliation(s)
| | | | - Marylène Poirié
- INRA, CNRS, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| |
Collapse
|
12
|
Tang BZ, Meng E, Zhang HJ, Zhang XM, Asgari S, Lin YP, Lin YY, Peng ZQ, Qiao T, Zhang XF, Hou YM. Combination of label-free quantitative proteomics and transcriptomics reveals intraspecific venom variation between the two strains of Tetrastichus brontispae, a parasitoid of two invasive beetles. J Proteomics 2018; 192:37-53. [PMID: 30098407 DOI: 10.1016/j.jprot.2018.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
Abstract
The venom apparatus is a conserved organ in parasitoids that shows adaptations correlated with life-style diversification. Combining transcriptomics and label-free quantitative proteomics, here we explored the venom apparatus components of the endoparasitoid Tetrastichus brontispae (Eulophidae), and provide a comparison of the venom apparatus proteomes between its two closely related strains, T. brontispae-Octodonta nipae (Tb-On) and T. brontispae-Brontispa longissima (Tb-Bl). Tb-Bl targets the B. longissima pupa as its habitual host. However, Tb-On is an experimental derivative of Tb-Bl, which has been exposed to the O. nipae pupa as host consecutively for over 40 generation. Results showed that approximately 1505 venom proteins were identified in the T. brontispae venom apparatus. The extracts contained novel venom proteins, such as 4-coumarate-CoA ligase 4. A comparative venom proteome analysis revealed that significant quantitative and qualitative differences in venom composition exist between the two strains; although the most abundant venom proteins were shared between them. The differentially produced proteins were mainly enriched in fatty acid biosynthesis and melanotic encapsulation response. Six of these enriched proteins presented increased levels in Tb-On, and this result was validated by parallel reaction monitoring (PRM) analysis. Overall, our data reveal that venom composition can evolve quickly and respond to host selection.
Collapse
Affiliation(s)
- Bao-Zhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - E Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hua-Jian Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiao-Mei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sassan Asgari
- School of Biological Sciences, the University of Queensland, Brisbane, QLD 4067, Australia
| | - Ya-Ping Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yun-Ying Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zheng-Qiang Peng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ting Qiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xia-Fang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
13
|
Iacovone A, Ris N, Poirié M, Gatti JL. Time-course analysis of Drosophila suzukii interaction with endoparasitoid wasps evidences a delayed encapsulation response compared to D. melanogaster. PLoS One 2018; 13:e0201573. [PMID: 30070997 PMCID: PMC6072091 DOI: 10.1371/journal.pone.0201573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022] Open
Abstract
Drosophila suzukii (the spotted-wing Drosophila) appears to be unsuitable for the development of most Drosophila larval endoparasitoids, be they sympatric or not. Here, we questioned the physiological bases of this widespread failure by characterizing the interactions between D. suzukii and various parasitoid species (Asobara japonica, Leptopilina boulardi, Leptopilina heterotoma and Leptopilina victoriae) and comparing them with those observed with D. melanogaster, a rather appropriate host. All parasitoids were able to oviposit in L1 and L2 larval stages of both hosts but their propensity to parasitize was higher on D. melanogaster. A. japonica and, to a much lesser extent, L. heterotoma, were the two species able to successfully develop in D. suzukii, the failure of the parasitism resulting either in the parasitoid encapsulation (notably with L. heterotoma) or the host and parasitoid deaths (especially with L. boulardi and L. victoriae). Compared to D. melanogaster, encapsulation in D. suzukii was strongly delayed and led, if successful, to the production of much larger capsules in surviving flies and, in the event of failure, to the death of both partners because of an uncontrolled melanization. The results thus revealed a different timing of the immune response to parasitoids in D. suzukii compared to D. melanogaster with a lose-lose outcome for parasitoids (generally unsuccessful development) and hosts (high mortality and possible reduction of the fitness of survivors). Finally, these results might suggest that some European endoparasitoids of Drosophila interact with this pest in the field in an unmeasurable way, since they kill their host without reproductive success.
Collapse
Affiliation(s)
- Alessia Iacovone
- Université Côte d’Azur, INRA, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Nicolas Ris
- Université Côte d’Azur, INRA, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d’Azur, INRA, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d’Azur, INRA, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
14
|
Fors L, Mozuraitis R, Blažytė-Čereškienė L, Verschut TA, Hambäck PA. Selection by parasitoid females among closely related hosts based on volatiles: Identifying relevant chemical cues. Ecol Evol 2018; 8:3219-3228. [PMID: 29607019 PMCID: PMC5869356 DOI: 10.1002/ece3.3877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 11/09/2022] Open
Abstract
Parasitoid fitness is influenced by the ability to overcome host defense strategies and by the ability of parasitoid females to select high-quality host individuals. When females are unable to differentiate among hosts, their fitness will decrease with an increasing abundance of resistant hosts. To understand the effect of mixed host populations on female fitness, it is therefore necessary to investigate the ability of female parasitoids to select among hosts. Here, we used behavioral assays, headspace volatile collection, and electrophysiology to study the ability of Asecodes parviclava to use olfactory cues to select between a susceptible host (Galerucella calmariensis) and a resistant host (Galerucella pusilla) from a distance. Our studies show that parasitoid females have the capacity to distinguish the two hosts and that the selection behavior is acquired through experiences during earlier life stages. Further, we identified two volatiles (α-terpinolene and [E]-β-ocimene) which amounts differ between the two plant-herbivore systems and that caused behavioral and electrophysiological responses. The consequence of this selection behavior is that females have the capacity to avoid laying eggs in G. pusilla, where the egg mortality is higher due to much stronger immune responses toward A. parviclava than in larvae of G. calmariensis.
Collapse
Affiliation(s)
- Lisa Fors
- Department of Ecology Environment and Plant Sciences Stockholm University Stockholm Sweden.,Present address: Department of Zoology Stockholm University Stockholm Sweden
| | - Raimondas Mozuraitis
- Department of Ecology Environment and Plant Sciences Stockholm University Stockholm Sweden.,Laboratory of Chemical and Behavioural Ecology Institute of Ecology Nature Research Centre Vilnius Lithuania.,Present address: Department of Zoology Stockholm University Stockholm Sweden
| | - Laima Blažytė-Čereškienė
- Laboratory of Chemical and Behavioural Ecology Institute of Ecology Nature Research Centre Vilnius Lithuania
| | - Thomas A Verschut
- Department of Ecology Environment and Plant Sciences Stockholm University Stockholm Sweden
| | - Peter A Hambäck
- Department of Ecology Environment and Plant Sciences Stockholm University Stockholm Sweden
| |
Collapse
|
15
|
The Role of Lipid Competition for Endosymbiont-Mediated Protection against Parasitoid Wasps in Drosophila. mBio 2016; 7:mBio.01006-16. [PMID: 27406568 PMCID: PMC4958261 DOI: 10.1128/mbio.01006-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Insects commonly harbor facultative bacterial endosymbionts, such as Wolbachia and Spiroplasma species, that are vertically transmitted from mothers to their offspring. These endosymbiontic bacteria increase their propagation by manipulating host reproduction or by protecting their hosts against natural enemies. While an increasing number of studies have reported endosymbiont-mediated protection, little is known about the mechanisms underlying this protection. Here, we analyze the mechanisms underlying protection from parasitoid wasps in Drosophila melanogaster mediated by its facultative endosymbiont Spiroplasma poulsonii. Our results indicate that S. poulsonii exerts protection against two distantly related wasp species, Leptopilina boulardi and Asobara tabida. S. poulsonii-mediated protection against parasitoid wasps takes place at the pupal stage and is not associated with an increased cellular immune response. In this work, we provide three important observations that support the notion that S. poulsonii bacteria and wasp larvae compete for host lipids and that this competition underlies symbiont-mediated protection. First, lipid quantification shows that both S. poulsonii and parasitoid wasps deplete D. melanogaster hemolymph lipids. Second, the depletion of hemolymphatic lipids using the Lpp RNA interference (Lpp RNAi) construct reduces wasp success in larvae that are not infected with S. poulsonii and blocks S. poulsonii growth. Third, we show that the growth of S. poulsonii bacteria is not affected by the presence of the wasps, indicating that when S. poulsonii is present, larval wasps will develop in a lipid-depleted environment. We propose that competition for host lipids may be relevant to endosymbiont-mediated protection in other systems and could explain the broad spectrum of protection provided. Virtually all insects, including crop pests and disease vectors, harbor facultative bacterial endosymbionts. They are vertically transmitted from mothers to their offspring, and some protect their host against pathogens. Here, we studied the mechanism of protection against parasitoid wasps mediated by the Drosophila melanogaster endosymbiont Spiroplasma poulsonii. Using genetic manipulation of the host, we provide strong evidence supporting the hypothesis that competition for host lipids underlies S. poulsonii-mediated protection against parasitoid wasps. We propose that lipid competition-based protection may not be restricted to Spiroplasma bacteria but could also apply other endosymbionts, notably Wolbachia bacteria, which can suppress human disease-causing viruses in insect hosts.
Collapse
|
16
|
Meng E, Tang B, Hou Y, Chen X, Chen J, Yu XQ. Altered immune function of Octodonta nipae (Maulik) to its pupal endoparasitoid, Tetrastichus brontispae Ferrière. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:100-9. [PMID: 27101988 DOI: 10.1016/j.cbpb.2016.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Most studies on the contribution of the altered immune response by endoparasitoid have been restricted to the interactions between Ichneumonoidea and their hosts, while effects of parasitism by Chalcidoidea on the hosts have rarely been characterized except some wasps such as Pteromalidae. Endoparasitoid Tetrastichus brontispae Ferrière, belonging to Eulophidae (Hymenoptera), has a great potential to control some Coleopteran beetles such as Octodonta nipae, one invasive species in southern China. However, the physiological mechanism underlying the escape from the melanotic encapsulation in O. nipae pupae has not been demonstrated. In the present study, effects of parasitism on the immune function of its pupal host O. nipae were investigated. The combining results that granulocytes and plasmatocytes could phagocytize bacteria from 2 to 48h and granulocytes, plasmatocytes and oenocytoids were prophenoloxidase/phenoloxidase positive hemocytes indicated that granulocytes, plasmatocytes and oenocytoids were the main immunocompetent hemocytes in O. nipae pupae. Parasitism by T. brontispae resulted in a significant increase in the percentage of hemocytes viability and spreading at 96h, growing percentage of granulocytes at 24h but no effects on the total hemocyte counts, and an enhanced phenoloxidase activity only at 12 and 72h while a significantly longer melanization time of the hemolymph at 96h following parasitism. These results indicate that mixtures of systemic active and local active regulation are used for T. brontispae to escape host encapsulation in O. nipae pupae. The present study contributes to the understanding of the diversity of virulence strategies used by parasitoids.
Collapse
Affiliation(s)
- E Meng
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou 350002, Fujian, China
| | - Baozhen Tang
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou 350002, Fujian, China
| | - Youming Hou
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou 350002, Fujian, China.
| | - Xinxin Chen
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou 350002, Fujian, China
| | - Jiantu Chen
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou 350002, Fujian, China
| | - Xiao-Qiang Yu
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
17
|
Takigahira T, Kohyama TI, Suwito A, Kimura MT. Genetic analyses of resistance against Leptopilina victoriae in Drosophila bipectinata. Genetica 2015; 143:279-85. [DOI: 10.1007/s10709-015-9824-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/31/2015] [Indexed: 11/30/2022]
|
18
|
Takigahira T, Suwito A, Kimura MT. Assessment of fitness costs of resistance against the parasitoid Leptopilina victoriae in Drosophila bipectinata. Ecol Res 2014. [DOI: 10.1007/s11284-014-1190-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Keebaugh ES, Schlenke TA. Insights from natural host-parasite interactions: the Drosophila model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:111-23. [PMID: 23764256 PMCID: PMC3808516 DOI: 10.1016/j.dci.2013.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/01/2013] [Accepted: 06/01/2013] [Indexed: 05/15/2023]
Abstract
Immune responses against opportunistic pathogens have been extensively studied in Drosophila, leading to a detailed map of the genetics behind innate immunity networks including the Toll, Imd, Jak-Stat, and JNK pathways. However, immune mechanisms of other organisms, such as plants, have primarily been investigated using natural pathogens. It was the use of natural pathogens in plant research that revealed the plant R-Avr system, a specialized immune response derived from antagonistic coevolution between plant immune proteins and their natural pathogens' virulence proteins. Thus, we recommend that researchers begin to use natural Drosophila pathogens to identify novel immune strategies that may have arisen through antagonistic coevolution with common natural pathogens. In this review, we address the benefits of using natural pathogens in research, describe the known natural pathogens of Drosophila, and discuss the future prospects for research on natural pathogens of Drosophila.
Collapse
Affiliation(s)
- Erin S Keebaugh
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, United States.
| | | |
Collapse
|
20
|
Heavner ME, Gueguen G, Rajwani R, Pagan PE, Small C, Govind S. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera. Gene 2013; 526:195-204. [PMID: 23688557 PMCID: PMC3905606 DOI: 10.1016/j.gene.2013.04.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the delicate and unique specificity characteristic of such interactions. The accessory long gland-reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like particles. Upon delivery, venom components delay host larval development and completely block host immune responses. The host range of this Drosophila endoparasitoid notably includes the highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using similarity as an indicator of putative homology, reveals that approximately 25% are novel or classified as hypothetical proteins. Most of the remaining unigenes are related to processes involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis, and hormone production. Analysis of L. heterotoma's predicted venom gland proteins demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants). Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may contribute to venom activity in this unique wasp. To our knowledge, this investigation is among the first functional genomic studies for a natural parasitic wasp of Drosophila. Our findings will help explain how L. heterotoma shuts down its hosts' immunity and shed light on the molecular basis of a natural arms race between these insects.
Collapse
Affiliation(s)
- Mary E Heavner
- Biology Department, The City College, City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
| | | | | | | | | | | |
Collapse
|
21
|
Colinet D, Deleury E, Anselme C, Cazes D, Poulain J, Azema-Dossat C, Belghazi M, Gatti JL, Poirié M. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:601-611. [PMID: 23557852 DOI: 10.1016/j.ibmb.2013.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
The arms race between immune suppressive parasites that produce virulence factors and hosts that evolve resistance to these factors is suggested to be a key driver for the diversification of both partners. However, little is known regarding the diversity of virulence factors in closely related parasites or the mechanisms underlying the variation of virulence. One of the best-described model to address this issue is the interaction between Leptopilina parasitic wasps and their Drosophila hosts, in which variation of virulence is well documented. Thanks to a combined transcriptomic and proteomic approach, we have identified the main secreted proteins in the venom of Leptopilina heterotoma (Gotheron strain, 66 proteins) and of two well-characterized strains of Leptopilina boulardi, ISm and ISy (65 and 49 proteins, respectively). Results revealed significant quantitative differences in venom components between the L. boulardi strains, in agreement with their different virulence properties. Strikingly, the two related Leptopilina species did not share any abundant venom protein. The main identified proteins in L. boulardi were RhoGAPs and serpins while an aspartylglucosaminidase (AGA) was found abundant in L. heterotoma. The extensive quantitative variation observed between these species may be related with their use of different virulence strategies and/or to differences in their host range (specialist versus generalist). Altogether, our data suggests that parasitoid venom can quickly evolve, mainly through rapid changes in regulation of gene expression. It also evidences venom evolutionary processes largely described in other venomous animals i.e. the convergent recruitment of venom proteins between phylogenetically unrelated organisms, and the role of duplications in the emergence of multigenic families of virulence factors.
Collapse
Affiliation(s)
- Dominique Colinet
- INRA, Evolution and Specificity of Multitrophic Interactions-ESIM, UMR 1355 "Sophia Agrobiotech Institute"-ISA, Institut National de la Recherche Agronomique, INRA PACA, 400 route des Chappes, Sophia Antipolis 06903, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Colinet D, Mathé-Hubert H, Allemand R, Gatti JL, Poirié M. Variability of venom components in immune suppressive parasitoid wasps: from a phylogenetic to a population approach. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:205-212. [PMID: 23103980 DOI: 10.1016/j.jinsphys.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 06/01/2023]
Abstract
Endoparasitoid wasps develop at the expense of other insects, leading to their death. Eggs deposited inside the host body induce an immune response, which results in the formation of a melanized cellular capsule around the egg. To evade or counteract this response, endoparasitoids have evolved different strategies, the most often reported being injection into the host of immunosuppressive factors, notably venom proteins, along with the egg. The analysis of venom components has been performed independently in species of different taxa, but the present picture is far from complete. Intriguingly, the question of the level of venom variability inside species has been neglected, although it may partly determine the potential for parasitoid adaptation. Here, we present a short review of our present knowledge of venom components in endoparasitoids, as well as of the only well-known example of intraspecific variability in a venom immune suppressive protein being responsible for variation in parasitoid virulence. We then present data evidencing inter-individual variation of venom protein profiles, using a gel electrophoresis approach, both in laboratory strains and field populations of a figitid and a braconid species. Whether occurrence of such variability may permit a selection of parasitoid venom components driven by the host remains to be tested, notably in the context of the production and use of biological control auxiliaries.
Collapse
Affiliation(s)
- Dominique Colinet
- Institut National de la Recherche Agronomique (INRA), Evolution and Specificity of Multitrophic Interactions (ESIM), UMR 1355 Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
| | | | | | | | | |
Collapse
|
23
|
Kacsoh BZ, Schlenke TA. High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS One 2012; 7:e34721. [PMID: 22529929 PMCID: PMC3328493 DOI: 10.1371/journal.pone.0034721] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
Among the most common parasites of Drosophila in nature are parasitoid wasps, which lay their eggs in fly larvae and pupae. D. melanogaster larvae can mount a cellular immune response against wasp eggs, but female wasps inject venom along with their eggs to block this immune response. Genetic variation in flies for immune resistance against wasps and genetic variation in wasps for virulence against flies largely determines the outcome of any fly-wasp interaction. Interestingly, up to 90% of the variation in fly resistance against wasp parasitism has been linked to a very simple mechanism: flies with increased constitutive blood cell (hemocyte) production are more resistant. However, this relationship has not been tested for Drosophila hosts outside of the melanogaster subgroup, nor has it been tested across a diversity of parasitoid wasp species and strains. We compared hemocyte levels in two fly species from different subgroups, D. melanogaster and D. suzukii, and found that D. suzukii constitutively produces up to five times more hemocytes than D. melanogaster. Using a panel of 24 parasitoid wasp strains representing fifteen species, four families, and multiple virulence strategies, we found that D. suzukii was significantly more resistant to wasp parasitism than D. melanogaster. Thus, our data suggest that the relationship between hemocyte production and wasp resistance is general. However, at least one sympatric wasp species was a highly successful infector of D. suzukii, suggesting specialists can overcome the general resistance afforded to hosts by excessive hemocyte production. Given that D. suzukii is an emerging agricultural pest, identification of the few parasitoid wasps that successfully infect D. suzukii may have value for biocontrol.
Collapse
Affiliation(s)
- Balint Z. Kacsoh
- Biology Department, Emory University, Atlanta, Georgia, United States of America
| | - Todd A. Schlenke
- Biology Department, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
24
|
Colinet D, Cazes D, Belghazi M, Gatti JL, Poirié M. Extracellular superoxide dismutase in insects: characterization, function, and interspecific variation in parasitoid wasp venom. J Biol Chem 2011; 286:40110-21. [PMID: 21937434 DOI: 10.1074/jbc.m111.288845] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoparasitoid wasps inject venom proteins with their eggs to protect them from the host immune response and ensure successful parasitism. Here we report identification of Cu,Zn superoxide dismutase (SOD) transcripts for both intracellular SOD1 and extracellular SOD3 in the venom apparatus of two Leptopilina species, parasitoids of Drosophila. Leptopilina SODs show sequence and structure similarity to human SODs, but phylogenetic analyses indicate that the extracellular SODs are more related to cytoplasmic vertebrate SODs than to extracellular SODs, a feature shared by predicted insect extracellular SODs. We demonstrate that L. boulardi SOD3 is indeed secreted and active as monomeric glycosylated forms in venom. Our results also evidence quantitative variation in SOD3 venom contents between closely related parasitoid species, as sod3 is 100-fold less expressed in Leptopilina heterotoma venom apparatus and no protein and SOD activity are detected in its venom. Leptopilina recombinant SOD3s as well as a mammalian SOD in vitro inhibit the Drosophila phenoloxidase activity in a dose-dependent manner, demonstrating that SODs may interfere with the Drosophila melanization process and, therefore, with production of cytotoxic compounds. Although the recombinant L. boulardi SOD3 quantity needed to observe this effect precludes a systemic effect of the wasp venom SOD3, it is still consistent with a local action at oviposition. This work provides the first demonstration that insect extracellular SODs are indeed secreted and active in an insect fluid and can be used as virulence factors to counteract the host immune response, a strategy largely used by bacterial and fungal pathogens but also protozoan parasites during infection.
Collapse
Affiliation(s)
- Dominique Colinet
- Evolution and Specificity of Multitrophic Interactions, UMR 1301 Biotic Interactions and Plant Health, Institut National de la Recherche Agronomique, INRA PACA, Sophia Antipolis 06903, France.
| | | | | | | | | |
Collapse
|
25
|
Gueguen G, Rajwani R, Paddibhatla I, Morales J, Govind S. VLPs of Leptopilina boulardi share biogenesis and overall stellate morphology with VLPs of the heterotoma clade. Virus Res 2011; 160:159-65. [PMID: 21704090 DOI: 10.1016/j.virusres.2011.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 11/27/2022]
Abstract
Viruses and virus-like particles (VLPs) of insect parasitoids modify host-parasite interactions. The Drosophila wasp, Leptopilina heterotoma, produce 300 nm spiked VLPs that bind to the host's blood cells via surface projections. L. heterotoma is a generalist wasp that attacks over a dozen Drosophila species. Oviposition introduces VLPs into the hemolymph of Drosophila larvae. VLPs lyse hemocytes and obliterate immune signaling in infected larval hosts. L. boulardi, a member of a distinct Leptopilina clade, is a specialist, whose host range is limited to the melanogaster group. As a step toward understanding a potential relationship between venom contents and host range in these wasps, we used electron microscopy to characterize VLPs from the virulent L. boulardi-17 (Lb-17) strain. While the Lb-17 VLPs can neither lyse blood cells nor suppress host defense, their biogenesis is surprisingly similar to that of L. heterotoma. Like L. heterotoma VLPs, L. boulardi VLPs are stellate; but they have fewer spikes, each spike being significantly longer than the spikes in L. heterotoma VLPs. The Lb-17 VLPs possess a dimple, making them clearly distinct from L. heterotoma VLPs. We discuss the significance of these cross-clade differences in VLP morphologies in relation to their biological activities and the host range of the wasp.
Collapse
Affiliation(s)
- Gwenaelle Gueguen
- Department of Biology, The City College of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
26
|
Colinet D, Schmitz A, Cazes D, Gatti JL, Poirié M. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. PLoS Pathog 2010; 6:e1001206. [PMID: 21124871 PMCID: PMC2991256 DOI: 10.1371/journal.ppat.1001206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 10/22/2010] [Indexed: 12/02/2022] Open
Abstract
Occurrence of intraspecific variation in parasite virulence, a prerequisite for coevolution of hosts and parasites, has largely been reported. However, surprisingly little is known of the molecular bases of this variation in eukaryotic parasites, with the exception of the antigenic variation used by immune-evading parasites of mammals. The present work aims to address this question in immune suppressive eukaryotic parasites. In Leptopilina boulardi, a parasitic wasp of Drosophila melanogaster, well-defined virulent and avirulent strains have been characterized. The success of virulent females is due to a major immune suppressive factor, LbGAP, a RacGAP protein present in the venom and injected into the host at oviposition. Here, we show that an homologous protein, named LbGAPy, is present in the venom of the avirulent strain. We then question whether the difference in virulence between strains originates from qualitative or quantitative differences in LbGAP and LbGAPy proteins. Results show that the recombinant LbGAPy protein has an in vitro GAP activity equivalent to that of recombinant LbGAP and similarly targets Drosophila Rac1 and Rac2 GTPases. In contrast, a much higher level of both mRNA and protein is found in venom-producing tissues of virulent parasitoids. The F1 offspring between virulent and avirulent strains show an intermediate level of LbGAP in their venom but a full success of parasitism. Interestingly, they express almost exclusively the virulent LbGAP allele in venom-producing tissues. Altogether, our results demonstrate that the major virulence factor in the wasp L. boulardi differs only quantitatively between virulent and avirulent strains, and suggest the existence of a threshold effect of this molecule on parasitoid virulence. We propose that regulation of gene expression might be a major mechanism at the origin of intraspecific variation of virulence in immune suppressive eukaryotic parasites. Understanding this variation would improve our knowledge of the mechanisms of transcriptional evolution currently under active investigation.
Collapse
Affiliation(s)
- Dominique Colinet
- Institut National de la Recherche Agronomique, Sophia Antipolis, France.
| | | | | | | | | |
Collapse
|