1
|
Huang W, Zeng R, Li Y, Hua Y, Liu L, Chen M, Xue M, Tu S, Huang F, Hu J. Identification of Alzheimer's disease and vascular dementia based on a Deep Forest and near-infrared spectroscopy analysis method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125209. [PMID: 39340951 DOI: 10.1016/j.saa.2024.125209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) typically do not exhibit distinct differences in clinical manifestations and auxiliary examination results, which leads to a high misdiagnosis rate. However, significant differences in treatment approaches and prognosis between these two diseases underscore the critical need for an accurate diagnosis of AD and VaD. In this study, serum samples from 33 patients with AD patients, 37 patients with VaD, and 130 healthy individuals were collected, employing near-infrared aquaphotomics technology in combination with deep learning for differential diagnoses. Through an analysis of water absorption patterns among different diseases via aquaphotomics, the efficacies of traditional machine learning methods (Support Vector Machine and Decision Trees) and deep learning approaches (Deep Forest) in modeling were compared. Ultimately, by leveraging feature extraction techniques in conjunction with deep learning, a differential diagnostic model for AD and VaD was successfully developed. The results revealed that aquaphotomics could identify a certain correlation between the number of hydrogen bonds in water molecules and the development of AD and VaD; the deep learning model was found to be superior to traditional machine learning models, achieving an accuracy of 98.67 %, sensitivity of 97.33 %, and specificity of 100.00 %. The bands identified using the Competitive Adaptive Reweighting Algorithm method, primarily located at approximately 1300-1500 nm, showed a significant correlation with water molecules containing four hydrogen bonds. These results highlighted the potential role of the water molecule hydrogen-bond network in disease development and were consistent with the aquaphotomics analysis results. Therefore, the differential diagnostic model developed by integrating near-infrared spectroscopy and deep learning was proven to be effective and feasible, providing accurate and rapid diagnostic methods for AD and VaD diagnoses.
Collapse
Affiliation(s)
- Wenchang Huang
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Rui Zeng
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yuanpeng Li
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, 541004, China.
| | - Yisheng Hua
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Lingli Liu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Meiyuan Chen
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Mengjiao Xue
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shan Tu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, 541004, China.
| | - Furong Huang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Junhui Hu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, 541004, China
| |
Collapse
|
2
|
Zeng R, Ye Y, Ou H, Hua Y, Su Y, Hu J, Lu H, Tang J, Liu J, Xiao T, Wu Z, Tang W, Li ZY, Lin SJ, Zhuang S, Xu G, Lin Y, Li Y, Huang F, Zhang HT. Early osteoarthritis diagnosis based on near-infrared spectroscopy combined with aquaphotomics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123120. [PMID: 37453381 DOI: 10.1016/j.saa.2023.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease and the leading cause of disability in elderly individuals. Despite rapid advances in imaging techniques, early OA diagnosis remains a clinical challenge. In the present study, the feasibility of early OA diagnosis was explored via near-infrared spectroscopy (NIRS) combined with aquaphotomics. Synovial fluid samples from 65 cases of OA categorized as mild, moderate, and severe according to theKellgrenandLawrence classification criteria were analyzed via NIRS. The 1st overtone of water (1300-1600 nm) was considered as the research object for an aquaphotomics model, and aquagrams of the mild, moderate, and severe OA cases were generated using 12 water absorption patterns for early OA diagnosis.The aquaphotomics results exhibited clear differences in the region of 1300-1500 nm, and the number of hydrogen bonds of different water species (1412,1424, 1482, and 1496 nm) evidently correlated with OA occurrence and development. With OA progression, the absorption intensity of water molecules without hydrogen bonds (1412 nm/1424 nm) became stronger, while the absorption intensity of water molecules with four hydrogen bonds (1482 nm/1496 nm) decreased.These results together reveal that the established accurate and rapid early OA diagnosis model based on NIRS combined with aquaphotomics is effective and feasible, and that the number of hydrogen bonds can be used as a biomarker for early OA diagnosis.
Collapse
Affiliation(s)
- Rui Zeng
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yongsheng Ye
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; Department of Orthopedics, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China
| | - Haisheng Ou
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yisheng Hua
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yuancui Su
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Junhui Hu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hanglin Lu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Jian Tang
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Jun Liu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Teng Xiao
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhaosheng Wu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Wang Tang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Su-Juan Lin
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Shabin Zhuang
- Department of Orthopedics, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China
| | - Guisheng Xu
- Department of Joint and Sports Medicine, the First People's Hospital of Zhaoqing, Zhaoqing, Guangdong 526000, China
| | - Yuning Lin
- Department of Joint and Sports Medicine, the First People's Hospital of Zhaoqing, Zhaoqing, Guangdong 526000, China
| | - Yuanpeng Li
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China.
| | - Furong Huang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
3
|
Chakraborty T, Polley S, Sinha D, Seal S, Sinha D, Mitra SK, Hazra J, Sau K, Pal M, Sau S. Structurally distinct unfolding intermediates formed from a staphylococcal capsule-producing enzyme retained NADPH binding activity. J Biomol Struct Dyn 2021; 40:9126-9143. [PMID: 33977860 DOI: 10.1080/07391102.2021.1924269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CapF, a capsule-producing enzyme expressed by Staphylococcus aureus, binds NADPH and exists as a dimer in the aqueous solution. Many other capsule-producing virulent bacteria also express CapF orthologs. To understand the folding-unfolding mechanism of S. aureus CapF, herein a recombinant CapF (rCapF) was individually investigated using urea and guanidine hydrochloride (GdnCl). Unfolding of rCapF by both the denaturants was reversible but proceeded via the synthesis of a different number of intermediates. While two dimeric intermediates (rCapF4 and rCapF5) were formed at 0.5 M and 1.5 M GdnCl, three dimeric intermediates (rCapF1, rCapF2, and rCapF3) were produced at 1 M, 2 M, and 3 M urea, respectively. rCapF5 showed 3.6 fold less NADPH binding activity, whereas other intermediates retained full NADPH binding activity. Compared to rCapF, all of the intermediates (except rCapF3) had a compressed shape. Conversely, rCapF3 possessed a native protein-like shape. The maximum shape loss was in rCapF4 though its secondary structure remained unperturbed. Additionally, the tertiary structure and hydrophobic surface area of the intermediates neither matched with each other nor with those of the native rCapF. Of the four Trp residues in rCapF, one or more Trp residues in the intermediates may have higher solvent accessibility. Using sequence alignment and a tertiary structural model of CapF, we have demonstrated that the region around Trp 137 of CapF may be most sensitive to unfolding, whereas the NADPH binding motif carrying region at the N-terminal end of this protein may be resistant to unfolding, particularly at the low denaturant concentrations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Sudip K Mitra
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Joyita Hazra
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
4
|
López Sánchez HA, Kathuria SV, Fernández Velasco DA. The Folding Pathway of 6aJL2. J Phys Chem B 2021; 125:1997-2008. [PMID: 33620231 DOI: 10.1021/acs.jpcb.0c08534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One-third of the reported cases of light chain amyloidosis are related to the germ line λ6 family; remarkably, healthy individuals express this type of protein in just 2% of the peripheral blood and bone marrow B-cells. The appearance of the disease has been related to the inherent properties of this protein family. A recombinant representative model for λ6 proteins called 6aJL2 containing the amino acid sequence encoded by the 6a and JL2 germ line genes was previously designed and synthesized to study the properties of this family. Previous work on 6aJL2 suggested a simple two-state folding model at 25 °C; no intermediate could be identified either by kinetics or by fluorescence and circular dichroism equilibrium studies, although the presence of an intermediate that is populated at ∼2.4 M urea was suggested by size exclusion chromatography. In this study we employed classic equilibrium and kinetic experiments and analysis to elucidate the detailed folding mechanism of this protein. We identify species that are kinetically accessible and/or are populated at equilibrium. We describe the presence of intermediate and native-like species and propose a five-species folding mechanism at 25 °C at short incubation times, similar to and consistent with those observed in other proteins of this fold. The formation of intermediates in the mechanism of 6aJL2 is faster than that proposed for a Vκ light chain, which could be an important distinction in the amyloidogenic potential of both germ lines.
Collapse
Affiliation(s)
- Haven A López Sánchez
- Laboratorio de FísicoQuímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Sagar V Kathuria
- Biochemistry and Molecular Pharmacology Department, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - D Alejandro Fernández Velasco
- Laboratorio de FísicoQuímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
5
|
The concept of protein folding/unfolding and its impacts on human health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021. [PMID: 34090616 DOI: 10.1016/bs.apcsb.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Proteins have evolved in specific 3D structures and play different functions in cells and determine various reactions and pathways. The newly synthesized amino acid chains once depart ribosome must crumple into three-dimensional structures so can be biologically active. This process of protein that makes a functional molecule is called protein folding. The protein folding is both a biological and a physicochemical process that depends on the sequence of it. In fact, this process occurs more complicated and in some cases and in exposure to some molecules like glucose (glycation), mistaken folding leads to amyloid structures and fatal disorders called conformational diseases. Such conditions are detected by the quality control system of the cell and these abnormal proteins undergo renovation or degradation. This scenario takes place by the chaperones, chaperonins, and Ubiquitin-proteasome complex. Understanding of protein folding mechanisms from different views including experimental and computational approaches has revealed some intermediate ensembles such as molten globule and has been subjected to biophysical and molecular biology attempts to know more about prevalent conformational diseases.
Collapse
|
6
|
Li Y, Guo L, Li L, Yang C, Guang P, Huang F, Chen Z, Wang L, Hu J. Early Diagnosis of Type 2 Diabetes Based on Near-Infrared Spectroscopy Combined With Machine Learning and Aquaphotomics. Front Chem 2021; 8:580489. [PMID: 33425846 PMCID: PMC7794015 DOI: 10.3389/fchem.2020.580489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
Early diagnosis is important to reduce the incidence and mortality rate of diabetes. The feasibility of early diagnosis of diabetes was studied via near-infrared spectra (NIRS) combined with a support vector machine (SVM) and aquaphotomics. Firstly, the NIRS of entire blood samples from the population of healthy, pre-diabetic, and diabetic patients were obtained. The spectral data of the entire spectra in the visible and near-infrared region (400–2,500 nm) were used as the research object of the qualitative analysis. Secondly, several preprocessing steps including multiple scattering correction, variable standardization, and first derivative and second derivative steps were performed and the best pretreatment method was selected. Finally, for the early diagnosis of diabetes, models were established using SVM. The first overtone of water (1,300–1,600 nm) was used as the research object for an aquaphotomics model, and the aquagram of the healthy group, pre-diabetes, and diabetes groups were drawn using 12 water absorption patterns for the early diagnosis of diabetes. The results of SVM showed that the highest accuracy was 97.22% and the specificity and sensitivity were 95.65 and 100%, respectively when the pretreatment method of the first derivative was used, and the best model parameters were c = 18.76 and g = 0.008583.The results of the aquaphotomics model showed clear differences in the 1,400–1,500 nm region, and the number of hydrogen bonds in water species (1,408, 1,416, 1,462, and 1,522 nm) was evidently correlated with the occurrence and development of diabetes. The number of hydrogen bonds was the smallest in the healthy group and the largest in the diabetes group. The suggested reason is that the water matrix of blood changes with the worsening of blood glucose metabolic dysfunction. The number of hydrogen bonds could be used as biomarkers for the early diagnosis of diabetes. The result show that it is effective and feasible to establish an accurate and rapid early diagnosis model of diabetes via NIRS combined with SVM and aquaphotomics.
Collapse
Affiliation(s)
- Yuanpeng Li
- College of Physical Science and Technology, Guangxi Normal University, Guilin, China.,Guangxi Key Laboratory Nuclear Physics and Technology, Guangxi Normal University, Guilin, China
| | - Liu Guo
- Guangdong Hongke Agricultural Machinery Research & Development Co., Ltd., Guangzhou, China
| | - Li Li
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chuanmei Yang
- College of Physical Science and Technology, Guangxi Normal University, Guilin, China
| | - Peiwen Guang
- Guangdong Provincial Key Laboratory of Optical Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Furong Huang
- Guangdong Provincial Key Laboratory of Optical Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Zhenqiang Chen
- Guangdong Provincial Key Laboratory of Optical Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Lihu Wang
- College of Physical Science and Technology, Guangxi Normal University, Guilin, China
| | - Junhui Hu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, China
| |
Collapse
|
7
|
Yang X, Guang P, Xu G, Zhu S, Chen Z, Huang F. Manuka honey adulteration detection based on near-infrared spectroscopy combined with aquaphotomics. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109837] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Kumari N, Yadav S. Modulation of protein oligomerization: An overview. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:99-113. [DOI: 10.1016/j.pbiomolbio.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
|
9
|
Patel U, Gautam S, Chatterji D. Unraveling the Role of Silent Mutation in the ω-Subunit of Escherichia coli RNA Polymerase: Structure Transition Inhibits Transcription. ACS OMEGA 2019; 4:17714-17725. [PMID: 31681877 PMCID: PMC6822122 DOI: 10.1021/acsomega.9b02103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/05/2019] [Indexed: 05/07/2023]
Abstract
The bacterial RNA polymerase is a multi-subunit enzyme complex composed of six subunits, α2ββ'σω. The function of this enzyme is to transcribe the DNA base sequence to the RNA intermediate, which is ultimately translated to protein. Though the contribution of each subunit in RNA synthesis has been clearly elucidated, the role of the smallest ω-subunit is still unclear despite several studies. Recently, a study on a dominant negative mutant of rpoZ has been reported in which the mutant was shown to render the RNA polymerase defective in transcription initiation (ω6, N60D) and gave an insight on the function of ω in RNA polymerase. Serendipitously, we also obtained a silent mutant, and the mutant was found to be lethal during the isolation of toxic mutants. The primary focus of this study is to understand the mechanistic details of this lethality. Isolated ω shows a predominantly unstructured circular dichroism profile and becomes α-helical in the enzyme complex. This structural transition is perhaps the reason for this lack of function. Subsequently, we generated several silent mutants of ω to investigate the role of codon bias and the effect of rare codons with respect to their position in rpoZ. Not all silent mutations affect the structure. RNA polymerase when reconstituted with structurally altered silent mutants of ω is transcriptionally inactive. The CodonPlus strain, which has surplus tRNA, was used to assess for the rescue of the phenotype in lethal silent mutants.
Collapse
Affiliation(s)
| | - Sudhanshu Gautam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Abstract
Systematic identification of buffer formulations and small molecule chaperones that improve the expression, stability, and storage of proteins with therapeutic interest has gained enormous importance in biochemical research as well as in biotechnology and biomedical applications. In particular, the biochemical characterization of disease-related proteins and their genetic variants that result in misfolding requires systematic determination of protein stability, screening of optimal buffer conditions for biophysical and structural studies, and in some cases, the identification of small molecule chaperones with the potential to ameliorate folding defects. Among the several techniques available, differential scanning fluorimetry (DSF) is currently an extensively employed screening and analysis method for thermal shift and protein stability assays. Here we describe a step-by-step generic protocol for fast characterization of protein thermal stability and analysis of stabilization in thermal-shift assays by additives, ligands and chemical chaperones using β-oxidation mitochondrial dehydrogenases as model. These enzymes are associated to inborn errors of metabolism caused by mutant variants with folding and stability defects for which we previously established folding correction afforded by their cognate cofactors and substrates. With this example we thus illustrate the potential applications of the method in screening small molecule folding correctors among metabolites, ligands, cofactors or candidate drugs with therapeutic potential in protein folding diseases.
Collapse
|
11
|
Biswas A, Ghosh S, Sinha D, Dutta A, Seal S, Bagchi A, Sau S. Dimerization ability, denaturation mechanism, and the stability of a staphylococcal phage repressor and its two domains. Int J Biol Macromol 2019; 124:903-914. [DOI: 10.1016/j.ijbiomac.2018.11.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
|
12
|
Sinha D, Mondal R, Mahapa A, Sau K, Chattopadhyaya R, Sau S. A staphylococcal anti-sigma factor possesses a single-domain, carries different denaturant-sensitive regions and unfolds via two intermediates. PLoS One 2018; 13:e0195416. [PMID: 29621342 PMCID: PMC5886543 DOI: 10.1371/journal.pone.0195416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022] Open
Abstract
RsbW, an anti-sigma factor possessing kinase activity, is expressed by many Gram-positive bacteria including Staphylococcus aureus. To obtain clues about the domain structure and the folding-unfolding mechanism of RsbW, we have elaborately studied rRsbW, a recombinant S. aureus RsbW. Sequence analysis of the protein fragments, generated by the limited proteolysis of rRsbW, has proposed it to be a single-domain protein. The unfolding of rRsbW in the presence of GdnCl or urea was completely reversible in nature and occurred through the formation of at least two intermediates. The structure, shape, and the surface hydrophobicity of no intermediate completely matches with those of other intermediates or the native rRsbW. Interestingly, one of the intermediates, formed in the presence of less GdnCl concentrations, has a molten globule-like structure. Conversely, all of the intermediates, like native rRsbW, exist as dimers in aqueous solution. The putative molten globule and the urea-generated intermediates also have retained some kinase activity. Additionally, the putative ATP binding site/catalytic site of rRsbW shows higher denaturant sensitivity than the tentative dimerization region of this enzyme.
Collapse
Affiliation(s)
- Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Rajkrishna Mondal
- Department of Biotechnology, Nagaland University, Dimapur, Nagaland, India
| | - Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
13
|
Natan E, Endoh T, Haim-Vilmovsky L, Flock T, Chalancon G, Hopper JTS, Kintses B, Horvath P, Daruka L, Fekete G, Pál C, Papp B, Oszi E, Magyar Z, Marsh JA, Elcock AH, Babu MM, Robinson CV, Sugimoto N, Teichmann SA. Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Nat Struct Mol Biol 2018; 25:279-288. [PMID: 29434345 PMCID: PMC5995306 DOI: 10.1038/s41594-018-0029-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/10/2018] [Indexed: 01/11/2023]
Abstract
Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in Escherichia coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization.
Collapse
Affiliation(s)
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
| | - Liora Haim-Vilmovsky
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Tilman Flock
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Bálint Kintses
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Peter Horvath
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Lejla Daruka
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Csaba Pál
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Balázs Papp
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Erika Oszi
- Institute of Plant Biology, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Arai M. Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophys Rev 2018; 10:163-181. [PMID: 29307002 PMCID: PMC5899706 DOI: 10.1007/s12551-017-0346-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt to integrate the mechanisms of coupled folding and binding of IDPs, folding of small and multi-subdomain proteins, folding of multimeric proteins, and ligand binding of globular proteins in terms of conformational selection and induced-fit mechanisms as well as the nucleation–condensation mechanism that is intermediate between them. Accumulating evidence has shown that both the rate of conformational change and apparent rate of binding between interacting elements can determine reaction mechanisms. Coupled folding and binding of IDPs occurs mainly by induced-fit because of the slow folding in the free form, while ligand binding of globular proteins occurs mainly by conformational selection because of rapid conformational change. Protein folding can be regarded as the binding of intramolecular segments accompanied by secondary structure formation. Multi-subdomain proteins fold mainly by the induced-fit (hydrophobic collapse) mechanism, as the connection of interacting segments enhances the binding (compaction) rate. Fewer hydrophobic residues in small proteins reduce the intramolecular binding rate, resulting in the nucleation–condensation mechanism. Thus, the folding and binding of globular proteins and IDPs obey the same general principle, suggesting that the coarse-grained, statistical mechanical model of protein folding is promising for a unified theoretical description of all mechanisms.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
15
|
Macek P, Kerfah R, Boeri Erba E, Crublet E, Moriscot C, Schoehn G, Amero C, Boisbouvier J. Unraveling self-assembly pathways of the 468-kDa proteolytic machine TET2. SCIENCE ADVANCES 2017; 3:e1601601. [PMID: 28435872 PMCID: PMC5384809 DOI: 10.1126/sciadv.1601601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/10/2017] [Indexed: 05/03/2023]
Abstract
The spontaneous formation of biological higher-order structures from smaller building blocks, called self-assembly, is a fundamental attribute of life. Although the protein self-assembly is a time-dependent process that occurs at the molecular level, its current understanding originates either from static structures of trapped intermediates or from modeling. Nuclear magnetic resonance (NMR) spectroscopy has the unique ability to monitor structural changes in real time; however, its size limitation and time-resolution constraints remain a challenge when studying the self-assembly of large biological particles. We report the application of methyl-specific isotopic labeling combined with relaxation-optimized NMR spectroscopy to overcome both size- and time-scale limitations. We report for the first time the self-assembly process of a half-megadalton protein complex that was monitored at the structural level, including the characterization of intermediate states, using a mutagenesis-free strategy. NMR was used to obtain individual kinetics data on the different transient intermediates and the formation of final native particle. In addition, complementary time-resolved electron microscopy and native mass spectrometry were used to characterize the low-resolution structures of oligomerization intermediates.
Collapse
Affiliation(s)
- Pavel Macek
- Université Grenoble Alpes, Institut de
Biologie Structurale (IBS), Grenoble, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - Rime Kerfah
- Université Grenoble Alpes, Institut de
Biologie Structurale (IBS), Grenoble, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - Elisabetta Boeri Erba
- Université Grenoble Alpes, Institut de
Biologie Structurale (IBS), Grenoble, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - Elodie Crublet
- Université Grenoble Alpes, Institut de
Biologie Structurale (IBS), Grenoble, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - Christine Moriscot
- Université Grenoble Alpes, Institut de
Biologie Structurale (IBS), Grenoble, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - Guy Schoehn
- Université Grenoble Alpes, Institut de
Biologie Structurale (IBS), Grenoble, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - Carlos Amero
- Centro de Investigaciones Químicas, IICBA,
Universidad Autónoma del Estado de Morelos, México
- Corresponding author. (C.A.);
(J.B.)
| | - Jerome Boisbouvier
- Université Grenoble Alpes, Institut de
Biologie Structurale (IBS), Grenoble, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- Corresponding author. (C.A.);
(J.B.)
| |
Collapse
|
16
|
Regulation, evolution and consequences of cotranslational protein complex assembly. Curr Opin Struct Biol 2016; 42:90-97. [PMID: 27969102 DOI: 10.1016/j.sbi.2016.11.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/28/2016] [Indexed: 01/05/2023]
Abstract
Most proteins assemble into complexes, which are involved in almost all cellular processes. Thus it is crucial for cell viability that mechanisms for correct assembly exist. The timing of assembly plays a key role in determining the fate of the protein: if the protein is allowed to diffuse into the crowded cellular milieu, it runs the risk of forming non-specific interactions, potentially leading to aggregation or other deleterious outcomes. It is therefore expected that strong regulatory mechanisms should exist to ensure efficient assembly. In this review we discuss the cotranslational assembly of protein complexes and discuss how it occurs, ways in which it is regulated, potential disadvantages of cotranslational interactions between proteins and the implications for the inheritance of dominant-negative genetic disorders.
Collapse
|
17
|
Patra M, Mukhopadhyay C, Chakrabarti A. Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride. PLoS One 2015; 10:e0116991. [PMID: 25617632 PMCID: PMC4305312 DOI: 10.1371/journal.pone.0116991] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGuH20) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from.
Collapse
Affiliation(s)
- Malay Patra
- Chemistry Department, University of Calcutta, Kolkata, West Bengal, India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| |
Collapse
|
18
|
Closa F, Gosse C, Jullien L, Lemarchand A. Identification of two-step chemical mechanisms and determination of thermokinetic parameters using frequency responses to small temperature oscillations. J Chem Phys 2014; 138:244109. [PMID: 23822229 DOI: 10.1063/1.4811288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increased focus on kinetic signatures in biology, coupled with the lack of simple tools for chemical dynamics characterization, lead us to develop an efficient method for mechanism identification. A small thermal modulation is used to reveal chemical dynamics, which makes the technique compatible with in cellulo imaging. Then, the detection of concentration oscillations in an appropriate frequency range followed by a judicious analytical treatment of the data is sufficient to determine the number of chemical characteristic times, the reaction mechanism, and the full set of associated rate constants and enthalpies of reaction. To illustrate the scope of the method, dimeric protein folding is chosen as a biologically relevant example of nonlinear mechanism with one or two characteristic times.
Collapse
Affiliation(s)
- F Closa
- Université Pierre et Marie Curie-Paris 6, Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 LPTMC, 4 place Jussieu, case courrier 121, 75252 Paris cedex 05, France
| | | | | | | |
Collapse
|
19
|
Rodrigues D, Farinha-Arcieri LE, Ventura AM, Chura-Chambi RM, Malavasi NV, Lemke LS, Guimarães JS, Ho PL, Morganti L. Effect of pressure on refolding of recombinant pentameric cholera toxin B. J Biotechnol 2014; 173:98-105. [PMID: 24445168 PMCID: PMC7114129 DOI: 10.1016/j.jbiotec.2013.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/16/2022]
Abstract
The production of recombinant proteins is an essential tool for the expansion of modern biological research and biotechnology. The expression of heterologous proteins in Escherichia coli often results in an incomplete folding process that leads to the accumulation of inclusion bodies (IB), aggregates that hold a certain degree of native-like secondary structure. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, leading to dissociation of aggregates under non-denaturing conditions and is therefore a useful tool to solubilize proteins for posterior refolding. Cholera toxin (CT) is composed of a non-toxic pentamer of B subunits (CTB), a useful adjuvant in vaccines, and a toxic subunit A (CTA). We studied the process of refolding of CTB using HHP. HHP was shown to be effective for dissociation of CTB monomers from IB. Posterior incubation at atmospheric pressure of concentrated CTB (1mg/ml) is necessary for the association of the monomers. Pentameric CTB was obtained when suspensions of CTB IB were compressed at 2.4kbar for 16h in the presence of Tween 20 and incubated at 1bar for 120h. Soluble and biologically active pentameric CTB was obtained, with a yield of 213mg CTB/liter of culture. The experience gained in this study can be important to improve the refolding of proteins with quaternary structure.
Collapse
Affiliation(s)
- D Rodrigues
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - L E Farinha-Arcieri
- Universidade de São Paulo, Departamento de Microbiologia do Instituto de Ciências Biomédicas, São Paulo, Brazil
| | - A M Ventura
- Universidade de São Paulo, Departamento de Microbiologia do Instituto de Ciências Biomédicas, São Paulo, Brazil
| | - R M Chura-Chambi
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - N V Malavasi
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - L S Lemke
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - J S Guimarães
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - P L Ho
- Instituto Butantan, Centro de Biotecnologia, São Paulo, Brazil
| | - L Morganti
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil.
| |
Collapse
|
20
|
The importance of the last strand at the C-terminus in βB2-crystallin stability and assembly. Biochim Biophys Acta Mol Basis Dis 2014; 1842:44-55. [DOI: 10.1016/j.bbadis.2013.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 01/15/2023]
|
21
|
Kundrotas PJ, Vakser IA, Janin J. Structural templates for modeling homodimers. Protein Sci 2013; 22:1655-63. [PMID: 23996787 DOI: 10.1002/pro.2361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022]
Abstract
Oligomeric proteins are more abundant in nature than monomeric proteins, and involved in all biological processes. In the absence of an experimental structure, their subunits can be modeled from their sequence like monomeric proteins, but reliable procedures to build the oligomeric assembly are scarce. Template-based methods, which start from known protein structures, are commonly applied to model subunits. We present a method to model homodimers that relies on a structural alignment of the subunits, and test it on a set of 511 target structures recently released by the Protein Data Bank, taking as templates the earlier released structures of 3108 homodimeric proteins (H-set), and 2691 monomeric proteins that form dimer-like assemblies in crystals (M-set). The structural alignment identifies a H-set template for 97% of the targets, and in half of the cases, it yields a correct model of the dimer geometry and residue-residue contacts in the target. It also identifies a M-set template for most of the targets, and some of the crystal dimers are very similar to the target homodimers. The procedure efficiently detects homology at low levels of sequence identities, and points to erroneous quaternary structures in the Protein Data Bank. The high coverage of the target set suggests that the content of the Protein Data Bank already approaches the structural diversity of protein assemblies in nature, and that template-based methods should become the choice method for modeling oligomeric as well as monomeric proteins.
Collapse
Affiliation(s)
- Petras J Kundrotas
- Center for Bioinformatics, The University of Kansas, 2030 Becker Dr., Lawrence, Kansas, 66047
| | | | | |
Collapse
|
22
|
|
23
|
Molla AR, Mandal DK. Trifluoroethanol-induced conformational change of tetrameric and monomeric soybean agglutinin: role of structural organization and implication for protein folding and stability. Biochimie 2013; 95:204-14. [PMID: 23022144 DOI: 10.1016/j.biochi.2012.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/13/2012] [Indexed: 11/23/2022]
Abstract
2,2,2-Trifuoroethanol (TFE)-induced conformational structure change of a β-sheet legume lectin, soybean agglutinin (SBA) has been investigated employing its exclusive structural forms in quaternary (tetramer) and tertiary (monomer) states, by far- and near-UV CD, FTIR, fluorescence, low temperature phosphorescence and chemical modification. Far-UV CD results show that, for SBA tetramer, native atypical β-conformation transforms to a highly α-helical structure, with the helical content reaching 57% in 95% TFE. For SBA monomer, atypical β-sheet first converts to typical β-sheet at low TFE concentration (10%), which then leads to a nonnative α-helix at higher TFE concentration. From temperature-dependent studies (5-60 °C) of TFE perturbation, typical β-sheet structure appears to be less stable than atypical β-sheet and the induced helix entails reduced thermal stability. The heat induced transitions are reversible except for atypical to typical β-sheet conversion. FTIR results reveal a partial α-helix conversion at high protein concentration but with quantitative yield. However, aggregation is detected with FTIR at lower TFE concentration, which disappears in more TFE. Near-UV CD, fluorescence and phosphorescence studies imply the existence of an intermediate with native-like secondary and tertiary structure, which could be related to the dissociation of tetramer to monomer. This has been further supported by concentration dependent far-UV CD studies. Chemical modification with N-bromosuccinimide (NBS) shows that all six tryptophans per monomer are solvent-exposed in the induced α-helical conformation. These results may provide novel and important insights into the perturbed folding problem of SBA in particular, and β-sheet oligomeric proteins in general.
Collapse
Affiliation(s)
- Anisur R Molla
- Department of Chemistry and Biochemistry, Presidency University, 86/1 College Street, West Bengal, Kolkata 700 073, India
| | | |
Collapse
|
24
|
Levy ED, Teichmann S. Structural, evolutionary, and assembly principles of protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:25-51. [PMID: 23663964 DOI: 10.1016/b978-0-12-386931-9.00002-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In the protein universe, 30-50% of proteins self-assemble to form symmetrical complexes consisting of multiple copies of themselves, called homomers. The prevalence of homomers motivates us to review many of their properties. In Section 1, we describe the methods and challenges associated with quaternary structure inference-these methods are indeed at the basis of any analysis on homomers. In Section 2, we describe the morphological properties of homomers, as well as the database 3DComplex, which provides a taxonomy for both homomeric and heteromeric protein complexes. In Section 3, we review interface properties of homomeric complexes. In Section 4, we then present recent findings on the evolution of homomer interfaces, which we link in Section 5 to the evolution of homomers as entire entities. In Section 6, we discuss mechanisms involved in their assembly and how these mechanisms can be linked to evolution.
Collapse
Affiliation(s)
- Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
25
|
Wang H, Andersen KK, Vad BS, Otzen DE. OmpA can form folded and unfolded oligomers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:127-36. [PMID: 22982243 DOI: 10.1016/j.bbapap.2012.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022]
Abstract
The monomeric outer membrane protein OmpA from Escherichia coli has long served as a model protein for studying the folding and membrane insertion of β-barrel membrane proteins. Here we report that when OmpA is refolded in limiting amounts of surfactant (close to the cmc), it has a high propensity to form folded and unfolded oligomers. The oligomers exist both in a folded and (partially) unfolded form which both dissociate under denaturing conditions. Oligomerization does not require the involvement of the periplasmic domain and is not strongly affected by ionic strength. The folded dimers can be isolated and show native-like secondary structure; they are resistant to proteolytic attack and do not dissociate in high surfactant concentrations, indicating high kinetic stability once formed. Remarkably, OmpA also forms significant amounts of higher order structures when refolding in the presence of lipid vesicles. We suggest that oligomerization occurs by domain swapping favored by the high local concentration of OmpA molecules congregating on the same micelle or vesicle. In this model, the unfolded oligomer is stabilized by a small number of intermolecular β-strand contacts and subsequently folds to a more stable state where these intermolecular contacts are consolidated in a native-like fashion by contacts between complementary β-strands from different molecules. Our model is supported by the ability of complementary fragments to associate with each other in vitro. Oligomerization is probably avoided in the cell by the presence of cellular chaperones which maintain the protein in a monomeric state.
Collapse
Affiliation(s)
- H Wang
- Interdisciplinary Nanoscience Center (iNANO), Center for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
26
|
Nazari K, Kelay V, Mahmoudi A, Hashemianzadeh SM. Binding of Divalent Metal Ions to Calcium‐Free Peroxidase: Thermodynamic and Kinetic Studies. Chem Biodivers 2012; 9:1806-22. [DOI: 10.1002/cbdv.201200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kohdadad Nazari
- Research Institute of Petroleum Industry, NIOC, P.O. Box 14665/137, Tehran, Iran, (phone: +98‐21‐48255065; fax: +98‐21‐44739752)
| | - Vahid Kelay
- Chemistry Department, Shahroud University of Technology, P.O. Box 316, Shahroud, Iran
| | - Ali Mahmoudi
- Chemistry Department, Karaj Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
27
|
Mehl AF, Okada K, Dehn SM, Kurian S. Probing the stability and mechanism for folding of the GrpE1-112 tetrameric deletion mutant of the GrpE protein from E. coli. Biochem Biophys Res Commun 2012; 420:635-638. [PMID: 22450325 DOI: 10.1016/j.bbrc.2012.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/10/2012] [Indexed: 05/31/2023]
Abstract
Insight into the stability and folding of oligomeric proteins is essential to the understanding of protein folding, especially since the majority of proteins found in nature are oligomeric. A deletion mutant of the GrpE protein from Escherichia coli, that contains the first 112 residues (GrpE1-112) of 197 total, is an oligomeric protein forming a tetrameric structure. A four-helix bundle structure is formed via the interaction of an α-helix (22 amino acids in length) from each monomer. Using both thermal and chemical (urea) denaturation studies, the GrpE1-112 protein has rather low stability with a T(m) of unfolding of 37 °C, a C(m) (urea) of 1.3M, and a ΔG(unfolding) of 8.4 kJ mol(-1). Investigation into the folding pathway using circular dichroism (CD) stopped-flow revealed a two step process with a fast first phase (k(refolding)=8.0 × 10(6)s(-1)M(-1)) forming a multimeric intermediate that possesses significant α-helical content followed by a slow, first order, step forming the folded tetramer.
Collapse
Affiliation(s)
- Andrew F Mehl
- Department of Chemistry and The Program in Biochemistry, Knox College, 2 East South St., Galesburg, IL 61401, USA.
| | | | | | | |
Collapse
|
28
|
Chakraborty S, Pratihar S, Hosur RV. NMR derived model of GTPase effector domain (GED) self association: relevance to dynamin assembly. PLoS One 2012; 7:e30109. [PMID: 22253896 PMCID: PMC3257262 DOI: 10.1371/journal.pone.0030109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/09/2011] [Indexed: 11/18/2022] Open
Abstract
Self-association of dynamin to form spiral structures around lipidic vesicles during endocytosis is largely mediated by its 'coiled coil' GTPase Effector Domain (GED), which, in vitro, self-associates into huge helical assemblies. Residue-level structural characterizations of these assemblies and understanding the process of association have remained a challenge. It is also impossible to get folded monomers in the solution phase. In this context, we have developed here a strategy to probe the self-association of GED by first dissociating the assembly using Dimethyl Sulfoxide (DMSO) and then systematically monitoring the refolding into helix and concomitant re-association using NMR spectroscopy, as DMSO concentration is progressively reduced. The short segment, Arg109 - Met116, acts as the nucleation site for helix formation and self-association. Hydrophobic and complementary charge interactions on the surfaces drive self-association, as the helices elongate in both the directions resulting in an antiparallel stack. A small N-terminal segment remains floppy in the assembly. Following these and other published results on inter-domain interactions, we have proposed a plausible mode of dynamin self assembly.
Collapse
Affiliation(s)
- Swagata Chakraborty
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Supriya Pratihar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ramakrishna V. Hosur
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
29
|
A gene optimization strategy that enhances production of fully functional P-glycoprotein in Pichia pastoris. PLoS One 2011; 6:e22577. [PMID: 21826197 PMCID: PMC3149604 DOI: 10.1371/journal.pone.0022577] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/24/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. METHODOLOGY/PRINCIPAL FINDINGS Codon-optimized "Opti-Pgp" and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (∼130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ∼15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from T(m) ∼40 °C to 49 °C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids. CONCLUSION The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins.
Collapse
|
30
|
Dissimilar roles of the four conserved acidic residues in the thermal stability of poly(A)-specific ribonuclease. Int J Mol Sci 2011; 12:2901-16. [PMID: 21686157 PMCID: PMC3116163 DOI: 10.3390/ijms12052901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/23/2011] [Accepted: 04/18/2011] [Indexed: 11/17/2022] Open
Abstract
Divalent metal ions are essential for the efficient catalysis and structural stability of many nucleotidyl-transfer enzymes. Poly(A)-specific ribonuclease (PARN) belongs to the DEDD superfamily of 3′-exonucleases, and the active site of PARN contains four conserved acidic amino acid residues that coordinate two Mg2+ ions. In this research, we studied the roles of these four acidic residues in PARN thermal stability by mutational analysis. It was found that Mg2+ significantly decreased the rate but increased the aggregate size of the 54 kDa wild-type PARN in a concentration-dependent manner. All of the four mutants decreased PARN thermal aggregation, while the aggregation kinetics of the mutants exhibited dissimilar Mg2+-dependent behavior. A comparison of the kinetic parameters indicated that Asp28 was the most crucial one to the binding of the two Mg2+ ions, while metal B might be more important in PARN structural stability. The spectroscopic and aggregation results also suggested that the alterations in the active site structure by metal binding or mutations might lead to a global conformational change of the PARN molecule.
Collapse
|
31
|
Sen D, Mandal DK. Pea lectin unfolding reveals a unique molten globule fragment chain. Biochimie 2011; 93:409-17. [DOI: 10.1016/j.biochi.2010.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
32
|
Virnau P, Mallam A, Jackson S. Structures and folding pathways of topologically knotted proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:033101. [PMID: 21406854 DOI: 10.1088/0953-8984/23/3/033101] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the last decade, a new class of proteins has emerged that contain a topological knot in their backbone. Although these structures are rare, they nevertheless challenge our understanding of protein folding. In this review, we provide a short overview of topologically knotted proteins with an emphasis on newly discovered structures. We discuss the current knowledge in the field, including recent developments in both experimental and computational studies that have shed light on how these intricate structures fold.
Collapse
Affiliation(s)
- Peter Virnau
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany.
| | | | | |
Collapse
|
33
|
Zrimi J, Ng Ling A, Giri-Rachman Arifin E, Feverati G, Lesieur C. Cholera toxin B subunits assemble into pentamers--proposition of a fly-casting mechanism. PLoS One 2010; 5:e15347. [PMID: 21203571 PMCID: PMC3006222 DOI: 10.1371/journal.pone.0015347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/11/2010] [Indexed: 11/18/2022] Open
Abstract
The cholera toxin B pentamer (CtxB5), which belongs to the AB5 toxin family, is used as a model study for protein assembly. The effect of the pH on the reassembly of the toxin was investigated using immunochemical, electrophoretic and spectroscopic methods. Three pH-dependent steps were identified during the toxin reassembly: (i) acquisition of a fully assembly-competent fold by the CtxB monomer, (ii) association of CtxB monomer into oligomers, (iii) acquisition of the native fold by the CtxB pentamer. The results show that CtxB5 and the related heat labile enterotoxin LTB5 have distinct mechanisms of assembly despite sharing high sequence identity (84%) and almost identical atomic structures. The difference can be pinpointed to four histidines which are spread along the protein sequence and may act together. Thus, most of the toxin B amino acids appear negligible for the assembly, raising the possibility that assembly is driven by a small network of amino acids instead of involving all of them.
Collapse
Affiliation(s)
- Jihad Zrimi
- LAPTH, Université de Savoie, CNRS, Annecy le Vieux, France
| | - Alicia Ng Ling
- National University of Singapore, Physics Department, Singapore, Singapore
| | | | | | - Claire Lesieur
- LAPTH, Université de Savoie, CNRS, Annecy le Vieux, France
- National University of Singapore, Physics Department, Singapore, Singapore
- CEA-CNRS-Université Joseph Fourier, IRTSV, LBBSI, Grenoble, France
- * E-mail:
| |
Collapse
|
34
|
Sequential events in the irreversible thermal denaturation of human brain-type creatine kinase by spectroscopic methods. Int J Mol Sci 2010; 11:2584-96. [PMID: 20717523 PMCID: PMC2920553 DOI: 10.3390/ijms11072584] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/09/2010] [Accepted: 06/18/2010] [Indexed: 11/16/2022] Open
Abstract
The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK) thermal denaturation were studied by differential scanning calorimetry (DSC), CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK). The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.
Collapse
|
35
|
Ouldridge TE, Louis AA, Doye JPK. Extracting bulk properties of self-assembling systems from small simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:104102. [PMID: 21389436 DOI: 10.1088/0953-8984/22/10/104102] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For systems that self-assemble into finite-sized objects, it is sometimes convenient to compute the thermodynamics for a small system where a single assembly can form. However, we show that in the canonical ensemble the use of small systems can lead to significant finite-size effects due to the suppression of concentration fluctuations. We introduce methods for estimating the bulk yields from simulations of small systems and for following the convergence of yields with system size, under the assumptions that the various species behave ideally.
Collapse
Affiliation(s)
- Thomas E Ouldridge
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
| | | | | |
Collapse
|
36
|
Fernandez-Lafuente R. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.08.009] [Citation(s) in RCA: 503] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Feng Y, Zhang M, Hu M, Zheng J, Jiao W, Chang Z. Disassembly intermediates of RbsD protein remain oligomeric despite the loss of an intact secondary structure. ACTA ACUST UNITED AC 2009; 52:997-1002. [DOI: 10.1007/s11427-009-0141-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/25/2009] [Indexed: 11/28/2022]
|
38
|
Med8, Med18, and Med20 subunits of the Mediator head domain are interdependent upon each other for folding and complex formation. Proc Natl Acad Sci U S A 2009; 106:20728-33. [PMID: 19934057 PMCID: PMC2781058 DOI: 10.1073/pnas.0907645106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have studied folding and complex formation of the yeast Mediator head-module protein subunits Med8, Med18, and Med20. Using a combination of immunoprecipitation, far-UV circular dichroism, and fluorescence measurements on recombinantly expressed and denatured proteins that were allowed to renature separately or in different combinations, we found that Med8, Med18, and Med20 can fold in different ways to form both soluble monomeric proteins and different distinct subcomplexes. However, the concurrent presence of all three protein subunits during the renaturation process is required for proper folding and trimer complex formation.
Collapse
|
39
|
Dayhoff JE, Shoemaker BA, Bryant SH, Panchenko AR. Evolution of protein binding modes in homooligomers. J Mol Biol 2009; 395:860-70. [PMID: 19879880 DOI: 10.1016/j.jmb.2009.10.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 10/22/2009] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
Abstract
The evolution of protein interactions cannot be deciphered without a detailed analysis of interaction interfaces and binding modes. We performed a large-scale study of protein homooligomers in terms of their symmetry, interface sizes, and conservation of binding modes. We also focused specifically on the evolution of protein binding modes from nine families of homooligomers and mapped 60 different binding modes and oligomerization states onto the phylogenetic trees of these families. We observed a significant tendency for the same binding modes to be clustered together and conserved within clades on phylogenetic trees; this trend is especially pronounced for close homologs with 70% sequence identity or higher. Some binding modes are conserved among very distant homologs, pointing to their ancient evolutionary origin, while others are very specific for a certain phylogenetic group. Moreover, we found that the most ancient binding modes have a tendency to involve symmetrical (isologous) homodimer binding arrangements with larger interfaces, while recently evolved binding modes more often exhibit asymmetrical arrangements and smaller interfaces.
Collapse
Affiliation(s)
- Judith E Dayhoff
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | | | | | | |
Collapse
|
40
|
Guanidine hydrochloride and urea-induced unfolding of Brugia malayi hexokinase. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:289-97. [DOI: 10.1007/s00249-009-0539-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 05/25/2009] [Accepted: 08/26/2009] [Indexed: 11/26/2022]
|
41
|
Ahmad S, Rao NM. Thermally denatured state determines refolding in lipase: mutational analysis. Protein Sci 2009; 18:1183-96. [PMID: 19472328 DOI: 10.1002/pro.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Irreversibility of thermally denatured proteins due to aggregation limits thermodynamic characterization of proteins and also confounds the identification of thermostable mutants in protein populations. Identification of mutations that prevent the aggregation of unfolded proteins provides insights into folding pathways. In a lipase from Bacillus subtilis, evolved by directed evolution procedures, the irreversibility due to temperature-mediated aggregation was completely prevented by a single mutation, M137P. Though the parent and the mutants unfold completely on heating, mutants having substitutions M137P, along with M134E and S163P, completely or partially prevent the formation of aggregation-prone intermediate(s) at 75 degrees C. The three mutants show only a marginal increase in free energy of unfolding (DeltaG(H(2)O)), however, the profiles of the residual activity with temperature shows remarkable shift to higher temperature compared to parent. The intermediate(s) were characterized by enhanced binding of bis-ANS, a probe to titrate surface hydrophobicity, aggregation profiles and by estimation of soluble protein. Inclusion of salt in the refolding conditions prevents the reversibility of mutant having charge substitution, while the reversibility of mutant with the introduction of proline was unaffected, indicating the role of charge mediated interaction in M134E in preventing aggregation. Partial prevention of thermal aggregation in wild-type lipase with single substitution, M137P, incorporated by site-directed mutagenesis, suggests that the affect of M137P is independent of the intrinsic thermostability of lipase. Various effects of the mutations suggest their role is in prevention of the formation of aggregation prone intermediate(s). These mutations, describe yet another strategy to enhance the thermotolerance of proteins, where their influence is observed only on the denatured ensemble.
Collapse
Affiliation(s)
- Shoeb Ahmad
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, India
| | | |
Collapse
|
42
|
Barzegar A, Moosavi-Movahedi AA, Pedersen JZ, Miroliaei M. Comparative thermostability of mesophilic and thermophilic alcohol dehydrogenases: Stability-determining roles of proline residues and loop conformations. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Liu YM, Feng S, Ding XL, Kang CF, Yan YB. Mutation of the conserved Asp122 in the linker impedes creatine kinase reactivation and refolding. Int J Biol Macromol 2009; 44:271-7. [PMID: 19263506 DOI: 10.1016/j.ijbiomac.2008.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Creatine kinase (CK), a key enzyme in maintaining the intracellular energetic homeostasis, contains two domains connected by a long linker. In this research,we found that the mutations of the conserved Asp122 in the linker slightly affected CK activity, structure and stability. The hydrogen bonding and the ion pair contributed 2-5 kJ/mol to the conformational stability of CK. Interestingly, the ability of CK reactivation from the denatured state was completely removed by the mutations. These results suggested that the electrostatic interactions were crucial to the action of the linker in CK reactivation.
Collapse
Affiliation(s)
- Yan-Ming Liu
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
44
|
Villar G, Wilber AW, Williamson AJ, Thiara P, Doye JPK, Louis AA, Jochum MN, Lewis ACF, Levy ED. Self-assembly and evolution of homomeric protein complexes. PHYSICAL REVIEW LETTERS 2009; 102:118106. [PMID: 19392244 DOI: 10.1103/physrevlett.102.118106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Indexed: 05/27/2023]
Abstract
We introduce a simple "patchy particle" model to study the thermodynamics and dynamics of self-assembly of homomeric protein complexes. Our calculations allow us to rationalize recent results for dihedral complexes. Namely, why evolution of such complexes naturally takes the system into a region of interaction space where (i) the evolutionarily newer interactions are weaker, (ii) subcomplexes involving the stronger interactions are observed to be thermodynamically stable on destabilization of the protein-protein interactions, and (iii) the self-assembly dynamics are hierarchical with these same subcomplexes acting as kinetic intermediates.
Collapse
Affiliation(s)
- Gabriel Villar
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Thakur SS, Deepalakshmi P, Gayathri P, Banerjee M, Murthy M, Balaram P. Detection of the protein dimers, multiple monomeric states and hydrated forms of Plasmodium falciparum triosephosphate isomerase in the gas phase. Protein Eng Des Sel 2009; 22:289-304. [DOI: 10.1093/protein/gzp005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Xu W, Yan M, Xu L, Ding L, Ouyang P. Engineering the activity of thermophilic xylose isomerase by site-directed mutation at subunit interfaces. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2008.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
1,3-Propanediol dehydrogenase from Klebsiella pneumoniae: decameric quaternary structure and possible subunit cooperativity. J Bacteriol 2008; 191:1143-51. [PMID: 19011020 DOI: 10.1128/jb.01077-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a nosocomial pathogen frequently isolated from opportunistic infections, especially in clinical environments. In spite of its potential pathogenicity, this microorganism has several metabolic potentials that could be used in biotechnology applications. K. pneumoniae is able to metabolize glycerol as a sole source of carbon and energy. 1,3-Propanediol dehydrogenase is the core of the metabolic pathway for the use of glycerol. We have determined the crystallographic structure of 1,3-propanediol dehydrogenase, a type III Fe-NAD-dependent alcohol dehydrogenase, at 2.7-A resolution. The structure of the enzyme monomer is closely related to that of other alcohol dehydrogenases. The overall arrangement of the enzyme showed a decameric structure, formed by a pentamer of dimers, which is the catalytic form of the enzyme. Dimers are associated by strong ionic interactions that are responsible for the highly stable in vivo packing of the enzyme. Kinetic properties of the enzyme as determined in the article would suggest that this decameric arrangement is related to the cooperativity between monomers.
Collapse
|
48
|
Komar AA. A pause for thought along the co-translational folding pathway. Trends Biochem Sci 2008; 34:16-24. [PMID: 18996013 DOI: 10.1016/j.tibs.2008.10.002] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 11/26/2022]
Abstract
A unifying concept that combines the basic features governing self-organization of proteins into complex three-dimensional structures in vitro and in vivo is still lacking. Recent experimental results and theoretical in silico modeling studies provide evidence showing that mRNA might contain an additional layer of information, beyond the amino acid sequence, that fine-tunes in vivo protein folding, which is largely believed to start as a co-translational process. These findings indicate that translation kinetics might direct the co-translational folding pathway and that translational pausing at rare codons might provide a time delay to enable independent and sequential folding of the defined portions of the nascent polypeptide emerging from the ribosome.
Collapse
Affiliation(s)
- Anton A Komar
- Department of Biological, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA.
| |
Collapse
|
49
|
Mutational analysis of the stability of the H2A and H2B histone monomers. J Mol Biol 2008; 384:1369-83. [PMID: 18976667 DOI: 10.1016/j.jmb.2008.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/08/2008] [Accepted: 10/09/2008] [Indexed: 11/22/2022]
Abstract
The eukaryotic histone heterodimer H2A-H2B folds through an obligatory dimeric intermediate that forms in a nearly diffusion-limited association reaction in the stopped-flow dead time. It is unclear whether there is partial folding of the isolated monomers before association. To address the possible contributions of structure in the monomers to the rapid association, we characterized H2A and H2B monomers in the absence of their heterodimeric partner. By far-UV circular dichroism, the H2A and H2B monomers are 15% and 31% helical, respectively--significantly less than observed in X-ray crystal structures. Acrylamide quenching of the intrinsic Tyr fluorescence was indicative of tertiary structure. The H2A and H2B monomers exhibit free energies of unfolding of 2.5 and 2.9 kcal mol(-1), respectively; at 10 microM, the sum of the stability of the monomers is approximately 60% of the stability of the native dimer. The helical content, stability, and m values indicate that H2B has a more stable, compact structure than H2A. The monomer m values are larger than expected for the extended histone fold motif, suggesting that the monomers adopt an overly collapsed structure. Stopped-flow refolding-initiated from urea-denatured monomers or the partially folded monomers populated at low denaturant concentrations-yielded essentially identical rates, indicating that monomer folding is productive in the rapid association and folding of the heterodimer. A series of Ala and Gly mutations were introduced into H2A and H2B to probe the importance of helix propensity on the structure and stability of the monomers. The mutational studies show that the central alpha-helix of the histone fold, which makes extensive intermonomer contacts, is structured in H2B but only partially folded in H2A.
Collapse
|
50
|
The family 52 beta-xylosidase from Geobacillus stearothermophilus is a dimer: structural and biophysical characterization of a glycoside hydrolase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1924-34. [PMID: 18657634 DOI: 10.1016/j.bbapap.2008.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 11/22/2022]
Abstract
Xylans are the most abundant polysaccharides forming the plant cell wall hemicelluloses, and they are degraded, among other proteins, by beta-xylosidase enzymes. In this work, the structural and biophysical properties of the family 52 beta-xylosidase from Geobacillus stearothermophilus, XynB2, are described. Size exclusion chromatography, analytical centrifugation, ITC, CD, fluorescence (steady state and ANS-binding) and FTIR were used to obtain the structure, the oligomerization state and the conformational changes of XynB2, as pH, chemical denaturants or temperature were modified. This report describes the first extensive conformational characterization of a family 52 beta-xylosidase. The active protein was a highly hydrated dimer, whose active site was formed by the two protomers, and it probably involved aromatic residues. At low pH, the protein was not active and it populated a monomeric molten-globule-like species, which had a conformational transition with a pK(a) of approximately 4.0. Thermal and chemical-denaturations of the native protein showed hysteresis behaviour. The protein at physiological pH was formed by alpha-helix (30%) and beta-sheet (30%), as shown by CD and FTIR. Comparison with other xylosidases of the same family indicates that the percentages of secondary structure seem to be conserved among the members of the family.
Collapse
|