1
|
Tan BEK, Tham SK, Poh CL. Development of New Live-Attenuated Vaccine Candidates Lacking Antibody-Dependent Enhancement (ADE) Against Dengue. Vaccines (Basel) 2025; 13:532. [PMID: 40432141 PMCID: PMC12115996 DOI: 10.3390/vaccines13050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Dengue virus (DENV) threatens public health, especially in regions with tropical and subtropical climates. In 2024, the World Health Organisation reported 3.4 million confirmed dengue cases, with 16,000 severe cases and 3000 dengue-associated fatalities. The first licensed dengue vaccine, CYD-TDV (Dengvaxia®,Sanofi-Pasteur, Paris, France), is recommended by the WHO only for individuals aged 9-45 years with a prior history of dengue infection. However, being vaccinated with Dengvaxia® increases the risk of developing severe dengue infections in seronegative individuals. Recently, a second licensed dengue vaccine, Qdenga®,Takeda, Singen, Germany), was approved and recommended by the WHO to be administered only in highly dengue-endemic countries, as it was not shown to elicit a robust immune response against DENV-3 and DENV-4 serotypes in dengue seronegative individuals. Due to an imbalance in immune response against all four DENV serotypes, there is a higher risk of developing the antibody-dependent enhancement (ADE) effect, which could lead to severe dengue. This review has identified mutations throughout the DENV genome that were demonstrated to attenuate the virulence of DENV in either in vitro or in vivo studies. Several amino acid residues within the DENV prM and E proteins were identified to play important roles in ADE and modifying these ADE-linked residues is important in the rational design of novel live-attenuated dengue vaccine candidates. This review provides current insights to guide the development of a novel live-attenuated tetravalent dengue vaccine candidate that is effective against all DENV serotypes and safe from ADE. The efficacy and safety of the live-attenuated vaccine candidate should be further validated in in vivo studies.
Collapse
Affiliation(s)
- Brandon E. K. Tan
- ALPS Global Holding Berhad, The Icon, East Wing Tower Level 18-01 & Level 18-02, No. 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia; (B.E.K.T.); (S.K.T.)
| | - Seng Kong Tham
- ALPS Global Holding Berhad, The Icon, East Wing Tower Level 18-01 & Level 18-02, No. 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia; (B.E.K.T.); (S.K.T.)
| | - Chit Laa Poh
- ALPS Global Holding Berhad, The Icon, East Wing Tower Level 18-01 & Level 18-02, No. 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia; (B.E.K.T.); (S.K.T.)
- Nilai University, No.1, Persiaran Universiti, Putra Nilai, Bandar Baru Nilai, Nilai 71800, Malaysia
| |
Collapse
|
2
|
Sun N, Su Z, Zheng X. Research progress of mosquito-borne virus mRNA vaccines. Mol Ther Methods Clin Dev 2025; 33:101398. [PMID: 39834558 PMCID: PMC11743085 DOI: 10.1016/j.omtm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus. Enhancements in mRNA vaccine design, such as improvements to the 5' cap structure, 5'UTR, open reading frame, 3'UTR, and polyadenylation tail, have significantly increased mRNA stability and translation efficiency. Additionally, the use of lipid nanoparticles and polymer nanoparticles has greatly improved the delivery efficiency of mRNA vaccines. Currently, mRNA vaccines against mosquito-borne viruses are under development and clinical trials, showing promising protective effects. Future research should continue to optimize vaccine design and delivery systems to achieve broad-spectrum and long-lasting protection against various mosquito-borne virus infections.
Collapse
Affiliation(s)
- Ningze Sun
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Zhiwei Su
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
3
|
Chi M, Katuwal N, Shrestha A, Madhup SK, Tamrakar D, Shrestha R. Whole genome sequencing and phylogenetic analysis of dengue virus in Central Nepal from 2022 to 2023. BMC GLOBAL AND PUBLIC HEALTH 2025; 3:18. [PMID: 40045383 PMCID: PMC11884168 DOI: 10.1186/s44263-025-00135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND In Nepal, dengue is an emerging disease of growing concern as outbreaks are increasing in both size and geographic reach and beginning to affect areas previously thought dengue-free. Dengue genomic surveillance has previously been limited within Nepal; however, with the increase in accessibility to sequencing technologies since the COVID-19 pandemic, it has recently become more feasible. METHODS This hospital-based retrospective study utilized banked samples from the 2022 and 2023 dengue seasons from Dhulikhel Hospital/Kathmandu University Hospital in Central Nepal. Next-generation sequencing was performed to obtain whole genome sequences of dengue virus which were analyzed phylogenetically using a maximum likelihood GTR + G model. Mutations were evaluated across viral particle region using the GISAID DengueServer. RESULTS We obtained 41 full-length sequences of DENV from 80 PCR-positive samples, including 24 sequences (58.5%) from 2022 and 17 sequences (41.5%) from 2023. We identified a shift in the majority serotype of our samples from DENV1 in 2022 to DENV3 in 2023, though 3 out of the 4 serotypes were identified in both years. Phylogenetic analysis revealed clusters within genotype III of DENV1 and genotype III of DENV3 closely related to strains from an outbreak of DENV in northern India in 2018-2019. DENV2 sequences fell into the cosmopolitan genotype IV-A1 and IV-B2 clades and were related to sequences from South and Southeast Asia and the USA, pointing to the global nature of dengue transmission. NS3 showed the highest frequency of mutation, whereas NS2B, NS4, NS5, and E were the most conserved. The most common mutations found were substitutions L17M and T20I in the 2 K peptide. A high number of mutations were observed in DENV3, followed by DENV2, with some mutations being unique to specific serotypes and others matching previously reported strains. CONCLUSIONS We identified possible clade shifts in the DENV1 and 2 populations and a rising prevalence of DENV3. Our study showed a high level of serotype diversity of DENV circulating in Central Nepal. Furthermore, our results indicate that DENV populations in Nepal are related to a geographically diverse set of sequences but are most strongly influenced by Indian strains of DENV.
Collapse
Affiliation(s)
- Margaret Chi
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
- Molecular and Genome Sequencing Research Lab, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
| | - Nishan Katuwal
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
- Molecular and Genome Sequencing Research Lab, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
| | - Aastha Shrestha
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
- Molecular and Genome Sequencing Research Lab, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
| | - Surendra Kumar Madhup
- Department of Microbiology, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
| | - Dipesh Tamrakar
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
- Department of Community Medicine, Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Rajeev Shrestha
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal.
- Department of Pharmacology, Kathmandu University School of Medical Sciences, Dhulikhel, Nepal.
| |
Collapse
|
4
|
Hasani SJ, Sgroi G, Esmaeilnejad B, Nofouzi K, Mahmoudi SS, Shams N, Samiei A, Khademi P. Recent advances in the control of dengue fever using herbal and synthetic drugs. Heliyon 2025; 11:e41939. [PMID: 40196797 PMCID: PMC11947709 DOI: 10.1016/j.heliyon.2025.e41939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 04/09/2025] Open
Abstract
Dengue virus represents a global public health threat, being prevalent in tropical and subtropical regions, with an increasing geographical distribution and rising incidence worldwide. This mosquito-borne viral agent causes a wide range of clinical manifestations, from mild febrile illness to severe cases and potentially fatal outcomes due to hemorrhage and shock syndrome. The etiological agent, dengue virus (DENV), has four distinct serotypes, each capable of inducing severe clinical outcomes. The current therapeutic landscape remains limited, with management strategies mainly focused on supportive cares. However, recent advances in pharmaceutical research have yielded promising developments in anti-dengue drugs. Extensive investigations have been conducted on various synthetic compounds, including JNJ-1802, 1,4-pyran naphthoquinones, and arylnaphthalene lignan derivatives. Additionally, natural compounds derived from medicinal plants such as Hippophae rhamnoides, Azadirachta indica, and Cymbopogon citratus have demonstrated potential antiviral properties in both in vitro and in vivo studies, based on inhibition of DENV replication. However, none of these compounds are to date approved by the U.S. Food and Drug Administration (FDA). Although many vaccines have been recognized as candidates in various stages of clinical trials, only a limited number of these have demonstrated a protective efficacy against the infection. This aspect underscores the need for both highly effective immunization strategies and therapeutic interventions, whether derived from botanical sources or through synthetic manufacturing, that exhibit low adverse effects. This review examines innovative approaches to DENV prevention and treatment, encompassing both phytochemical and synthetic therapeutic strategies.
Collapse
Affiliation(s)
- Sayyed Jafar Hasani
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Giovanni Sgroi
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - Bijan Esmaeilnejad
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Katayoon Nofouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Nemat Shams
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Awat Samiei
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Peyman Khademi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| |
Collapse
|
5
|
Troupin C, Intavong K, Somlor S, Viengphouthong S, Keosenhom S, Chindavong TA, Bounmany P, Vachouaxiong L, Xaybounsou T, Vanhnollat C, Khattignavong P, Phonekeo D, Khamphaphongphane B, Xangsayarath P, Lacoste V, Buchy P, Wong G. Molecular Epidemiology of Dengue Viruses in Lao People's Democratic Republic, 2020-2023. Microorganisms 2025; 13:318. [PMID: 40005687 PMCID: PMC11857872 DOI: 10.3390/microorganisms13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Dengue fever is a widespread mosquito-borne viral disease caused by infections with dengue virus (DENV). Since its initial detection in 1979, the disease has posed a significant public health threat to the Lao People's Democratic Republic (Lao PDR). Surveillance is crucial for understanding the circulation of DENV in endemic regions and identifying potential hot spots with higher-than-expected case numbers of dengue fever. In this study, we present the results from our surveillance activities in the Lao PDR spanning 2020-2023. While quarantine restrictions from the COVID-19 pandemic posed substantial disruptions to performing DENV surveillance, over 8800 samples were tested during this period, with a positive rate of close to 60%. Cases were reported from all three regions (northern, Central, and southern) of the Lao PDR. Three circulating serotypes (DENV-1, DENV-2, and DENV-4) were detected, with DENV-1 dominant in 2021 and 2022, while DENV-2 was dominant in 2020 and 2023. Phylogenetic analyses suggest that the genotypes of DENV-1, DENV-2, and DENV-4 were closely related to corresponding isolates from neighboring countries. These findings provide an update on the nature of DENV cases detected in the Lao PDR and underscore the critical importance of sustaining a robust surveillance network to track infections.
Collapse
Affiliation(s)
- Cécile Troupin
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Kedkeo Intavong
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Somphavanh Somlor
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Souksakhone Viengphouthong
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Sitsana Keosenhom
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Thep Aksone Chindavong
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Phaithong Bounmany
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Longthor Vachouaxiong
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Thonglakhone Xaybounsou
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Chittaphone Vanhnollat
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | | | - Darouny Phonekeo
- Administration Department, Institut Pasteur du Laos, Vientiane 01030, Laos;
| | | | | | - Vincent Lacoste
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Philippe Buchy
- Administration Department, Institut Pasteur du Laos, Vientiane 01030, Laos;
| | - Gary Wong
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| |
Collapse
|
6
|
Yan K, Mao L, Lan J, Xiao Z. Advancements in dengue vaccines: A historical overview and pro-spects for following next-generation candidates. J Microbiol 2025; 63:e2410018. [PMID: 40044132 DOI: 10.71150/jm.2410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/06/2025] [Indexed: 05/13/2025]
Abstract
Dengue, caused by four serotypes of dengue viruses (DENV-1 to DENV-4), is the most prevalent and widely mosquito-borne viral disease affecting humans. Dengue virus (DENV) infection has been reported in over 100 countries, and approximately half of the world's population is now at risk. The paucity of universally licensed DENV vaccines highlights the urgent need to address this public health concern. Action and atten-tion to antibody-dependent enhancement increase the difficulty of vaccine development. With the worsen-ing dengue fever epidemic, Dengvaxia® (CYD-TDV) and Qdenga® (TAK-003) have been approved for use in specific populations in affected areas. However, these vaccines do not provide a balanced immune response to all four DENV serotypes and the vaccination cannot cover all populations. There is still a need to develop a safe, broad-spectrum, and effective vaccine to address the increasing number of dengue cases worldwide. This review provides an overview of the existing DENV vaccines, as well as potential candidates for future studies on DENV vaccine development, and discusses the challenges and possible solutions in the field.
Collapse
Affiliation(s)
- Kai Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lingjing Mao
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
7
|
Mielcarska MB, Rouse BT. Viruses and the Brain-A Relationship Prone to Trouble. Viruses 2025; 17:203. [PMID: 40006958 PMCID: PMC11860391 DOI: 10.3390/v17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurological disorders, some of which are associated with viral infections, are growing due to the aging and expanding population. Despite strong defenses of the central nervous system, some viruses have evolved ways to breach them, which often result in dire consequences. In this review, we recount the various ways by which different viruses can enter the CNS, and we describe the consequences of such invasions. Consequences may manifest as acute disease, such as encephalitis, meningitis, or result in long-term effects, such as neuromuscular dysfunction, as occurs in poliomyelitis. We discuss evidence for viral involvement in the causation of well-known chronic neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, as well as vascular dementia in the elderly. We also describe the approaches currently available to control a few of the neural viral infections. These include antivirals that are effective against human immunodeficiency virus and herpes simplex virus, as well as vaccines valuable for controlling rabies virus, poliomyelitis virus, and some flavivirus infections. There is an urgent need to better understand, at a molecular level, how viruses contribute to acute and, especially, chronic neurological diseases and to develop more precise and effective vaccines and therapies.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
Chen X, Zhou X, Xie X, Li B, Zhao T, Yu H, Xing D, Wu J, Li C. Functional Verification of Differentially Expressed Genes Following DENV2 Infection in Aedes aegypti. Viruses 2025; 17:67. [PMID: 39861856 PMCID: PMC11769442 DOI: 10.3390/v17010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The dengue virus (DENV) is primarily transmitted by Aedes aegypti. Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from Aedes aegypti infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of Aedes aegypti infection with DENV2 were selected. By establishing transient transfection and overexpression models of Aedes aegypti Aag2 cells, and mosquito target gene interference models, the difference in viral load before and after treatment was compared, and the effects of DEGs on viral replication were evaluated. After overexpressing 24 DEGs in Aag2 cells, 19 DEGs showed a significant difference in DENV2 RNA copies in the cell supernatant (p < 0.05). In adult mosquitoes, knocking down defensin-A, defensin-A-like, and SMCT1 respectively reduced the DENV2 RNA copies, while knocking down UGT2B1 and ND4 respectively increased the DENV2 RNA copies. In this study, to assess the role of genes related to DENV2 replication, and transient transfection and overexpression models in Aag2 cells and mosquito gene knockdown models were established, and five genes, defensin-A, defensin-A-like, SMCT1, UGT2B1, and ND4, were found to have an impact on the replication of DENV2, providing a reference basis for studying the complex mechanism of mosquito-virus interactions.
Collapse
Affiliation(s)
- Xiaoli Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Bo Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Haotian Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
9
|
Lee MF, Long CM, Poh CL. Current status of the development of dengue vaccines. Vaccine X 2025; 22:100604. [PMID: 39830640 PMCID: PMC11741033 DOI: 10.1016/j.jvacx.2024.100604] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
Dengue fever is caused by the mosquito-borne dengue virus (DENV), which is endemic in more than 100 countries. Annually, there are approximately 390 million dengue cases, with a small subset manifesting into severe illnesses, such as dengue haemorrhagic fever or dengue shock syndrome. Current treatment options for dengue infections remain supportive management due to the lack of an effective vaccine and clinically approved antiviral. Although the CYD-TDV (Dengvaxia®) vaccine with an overall vaccine efficacy of 60 % has been licensed for clinical use since 2015, it poses an elevated risk of severe dengue infections especially in dengue-naïve children below 9 years of age. The newly approved Qdenga vaccine was able to achieve an overall vaccine efficacy of 80 % after 12 months, but it was not able to provide a protective effect against DENV-3 in dengue naïve individuals. The Butantan-DV vaccine candidate is still undergoing phase 3 clinical trials for safety and efficacy evaluations in humans. Apart from live-attenuated vaccines, various other vaccine types are also currently being studied in preclinical and clinical studies. This review discusses the current status of dengue vaccine development.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Chiau Ming Long
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Chit Laa Poh
- ALPS Global Holding Berhad, The ICON, East Wing Tower, No. 1, Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia
| |
Collapse
|
10
|
Resck MEB, Câmara DCP, dos Santos FB, dos Santos JPC, Alto BW, Honório NA. Spatial-temporal distribution of chikungunya virus in Brazil: a review on the circulating viral genotypes and Aedes ( Stegomyia) albopictus as a potential vector. Front Public Health 2024; 12:1496021. [PMID: 39722706 PMCID: PMC11668782 DOI: 10.3389/fpubh.2024.1496021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is mainly transmitted by the invasive mosquito Aedes (Stegomyia) aegypti in tropical and subtropical regions worldwide. However, genetic adaptations of the virus to the peri domestic mosquito vector Aedes (Stegomyia) albopictus has resulted in enhanced vector competence and associated epidemics and may contribute to further geographic expansion of CHIKV. However, evidence-based data on the relative role of Ae. albopictus in CHIKV transmission dynamics are scarce, especially in regions where Ae. aegypti is the main vector, such as in Brazil. Here, we review the CHIKV genotypes circulating in Brazil, spatial and temporal distribution of Chikungunya cases in Brazil, and susceptibility to infection and transmission (i.e., vector competence) of Ae. albopictus for CHIKV to better understand its relative contribution to the virus transmission dynamics.
Collapse
Affiliation(s)
| | - Daniel Cardoso Portela Câmara
- Programa de Computação Científica, Fundação Oswaldo Cruz - PROCC, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Flávia Barreto dos Santos
- Laboratório das Interações Vírus-Hospedeiros - LIVH, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | | | - Barry Wilmer Alto
- Florida Medical Entomology Laboratory-FMEL, University of Florida, Vero Beach, FL, United States
| | - Nildimar Alves Honório
- Laboratório das Interações Vírus-Hospedeiros - LIVH, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Edenborough K, Supriyati E, Dufault S, Arguni E, Indriani C, Denton J, Sasmono RT, Ahmad RA, Anders KL, Simmons CP. Dengue virus genomic surveillance in the applying Wolbachia to eliminate dengue trial reveals genotypic efficacy and disruption of focal transmission. Sci Rep 2024; 14:28004. [PMID: 39543157 PMCID: PMC11564853 DOI: 10.1038/s41598-024-78008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Release of Aedes aegypti mosquitoes infected with Wolbachia pipientis (wMel strain) is a biocontrol approach against Ae. aegypti-transmitted arboviruses. The Applying Wolbachia to Eliminate Dengue (AWED) cluster-randomised trial was conducted in Yogyakarta, Indonesia in 2018-2020 and provided pivotal evidence for the efficacy of wMel-Ae. aegypti mosquito population replacement in significantly reducing the incidence of virologically-confirmed dengue (VCD) across all four dengue virus (DENV) serotypes. Here, we sequenced the DENV genomes from 318 dengue cases detected in the AWED trial, with the aim of characterising DENV genetic diversity, measuring genotype-specific intervention effects, and inferring DENV transmission dynamics in wMel-treated and untreated areas of Yogyakarta. Phylogenomic analysis of all DENV sequences revealed the co-circulation of five endemic DENV genotypes: DENV-1 genotype I (12.5%) and IV (4.7%), DENV-2 Cosmopolitan (47%), DENV-3 genotype I (8.5%), and DENV-4 genotype II (25.7%), and one recently imported genotype, DENV-4 genotype I (1.6%). The diversity of genotypes detected among AWED trial participants enabled estimation of the genotype-specific protective efficacies of wMel, which were similar (± 10%) to the point estimates of the respective serotype-specific efficacies reported previously. This indicates that wMel afforded protection to all of the six genotypes detected in Yogyakarta. We show that within this substantial overall viral diversity, there was a strong spatial and temporal structure to the DENV genomic relationships, consistent with highly focal DENV transmission around the home in wMel-untreated areas and a near-total disruption of transmission by wMel. These findings can inform long-term monitoring of DENV transmission dynamics in Wolbachia-treated areas including Yogyakarta.
Collapse
Affiliation(s)
- Kathryn Edenborough
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Suzanne Dufault
- Division of Biostatistics, School of Public Health, University of California, Berkeley, USA
| | - Eggi Arguni
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Child Health, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Citra Indriani
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Epidemiology Biostatistics and Public Health, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jai Denton
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC, Australia
| | - R Tedjo Sasmono
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Riris Andono Ahmad
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Epidemiology Biostatistics and Public Health, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Katherine L Anders
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Prahran, Melbourne, VIC, Australia
| | - Cameron P Simmons
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Bouzidi HS, Sen S, Piorkowski G, Pezzi L, Ayhan N, Fontaine A, Canivez T, Geulen M, Amaral R, Grard G, Durand GA, de Lamballerie X, Touret F, Klitting R. Genomic surveillance reveals a dengue 2 virus epidemic lineage with a marked decrease in sensitivity to Mosnodenvir. Nat Commun 2024; 15:8667. [PMID: 39384752 PMCID: PMC11464713 DOI: 10.1038/s41467-024-52819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Dengue fever is the most important arbovirosis for public health, with more than 5 million cases worldwide in 2023. Mosnodenvir is the first anti-dengue compound with very high preclinical pan-serotype activity, currently undergoing phase 2 clinical evaluation. Here, by analyzing dengue virus (DENV) genomes from the 2023-2024 epidemic in the French Caribbean Islands, we show that they all exhibit mutation NS4B:V91A, previously associated with a marked decrease in sensitivity to mosnodenvir in vitro. Using antiviral activity tests on four clinical and reverse-genetic strains, we confirm a marked decrease in mosnodenvir sensitivity for DENV-2 ( > 1000 fold). Finally, combining phylogenetic analysis and experimental testing for resistance, we find that virus lineages with low sensitivity to mosnodenvir due to the V91A mutation likely emerged multiple times over the last 30 years in DENV-2 and DENV-3. These results call for increased genomic surveillance, in particular to track lineages with resistance mutations. These efforts should allow to better assess the activity profile of DENV treatments in development against circulating strains.
Collapse
Affiliation(s)
- Hawa Sophia Bouzidi
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Selin Sen
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Laura Pezzi
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Nazli Ayhan
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Albin Fontaine
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de virologie, Marseille, France
| | - Thomas Canivez
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Manon Geulen
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Rayane Amaral
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Gilda Grard
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Guillaume André Durand
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Franck Touret
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France.
| | - Raphaëlle Klitting
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France.
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France.
| |
Collapse
|
13
|
Chen-Germán M, Araúz D, Aguilar C, Vega M, Gonzalez C, Gondola J, Moreno L, Cerezo L, Franco L, Mendez-Rico J, Pascale JM, López-Vergès S, Martínez AA, Moreno B. Detection of dengue virus serotype 4 in Panama after 23 years without circulation. Front Cell Infect Microbiol 2024; 14:1467465. [PMID: 39411321 PMCID: PMC11473613 DOI: 10.3389/fcimb.2024.1467465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Panama is a country with endemic Dengue virus (DENV) transmission since its reintroduction in 1993. The four serotypes have circulated in the country and the region of the Americas, however, DENV-4 confirmed autochthonous cases have not been identified since 2000, despite its circulation in neighboring countries. Here, we report DENV-4 detection in Panama in the last four-month period of 2023 with co-circulation of the other serotypes, this was associated with a peak of dengue cases during the dry season even though most dengue outbreaks are described in the rainy season. Complete genomes of DENV-4 allowed us to determine that cases were caused by DENV-4 genotype IIb, the same genotype as 23 years ago, with high similarity to DENV-4 sequences circulating in Nicaragua and El Salvador during 2023. This report shows the importance of maintaining serotype and genotype surveillance for early detection of new variants circulating in the country.
Collapse
Affiliation(s)
- María Chen-Germán
- Modular Specialized Laboratory, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Dimelza Araúz
- Modular Specialized Laboratory, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Celestino Aguilar
- Department of Genomics and Proteomics, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
| | - Melanie Vega
- Modular Specialized Laboratory, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Claudia Gonzalez
- Department of Genomics and Proteomics, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
| | - Jessica Gondola
- Department of Genomics and Proteomics, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Lourdes Moreno
- National Department of Epidemiology, Ministry of Health, Panama City, Panama
| | - Lizbeth Cerezo
- National Department of Epidemiology, Ministry of Health, Panama City, Panama
| | - Leticia Franco
- Infectious Hazard Management Unit, Health Emergencies Department, Pan American Health Organization, Washington, DC, United States
| | - Jairo Mendez-Rico
- Infectious Hazard Management Unit, Health Emergencies Department, Pan American Health Organization, Washington, DC, United States
| | - Juan Miguel Pascale
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
- Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Sandra López-Vergès
- Virology Research Laboratory, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Alexander A. Martínez
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
- Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Brechla Moreno
- Modular Specialized Laboratory, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| |
Collapse
|
14
|
Chaudhuri D, Majumder S, Datta J, Giri K. In silico fragment-based design and pharmacophore modelling of therapeutics against dengue virus envelope protein. In Silico Pharmacol 2024; 12:87. [PMID: 39310675 PMCID: PMC11415559 DOI: 10.1007/s40203-024-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Dengue virus, an arbovirus of genus Flavivirus, is an infectious disease causing organisms in the tropical environment leading to numerous deaths every year. No therapeutic is available against the virus till date with only symptomatic relief available. Here, we have tried to design therapeutic compounds from scratch by fragment based method followed by pharmacophore based modelling to find suitable similar structure molecules and validated the same by MD simulation, followed by binding energy calculations and ADMET analysis. The receptor binding region of the dengue envelope protein was considered as the target for prevention of viral host cell entry and thus infection. This resulted in the final selection of kanamycin as a stable binding molecule against the Dengue virus envelope protein receptor binding domain. This study results in selection of a single molecule having high binding energy and prominent stable interactions as determined by post simulation analyses. This study aims to provide a direction for development of small molecule therapeutics against the dengue virus in order to control infection. This study may open a new avenue in the arena of structure based and fragment based therapeutic design to obtain novel molecules with therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00262-9.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| |
Collapse
|
15
|
Nyathi S, Rezende IM, Walter KS, Thongsripong P, Mutuku F, Ndenga B, Mbakaya JO, Aswani P, Musunzaji PS, Chebii PK, Maina PW, Mutuku PS, Ng'ang'a CM, Malumbo SL, Jembe Z, Vu DM, Mordecai EA, Bennett S, Andrews JR, LaBeaud AD. Molecular epidemiology and evolutionary characteristics of dengue virus 2 in East Africa. Nat Commun 2024; 15:7832. [PMID: 39244569 PMCID: PMC11380673 DOI: 10.1038/s41467-024-51018-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the increasing burden of dengue, the regional emergence of the virus in Kenya has not been examined. This study investigates the genetic structure and regional spread of dengue virus-2 in Kenya. Viral RNA from acutely ill patients in Kenya was enriched and sequenced. Six new dengue-2 genomes were combined with 349 publicly available genomes and phylogenies used to infer gene flow between Kenya and other countries. Analyses indicate two dengue-2 Cosmopolitan genotype lineages circulating in Kenya, linked to recent outbreaks in coastal Kenya and Burkina Faso. Lineages circulating in Western, Southern, and Eastern Africa exhibiting similar evolutionary features are also reported. Phylogeography suggests importation of dengue-2 into Kenya from East and Southeast Asia and bidirectional geneflow. Additional lineages circulating in Africa are also imported from East and Southeast Asia. These findings underscore how intermittent importations from East and Southeast Asia drive dengue-2 circulation in Kenya and Africa more broadly.
Collapse
Affiliation(s)
- Sindiso Nyathi
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Izabela M Rezende
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katharine S Walter
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Panpim Thongsripong
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, 32962, USA
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Bryson Ndenga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joel O Mbakaya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Peter Aswani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Philip K Chebii
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - Paul S Mutuku
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - Said L Malumbo
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - David M Vu
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Shannon Bennett
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Rothen DA, Dutta SK, Krenger PS, Vogt ACS, Lieknina I, Sobczak JM, Osterhaus ADME, Mohsen MO, Vogel M, Martina B, Tars K, Bachmann MF. Preclinical Evaluation of Novel Sterically Optimized VLP-Based Vaccines against All Four DENV Serotypes. Vaccines (Basel) 2024; 12:874. [PMID: 39204000 PMCID: PMC11359203 DOI: 10.3390/vaccines12080874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Over the past few decades, dengue fever has emerged as a significant global health threat, affecting tropical and moderate climate regions. Current vaccines have practical limitations, there is a strong need for safer, more effective options. This study introduces novel vaccine candidates covering all four dengue virus (DENV) serotypes using virus-like particles (VLPs), a proven vaccine platform. The dengue virus envelope protein domain III (EDIII), the primary target of DENV-neutralizing antibodies, was either genetically fused or chemically coupled to bacteriophage-derived AP205-VLPs. To facilitate the incorporation of the large EDIII domain, AP205 monomers were dimerized, resulting in sterically optimized VLPs with 90 N- and C-termini. These vaccines induced high-affinity/avidity antibody titers in mice, and confirmed their protective potential by neutralizing different DENV serotypes in vitro. Administration of a tetravalent vaccine induced high neutralizing titers against all four serotypes without producing enhancing antibodies, at least not against DENV2. In conclusion, the vaccine candidates, especially when administered in a combined fashion, exhibit intriguing properties for potential use in the field, and exploring the possibility of conducting a preclinical challenge model to verify protection would be a logical next step.
Collapse
Affiliation(s)
- Dominik A. Rothen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.F.B.)
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Pascal S. Krenger
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.F.B.)
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Anne-Cathrine S. Vogt
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.F.B.)
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Ilva Lieknina
- Latvian Biomedical Research & Study Centre, Ratsupites iela 1, LV 1067 Riga, Latvia
| | - Jan M. Sobczak
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.F.B.)
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Mona O. Mohsen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.F.B.)
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
| | - Monique Vogel
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.F.B.)
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
| | | | - Kaspars Tars
- Latvian Biomedical Research & Study Centre, Ratsupites iela 1, LV 1067 Riga, Latvia
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.F.B.)
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
17
|
Phadungsombat J, Nakayama EE, Shioda T. Unraveling Dengue Virus Diversity in Asia: An Epidemiological Study through Genetic Sequences and Phylogenetic Analysis. Viruses 2024; 16:1046. [PMID: 39066210 PMCID: PMC11281397 DOI: 10.3390/v16071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue. Although most infected individuals are asymptomatic or present with only mild symptoms, severe manifestations could potentially devastate human populations in tropical and subtropical regions. In hyperendemic regions such as South Asia and Southeast Asia (SEA), all four DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) have been prevalent for several decades. Each DENV serotype is further divided into multiple genotypes, reflecting the extensive diversity of DENV. Historically, specific DENV genotypes were associated with particular geographical distributions within endemic regions. However, this epidemiological pattern has changed due to urbanization, globalization, and climate change. This review comprehensively traces the historical and recent genetic epidemiology of DENV in Asia from the first time DENV was identified in the 1950s to the present. We analyzed envelope sequences from a database covering 16 endemic countries across three distinct geographic regions in Asia. These countries included Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka from South Asia; Cambodia, Laos, Myanmar, Thailand, and Vietnam from Mainland SEA; and Indonesia, the Philippines, Malaysia, and Singapore from Maritime SEA. Additionally, we describe the phylogenetic relationships among DENV genotypes within each serotype, along with their geographic distribution, to enhance the understanding of DENV dynamics.
Collapse
Affiliation(s)
| | | | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (J.P.); (E.E.N.)
| |
Collapse
|
18
|
Chawla YM, Bajpai P, Saini K, Reddy ES, Patel AK, Murali-Krishna K, Chandele A. Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses 2024; 16:730. [PMID: 38793612 PMCID: PMC11126086 DOI: 10.3390/v16050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.
Collapse
Affiliation(s)
- Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| |
Collapse
|
19
|
Leng XY, Zhao LZ, Liao L, Jin KH, Feng JM, Zhang FC. Genotype of dengue virus serotype 1 in relation to severe dengue in Guangzhou, China. J Med Virol 2024; 96:e29635. [PMID: 38682660 DOI: 10.1002/jmv.29635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Guangzhou has been the city most affected by the dengue virus (DENV) in China, with a predominance of DENV serotype 1 (DENV-1). Viral factors such as dengue serotype and genotype are associated with severe dengue (SD). However, none of the studies have investigated the relationship between DENV-1 genotypes and SD. To understand the association between DENV-1 genotypes and SD, the clinical manifestations of patients infected with different genotypes were investigated. A total of 122 patients with confirmed DENV-1 genotype infection were recruited for this study. The clinical manifestations, laboratory tests, and levels of inflammatory mediator factors were statistically analyzed to investigate the characteristics of clinical manifestations and immune response on the DENV-1 genotype. In the case of DENV-1 infection, the incidence of SD with genotype V infection was significantly higher than that with genotype I infection. Meanwhile, patients infected with genotype V were more common in ostealgia and bleeding significantly. In addition, levels of inflammatory mediator factors including IFN-γ, TNF-α, IL-10, and soluble vascular cell adhesion molecule 1 were higher in patients with SD infected with genotype V. Meanwhile, the concentrations of regulated upon activation normal T-cell expressed and secreted and growth-related gene alpha were lower in patients with SD infected with genotype V. The higher incidence of SD in patients infected with DENV-1 genotype V may be attributed to elevated cytokines and adhesion molecules, along with decreased chemokines.
Collapse
Affiliation(s)
- Xing-Yu Leng
- Department of Infectious Disease, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical Research Institute of Infectious Diseases, Institution of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ling-Zhai Zhao
- Department of Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Medical University, Guangzhou, China
| | - Lu Liao
- Department of Infectious Disease, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical Research Institute of Infectious Diseases, Institution of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kang-Hong Jin
- Department of Infectious Disease, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical Research Institute of Infectious Diseases, Institution of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Min Feng
- Guangzhou Medical Research Institute of Infectious Diseases, Institution of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fu-Chun Zhang
- Department of Infectious Disease, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical Research Institute of Infectious Diseases, Institution of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Agarwal A, Ganvir R, Kale D, Chaurasia D, Kapoor G. Continued dominance of dengue virus serotype 2 during the recent Central India outbreaks (2019-2021) with evidence of genetic divergence. Pathog Glob Health 2024; 118:109-119. [PMID: 37574815 PMCID: PMC11141303 DOI: 10.1080/20477724.2023.2246712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Central India faced major dengue outbreaks in 2019 and 2021. In the present study, we aimed to identify the dengue virus serotypes and genotypes circulating in Central India during the COVID pre-pandemic year (2019) and ongoing-pandemic year (2021). For this purpose, the suspected cases were first tested by serological assays. Sero-positive samples were then subjected to molecular diagnosis by RT-PCR and semi-nested PCR. The serotypes obtained were confirmed by nucleotide sequencing. A phylogenetic analysis of serotypes was performed to identify the circulating genotypes. All four DENV serotypes were detected during 2019 and 2021, with the predominance of DENV2. Cases with multiple DENV serotype infections were also identified, involving DENV-2 in all the coinfections. Genotyping revealed that DENV-1 (Genotype V, American/African), DENV-2 (Genotype IV, Cosmopolitan), DENV-3 (Genotype III, Cosmopolitan), and DENV-4 (Genotype I) were involved during both outbreaks. DENV-2 detected in 2019 and 2021 has diverged from the previous strains detected in Central India (2016 and 2018), which may account for the higher transmission of DENV-2 during these outbreaks. The detection of heterologous DENV serotypes with high transmission efficiency calls for continuous viral monitoring and surveillance, which will contribute to a better understanding of changing viral dynamics and transmission patterns.
Collapse
Affiliation(s)
- Ankita Agarwal
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, India
| | - Ruchi Ganvir
- Department of Microbiology, Gandhi Medical College, Bhopal, India
| | - Dipesh Kale
- Department of Microbiology, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Deepti Chaurasia
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, India
- Department of Microbiology, Gandhi Medical College, Bhopal, India
| | - Garima Kapoor
- Department of Microbiology, Gandhi Medical College, Bhopal, India
| |
Collapse
|
21
|
Kakde U, Khatib MN. Neurological Complications in Dengue Among Males of the Adult Age Group. Cureus 2024; 16:e51586. [PMID: 38313931 PMCID: PMC10835196 DOI: 10.7759/cureus.51586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Neurological problems are more frequently linked to dengue, a mosquito-transmitted virus common in tropical areas. This review study thoroughly examines the effects of dengue on adult males' neurological systems. Dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) can develop in severe cases of dengue fever caused by the dengue virus (DENV). Unsettlingly, it is thought that a sizable portion of DENV infections impact the central nervous system (CNS), which calls into question the former theory that the DENV is not neurotropic. This review dissects the many neurological manifestations of dengue, spanning from encephalopathy, encephalitis, and other CNS implications to peripheral neuromuscular issues, through the systematic analysis of publications gathered from PubMed. The essay emphasizes the immunological reactions brought on by DENV infections and offers a deeper understanding of the pathophysiology. Given that they exhibit similar first symptoms, Zika and chikungunya are two more illnesses that must be distinguished from dengue. The mainstay of current diagnostic methods is serum and cerebrospinal fluid (CSF) tests, although supportive care is still used. This review highlights the importance of tracking neurological symptoms in dengue patients and encourages more studies in this area.
Collapse
Affiliation(s)
- Umesh Kakde
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Research and Higher Education, Wardha, IND
| | - Mahalaqua Nazli Khatib
- School of Epidemiology and Public Health, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
22
|
Ngwe Tun MM, Nwe KM, Balingit JC, Takamatsu Y, Inoue S, Pandey BD, Urano T, Kohara M, Tsukiyama-Kohara K, Morita K. A Novel, Comprehensive A129 Mouse Model for Investigating Dengue Vaccines and Evaluating Pathogenesis. Vaccines (Basel) 2023; 11:1857. [PMID: 38140260 PMCID: PMC10748371 DOI: 10.3390/vaccines11121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
In search of a mouse model for use in evaluating dengue vaccines, we assessed A129 mice that lacked IFN-α/β receptors, rendering them susceptible to dengue virus (DENV) infection. To our knowledge, no reports have evaluated dengue vaccine efficiency using A129 mice. A129 mice were given a single intraperitoneal (IP) or subcutaneous (SC) injection of the vaccine, Dengvaxia. After 14 days of immunization via the IP or SC injection of Dengvaxia, the A129 mice exhibited notably elevated levels of anti-DENV immunoglobulin G and neutralizing antibodies (NAb) targeting all four DENV serotypes, with DENV-4 displaying the highest NAb levels. After challenge with DENV-2, Dengvaxia and mock-immunized mice survived, while only the mock group exhibited signs of morbidity. Viral genome levels in the serum and tissues (excluding the brain) were considerably lower in the immunized mice compared to those in the mock group. The SC administration of Dengvaxia resulted in lower viremia levels than IP administration did. Therefore, given that A129 mice manifest dengue-related morbidity, including viremia in the serum and other tissues, these mice represent a valuable model for investigating novel dengue vaccines and antiviral drugs and for exploring dengue pathogenesis.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Jean Claude Balingit
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
| | - Yuki Takamatsu
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Shingo Inoue
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Basu Dev Pandey
- Dejima Infectious Diseases Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Michinori Kohara
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-0057, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Dejima Infectious Diseases Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan;
| |
Collapse
|
23
|
Zhou S, Li J, Ling X, Dong S, Zhang Z, Li M. Conessine inhibits enveloped viruses replication through up-regulating cholesterol level. Virus Res 2023; 338:199234. [PMID: 37802295 PMCID: PMC10590996 DOI: 10.1016/j.virusres.2023.199234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Dengue virus (DENV) is one of the most prevalent arthropod-borne diseases. It may cause dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), while no effective vaccines and drugs are available. Our study demonstrated that conessine exhibits broad antiviral activity against several enveloped viruses, including DENV, vesicular stomatitis virus, and herpes simplex virus. In addition, conessine has no direct destructive effect on the integrity or infectivity of virions. Both pre-treatment and post-treatment with conessine significantly reduce DENV replication. Pre-treatment with conessine disrupts the endocytosis of enveloped viruses, while post-treatment disturbs DENV RNA replication or translation at an early stage. Through screening differentially expressed genes by transcriptome sequencing, we found that conessine may affect cholesterol biosynthesis, metabolism or homeostasis. Finally, we confirmed that conessine inhibits virus replication through up-regulating cholesterol levels. Our work suggests that conessine could be developed as a prophylactic and therapeutic treatment for infectious diseases caused by enveloped viruses.
Collapse
Affiliation(s)
- Shili Zhou
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Jie Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Xiaomei Ling
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Shirui Dong
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Zhen Zhang
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Ming Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China.
| |
Collapse
|
24
|
Munt JE, Henein S, Adams C, Young E, Hou YJ, Conrad H, Zhu D, Dong S, Kose N, Yount B, Meganck RM, Tse LPV, Kuan G, Balmaseda A, Ricciardi MJ, Watkins DI, Crowe JE, Harris E, DeSilva AM, Baric RS. Homotypic antibodies target novel E glycoprotein domains after natural DENV 3 infection/vaccination. Cell Host Microbe 2023; 31:1850-1865.e5. [PMID: 37909048 PMCID: PMC11221912 DOI: 10.1016/j.chom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.
Collapse
Affiliation(s)
- Jennifer E Munt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Long Ping V Tse
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Health Center Socrates Flores Vivas, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | | | - David I Watkins
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aravinda M DeSilva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Ooi EE, Kalimuddin S. Insights into dengue immunity from vaccine trials. Sci Transl Med 2023; 15:eadh3067. [PMID: 37437017 DOI: 10.1126/scitranslmed.adh3067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The quest for an effective dengue vaccine has culminated in two approved vaccines and another that has completed phase 3 clinical trials. However, shortcomings exist in each, suggesting that the knowledge on dengue immunity used to develop these vaccines was incomplete. Vaccine trial findings could refine our understanding of dengue immunity, because these are experimentally derived, placebo-controlled data. Results from these trials suggest that neutralizing antibody titers alone are insufficient to inform protection against symptomatic infection, implicating a role for cellular immunity in protection. These findings have relevance for both future dengue vaccine development and application of current vaccines for maximal public health benefit.
Collapse
Affiliation(s)
- Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Shirin Kalimuddin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore 169856, Singapore
| |
Collapse
|
26
|
Islam A, Deeba F, Tarai B, Gupta E, Naqvi IH, Abdullah M, Dohare R, Ahmed A, Almajhdi FN, Hussain T, Parveen S. Global and local evolutionary dynamics of Dengue virus serotypes 1, 3, and 4. Epidemiol Infect 2023; 151:e127. [PMID: 37293986 PMCID: PMC10540175 DOI: 10.1017/s0950268823000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/01/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Evolutionary studies on Dengue virus (DENV) in endemic regions are necessary since naturally occurring mutations may lead to genotypic variations or shifts in serotypes, which may lead to future outbreaks. Our study comprehends the evolutionary dynamics of DENV, using phylogenetic, molecular clock, skyline plots, network, selection pressure, and entropy analyses based on partial CprM gene sequences. We have collected 250 samples, 161 in 2017 and 89 in 2018. Details for the 2017 samples were published in our previous article and that of 2018 are presented in this study. Further evolutionary analysis was carried out using 800 sequences, which incorporate the study and global sequences from GenBank: DENV-1 (n = 240), DENV-3 (n = 374), and DENV-4 (n = 186), identified during 1944-2020, 1956-2020, and 1956-2021, respectively. Genotypes V, III, and I were identified as the predominant genotypes of the DENV-1, DENV-3, and DENV-4 serotypes, respectively. The rate of nucleotide substitution was found highest in DENV-3 (7.90 × 10-4 s/s/y), followed by DENV-4 (6.23 × 10-4 s/s/y) and DENV-1 (5.99 × 10-4 s/s/y). The Bayesian skyline plots of the Indian strains revealed dissimilar patterns amongst the population size of the three serotypes. Network analyses showed the presence of different clusters within the prevalent genotypes. The data presented in this study will assist in supplementing the measures for vaccine development against DENV.
Collapse
Affiliation(s)
- Arshi Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Bansidhar Tarai
- Department of Microbiology and Infection Control, Max Superspeciality Hospital, New Delhi, India
| | - Ekta Gupta
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Irshad H. Naqvi
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Abdullah
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad N. Almajhdi
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tajamul Hussain
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
27
|
Rivera JA, Rengifo AC, Rosales-Munar A, Díaz-Herrera TH, Ciro JU, Parra E, Alvarez-Díaz DA, Laiton-Donato K, Caldas ML. Genotyping of dengue virus from infected tissue samples embedded in paraffin. Virol J 2023; 20:100. [PMID: 37231481 DOI: 10.1186/s12985-023-02072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Dengue has become one of the vector-borne diseases that affect humans worldwide. In Latin American countries, Colombia is historically one of the most affected by epidemics of this flavivirus. The underreporting of signs and symptoms of probable cases of dengue, the lack of characterization of the serotypes of the infection, and the few detailed studies of postmortem necropsies of patients are among other conditions that have delayed progress in the knowledge of the pathogenesis of the disease. This study presents the results of fragment sequencing assays on paraffin-embedded tissue samples from fatal DENV cases during the 2010 epidemic in Colombia. We found that the predominant serotype was DENV-2, with the Asian/American genotype of lineages 1 and 2. This work is one of the few reports of the circulating genotypes of dengue during the 2010 epidemic in Colombia, one of the most lethal dates in the country's history.
Collapse
Grants
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
Collapse
Affiliation(s)
- Jorge Alonso Rivera
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| | - Aura Caterine Rengifo
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia.
| | - Alicia Rosales-Munar
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| | - Taylor H Díaz-Herrera
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| | - José Usme Ciro
- CIST-Centro de Investigaciones en Salud Para el Trópico, Facultad de Medicina, Universidad Cooperativa de Colombia, Santa Marta, 47003, Colombia
| | - Edgar Parra
- Dirección de Redes en Salud Pública, Grupo de Patología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Diego A Alvarez-Díaz
- Dirección de investigación en Salud Pública, Grupo de Genómica de Microorganismos Emergentes, Instituto Nacional de Salud, Bogotá, Colombia
| | - Katherine Laiton-Donato
- Dirección de investigación en Salud Pública, Grupo de Genómica de Microorganismos Emergentes, Instituto Nacional de Salud, Bogotá, Colombia
| | - María Leonor Caldas
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| |
Collapse
|
28
|
Annan E, Nguyen USDT, Treviño J, Wan Yaacob WF, Mangla S, Pathak AK, Nandy R, Haque U. Moderation effects of serotype on dengue severity across pregnancy status in Mexico. BMC Infect Dis 2023; 23:147. [PMID: 36899304 PMCID: PMC9999597 DOI: 10.1186/s12879-023-08051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/02/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Pregnancy increases a woman's risk of severe dengue. To the best of our knowledge, the moderation effect of the dengue serotype among pregnant women has not been studied in Mexico. This study explores how pregnancy interacted with the dengue serotype from 2012 to 2020 in Mexico. METHOD Information from 2469 notifying health units in Mexican municipalities was used for this cross-sectional analysis. Multiple logistic regression with interaction effects was chosen as the final model and sensitivity analysis was done to assess potential exposure misclassification of pregnancy status. RESULTS Pregnant women were found to have higher odds of severe dengue [1.50 (95% CI 1.41, 1.59)]. The odds of dengue severity varied for pregnant women with DENV-1 [1.45, (95% CI 1.21, 1.74)], DENV-2 [1.33, (95% CI 1.18, 1.53)] and DENV-4 [3.78, (95% CI 1.14, 12.59)]. While the odds of severe dengue were generally higher for pregnant women compared with non-pregnant women with DENV-1 and DENV-2, the odds of disease severity were much higher for those infected with the DENV-4 serotype. CONCLUSION The effect of pregnancy on severe dengue is moderated by the dengue serotype. Future studies on genetic diversification may potentially elucidate this serotype-specific effect among pregnant women in Mexico.
Collapse
Affiliation(s)
- Esther Annan
- Department of Biostatistics & Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA. .,Center for Health and Wellbeing, School of Public and International Affairs, Princeton University, Princeton, NJ, USA.
| | - Uyen-Sa D T Nguyen
- Department of Biostatistics & Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jesús Treviño
- Department of Urban Affairs at the School of Architecture, Universidad Autónoma de Nuevo León, 66455, San Nicolás de los Garza, Nuevo Léon, México
| | - Wan Fairos Wan Yaacob
- Mathematical Sciences Studies, College of Computing, Informatics and Media, Universiti Teknologi MARA Cawangan Kelantan, Lembah Sireh, Kampus Kota Bharu, 15150, Kota Bharu, Kelantan, Malaysia.,Institute for Big Data Analytics and Artificial Intelligence (IBDAAI), Universiti Teknologi MARA, Kompleks Al- Hawarizmi, 40450, Shah Alam, Selangor, Malaysia
| | - Sherry Mangla
- International Institute for Population Sciences, Mumbai, Maharashtra, 400088, India
| | - Ashok Kumar Pathak
- Department of Mathematics and Statistics, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Rajesh Nandy
- Department of Biostatistics & Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ubydul Haque
- Rutgers Global Health Institute, New Brunswick, NJ, USA.,Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
29
|
Association of Dengue Virus Serotypes 1&2 with Severe Dengue Having Deletions in Their 3′Untranslated Regions (3′UTRs). Microorganisms 2023; 11:microorganisms11030666. [PMID: 36985238 PMCID: PMC10057630 DOI: 10.3390/microorganisms11030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Dengue virus infections are recorded as hyper-endemic in many countries, including India. Research pertaining to the reasons for frequent outbreaks and severe dengue is ongoing. Hyderabad city, India, has been recorded as a ‘hotspot’ for dengue virus infections. Dengue virus strains circulating over the past few years in Hyderabad city have been characterized at the molecular level to analyze the serotype/genotypes; 3′UTRs were further amplified and sequenced. The disease severity in patients infected with dengue virus strains with complete and 3′UTR deletion mutants was analyzed. Genotype I of the serotype 1 replaced genotype III, which has been circulating over the past few years in this region. Coincidentally, the number of dengue virus infections significantly increased in this region during the study period. Nucleotide sequence analysis suggested twenty-two and eight nucleotide deletions in the 3′UTR of DENV-1. The eight nucleotide deletions observed in the case of DENV-1 3′UTR were the first reported in this instance. A 50 nucleotide deletion was identified in the case of the serotype DENV-2. Importantly, these deletion mutants were found to cause severe dengue, even though they were found to be replication incompetent. This study emphasized the role of dengue virus 3′UTRs on severe dengue and emerging outbreaks.
Collapse
|
30
|
Zhu X, Jiang Y, Zhang H, Li C, Xing D, Guo X, Zhao T. An alternating transmission model between mice and mosquitoes for genetic study of dengue virus. Acta Trop 2023; 239:106834. [PMID: 36646237 DOI: 10.1016/j.actatropica.2023.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Rapidly increased incidence and prevalence of dengue virus serotype 2 (DENV-2) in recent decades highlight the need for better understanding of the selective pressures that drive genetic and phenotypic changes in this virus. We simulated the transfer of DENV-2 between human hosts and mosquito vectors by horizontally transmitting the virus between suckling mice and Aedes aegypti (Linnaeus, Diptera: Culicidae). A total of 3 cycles of alternating transmission were performed and 3 passages of virus population were harvested from the infected sucking mice. The viral titer in mice brain and infectivity to mosquitoes of theses viral populations were tested. The genome of the viruses was also sequenced. Results showed that viral titer were similar and infection rate in the mosquitoes were not significantly different among those 3 passages. This in vivo model could be utilized to explore virus evolution and genetic variance in alternating transmission.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing 100071, China; NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yuting Jiang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing 100071, China
| | - Hengduan Zhang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing 100071, China
| | - Chunxiao Li
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing 100071, China
| | - Dan Xing
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing 100071, China
| | - Xiaoxia Guo
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing 100071, China.
| | - Tongyan Zhao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing 100071, China.
| |
Collapse
|
31
|
Jiang L, Liu Y, Su W, Liu W, Dong Z, Long Y, Luo L, Jing Q, Cao Y, Wu X, Di B. Epidemiological and genomic analysis of dengue cases in Guangzhou, China, from 2010 to 2019. Sci Rep 2023; 13:2161. [PMID: 36750601 PMCID: PMC9905598 DOI: 10.1038/s41598-023-28453-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
With a long epidemic history and a large number of dengue cases, Guangzhou is a key city for controlling dengue in China. The demographic information regarding dengue cases, and the genomic characteristics of the envelope gene of dengue viruses, as well as the associations between these factors were investigated from 2010 to 2019, to improve the understanding of the epidemiology of dengue in Guangzhou. Demographic data on 44,385 dengue cases reported to the Notifiable Infectious Disease Report System were analyzed using IBM SPSS Statistics v. 20. Dengue virus isolates from patient sera were sequenced, and phylogenetic trees were constructed using PhyML 3.1. There was no statistical difference in the risk of dengue infection between males and females. Unlike other areas in which dengue is endemic, the infection risk in Guangzhou increased with age. Surveillance identified four serotypes responsible for dengue infections in Guangzhou. Serotype 1 remained prevalent for most of the study period, whereas serotypes 3 and 4 were prevalent in 2012 and 2010, respectively. Different serotypes underwent genotype and sublineage shifts. The epidemiological characteristics and phylogeny of dengue in Guangzhou suggested that although it has circulated in Guangzhou for decades, it has not been endemic in Guangzhou. Meanwhile, shifts in genotypes, rather than in serotypes, might have caused dengue epidemics in Guangzhou.
Collapse
Affiliation(s)
- Liyun Jiang
- AIDS Control and Prevention Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China.
| | - Yuan Liu
- Centre for Disease Control and Prevention of Liwan District of Guangzhou, Liwan Zhoumenxijie 32, Guangdong, China
| | - Wenzhe Su
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Wenhui Liu
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Zhiqiang Dong
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Yuxiang Long
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lei Luo
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Qinlong Jing
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Yimin Cao
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Xinwei Wu
- Microbiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Biao Di
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| |
Collapse
|
32
|
Vector Competence of a Coastal Population of Aedes aegypti for Dengue 2 and 3 Virus Serotypes in Kenya. BIOMED RESEARCH INTERNATIONAL 2023. [DOI: 10.1155/2023/8402682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aedes aegypti is the primary vector of dengue, an arboviral disease caused by dengue virus (DENV) that exists as four distinct serotypes (DENV 1-4). While all four DENV serotypes circulate in Kenya, differential distribution of the serotypes in specific regions suggests virus transmission may differ among local vector populations. In this study, we tested the hypothesis that a coastal Ae. aegypti population (Rabai, Kilifi County) varies in its ability to transmit DENV-2 (predominant) and DENV-3 (less dominant) and that transmission is related to Ae. aegypti subspecies—domestic Ae. aegypti aegypti (Aaa) and sylvtic Ae. aegypti formosus (Aaf). We orally exposed F1 females (3-10 days old) to blood meals containing DENV-2 (10 5.30 pfu/ml) or DENV-3 (10 5.13 pfu/ml), tested them individually for infection (body), dissemination (legs), and transmission (saliva) at 7, 14, and 21 days postinfection (DPI), respectively, and compared the rates between the serotypes. We analyzed cytochrome c oxidase I gene (cox-I) sequences among DENV-susceptible and nonsusceptible cohorts. Of 489 mosquitoes tested (DENV-2: 240; DENV-3: 249), we found consistently higher but nonsignificant rates of infection (16% vs. 10%), dissemination (47% (18/38) vs. 35% (9/26)), and transmission (39% (7/18) vs. 11% (1/9)) for DENV-2 than DENV-3. However, DENV-2 exhibited a shorter extrinsic incubation period (EIP) for disseminated infection (7-DPI vs. 14-DPI) and transmission (14-DPI vs. 21-DPI) compared to DENV-3. Two cox-I lineages were recovered in phylogeny, one predominantly clustered with referenced Aaa and a minor lineage grouped with Aaf. Infected mosquitoes and those with disseminated infection were represented in both lineages; those that transmitted the viruses grouped with the Aaa-associated lineage only. We conclude that the coastal Ae. aegypti population is a competent vector for DENV-2 and DENV-3 likely driven by the domestic Aaa that is predominant. The shorter EIP to attain dissemination and transmission for DENV-2 could favour its transmission over DENV-3.
Collapse
|
33
|
A Six Years (2010-2016) Longitudinal Survey of the Four Serotypes of Dengue Viruses in Lao PDR. Microorganisms 2023; 11:microorganisms11020243. [PMID: 36838207 PMCID: PMC9959689 DOI: 10.3390/microorganisms11020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Dengue fever is the most prevalent arthropod-borne viral infection of humans in tropical and subtropical countries. Since 1979, dengue has been reported to be endemic in the Lao People's Democratic Republic (PDR), as in many countries in Southeast Asia, with a complex circulation of the four dengue viruses' serotypes (DENV-1 to DENV-4). By sequencing the complete envelope protein, we explored a panel of samples from five Lao Provinces (Vientiane capital, Luangprabang, Bolikhamxay, Saravane, Attapeu) to enrich knowledge about the co-circulation of DENVs in Lao PDR between 2010 and 2016. Phylogenetic analyses highlighted the specific circulation of DENV-1 genotype I, DENV-2 genotype Asian I, DENV-4 genotype I and the co-circulation of DENV-3 genotype II and III. The continuous co-circulation of the four serotypes was underlined, with genotype or cluster shifts among DENV-3 and DENV-1. These data suggested the emergence or re-emergence of DENV strains associated with epidemic events, potentially linked to the exchanges within the territory and with neighboring countries. Indeed, the increasing local or regional connections favored the dissemination of new isolates or new clusters around the country. Since 2012, the surveillance and alert system created in Vientiane capital by the Institut Pasteur du Laos appears to be a strategic tool for monitoring the circulation of the four serotypes, especially in this endemic country, and allows for improving dengue epidemiological knowledge to anticipate epidemic events better.
Collapse
|
34
|
Nainggolan L, Dewi BE, Hakiki A, Pranata AJ, Sudiro TM, Martina B, van Gorp E. Association of viral kinetics, infection history, NS1 protein with plasma leakage among Indonesian dengue infected patients. PLoS One 2023; 18:e0285087. [PMID: 37130105 PMCID: PMC10153689 DOI: 10.1371/journal.pone.0285087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
OBJECTIVES Plasma leakage, a hallmark of disease in Dengue virus (DENV) infection, is an important clinical manifestation and is often associated with numerous factors such as viral factors. The aim of this study is to investigate the association of virus serotype, viral load kinetics, history of infection, and NS1 protein with plasma leakage. METHODS Subjects with fever ≤ 48 hours and positive DENV infection were included. Serial laboratory tests, viral load measurements, and ultrasonography examination to assess plasma leakage were performed. RESULTS DENV-3 was the most common serotype found in the plasma leakage group (35%). Patients with plasma leakage demonstrated a trend of higher viral load and a longer duration of viremia compared to those without. This was significantly observed on the fourth day of fever (p = 0.037). We found higher viral loads on specific days in patients with plasma leakage in both primary and secondary infections compared to those without. In addition, we also observed more rapid viral clearance in patients with secondary infection. NS1 protein, especially after 4 days of fever, was associated with higher peak viral load level, even though it was not statistically significant (p = 0.470). However, pairwise comparison demonstrated that peak viral load level in the group of patients with circulating NS1 detected for 7 days was significantly higher than the 5-day group (p = 0.037). CONCLUSION DENV-3 was the most common serotype to cause plasma leakage. Patients with plasma leakage showed a trend of higher viral load and a longer duration of viremia. Higher level of viral load was observed significantly on day 5 in patients with primary infection and more rapid viral clearance was observed in patients with secondary infection. Longer duration of circulating NS1 protein was also seen to be positively correlated with higher peak viral load level although not statistically significant.
Collapse
Affiliation(s)
- Leonard Nainggolan
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Beti Ernawati Dewi
- Department of Microbiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Arif Hakiki
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Antony Joseph Pranata
- Department of Microbiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - Byron Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric van Gorp
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Rodríguez-Aguilar ED, Martínez-Barnetche J, Rodríguez MH. Three highly variable genome regions of the four dengue virus serotypes can accurately recapitulate the CDS phylogeny. MethodsX 2022; 9:101859. [PMID: 36187156 PMCID: PMC9516459 DOI: 10.1016/j.mex.2022.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022] Open
Abstract
The circulation of the four-dengue virus (DENV) serotypes has significantly increased in recent years, accompanied by an increase in viral genetic diversity. In order to conduct disease surveillance and understand DENV evolution and its effects on virus transmission and disease, efficient and accurate methods for phylogenetic classification are required. Phylogenetic analysis of different viral genes sequences is the most used method, the envelope gene (E) being the most frequently selected target. We explored the genetic variability of the four DENV serotypes throughout their complete coding sequence (CDS) of sequences available in GenBank and used genomic regions of different variability rate to recapitulate the phylogeny obtained with the DENV CDS. Our results indicate that the use of high or low variable regions accurately recapitulate the phylogeny obtained with CDS of sequences from different DENV genotypes. However, when analyzing the phylogeny of a single genotype, highly variable regions performed better in recapitulating the distance branch length, topology, and support of the CDS phylogeny. The use of three concatenated highly variable regions was not statistically different in distance branch length and support to that obtained in CDS phylogeny.•This study demonstrated the ability of highly variable regions of the DENV genome to recapitulate the phylogeny obtained with the full coding sequence (CDS).•The use of genomic regions of high or low variability did not affect the performance in recapitulating the phylogeny obtained with CDS from different genotypes. However, when phylogeny was analyzed for sequences from a single genotype, highly variable regions performed better in recapitulating the distance branch length, topology, and support of the CDS phylogeny.•The use of concatenated highly variable genome regions represent a useful option for recapitulating genome-wide phylogenies in analyses of sequences belonging to the same DENV genotype.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To discuss the neurological complications of dengue virus (DENV) infection and their pathogenesis. RECENT FINDINGS Include recognition of the four different serotypes of DENV and their epidemiology as well as recognition of the expanded dengue syndrome encompassing multisystem involvement in the severe form of the disease including involvement of the central nervous system (CNS). DENV is a neurotropic virus with the ability to infect the supporting cells of the CNS. Neural injury during the acute stage of the infection results from direct neuro-invasion and/or the phenomenon of antibody-dependent enhancement, resulting in plasma leakage and coagulopathy. Immune mechanisms have been implicated in the development of the delayed neurological sequelae through molecular mimicry. A myriad of neurological syndromes has been described as a result of the involvement of the CNS, the peripheral nervous system (PNS), or both. Neurological manifestations in DENV infection are increasingly being recognized, some of which are potentially fatal if not treated promptly. DENV encephalopathy and encephalitis should be considered in the differential diagnosis of other acute febrile encephalopathies, autoimmune encephalitides, and in cases of encephalopathy/encephalitis related to SARS-CoV2 infection, especially in dengue-endemic areas. Acute disseminated encephalomyelitis (ADEM) may be occasionally encountered. Clinicians should be knowledgeable of the expanded dengue syndrome characterized by the concurrent compromise of cardiac, neurological, gastrointestinal, renal, and hematopopoietic systems. Isolated cranial nerve palsies occur rather uncommonly and are often steroid responsive. These neuropathies may result from the direct involvement of cranial nerve nuclei or nerve involvement or may be immune-mediated. Even if the diagnosis of dengue is confirmed, it is absolutely imperative to exclude other well-known causes of isolated cranial nerve palsies. Ischemic and hemorrhagic strokes may occur following dengue fever. The pathogenesis may be beyond the commonly observed thrombocytopenia and include cerebral vasculitis. Involvement of ocular blood vessels may cause maculopathy or retinal hemorrhages. Posterior reversible encephalopathy syndrome (PRES) is uncommon and possibly related to dysregulated cytokine release phenomena. Lastly, any patient developing acute neuromuscular weakness during the course or within a fortnight of remission from dengue fever must be screened for acute inflammatory demyelinating polyneuropathy (AIDP), hypokalemic paralysis, or acute myositis. Rarely, a Miller-Fisher-like syndrome with negative anti-GQ1b antibody may develop.
Collapse
Affiliation(s)
- Sweety Trivedi
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Science, Lucknow, India
| | - Ambar Chakravarty
- Department of Neurology, Vivekananda Institute of Medical Science, Kolkata, India.
| |
Collapse
|
37
|
Rodríguez-Aguilar ED, Martínez-Barnetche J, Juárez-Palma L, Alvarado-Delgado A, González-Bonilla CR, Rodríguez MH. Genetic diversity and spatiotemporal dynamics of DENV-1 and DENV-2 infections during the 2012-2013 outbreak in Mexico. Virology 2022; 573:141-150. [PMID: 35779336 DOI: 10.1016/j.virol.2022.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 10/18/2022]
Abstract
Dengue fever is caused by four related dengue virus serotypes, DENV-1 to DENV-4, where each serotype comprises distinct genotypes and lineages. The last major outbreak in Mexico occurred during 2012 and 2013, when 112,698 confirmed cases were reported (DENV-1 and DENV-2 were predominant). Following partial E, NS2A and NS5 gene sequencing, based on the virus genome variability, we analyzed 396 DENV-1 and 248 DENV-2 gene sequences from serum samples from dengue acute clinical cases from 13 Mexican states, Mutations were identified, and their genetic variability estimated, along with their evolutionary relationship with DENV sequences sampled globally. DENV-1 genotype V and DENV-2 Asian-American genotype V were the only genotypes circulating during the outbreak. Mutations in NS2A and NS5 proteins were widely disseminated and suggested local emergence of new lineages. Phylogeographic analysis suggested viral spread occurred from coastal regions, and tourist destinations, such as Yucatan and Quintana Roo, which played important roles in disseminating these lineages.
Collapse
Affiliation(s)
- Eduardo D Rodríguez-Aguilar
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, 62100, Mexico.
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, 62100, Mexico.
| | - Lilia Juárez-Palma
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, 62100, Mexico.
| | - Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, 62100, Mexico.
| | - Cesar R González-Bonilla
- Universidad Nacional Autónoma de México and Instituto Mexicano del Seguro Social, Mexico City, 04510, Mexico.
| | - Mario H Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, 62100, Mexico.
| |
Collapse
|
38
|
Han A, Sun B, Sun Z, Xu X, Yang Q, Xie D, Guan W, Lou Y. Molecular Characterization and Phylogenetic Analysis of the 2019 Dengue Outbreak in Wenzhou, China. Front Cell Infect Microbiol 2022; 12:829380. [PMID: 35663472 PMCID: PMC9161089 DOI: 10.3389/fcimb.2022.829380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/25/2022] [Indexed: 01/03/2023] Open
Abstract
In 2019, a dengue outbreak occurred with 290 confirmed cases in Wenzhou, a coastal city in southeast China. To identify the origin of the dengue virus (DENV) from this outbreak, viral RNA was extracted from four serum samples and sequenced for whole genome analysis. Then, phylogenetic analysis, gene mutation, secondary structure prediction, selection pressure analysis, and recombination analysis were performed. DENV strains Cam-03 and Cam-11 were isolated from patients traveling from Cambodia, while ZJWZ-18 and ZJWZ-62 strains were isolated from local patients without a record of traveling abroad. The whole genome sequence of all four strains was 10,735 nucleotides long. Phylogenetic tree analysis showed that the four strains belonged to genotype 1 of DENV-1, but the local Wenzhou strains and imported strains clustered in different branches. ZJWZ-18 and ZJWZ-62 were closely related to strain MF033254-Singapore-2016, and Cam-03 and Cam-11 were closely related to strain AB608788-China : Taiwan-1994. A comparison of the coding regions between the local strains and the DENV-1 standard strain (EU848545-Hawaii-1944) showed 82 amino acid mutations between the two strains. A total of 55 amino acid mutations were found between the coding regions of the local and imported strains. The overall secondary structure of the 3' UTR of the local strains had changed: apparent changes in the head and tail position were observed when compared to DENV-1 standard strain. Furthermore, selection pressure analysis and recombination detection using the 4 isolates and 41 reference strains showed two credible positive selection sites and eight credible recombination events, which warrant further studies. This study may enhance the understanding of viral replication, infection, evolution, virulence, and pathogenicity of DENV.
Collapse
Affiliation(s)
- Axiang Han
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Baochang Sun
- Department of Laboratory, Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Zhewei Sun
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuelian Xu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiongying Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Danli Xie
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Gaber M, Ahmad AA, El-Kady AM, Tolba M, Suzuki Y, Mohammed SM, Elossily NA. Dengue fever as a reemerging disease in upper Egypt: Diagnosis, vector surveillance and genetic diversity using RT-LAMP assay. PLoS One 2022; 17:e0265760. [PMID: 35499983 PMCID: PMC9060354 DOI: 10.1371/journal.pone.0265760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background
The recent increase in dengue virus (DENV) outbreaks and the absence of an effective vaccine have highlighted the importance of developing rapid and effective diagnostic surveillance tests and mosquito-based screening programs. To establish effective control measures for preventing future DENV transmission, the present study was established to identify the main mosquito vector involved in the dengue fever (DF) outbreak in Upper Egypt in 2016 and detect the diversity of dengue virus serotypes circulating in both humans and vectors.
Methods
We investigated the prevalence of DENV infection and circulating serotypes in the sera of 51 humans clinically suspected of DF and 1800 field-collected Aedes aegypti adult female mosquitoes grouped into 36 pooled samples. Both DENV non-structural protein (NS1) immunochromatographic strip assay and loop-mediated isothermal amplification (LAMP) were used for screening.
Results
Overall, the rate of DENV infection in both human sera and pooled mosquito homogenate was 33.3%, as revealed by rapid dipstick immunochromatographic analysis. However, higher detection rates were observed with RT-LAMP assay of 60.8% and 44.4% for humans and vector mosquitoes, respectively. DENV-1 was the most prevalent serotype in both populations. A combination of two, three, or even four circulating serotypes was found in 87.5% of total positive pooled mosquito samples and 83.87% of DENV-positive human sera.
Conclusion
The study reinforces the evidence of the reemergence of Aedes aegypti in Upper Egypt, inducing an outbreak of DENV. Mosquito-based surveillance of DENV infection is important to elucidate the viral activity rate and define serotype diversity to understand the virus dynamics in the reinfested area. Up to our knowledge, this is the first report of serotyping of DENV infection in an outbreak in Egypt using RT-LAMP assay.
Collapse
Affiliation(s)
- Mona Gaber
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Asmaa M. El-Kady
- Department of Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mohammed Tolba
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Shereen M. Mohammed
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nahed Ahmed Elossily
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
40
|
Jiang L, Liu Y, Su W, Cao Y, Jing Q, Wu X, Yang Z. Circulation of genotypes of dengue virus serotype 2 in Guangzhou over a period of 20 years. Virol J 2022; 19:47. [PMID: 35303899 PMCID: PMC8931567 DOI: 10.1186/s12985-022-01773-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background The dengue epidemic in Guangzhou has imposed a rising burden on society and health infrastructure. Here, we present the genotype data for dengue virus serotype 2 (DENV-2) to improve understanding of this dengue epidemic. Methods We sequenced the envelope gene of DENV-2 obtained from patient serum samples and subsequently performed maximum-likelihood phylogenetic analysis using PhyMLv3.1, maximum clade credibility analysis using BEAST v.1.10.4, and selection pressure analysis using Datamonkey 2.0. Results The prevalent DENV-2 strains identified in Guangzhou region are related to those in Southeast Asian countries. In particular, the Malaysia/Indian subcontinent genotype is prevailing in Guangzhou with no apparent genotype shift having occurred over the past 20 years. However, episodic positive selection was detected at one site. Conclusions Local control of the DENV-2 epidemic in Guangzhou requires effective measures to prevent and monitor imported cases. Moreover, the shift between the Malaysia/Indian subcontinent genotype lineages, which originated at different time points, may account for the rise in DENV-2 cases in Guangzhou. Meanwhile, the low rate of dengue haemorrhagic fever in Guangzhou may be explained by the dominance of the less virulent Malaysia/Indian subcontinent genotype.
Collapse
Affiliation(s)
- Liyun Jiang
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China.
| | - Yuan Liu
- Pestcide and Disinfection Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| | - Wenzhe Su
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| | - Yimin Cao
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| | - Qinlong Jing
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| | - Xinwei Wu
- Microbiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| | - Zhicong Yang
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| |
Collapse
|
41
|
Mishra B, Aduri R. The RNA Secondary Structure Analysis Reveals Potential for Emergence of Pathogenic Flaviviruses. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:10-29. [PMID: 34694573 DOI: 10.1007/s12560-021-09502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The Flavivirus genus is divided into four groups: Mosquito-borne flaviviruses, Tick-borne flaviviruses, no-known vector flaviviruses, and Insect specific flaviviruses. Millions of people are affected worldwide every year due to the flaviviral infections. The 5' UTR of the RNA genome plays a critical role in the biology of flaviviruses. To explore any correlation between the topology of the 5' UTR and pathogenesis, a global scale study of the RNA secondary structure of different groups of flaviviruses has been conducted. We found that most of the pathogenic flaviviruses, irrespective of their mode of transmission, tend to form a Y shaped topology in the Stem loop A of the 5' UTR. Some of the current non-pathogenic flaviviruses were also observed to form Y shaped structure. Based on this study, it has been proposed that the flaviviruses having the Y shaped topology in their 5' UTR regions may have the potential to become pathogenic.
Collapse
Affiliation(s)
- Bibhudutta Mishra
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa campus, Zuarinagar, South Goa, 403726, India
- Department of Zoology, Centurion University of Technology and Management, Bhubaneswar Campus, Khurda, Jatni, 752050, Odisha, India
| | - Raviprasad Aduri
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa campus, Zuarinagar, South Goa, 403726, India.
| |
Collapse
|
42
|
Yu X, Cheng G. Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases. Viruses 2022; 14:v14020435. [PMID: 35216028 PMCID: PMC8878277 DOI: 10.3390/v14020435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging and re-emerging mosquito-borne viral diseases impose a significant burden on global public health. The most common mosquito-borne viruses causing recent epidemics include flaviviruses in the family Flaviviridae, including Dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) and Togaviridae viruses, such as chikungunya virus (CHIKV). Several factors may have contributed to the recent re-emergence and spread of mosquito-borne viral diseases. Among these important causes are the evolution of mosquito-borne viruses and the genetic mutations that make them more adaptive and virulent, leading to widespread epidemics. RNA viruses tend to acquire genetic diversity due to error-prone RNA-dependent RNA polymerases, thus promoting high mutation rates that support adaptation to environmental changes or host immunity. In this review, we discuss recent findings on the adaptive evolution of mosquito-borne viruses and their impact on viral infectivity, pathogenicity, vector fitness, transmissibility, epidemic potential and disease emergence.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
43
|
Ahmed M, Pollak NM, Hugo LE, van den Hurk AF, Hobson-Peters J, Macdonald J. Rapid molecular assays for the detection of the four dengue viruses in infected mosquitoes. Gates Open Res 2022; 6:81. [PMID: 36636741 PMCID: PMC9816563 DOI: 10.12688/gatesopenres.13534.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The pantropic emergence of severe dengue disease can partly be attributed to the co-circulation of different dengue viruses (DENVs) in the same geographical location. Effective monitoring for circulation of each of the four DENVs is critical to inform disease mitigation strategies. In low resource settings, this can be effectively achieved by utilizing inexpensive, rapid, sensitive and specific assays to detect viruses in mosquito populations. In this study, we developed four rapid DENV tests with direct applicability for low-resource virus surveillance in mosquitoes. The test protocols utilize a novel sample preparation step, a single-temperature isothermal amplification, and a simple lateral flow detection. Analytical sensitivity testing demonstrated tests could detect down to 1,000 copies/µL of virus-specific DENV RNA, and analytical specificity testing indicated tests were highly specific for their respective virus, and did not detect closely related flaviviruses. All four DENV tests showed excellent diagnostic specificity and sensitivity when used for detection of both individually infected mosquitoes and infected mosquitoes in pools of uninfected mosquitoes. With individually infected mosquitoes, the rapid DENV-1, -2 and -3 tests showed 100% diagnostic sensitivity (95% CI = 69% to 100%, n=8 for DENV-1; n=10 for DENV 2,3) and the DENV-4 test showed 92% diagnostic sensitivity (CI: 62% to 100%, n=12) along with 100% diagnostic specificity (CI: 48-100%) for all four tests. Testing infected mosquito pools, the rapid DENV-2, -3 and -4 tests showed 100% diagnostic sensitivity (95% CI = 69% to 100%, n=10) and the DENV-1 test showed 90% diagnostic sensitivity (55.50% to 99.75%, n=10) together with 100% diagnostic specificity (CI: 48-100%). Our tests reduce the operational time required to perform mosquito infection status surveillance testing from > two hours to only 35 minutes, and have potential to improve accessibility of mosquito screening, improving monitoring and control strategies in low-income countries most affected by dengue outbreaks.
Collapse
Affiliation(s)
- Madeeha Ahmed
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Nina M Pollak
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,DMTC Limited, Hawthorn, Victoria, 3122, Australia
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Joanne Macdonald
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,DMTC Limited, Hawthorn, Victoria, 3122, Australia
| |
Collapse
|
44
|
OUP accepted manuscript. Trans R Soc Trop Med Hyg 2022; 116:900-909. [DOI: 10.1093/trstmh/trac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/11/2021] [Accepted: 01/09/2022] [Indexed: 11/13/2022] Open
|
45
|
Ahmed M, Pollak NM, Hugo LE, van den Hurk AF, Hobson-Peters J, Macdonald J. Rapid molecular assays for the detection of the four dengue viruses in infected mosquitoes. Gates Open Res 2022; 6:81. [PMID: 36636741 PMCID: PMC9816563 DOI: 10.12688/gatesopenres.13534.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 01/16/2023] Open
Abstract
The pantropic emergence of severe dengue disease can partly be attributed to the co-circulation of different dengue viruses (DENVs) in the same geographical location. Effective monitoring for circulation of each of the four DENVs is critical to inform disease mitigation strategies. In low resource settings, this can be effectively achieved by utilizing inexpensive, rapid, sensitive and specific assays to detect viruses in mosquito populations. In this study, we developed four rapid DENV tests with direct applicability for low-resource virus surveillance in mosquitoes. The test protocols utilize a novel sample preparation step, a single-temperature isothermal amplification, and a simple lateral flow detection. Analytical sensitivity testing demonstrated tests could detect down to 1,000 copies/µL of virus-specific DENV RNA, and analytical specificity testing indicated tests were highly specific for their respective virus, and did not detect closely related flaviviruses. All four DENV tests showed excellent diagnostic specificity and sensitivity when used for detection of both individually infected mosquitoes and infected mosquitoes in pools of uninfected mosquitoes. With individually infected mosquitoes, the rapid DENV-1, -2 and -3 tests showed 100% diagnostic sensitivity (95% CI = 69% to 100%, n=8 for DENV-1; n=10 for DENV 2,3) and the DENV-4 test showed 92% diagnostic sensitivity (CI: 62% to 100%, n=12) along with 100% diagnostic specificity (CI: 48-100%) for all four tests. Testing infected mosquito pools, the rapid DENV-2, -3 and -4 tests showed 100% diagnostic sensitivity (95% CI = 69% to 100%, n=10) and the DENV-1 test showed 90% diagnostic sensitivity (55.50% to 99.75%, n=10) together with 100% diagnostic specificity (CI: 48-100%). Our tests reduce the operational time required to perform mosquito infection status surveillance testing from > two hours to only 35 minutes, and have potential to improve accessibility of mosquito screening, improving monitoring and control strategies in low-income countries most affected by dengue outbreaks.
Collapse
Affiliation(s)
- Madeeha Ahmed
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Nina M Pollak
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,DMTC Limited, Hawthorn, Victoria, 3122, Australia
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Joanne Macdonald
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,DMTC Limited, Hawthorn, Victoria, 3122, Australia
| |
Collapse
|
46
|
Dengue Infection Susceptibility of Five Aedes aegypti Populations from Manaus (Brazil) after Challenge with Virus Serotypes 1–4. Viruses 2021; 14:v14010020. [PMID: 35062224 PMCID: PMC8781997 DOI: 10.3390/v14010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 01/20/2023] Open
Abstract
The successful spread and maintenance of the dengue virus (DENV) in mosquito vectors depends on their viral infection susceptibility, and parameters related to vector competence are the most valuable for measuring the risk of viral transmission by mosquitoes. These parameters may vary according to the viral serotype in circulation and in accordance with the geographic origin of the mosquito population that is being assessed. In this study, we investigated the effect of DENV serotypes (1–4) with regards to the infection susceptibility of five Brazilian Ae. aegypti populations from Manaus, the capital of the state of Amazonas, Brazil. Mosquitoes were challenged by oral infection with the DENV serotypes and then tested for the presence of the arbovirus using quantitative PCR at 14 days post-infection, which is the time point that corresponds to the extrinsic incubation period of Ae. aegypti when reared at 28 °C. Thus, we were able to determine the infection patterns for DENV-1, -2, -3 and -4 in the mosquito populations. The mosquitoes had both interpopulation and inter-serotype variation in their viral susceptibilities. All DENV serotypes showed a similar tendency to accumulate in the body in a greater amount than in the head/salivary gland (head/SG), which does not occur with other flaviviruses. For DENV-1, DENV-3, and DENV-4, the body viral load varied among populations, but the head/SG viral loads were similar. Differently for DENV-2, both body and head/SG viral loads varied among populations. As the lack of phenotypic homogeneity represents one of the most important reasons for the long-term fight against dengue incidence, we expect that this study will help us to understand the dynamics of the infection patterns that are triggered by the distinct serotypes of DENV in mosquitoes.
Collapse
|
47
|
Norshidah H, Vignesh R, Lai NS. Updates on Dengue Vaccine and Antiviral: Where Are We Heading? Molecules 2021; 26:molecules26226768. [PMID: 34833860 PMCID: PMC8620506 DOI: 10.3390/molecules26226768] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Approximately 100–400 million people from more than 100 countries in the tropical and subtropical world are affected by dengue infections. Recent scientific breakthroughs have brought new insights into novel strategies for the production of dengue antivirals and vaccines. The search for specific dengue inhibitors is expanding, and the mechanisms for evaluating the efficacy of novel drugs are currently established, allowing for expedited translation into human trials. Furthermore, in the aftermath of the only FDA-approved vaccine, Dengvaxia, a safer and more effective dengue vaccine candidate is making its way through the clinical trials. Until an effective antiviral therapy and licensed vaccine are available, disease monitoring and vector population control will be the mainstays of dengue prevention. In this article, we highlighted recent advances made in the perspectives of efforts made recently, in dengue vaccine development and dengue antiviral drug.
Collapse
Affiliation(s)
- Harun Norshidah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia
| | - Ramachandran Vignesh
- Faculty of Medicine, Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Correspondence:
| |
Collapse
|
48
|
Calvez E, Bounmany P, Balière C, Somlor S, Viengphouthong S, Xaybounsou T, Keosenhom S, Fangkham K, Brey PT, Caro V, Lacoste V, Grandadam M. Using Background Sequencing Data to Anticipate DENV-1 Circulation in the Lao PDR. Microorganisms 2021; 9:microorganisms9112263. [PMID: 34835389 PMCID: PMC8617722 DOI: 10.3390/microorganisms9112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Since its first detection in 1979, dengue fever has been considered a major public health issue in the Lao People’s Democratic Republic (PDR). Dengue virus (DENV) serotype 1 was the cause of an epidemic in 2010–2011. Between 2012 and 2020, major outbreaks due successively to DENV-3, DENV-4 and recently DENV-2 have been recorded. However, DENV-1 still co-circulated in the country over this period. Here, we summarize epidemiological and molecular data of DENV-1 between 2016 and 2020 in the Lao PDR. Our data highlight the continuous circulation of DENV-1 in the country at levels ranging from 16% to 22% among serotyping tests. In addition, the phylogenetic analysis has revealed the circulation of DENV-1 genotype I at least since 2008 with a co-circulation of different clusters. Sequence data support independent DENV-1 introductions in the Lao PDR correlated with an active circulation of this serotype at the regional level in Southeast Asia. The maintenance of DENV-1 circulation over the last ten years supports a low level of immunity against this serotype within the Lao population. Thereby, the risk of a DENV-1 epidemic cannot be ruled out in the future, and this emphasizes the importance of maintaining an integrated surveillance approach to prevent major outbreaks.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
- Correspondence:
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Charlotte Balière
- Environment and Infectious Risks Unit, Institut Pasteur, 75015 Paris, France; (C.B.); (V.C.)
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Kitphithak Fangkham
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
- Lao Army Institute for Preventive Medicine, Vientiane 01030, Laos
| | - Paul T. Brey
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Laos, Vientiane 01030, Laos;
| | - Valérie Caro
- Environment and Infectious Risks Unit, Institut Pasteur, 75015 Paris, France; (C.B.); (V.C.)
| | - Vincent Lacoste
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| |
Collapse
|
49
|
Nunes PCG, Lima MRQ, Dos Santos FB. Molecular Diagnosis of Dengue. Methods Mol Biol 2021; 2409:157-171. [PMID: 34709641 DOI: 10.1007/978-1-0716-1879-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Several protocols for genomic amplification using reverse transcription followed by polymerase chain reaction (RT-PCR), important in the identification of the infecting serotype, have been used in the rapid diagnosis of Dengue Virus (DENV) infections. The qualitative protocol described by Lanciotti et al. (J Clin Microbiol 30: 545-551, 1992) suggested by WHO detects the four DENV serotypes simultaneously in one procedure "semi-nested," generating amplified products with specific sizes in base pairs for each serotype and it has been the most used in the past two decades. However, advances in molecular diagnosis have enabled the development of RT-PCR in real time (qRT-PCR) based on the use of dyes and probes (SYBR green and TaqMan), which is performed in a single step and is capable of providing quantitative data. In addition to quantification, the advantages of qRT-PCR over conventional RT-PCR include speed, greater sensitivity and specificity, and low rate of false positives. Several protocols for the diagnosis and/or quantification of DENV have already been described. Non-PCR-based methods such as reverse transcription loop-mediated isothermal amplification have shown high sensitivities and specificities. RT-PCR and qRT-PCR techniques can be performed using serum, plasma, infected cells, mosquitoes, fresh, and paraffin-embedded tissues. However, despite fast and accurate, they are limited to samples collected during the acute phase of infection (up to 7 days after the onset of symptoms) and require specialized equipment and trained staff.
Collapse
Affiliation(s)
- Priscila C G Nunes
- Superintendência de Informações Estratégicas de Vigilância em Saúde (SIEVS/RJ), Secretaria Estadual de Saúde, Rio de Janeiro, Brazil.,Laboratório Municipal de Saúde Pública (LASP), Laboratório de Virologia e Biotério, Subsecretaria de Vigilância, Fiscalização Sanitária e Controle de Zoonoses, Rio de Janeiro, Brazil
| | - Monique R Q Lima
- Laboratório Estratégico de Diagnóstico (LED), Centro de Desenvolvimento Científico,, Instituto Butantan, São Paulo, Brazil
| | - Flávia B Dos Santos
- Laboratório de Imunologia Viral (LIV), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
50
|
Current Trends and Limitations in Dengue Antiviral Research. Trop Med Infect Dis 2021; 6:tropicalmed6040180. [PMID: 34698303 PMCID: PMC8544673 DOI: 10.3390/tropicalmed6040180] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Dengue is the most prevalent arthropod-borne viral disease worldwide and affects approximately 2.5 billion people living in over 100 countries. Increasing geographic expansion of Aedes aegypti mosquitoes (which transmit the virus) has made dengue a global health concern. There are currently no approved antivirals available to treat dengue, and the only approved vaccine used in some countries is limited to seropositive patients. Treatment of dengue, therefore, remains largely supportive to date; hence, research efforts are being intensified for the development of antivirals. The nonstructural proteins, 3 and 5 (NS3 and NS5), have been the major targets for dengue antiviral development due to their indispensable enzymatic and biological functions in the viral replication process. NS5 is the largest and most conserved nonstructural protein encoded by flaviviruses. Its multifunctionality makes it an attractive target for antiviral development, but research efforts have, this far, not resulted in the successful development of an antiviral targeting NS5. Increase in structural insights into the dengue NS5 protein will accelerate drug discovery efforts focused on NS5 as an antiviral target. In this review, we will give an overview of the current state of therapeutic development, with a focus on NS5 as a therapeutic target against dengue.
Collapse
|