1
|
Xing H, Han R, Wang Q, Sun Z, Li H. The spatio-temporal expression analysis of parathyroid hormone like hormone gene provides a new insight for bone growth of the antler tip tissue in sika deer. Anim Biosci 2024; 37:1367-1376. [PMID: 38419534 PMCID: PMC11222856 DOI: 10.5713/ab.23.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Parathyroid hormone like hormone (PTHLH), as an essential factor for bone growth, is involved in a variety of physiological processes. The aim of this study was to explore the role of PTHLH gene in the growth of antlers. METHODS The coding sequence (CDS) of PTHLH gene cDNA was obtained by cloning in sika deer (Cervus nippon), and the bioinformatics was analyzed. The quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the differences expression of PTHLH mRNA in different tissues of the antler tip at different growth periods (early period, EP; middle period, MP; late period, LP). RESULTS The CDS of PTHLH gene was 534 bp in length and encoded 177 amino acids. Predictive analysis results revealed that the PTHLH protein was a hydrophilic protein without transmembrane structure, with its secondary structure consisting mainly of random coil. The PTHLH protein of sika deer had the identity of 98.31%, 96.82%, 96.05%, and 94.92% with Cervus canadensis, Bos mutus, Oryx dammah and Budorcas taxicolor, which were highly conserved among the artiodactyls. The qRT-PCR results showed that PTHLH mRNA had a unique spatio-temporal expression pattern in antlers. In the dermis, precartilage, and cartilage tissues, the expression of PTHLH mRNA was extremely significantly higher in MP than in EP, LP (p<0.01). In the mesenchyme tissue, the expression of PTHLH mRNA in MP was significantly higher than that of EP (p<0.05), but extremely significantly lower than that of LP (p<0.01). The expression of PTHLH mRNA in antler tip tissues at all growth periods had approximately the same trend, that is, from distal to basal, it was first downregulated from the dermis to the mesenchyme and then continuously up-regulated to the cartilage tissue. CONCLUSION PTHLH gene may promote the rapid growth of antler mainly through its extensive regulatory effect on the antler tip tissue.
Collapse
Affiliation(s)
- Haihua Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Qianghui Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Zihui Sun
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| |
Collapse
|
2
|
Yang C, Gao Z, Wang Y, Zhang Q, Bai M, Yang H, Guo J, Zhang Y. Genome-wide DNA methylation analysis reveals layer-specific methylation patterns in deer antler tissue. Gene 2023; 884:147744. [PMID: 37640118 DOI: 10.1016/j.gene.2023.147744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
This paper explored using of deer antlers as a model for studying rapid growth and cartilage formation in mammals. The genes and regulatory mechanisms involved in antler chondrogenesis are poorly understood, however, previous research has suggested that DNA methylation played a key role in antler regeneration. By using fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP), this study measured DNA methylation levels in cartilage (CA) and reserve mesenchyme (RM) cells and tissues. Results showed that RM cells (RMCs) DNA methylation levels were significantly lower than those of CA, suggesting that DNA demethylation may be involved in antler fast cartilage differentiation. The study also identified 20 methylated fragments specific to RMCs or CA using the methylation-sensitive amplified polymorphism (MSAP) technique and confirmed these findings using southern blot analysis. The data provide the first experimental evidence of a link between epigenetic regulation and rapid cartilage differentiation in antlers.
Collapse
Affiliation(s)
- Chun Yang
- College of Basic Medicine, Beihua University, Jilin, PR China.
| | - Zizheng Gao
- College of Basic Medicine, Beihua University, Jilin, PR China
| | - Yukun Wang
- School of Stomatology, Beihua University, Jilin, PR China
| | - Qi Zhang
- School of Public Health, Beihua University, Jilin, PR China
| | - Muran Bai
- School of Stomatology, Beihua University, Jilin, PR China
| | - Huiran Yang
- School of Public Health, Beihua University, Jilin, PR China
| | - Junqi Guo
- The Third Clinical Medicine Affiliated to Changchun University of Chinese Medicine, Changchun, PR China.
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin, PR China.
| |
Collapse
|
3
|
Liu Q, Li J, Chang J, Guo Y, Wen D. The characteristics and medical applications of antler stem cells. Stem Cell Res Ther 2023; 14:225. [PMID: 37649124 PMCID: PMC10468909 DOI: 10.1186/s13287-023-03456-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Antlers are the only fully regenerable mammalian appendages whose annual renewal is initiated by antler stem cells (ASCs), defined as a specialized type of mesenchymal stem cells (MSCs) with embryonic stem cell properties. ASCs possess the same biological features as MSCs, including the capacity for self-renewal and multidirectional differentiation, immunomodulatory functions, and the maintenance of stem cell characteristics after multiple passages. Several preclinical studies have shown that ASCs exhibit promising potential in wound healing, bone repair, osteoarthritis, anti-tissue fibrosis, anti-aging, and hair regeneration. Medical applications based on ASCs and ASC-derived molecules provide a new source of stem cells and therapeutic modalities for regenerative medicine. This review begins with a brief description of antler regeneration and the role of ASCs. Then, the properties and advantages of ASCs are described. Finally, medical research advances regarding ASCs are summarized, and the prospects and challenges of ASCs are highlighted.
Collapse
Affiliation(s)
- Qi Liu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinghui Chang
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Guo
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dacheng Wen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Sinha S, Sparks HD, Labit E, Robbins HN, Gowing K, Jaffer A, Kutluberk E, Arora R, Raredon MSB, Cao L, Swanson S, Jiang P, Hee O, Pope H, Workentine M, Todkar K, Sharma N, Bharadia S, Chockalingam K, de Almeida LGN, Adam M, Niklason L, Potter SS, Seifert AW, Dufour A, Gabriel V, Rosin NL, Stewart R, Muench G, McCorkell R, Matyas J, Biernaskie J. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell 2022; 185:4717-4736.e25. [PMID: 36493752 PMCID: PMC9888357 DOI: 10.1016/j.cell.2022.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 08/24/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022]
Abstract
Adult mammalian skin wounds heal by forming fibrotic scars. We report that full-thickness injuries of reindeer antler skin (velvet) regenerate, whereas back skin forms fibrotic scar. Single-cell multi-omics reveal that uninjured velvet fibroblasts resemble human fetal fibroblasts, whereas back skin fibroblasts express inflammatory mediators mimicking pro-fibrotic adult human and rodent fibroblasts. Consequently, injury elicits site-specific immune responses: back skin fibroblasts amplify myeloid infiltration and maturation during repair, whereas velvet fibroblasts adopt an immunosuppressive phenotype that restricts leukocyte recruitment and hastens immune resolution. Ectopic transplantation of velvet to scar-forming back skin is initially regenerative, but progressively transitions to a fibrotic phenotype akin to the scarless fetal-to-scar-forming transition reported in humans. Skin regeneration is diminished by intensifying, or enhanced by neutralizing, these pathologic fibroblast-immune interactions. Reindeer represent a powerful comparative model for interrogating divergent wound healing outcomes, and our results nominate decoupling of fibroblast-immune interactions as a promising approach to mitigate scar.
Collapse
Affiliation(s)
- Sarthak Sinha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Holly D Sparks
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hayley N Robbins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kevin Gowing
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Arzina Jaffer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eren Kutluberk
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rohit Arora
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT, USA
| | - Leslie Cao
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Peng Jiang
- Morgridge Institute for Research, Madison, WI, USA
| | - Olivia Hee
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hannah Pope
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matt Workentine
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kiran Todkar
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nilesh Sharma
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Shyla Bharadia
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Luiz G N de Almeida
- McCaig Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laura Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Antoine Dufour
- McCaig Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Vincent Gabriel
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; McCaig Institute, University of Calgary, Calgary, AB, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Nicole L Rosin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI, USA
| | - Greg Muench
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert McCorkell
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John Matyas
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; McCaig Institute, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
| |
Collapse
|
5
|
Broggini C, Abril N, Carranza J, Membrillo A. Evaluation of candidate reference genes for quantitative real-time PCR normalization in blood from red deer developing antlers. Sci Rep 2022; 12:16264. [PMID: 36171416 PMCID: PMC9519901 DOI: 10.1038/s41598-022-20676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Sexual selection favors male traits that increase their ability to monopolize the breeding access to several females. Deer antlers are cranial appendages that regenerate annually in males. Throughout life, the phenology of antler growth advances and antler mass increases until the stag reaches, between 8 and 10 years old, maximum body mass and highest reproductive success. The molecular mechanisms of antler development are of great interest in both evolutionary and regenerative medicine studies. To minimize errors in the assessment of gene expression levels by qRT-PCR, we analyzed the stability of a panel of eight candidate reference genes and concluded that qRT-PCR normalization to three stable genes is strongly convenient in experiments performed in red deer antler blood. To validate our proposal, we compared the expression level of three genes linked to red deer antler growth (ANXA2, APOD and TPM1) in fifteen male red deer classified as young (up to 4 years old) and adults (4–6 years old). Our data confirms that B2M, ACTB and RPLP0 are valuable reference genes for future gene expression studies in red deer antler blood, which would provide increased insight into the effects of intrinsic factors that determine antler development in red deer.
Collapse
Affiliation(s)
- Camilla Broggini
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14014, Cordoba, Spain.
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14014, Cordoba, Spain
| | - Alberto Membrillo
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14014, Cordoba, Spain
| |
Collapse
|
6
|
Chen Y, Zhang Z, Zhang J, Chen X, Guo Y, Li C. RNA sequencing-based identification of microRNAs in the antler cartilage of Gansu red deer ( Cervus elaphus kansuensis). PeerJ 2022; 10:e13947. [PMID: 36164600 PMCID: PMC9508884 DOI: 10.7717/peerj.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Background The velvet antler is a complex mammalian bone organ with unique biological characteristics, such as regeneration. The rapid growth stage (RGS) is a special period in the regeneration process of velvet antler. Methods To elucidate the functions of microRNAs (miRNAs) at the RGS of antler development in Gansu red deer (Cervus elaphus kansuensis), we used RNA sequencing (RNA-seq) to analyze miRNA expression profiles in cartilage tissues of deer antler tips at three different growth stages. Results The RNA-seq results revealed 1,073 known and 204 novel miRNAs, including 1,207, 1,242, and 1,204 from 30-, 60-, and 90-d antler cartilage tissues, respectively. To identify key miRNAs controlling rapid antler growth, we predicted target genes of screened 25 differentially expressed miRNAs (DEMs) and specifically expressed miRNAs (SEMs) in 60 d and annotated their functions. The KEGG results revealed that target genes of 25 DEMs and 30 SEMs were highly classified in the "Metabolic pathways", "Pathways in cancer", "Proteoglycans in cancer" and "PI3K-Akt signaling pathway". In addition, a novel miRNA (CM008039.1_315920), highly enriched in "NF-kappa B signaling pathway", may need further study. Conclusions The miRNAs identified in our study are potentially important in rapid antler growth. Our findings provide new insights to help elucidate the miRNA-mediated regulatory mechanisms involved during velvet antler development in C. elaphus kansuensis.
Collapse
Affiliation(s)
- Yanxia Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Zhenxiang Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Jingjing Zhang
- School of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Xiaxia Chen
- School of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Yuqin Guo
- Research Monitoring and Evaluation Center of Qinghai National Park, Xining, Qinghai, China
| | - Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
7
|
Xue Y, Reddy SK, Garza LA. Toward Understanding Wound Immunology for High-Fidelity Skin Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a041241. [PMID: 35667792 PMCID: PMC9248820 DOI: 10.1101/cshperspect.a041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Effective tissue repair is vital for the survival of organisms. Yet, how the immune system coordinates with tissue stem cells (SCs) to effect postnatal tissue restoration remains elusive. This review presents current knowledge surrounding wound-induced SC and immune signaling that favors tissue repair, including wound healing and regeneration. We discuss factors that affect regenerative capacities among organisms and the dynamics of local immune cells and SCs during reepithelialization. We also present recent insights into how immune niches communicate with SCs or other body systems to restore the epithelial architecture. Additionally, we summarize our findings on functional wound regeneration, specifically how alarmin (double-stranded RNA [dsRNA])-activated Toll-like receptor signaling and host-microbe interaction-related immune pathways alter the regenerative property of skin SCs. Last, we touch on mechanisms by which known immunologic cellular and molecular signaling might boost the skin's regenerative property. Overall, this review will provide insights into how therapeutically modulating immune signaling could enhance postnatal tissue regeneration.
Collapse
Affiliation(s)
| | - Sashank K Reddy
- Department of Plastic and Reconstructive Surgery
- Department of Biomedical Engineering
- Institute for NanoBioTechnology
| | - Luis A Garza
- Department of Dermatology
- Department of Cell Biology
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| |
Collapse
|
8
|
Guo Q, Zheng J, Ba H, Sun H, Zhai J, Wang W, Li C. Calreticulin Identified as One of the Androgen Response Genes That Trigger Full Regeneration of the Only Capable Mammalian Organ, the Deer Antler. Front Cell Dev Biol 2022; 10:862841. [PMID: 35769266 PMCID: PMC9235033 DOI: 10.3389/fcell.2022.862841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Deer antlers are male secondary sexual characters that develop to become bone; they are unique appendages that, once lost, can fully regenerate from the permanent bony protuberances or pedicles. Pedicle periosteum (PP) is the tissue that gives rise to the regenerating antlers with three differentiation stages, namely, dormant (DoPP), potentiated (PoPP), and activated (AcPP). Thus far, the transition from the PoPP to the AcPP has not been studied. Our results showed that the AcPP cells maintained their original stem cell features by expressing mesenchymal stem cell (MSC) markers CD73, CD90, and CD105, although they had entered the proliferation mode. The differentially expressed genes (DEGs) in the AcPP compared with those of the PoPP were mainly involved in protein processing, cell cycle, and calcium signaling pathways. Calreticulin (CALR), an androgen response gene, was significantly differentially upregulated in the AcPP cells, and its expression level was negatively regulated by androgens, in contrast to the currently known model systems where all regulation is positive. The downregulation of CALR expression in the AcPP cells in vitro inhibited cell proliferation, induced apoptosis, and inhibited cell cycle progression at G1-S transition. Therefore, CALR is likely a downstream mediator of androgen hormones for triggering initiation of antler regeneration. We believe that the identification of CALR has not only discovered “one critical piece” of the “jigsaw puzzle” in the initiation of antler regeneration but also helps in revealing the mechanism underlying this unique mammalian epimorphic regeneration and has also opened a new avenue for the study of the nature of CALR regulation by androgen (putative binding partners), thus facilitating the identification of potential molecule(s) for investigation as targets for clinical evaluation.
Collapse
Affiliation(s)
- Qianqian Guo
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Jilin, China
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Junjun Zheng
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Jilin, China
| | - Hongmei Sun
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Jingjie Zhai
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Hospital of Stomatology, Jilin University, Jilin, China
| | - Wenying Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Jilin, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Jilin, China
- *Correspondence: Chunyi Li,
| |
Collapse
|
9
|
MIC-1 Antlerogenic Stem Cells Homogenate from Cervus elaphus Accelerate Corneal Burn Reepithelization in Rabbits. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deer antler is the only mammalian organ that can fully grow back once lost from its pedicle. Antler regeneration is a stem cell-based process. Therefore, antlers probably offer the most pertinent model for studying organ regeneration in mammals. Evaluation of the effect of deer antler stem cells on the healing of superficial and deep rabbit corneal wounds was performed. Thirty-six New Zealeand White rabbits were used in this study in superficial and deep denaturation models, and corneal erosion was performed with n-heptanol placed on the cornea for 30 and NaOH for 90 s. Antler stem cells in drop formulation with hyaluronate was used. As a control, sodium hyaluronate in the superficial model and protein-free calf blood dialysate (Solcoseryl) in the deep model were administered. In superficial corneal damage, a reduction in the area of the damaged cornea was observed from day 3 of the experiment to an adequate level: 45% in the test group and 52% in the control group relative to the baseline damage (100%). Between days 3 and 7, on average, a smaller lesion area was observed in the group receiving antler stem cells. The use of antler stem cells has resulted in a marked improvement in cornea clarity. According to the 5-point scale of corneal opacity evaluation, where 1 is completely clear and 5 is completely opaque, the first statistically significant changes were observed after 4 weeks of treatment: 3.0 in the study group, 4.1 in the control with Solcoseryl, and 4.4 in the control group. After 9 weeks, these values were, 2.5, 3.8, and 4.1, respectively. The present preliminary study shows the promising results of antlerogenic stem cells of Cervus elaphus topically applied for the treatment of corneal injury. A deeper understanding of the developmental mechanisms involved in antler renewal can be useful for controlling regeneration cornea processes.
Collapse
|
10
|
Guo Q, Liu Z, Zheng J, Zhao H, Li C. Substances for regenerative wound healing during antler renewal stimulated scar-less restoration of rat cutaneous wounds. Cell Tissue Res 2021; 386:99-116. [PMID: 34390408 DOI: 10.1007/s00441-021-03505-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Scarification is the outcome of cutaneous wound healing under normal conditions. Although considerable effort has been expended in this field, scar-less healing has not been achieved satisfactorily. The lack of a good model of scar-free healing has contributed to this undesirable situation. However, the annual regeneration of deer antlers, which starts from regenerative wound healing over the top of the pedicles (permanent bony protuberances), may provide such a model. Therefore, in this study, we investigated the process of pedicle wound healing at the organ, tissue, cell, and molecular levels. Our results convincingly demonstrate that wounds over the pedicle preceded a regenerative healing process including regeneration of skin appendages, such as hair follicles. Compared to the scar healing in rats, regenerative healing of the pedicle wound exhibited a weaker inflammatory response, lack of myofibroblast induction, and higher ratios of Col III/Col I, TGF-β3/TGF-β1, and MMP/TIMP. Importantly, our periosteal transplantation experiments in vivo revealed that this regenerative healing process was achieved through induction of antler stem cells (ASCs). Further study showed that this effect of ASCs on regenerative healing was not species-specific but more generic and could be applied to other mammalian species, as injection of ASCs stimulated regenerative healing of full-thickness excisional cutaneous wounds in rats. Overall, our findings show that ASCs may have therapeutic potential in enhancing the quality of wound healing and preventing scar formation in clinical settings.
Collapse
Affiliation(s)
- Qianqian Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin, 130112, China
| | - Zhen Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin, 130112, China
| | - Junjun Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin, 130112, China
| | - Haiping Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin, 130112, China.
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, 130600, China.
| |
Collapse
|
11
|
Dong Z, Coates D. Bioactive Molecular Discovery Using Deer Antlers as a Model of Mammalian Regeneration. J Proteome Res 2021; 20:2167-2181. [PMID: 33769828 DOI: 10.1021/acs.jproteome.1c00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability to activate and regulate stem cells during wound healing and tissue regeneration is a promising field that is resulting in innovative approaches in the field of regenerative medicine. The regenerative capacity of invertebrates has been well documented; however, in mammals, stem cells that drive organ regeneration are rare. Deer antlers are the only known mammalian structure that can annually regenerate to produce a tissue containing dermis, blood vessels, nerves, cartilage, and bone. The neural crest derived stem cells that drive this process result in antlers growing at up to 2 cm/day. Deer antlers thus provide superior attributes compared to lower-order animal models, when investigating the regulation of stem cell-based regeneration. Antler stem cells can therefore be used as a model to investigate the bioactive molecules, biological processes, and pathways involved in the maintenance of a stem cell niche, and their activation and differentiation during organ formation. This review examines stem cell-based regeneration with a focus on deer antlers, a neural crest stem cell-based mammalian regenerative structure. It then discusses the omics technical platforms highlighting the proteomics approaches used for investigating the molecular mechanisms underlying stem cell regulation in antler tissues.
Collapse
Affiliation(s)
- Zhen Dong
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
12
|
Yao B, Zhou Z, Zhang M, Leng X, Zhao D. Investigating the molecular control of deer antler extract on articular cartilage. J Orthop Surg Res 2021; 16:8. [PMID: 33407721 PMCID: PMC7788833 DOI: 10.1186/s13018-020-02148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deer antler is considered as a precious traditional Chinese medicinal material and has been widely used to reinforce kidney's yang, nourish essence, and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage. METHODS DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks, and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay was carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage. RESULTS We demonstrated that DAE significantly increased the expression levels of functional genes involved in cartilage formation, growth, and repair and decreased the expression levels of susceptibility genes involved in the pathophysiology of osteoarthritis. CONCLUSIONS DAE might serve as a candidate supplement for maintaining cartilage homeostasis and preventing cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation, and differentiation and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of cartilage-related diseases.
Collapse
Affiliation(s)
- Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
13
|
Kierdorf U, Kierdorf H. Bilateral antler sequestration above the coronet in a red deer (Cervus elaphus) stag-Insights into the process of antler casting. Anat Histol Embryol 2020; 50:422-428. [PMID: 33128478 DOI: 10.1111/ahe.12629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 11/27/2022]
Abstract
This paper reports a case of delayed velvet shedding and bilateral premature antler casting above the coronets in a young adult red deer stag from Germany. Based on the established role of testosterone in the control of the antler cycle, the antler abnormality is considered to have been the result of a (temporary) androgen deficiency. The basal surfaces (separation planes or seals) of the cast antlers were markedly concave. Scanning electron microscopy revealed that the separation plane was densely covered with Howship's lacunae, denoting intense osteoclastic activity along the border between the proximal (living) and distal (dead) antler portions. Our observations and those of previous studies indicate that antler casting does not occur at a pre-determined separation plane, but along the border between living and dead bone, regardless of the position of this border within the cranial appendages. This is a major difference to autotomy of (living) appendages at fixed breakage planes, as it occurs for instance in lizard tails.
Collapse
Affiliation(s)
- Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
14
|
The Antler Cycle and Fecal Testosterone of Male Sambar Deer Rusa unicolor unicolor at the Horton Plains National Park in Sri Lanka. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6903407. [PMID: 32626755 PMCID: PMC7306847 DOI: 10.1155/2020/6903407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/09/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022]
Abstract
This study is aimed at evaluating the relationship between endogenous testosterone levels and antler development in male sambar deer (Rusa unicolor unicolor) inhabiting the Horton Plains National Park, Sri Lanka. Seven antler growth stages of sambar were documented based on phenotypic observations for the first time in Sri Lanka as (a) cast, (b) growing 1—single spike, (c) growing 2—antler fork into a Y as the second tine appears, (d) growing 3—velvet begins to harden as the third tine appears, (e) growth completed—velvet shedding begins, (f) hard antler, and (g) casting. Fecal samples were collected every month for a period of eighteen months from male sambar deer in different stages of the antler growth cycle, feeding in the wet patana grasslands of the park, and the fecal testosterone level was estimated by radioimmunoassay. Ten animals were randomly selected from each antler stage for the experiment. The results disclose that the highest concentrations of testosterone were recorded in the hard antler stage. Velvet shedding was preceded by an increase in the testosterone level, and it is the sudden drop in the testosterone concentration which triggers the antler casting. The casting stage corresponded with the lowest mean testosterone concentration. Although the study was able to conclude a clear relationship between the fecal testosterone levels of the male sambar deer in the Horton Plains National Park and their antler stages, there is no clear seasonality for the antler cycle.
Collapse
|
15
|
Lin Z, Chen L, Chen X, Zhong Y, Yang Y, Xia W, Liu C, Zhu W, Wang H, Yan B, Yang Y, Liu X, Sternang Kvie K, Røed KH, Wang K, Xiao W, Wei H, Li G, Heller R, Gilbert MTP, Qiu Q, Wang W, Li Z. Biological adaptations in the Arctic cervid, the reindeer ( Rangifer tarandus). Science 2020; 364:364/6446/eaav6312. [PMID: 31221829 DOI: 10.1126/science.aav6312] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/16/2019] [Indexed: 12/23/2022]
Abstract
The reindeer is an Arctic species that exhibits distinctive biological characteristics, for which the underlying genetic basis remains largely unknown. We compared the genomes of reindeer against those of other ruminants and nonruminant mammals to reveal the genetic basis of light arrhythmicity, high vitamin D metabolic efficiency, the antler growth trait of females, and docility. We validate that two reindeer vitamin D metabolic genes (CYP27B1 and POR) show signs of positive selection and exhibit higher catalytic activity than those of other ruminants. A mutation upstream of the reindeer CCND1 gene endows an extra functional binding motif of the androgen receptor and thereby may result in female antlers. Furthermore, a mutation (proline-1172→threonine) in reindeer PER2 results in loss of binding ability with CRY1, which may explain circadian arrhythmicity in reindeer.
Collapse
Affiliation(s)
- Zeshan Lin
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xianqing Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yingbin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yue Yang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenhao Xia
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chang Liu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenbo Zhu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Biyao Yan
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yifeng Yang
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kjersti Sternang Kvie
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo 0102, Norway
| | - Knut Håkon Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo 0102, Norway
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haijun Wei
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Guangyu Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim 7491, Norway
| | - Qiang Qiu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhipeng Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
16
|
Bi X, Zhai J, Xia Y, Li H. Analysis of genetic information from the antlers of Rangifer tarandus (reindeer) at the rapid growth stage. PLoS One 2020; 15:e0230168. [PMID: 32168333 PMCID: PMC7069613 DOI: 10.1371/journal.pone.0230168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/21/2020] [Indexed: 01/22/2023] Open
Abstract
Reindeer is the only deer species in which both males and females regularly grow antlers, providing an excellent model for studying the rapid growth and annual regeneration of antlers. The study of genetic information from reindeer is the basis for revealing the unique mechanism of antler growth. In the present study, we obtained 18.86 GB of clean reads, which were assembled to obtain 94,575 unigenes (average length: 704.69). Among these reads, 30,980 sequences were identified by searching a database of known proteins and then annotated with Gene Ontology (GO) terms, Clusters of Orthologous Groups (COG) classifications and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. All 7,480 simple sequence repeats (SSRs) were detected. A total of 84,435 and 82,226 high-quality single-nucleotide polymorphisms (SNPs) were identified in male and female reindeer, respectively. We identified 31 genes that were highly expressed in reindeer antlers. These genes regulate cell activities that are closely associated with the process of rapid tissue growth. Our results provide a basis for studying reindeer antlers and for further studying the molecular genetics, population genetics, and functional genomics of reindeer.
Collapse
Affiliation(s)
- Xiaodan Bi
- College of Wildlife and Protected Area, Northeast Forestry University, Xiangfang District, China
- College of Chemistry and Life Science, Chifeng University, Hongshan District, China
| | - Jiancheng Zhai
- College of Wildlife and Protected Area, Northeast Forestry University, Xiangfang District, China
- School of Earth Sciences, East China University of Technology, China
| | - Yanling Xia
- College of Wildlife and Protected Area, Northeast Forestry University, Xiangfang District, China
- School of Earth Sciences, East China University of Technology, China
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Xiangfang District, China
- * E-mail:
| |
Collapse
|
17
|
Dong Z, Haines S, Coates D. Proteomic Profiling of Stem Cell Tissues during Regeneration of Deer Antler: A Model of Mammalian Organ Regeneration. J Proteome Res 2020; 19:1760-1775. [DOI: 10.1021/acs.jproteome.0c00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhen Dong
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Stephen Haines
- Proteins & Metabolites, AgResearch Lincoln Research Centre, Lincoln, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Landete-Castillejos T, Kierdorf H, Gomez S, Luna S, García AJ, Cappelli J, Pérez-Serrano M, Pérez-Barbería J, Gallego L, Kierdorf U. Antlers - Evolution, development, structure, composition, and biomechanics of an outstanding type of bone. Bone 2019; 128:115046. [PMID: 31446115 DOI: 10.1016/j.bone.2019.115046] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Antlers are bony appendages of deer that undergo periodic regeneration from the top of permanent outgrowths (the pedicles) of the frontal bones. Of the "less familiar" bone types whose study was advocated by John Currey to gain a better understanding of structure-function relationships of mineralized tissues and organs, antlers were of special interest to him. The present review summarizes our current knowledge about the evolution, development, structure, mineralization, and biomechanics of antlers and how their formation is affected by environmental factors like nutrition. Furthermore, the potential role of antlers as a model in bone biology and several fields of biomedicine as well as their use as a monitoring tool in environmental studies are discussed.
Collapse
Affiliation(s)
- T Landete-Castillejos
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
| | - H Kierdorf
- Department of Biology, University of Hildesheim, 31141 Hildesheim, Germany
| | - S Gomez
- Universidad de Cádiz, 11071 Cádiz, Spain
| | - S Luna
- Universidad de Cádiz, 11071 Cádiz, Spain
| | - A J García
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - J Cappelli
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - M Pérez-Serrano
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - J Pérez-Barbería
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - L Gallego
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - U Kierdorf
- Department of Biology, University of Hildesheim, 31141 Hildesheim, Germany
| |
Collapse
|
19
|
Contreras-Moreno FM, Hidalgo-Mihart MG, Jesus-de la Cruz A, Juárez-López R, Bravata-de la Cruz Y, Chahín-Perdomo A. Seasonal antler cycle in white-tailed deer in Campeche wetlands in Southeastern Mexico. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Ceacero F, Villagrán M, Gambín-Pozo P, García AJ, Cappelli J, Ungerfeld R. Better antlers when surrounded by females? The social context influence antler mineralization in pampas deer (Ozotozeros bezoarticus). ETHOL ECOL EVOL 2019. [DOI: 10.1080/03949370.2019.1620340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Francisco Ceacero
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 961/129, 165 21 Praha 6-Suchdol, Prague, Czech Republic
| | - Matías Villagrán
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, Montevideo 11600, Uruguay
| | - Pablo Gambín-Pozo
- Animal Science Techniques Applied to Wildlife Management Research Group, IREC Section Albacete (CSIC-UCLM-JCCM), Campus UCLM, Albacete 02071, Spain
- Sección de Recursos Cinegéticos y Ganaderos, IDR, Universidad de Castilla-La Mancha, Albacete 02071, Spain
- Departamento de Ciencia y Tecnología Agroforestal y Genética, ETSIAM, Universidad de Castilla-La Mancha, Albacete 02071, Spain
| | - Andrés J. García
- Animal Science Techniques Applied to Wildlife Management Research Group, IREC Section Albacete (CSIC-UCLM-JCCM), Campus UCLM, Albacete 02071, Spain
- Sección de Recursos Cinegéticos y Ganaderos, IDR, Universidad de Castilla-La Mancha, Albacete 02071, Spain
- Departamento de Ciencia y Tecnología Agroforestal y Genética, ETSIAM, Universidad de Castilla-La Mancha, Albacete 02071, Spain
| | - Jamil Cappelli
- Animal Science Techniques Applied to Wildlife Management Research Group, IREC Section Albacete (CSIC-UCLM-JCCM), Campus UCLM, Albacete 02071, Spain
- Sección de Recursos Cinegéticos y Ganaderos, IDR, Universidad de Castilla-La Mancha, Albacete 02071, Spain
- Departamento de Ciencia y Tecnología Agroforestal y Genética, ETSIAM, Universidad de Castilla-La Mancha, Albacete 02071, Spain
| | - Rodolfo Ungerfeld
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, Montevideo 11600, Uruguay
| |
Collapse
|
21
|
Wang D, Berg D, Ba H, Sun H, Wang Z, Li C. Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ-deer antler. Cell Death Dis 2019; 10:443. [PMID: 31165741 PMCID: PMC6549167 DOI: 10.1038/s41419-019-1686-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/19/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022]
Abstract
Deer antlers are extraordinary mammalian organs that can fully regenerate annually. Antler renewal is a stem cell-based epimorphic process and antler stem (AS) cells can initiate de novo generation of antlers in postnatal mammals. However, although being called stem cells, the AS cells have not been characterized at molecular level based on the stem cell criteria. Comprehensive characterization of the AS cells would undoubtedly help to decipher the mechanism underlying the full regeneration of deer antlers, the only case of stem cell-based epimorphic regeneration in mammals. In the present study, three types of AS cells (antlerogenic periosteal cells APCs, for initial pedicle and first antler formation; pedicle periosteal cells PPC, for annual antler regeneration; and reserve mesenchyme cells RMCs, for rapid antler growth), were isolated for comprehensive molecular characterization. A horn-growth-related gene, RXFP2, was found to be expressed only in AS cells lineages but not in the facial periosteal cells (FPCs, locates geographically in the vicinity of the APCs or PPCs), suggesting the RXFP2 might be a specific marker for the AS cell lineage in deer. Our results demonstrated that AS cells expressed classic MSC markers including surface markers CD73, CD90, CD105 and Stro-1. They also expressed some of the markers including Tert, Nestin, S100A4, nucleostemin and C-Myc, suggesting that they have some attributes of the ESCs. Microinjection of male APC into deer blastocysts resulted in one female foetus (110 days gestation) recovered with obvious pedicle primordia with both male and female genotype detected in the ovary. In conclusion, the AS cells should be defined as MSCs but with partial attributes of ESCs.
Collapse
Affiliation(s)
- Datao Wang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Debbie Berg
- AgResearch Ltd, Ruakura Agricultural Centre, 10 Bisley Road, Hamilton, 3214, New Zealand
| | - Hengxing Ba
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Hongmei Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Zhen Wang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China. .,Changchun Sci-Tech University, Changchun, 130600, China.
| |
Collapse
|
22
|
Zhai JC, Han RB, Wang SN, Wang QH, Xia YL, Liu WS, Yin YJ, Li HP. DNA methylation and mRNA expression of COL6A3 in antler mesenchyme of female and male reindeer. Genes Genomics 2019; 41:1007-1013. [PMID: 31134592 DOI: 10.1007/s13258-019-00829-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUD Reindeer is the only deer species that both male and female produce antlers, which provides a particularly interesting case in studying the differences between antlers of the two sexes. Alpha 3(VI) Collagen Gene (COL6A3), forms a microfibrillar network associated with the structural integrity and biomechanical properties, has been found to be one of the differentially expressed genes in antler mesenchyme of female and male reindeer. OBJECTIVE AND METHODS The promoter sequence of reindeer COL6A3 gene was obtained using the cloning technology and analyzed by the bioinformatics methods. Bisulfite sequencing PCR (BSP) was used to detect the methylation status of the COL6A3 promoter in reindeer antler mesenchyme. Real-time quantitative PCR was used to detect COL6A3 expression in the antler mesenchyme of female and male reindeer. RESULTS Sequence analysis revealed that the reindeer COL6A3 partial promoter sequence was 983 bp including the possible promoter region at + 105 bp to + 155 bp. Homology and phylogenetic analysis indicated that the COL6A3 promoter of reindeer had the closest genetic distance with Bos taurus, Capra hircus and Ovis aries. BSP results indicated that the methylation level of COL6A3 promoter in the female reindeer antler mesenchyme was significantly higher than in the male. Correlating with increased methylation status, we also found that COL6A3 mRNA expression in female reindeer antler mesenchyme was significantly lower than in the male. CONCLUSION The higher methylation level of the COL6A3 gene in female reindeer antler mesenchyme coincides with decreased COL6A3 mRNA expression, thereby affecting the transposon silencing mechanism and possibly contributing to apparent differences of antlers in female and male reindeer.
Collapse
Affiliation(s)
- Jian-Cheng Zhai
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China.,School of Earth Sciences, East China University of Technology, Nanchang, 330013, China
| | - Ruo-Bing Han
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | - Sheng-Nan Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | - Qiang-Hui Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | - Yan-Ling Xia
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | - Wei-Shi Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | - Ya-Jie Yin
- College of Bioengineering, Daqing Normal University, Daqing, 163712, China
| | - He-Ping Li
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
23
|
Dong Z, Coates D, Liu Q, Sun H, Li C. Quantitative proteomic analysis of deer antler stem cells as a model of mammalian organ regeneration. J Proteomics 2019; 195:98-113. [DOI: 10.1016/j.jprot.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
|
24
|
Ba H, Wang D, Wu W, Sun H, Li C. Single-cell transcriptome provides novel insights into antler stem cells, a cell type capable of mammalian organ regeneration. Funct Integr Genomics 2019; 19:555-564. [DOI: 10.1007/s10142-019-00659-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
|
25
|
Wang D, Ba H, Li C, Zhao Q, Li C. Proteomic Analysis of Plasma Membrane Proteins of Antler Stem Cells Using Label-Free LC⁻MS/MS. Int J Mol Sci 2018; 19:E3477. [PMID: 30400663 PMCID: PMC6275008 DOI: 10.3390/ijms19113477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022] Open
Abstract
Deer antlers are unusual mammalian organs that can fully regenerate after annual shedding. Stem cells resident in the pedicle periosteum (PPCs) provide the main cell source for antler regeneration. Central to various cellular processes are plasma membrane proteins, but the expression of these proteins has not been well documented in antler regeneration. In the present study, plasma membrane proteins of PPCs and facial periosteal cells (FPCs) were analyzed using label-free liquid chromatography⁻mass spetrometry (LC⁻MS/MS). A total of 1739 proteins were identified. Of these proteins, 53 were found solely in the PPCs, 100 solely in the FPCs, and 1576 co-existed in both PPCs and FPCs; and 39 were significantly up-regulated in PPCs and 49 up-regulated in FPCs. In total, 226 gene ontology (GO) terms were significantly enriched from the differentially expressed proteins (DEPs). Five clusters of biological processes from these GO terms comprised responses to external stimuli, signal transduction, membrane transport, regulation of tissue regeneration, and protein modification processes. Further studies are required to demonstrate the relevancy of these DEPs in antler stem cell biology and antler regeneration.
Collapse
Affiliation(s)
- Datao Wang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Hengxing Ba
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Chenguang Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Quanmin Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- Department of Biology, Changchun Sci-Tech University, Changchun 130600, China.
| |
Collapse
|
26
|
Ker DFE, Wang D, Sharma R, Zhang B, Passarelli B, Neff N, Li C, Maloney W, Quake S, Yang YP. Identifying deer antler uhrf1 proliferation and s100a10 mineralization genes using comparative RNA-seq. Stem Cell Res Ther 2018; 9:292. [PMID: 30376879 PMCID: PMC6208050 DOI: 10.1186/s13287-018-1027-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/24/2018] [Accepted: 09/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Deer antlers are bony structures that re-grow at very high rates, making them an attractive model for studying rapid bone regeneration. METHODS To identify the genes that are involved in this fast pace of bone growth, an in vitro RNA-seq model that paralleled the sharp differences in bone growth between deer antlers and humans was established. Subsequently, RNA-seq (> 60 million reads per library) was used to compare transcriptomic profiles. Uniquely expressed deer antler proliferation as well as mineralization genes were identified via a combination of differential gene expression and subtraction analysis. Thereafter, the physiological relevance as well as contributions of these identified genes were determined by immunofluorescence, gene overexpression, and gene knockdown studies. RESULTS Cell characterization studies showed that in vitro-cultured deer antler-derived reserve mesenchyme (RM) cells exhibited high osteogenic capabilities and cell surface markers similar to in vivo counterparts. Under identical culture conditions, deer antler RM cells proliferated faster (8.6-11.7-fold increase in cell numbers) and exhibited increased osteogenic differentiation (17.4-fold increase in calcium mineralization) compared to human mesenchymal stem cells (hMSCs), paralleling in vivo conditions. Comparative RNA-seq identified 40 and 91 previously unknown and uniquely expressed fallow deer (FD) proliferation and mineralization genes, respectively, including uhrf1 and s100a10. Immunofluorescence studies showed that uhrf1 and s100a10 were expressed in regenerating deer antlers while gene overexpression and gene knockdown studies demonstrated the proliferation contributions of uhrf1 and mineralization capabilities of s100a10. CONCLUSION Using a simple, in vitro comparative RNA-seq approach, novel genes pertinent to fast bony antler regeneration were identified and their proliferative/osteogenic function was verified via gene overexpression, knockdown, and immunostaining. This combinatorial approach may be applicable to discover unique gene contributions between any two organisms for a given phenomenon-of-interest.
Collapse
Affiliation(s)
- Dai Fei Elmer Ker
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Dan Wang
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
- Department of Stomatology, Tenth People’s Hospital of Tongji University, 301 Yanchang Road, Shanghai, 200072 China
| | - Rashmi Sharma
- Department of Bioengineering, Stanford University, Shriram Center 443 Via Ortega, Stanford, CA 94305 USA
| | - Bin Zhang
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Ben Passarelli
- Scientific Computing Core, Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA 94080 USA
| | - Norma Neff
- Department of Bioengineering, Stanford University, Shriram Center 443 Via Ortega, Stanford, CA 94305 USA
| | - Chunyi Li
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun, 130112 Jilin China
| | - William Maloney
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Stephen Quake
- Department of Bioengineering, Stanford University, Shriram Center 443 Via Ortega, Stanford, CA 94305 USA
- Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, CA 94305 USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815 USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Shriram Center 443 Via Ortega, Stanford, CA 94305 USA
- Department of Material Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305 USA
| |
Collapse
|
27
|
Heber-Katz E, Messersmith P. Drug delivery and epimorphic salamander-type mouse regeneration: A full parts and labor plan. Adv Drug Deliv Rev 2018. [PMID: 29524586 DOI: 10.1016/j.addr.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The capacity to regenerate entire body parts, tissues, and organs had generally been thought to be lost in evolution with very few exceptions (e.g. the liver) surviving in mammals. The discovery of the MRL mouse and the elucidation of the underlying molecular pathway centering around hypoxia inducible factor, HIF-1α, has allowed a drug and materials approach to regeneration in mice and hopefully humans. The HIF-1α pathway is ancient and permitted the transition from unicellular to multicellular organisms. Furthermore, HIF-1α and its regulation by PHDs, important oxygen sensors in the cell, provides a perfect drug target. We review the historical background of regeneration biology, the discovery of the MRL mouse, and its underlying biology, and novel approaches to drugs, targets, and delivery systems (see Fig. 1).
Collapse
|
28
|
Londono R, Sun AX, Tuan RS, Lozito TP. TISSUE REPAIR AND EPIMORPHIC REGENERATION: AN OVERVIEW. CURRENT PATHOBIOLOGY REPORTS 2018; 6:61-69. [PMID: 29967714 PMCID: PMC6025457 DOI: 10.1007/s40139-018-0161-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF THE REVIEW This manuscript discusses wound healing as a component of epimorphic regeneration and the role of the immune system in this process. RECENT FINDINGS Epimorphic regeneration involves formation of a blastema, a mass of undifferentiated cells capable of giving rise to the regenerated tissues. The apical epithelial cap plays an important role in blastemal formation. SUMMARY True regeneration is rarely observed in mammals. With the exception of transgenic strains, tissue repair in mammals usually leads to non-functional fibrotic tissue formation. In contrast, a number of lower order species including planarians, salamanders, and reptiles, have the ability to overcome the burden of scarring and tissue loss through complex adaptations that allow them to regenerate various anatomic structures through epimorphic regeneration. Blastemal cells have been suggested to originate via various mechanisms including de-differentiation, transdifferentiation, migration of pre-existing adult stem cell niches, and combinations of these.
Collapse
Affiliation(s)
- Ricardo Londono
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron X. Sun
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas P. Lozito
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Xiao X, Li L, Xu S, Mao M, Pan R, Li Y, Wu J, Huang L, Zheng X. Evaluation of velvet antler total protein effect on bone marrow‑derived endothelial progenitor cells. Mol Med Rep 2017; 16:3161-3168. [PMID: 28714033 PMCID: PMC5547914 DOI: 10.3892/mmr.2017.7019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/03/2017] [Indexed: 01/25/2023] Open
Abstract
Lu Rong, velvet antler (VA), is a traditional Chinese medicine, which is used as a food supplement and therapeutic drug in China, Japan, Russia, New Zealand and Southeast Asia. The regenerative characteristics of VA have resulted in great research interest, particularly regarding the fields of organ grafting and stem cell differentiation. Various VA proteomic studies verified that proteins act as the primary bioactive components of VA. The present study aimed to investigate if VA proteins (VA-pro) influence endothelial progenitor cell (EPC) viability. Various methods have previously been used to investigate VA-pro, including freeze-drying technology, ultrasonic wave methods, high performance liquid chromatography-mass spectrometry, EPCs extraction and culture. Results demonstrated that VA-pro promoted EPCs proliferation and migration, particularly at a concentration of 1 mg/ml. Furthermore, VA-pro increased the activation level of Notch1 intracellular domain and Hes1, and the level of phosphorylated-Akt and phosphorylated-mechanistic target of rapamycin. VA-pro may therefore affect EPC viability via regulation of the Notch and Akt signaling pathways. The present study revealed the effects and potential molecular mechanism of VA-pro on EPCs, and suggested an association between VA regeneration characteristics and the optimization of EPC viability. These findings may contribute to EPC transplantation research and aid in providing a novel treatment method for vascular diseases in the future.
Collapse
Affiliation(s)
- Xiang Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Lin Li
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shuqiang Xu
- Emergency Office, National Health and Family Planning Commission of the People's Republic of China, Beijing 100044, P.R. China
| | - Min Mao
- Pharmaceutical Department, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Ruiyan Pan
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yanjun Li
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jiayun Wu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Li Huang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xiaoyun Zheng
- Department of Senior Official Ward, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
30
|
Colitti M. Distribution of BDNF and TrkB isoforms in growing antler tissues of red deer. Ann Anat 2017; 213:33-46. [PMID: 28602824 DOI: 10.1016/j.aanat.2017.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022]
Abstract
Antlers are the cranial appendages of deer that regenerate each year. This renewal provides a model to explore molecules involved in mammalian organ regeneration. The cellular distributions of the brain-derived neurotrophic factor (BDNF) and the isoforms of its cognate receptor Trk tyrosine kinase receptor (TrkB) were localized by immunohistochemistry in sections of growing red deer antler. BDNF and TrkB full length were widely expressed in the integument, perichondrium, periosteum and bone. The truncated isoform receptor was particularly evidenced in integument and vascular inner dermis, but very light reaction was observed in cartilage and bone, both at the site of endochondral and intramembranous ossification. These observations were also assessed at transcriptional level by RT-PCR analyses. The highest expression of all genes significantly occurred in chondroprogenitor cells; however the full-length TrkB receptor was down regulated in osteocartilaginous compartments, in which the truncated isoform was up regulated. The truncated isoform is a dominant-negative receptor that inhibits the full length receptor signalling, even if the truncated isoform not only has this function. This study establishes the presence of BDNF and its receptor in the different cellular compartments of growing antler. Their transcripts assessed by RT-PCR indicate a local synthesis of these molecules that may contribute to the modulation of antler growth, acting as autocrine and/or paracrine factors independently of nerve supply. Among the plethora of other molecular signals and growth factors affecting the antler growth, the local production of BDNF and its cognate receptor could be of interest in understanding their role in antler renewal and to delineate the different involvement of the receptor isoforms.
Collapse
Affiliation(s)
- M Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100 Udine, Italy.
| |
Collapse
|
31
|
Galatz LM, Gerstenfeld L, Heber-Katz E, Rodeo SA. Tendon regeneration and scar formation: The concept of scarless healing. J Orthop Res 2015; 33:823-31. [PMID: 25676657 PMCID: PMC6084432 DOI: 10.1002/jor.22853] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/03/2015] [Indexed: 02/04/2023]
Abstract
Tendon healing is characterized by the formation of fibrovascular scar tissue, as tendon has very little intrinsic regenerative capacity. This creates a substantial clinical challenge in the setting of large, chronic tears seen clinically. Interest in regenerative healing seen in amphibians and certain strains of mice has arisen in response to the biological behavior of tendon tissue. Bone is also a model of tissue regeneration as healing bone will achieve the mechanical and histologic characteristics of the original tissue. The ultimate goal of the study of genes and mechanisms that contribute to true tissue regeneration is to ultimately attempt to manipulate the expression of those genes and activate these mechanisms in the setting of tendon injury and repair. Clearly, further research is needed to bring this to the forefront, however, study of scarless healing has potential to have meaningful application to tendon healing.
Collapse
Affiliation(s)
- Leesa M. Galatz
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Ellen Heber-Katz
- The Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Scott A. Rodeo
- Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
32
|
Harrington M. Flashy tail, bony antlers. Lab Anim (NY) 2015; 44:125. [DOI: 10.1038/laban.757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Doherty AH, Ghalambor CK, Donahue SW. Evolutionary Physiology of Bone: Bone Metabolism in Changing Environments. Physiology (Bethesda) 2015; 30:17-29. [DOI: 10.1152/physiol.00022.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bone evolved to serve many mechanical and physiological functions. Osteocytes and bone remodeling first appeared in the dermal skeleton of fish, and subsequently adapted to various challenges in terrestrial animals occupying diverse environments. This review discusses the physiology of bone and its role in mechanical and calcium homeostases from an evolutionary perspective. We review how bone physiology responds to changing environments and the adaptations to unique and extreme physiological conditions.
Collapse
Affiliation(s)
- Alison H. Doherty
- Department of Mechanical Engineering, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado; and
| | - Cameron K. Ghalambor
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado
| | - Seth W. Donahue
- Department of Mechanical Engineering, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado; and
| |
Collapse
|
34
|
Piao YL, Seo SY, Lim SC, Cho H. Wound healing effects of new 15-hydroxyprostaglandin dehydrogenase inhibitors. Prostaglandins Leukot Essent Fatty Acids 2014; 91:325-32. [PMID: 25458900 DOI: 10.1016/j.plefa.2014.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/18/2014] [Accepted: 09/25/2014] [Indexed: 01/12/2023]
Abstract
Previously, we reported that the antidiabetic drug ciglitazone and its analogs were potent inhibitors of 15-hydroxyprostaglandin dehydrogenase (15-PGDH). In continuing attempts to develop highly potent 15-PGDH inhibitors, a series of thiazolidinedione analogs were synthesized and tested. Compound 17 exhibited IC50 of 45 nM. This compound also significantly increased levels of prostaglandin E2 (PGE2) in A549 cells by approximately eight-fold that in the control. Much experimental data suggests that PGE2 plays a role in the prevention of excessive scarring. However, it has a very short half-life in blood, its oxidization to 15-ketoprostaglandins is catalyzed by 15-PGDH. Therefore, 15-PGDH inhibitors may have utility for the therapeutic management of diseases requiring elevated PGE2 levels. Scratch wounds were analyzed in confluent monolayers of HaCaT cells. Cells exposed to compound 17 showed significantly improved wound healing with respect to a control.
Collapse
|
35
|
Hu W, Li T, Li M, Wu L, Meng X, Tian Y. Effects of microRNA-mediated IGF-1 gene silencing on telomerase activity and cell proliferation in deer antler cells. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas2013-050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Wei Hu
- College of Life Science, Department of Biochemistry & Molecular Biology, Jilin Agriculture University, Xincheng Street 2888, Changchun 130118, China
| | - Ting Li
- College of Life Science, Department of Biochemistry & Molecular Biology, Jilin Agriculture University, Xincheng Street 2888, Changchun 130118, China
| | - Mu Li
- College of Life Science, Department of Biochemistry & Molecular Biology, Jilin Agriculture University, Xincheng Street 2888, Changchun 130118, China
| | - Lei Wu
- College of Life Science, Department of Biochemistry & Molecular Biology, Jilin Agriculture University, Xincheng Street 2888, Changchun 130118, China
| | - Xingyu Meng
- College of Life Science, Department of Biochemistry & Molecular Biology, Jilin Agriculture University, Xincheng Street 2888, Changchun 130118, China
| | - Yuhua Tian
- College of Life Science, Department of Biochemistry & Molecular Biology, Jilin Agriculture University, Xincheng Street 2888, Changchun 130118, China
| |
Collapse
|
36
|
Li C, Zhao H, Liu Z, McMahon C. Deer antler--a novel model for studying organ regeneration in mammals. Int J Biochem Cell Biol 2014; 56:111-22. [PMID: 25046387 DOI: 10.1016/j.biocel.2014.07.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/30/2014] [Accepted: 07/10/2014] [Indexed: 12/26/2022]
Abstract
Deer antler is the only mammalian organ that can fully grow back once lost from its pedicle - the base from which it grows. Therefore, antlers probably offer the most pertinent model for studying organ regeneration in mammals. This paper reviews our current understanding of the mechanisms underlying regeneration of antlers, and provides insights into the possible use for human regenerative medicine. Based on the definition, antler renewal belongs to a special type of regeneration termed epimorphic. However, histological examination failed to detect dedifferentiation of any cell type on the pedicle stump and the formation of a blastema, which are hallmark features of classic epimorphic regeneration. Instead, antler regeneration is achieved through the recruitment, proliferation and differentiation of the single cell type in the pedicle periosteum (PP). The PP cells are the direct derivatives of cells resident in the antlerogenic periosteum (AP), a tissue that exists in prepubertal deer calves and can induce ectopic antler formation when transplanted elsewhere on the deer body. Both the AP and PP cells express key embryonic stem cell markers and can be induced to differentiate into multiple cell lineages in vitro and, therefore, they are termed antler stem cells, and antler regeneration is a stem cell-based epimorphic regeneration. Comparisons between the healing process on the stumps from an amputated mouse limb and early regeneration of antlers suggest that the stump of a mouse limb cannot regenerate because of the limited potential of periosteal cells in long bones to proliferate. If we can impart a greater potential of these periosteal cells to proliferate, we might at least be able to partially regenerate limbs lost from humans. Taken together, a greater understanding of the mechanisms that regulate the regeneration of antlers may provide a valuable insight to aid the field of regenerative medicine. This article is part of a Directed Issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
Affiliation(s)
- Chunyi Li
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, China; Institute of Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Haiping Zhao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, China; Institute of Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhen Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, China; Institute of Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chris McMahon
- AgResearch Ruakura Agricultural Centre, Private Bag 3123, Hamilton, New Zealand
| |
Collapse
|
37
|
Kim KJ, Yoo HD, Kim YH, Lee YA, Kim BJ, Jung MS, Kang HG, Lee JH, Ryu BY. Enhancement of in vitro culture efficiency of mesenchymal stem cells derived from deer antlers. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-013-1124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Seo MS, Park SB, Choi SW, Kim JJ, Kim HS, Kang KS. Isolation and characterization of antler-derived multipotent stem cells. Cell Transplant 2013; 23:831-43. [PMID: 23294672 DOI: 10.3727/096368912x661391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have reported that stem cells can be isolated from various tissues such as bone marrow, fatty tissue, umbilical cord blood, Wharton's jelly, and placenta. These types of stem cell studies have also arisen in veterinary medicine. Deer antlers show a seasonal regrowth of tissue, an unusual feature in mammals. Antler tissue therefore might offer a source of stem cells. To explore the possibility of stem cell populations within deer antlers, we isolated and successfully cultured antler-derived multipotent stem cells (MSCs). Antler MSCs were maintained in a growth medium, and the proliferation potential was measured via an assay called the cumulative population doubling level. Immunophenotyping and immunostaining revealed the intrinsic characteristic stem cell markers of antler MSCs. To confirm the ability to differentiate, we conducted osteogenic, adipogenic, and chondrogenic induction under the respective differentiation conditions. We discovered that antler MSCs have the ability to differentiate into multiple lineages. In conclusion, our results show that deer antler tissue may contain MSCs and therefore may be a potential source for veterinary regenerative therapeutics.
Collapse
Affiliation(s)
- Min-Soo Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Nelson AM, Loy DE, Lawson JA, Katseff AS, Fitzgerald GA, Garza LA. Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44. J Invest Dermatol 2012. [PMID: 23190891 PMCID: PMC3593761 DOI: 10.1038/jid.2012.398] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Prostaglandins (PGs) are key inflammatory mediators involved in wound healing and regulating hair growth; however, their role in skin regeneration after injury is unknown. Using wound-induced hair follicle neogenesis (WIHN) as a marker of skin regeneration, we hypothesized that PGD2 decreases follicle neogenesis. PGE2 and PGD2 were elevated early and late respectively during wound healing. The levels of WIHN, lipocalin-type prostaglandin D2 synthase (Ptgds) and its product PGD2 each varied significantly among background strains of mice after wounding and all correlated such that the highest Ptgds and PGD2 levels were associated with the lowest amount of regeneration. Additionally, an alternatively spliced transcript variant of Ptgds missing exon 3 correlated with high regeneration in mice. Exogenous application of PGD2 decreased WIHN in wild type mice and PGD2 receptor Gpr44 null mice showed increased WIHN compared to strain-matched control mice. Furthermore, Gpr44 null mice were resistant to PGD2-induced inhibition of follicle neogenesis. In all, these findings demonstrate that PGD2 inhibits hair follicle regeneration through the Gpr44 receptor and imply that inhibition of PGD2 production or Gpr44 signaling will promote skin regeneration.
Collapse
Affiliation(s)
- Amanda M Nelson
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
40
|
Chuong CM, Randall VA, Widelitz RB, Wu P, Jiang TX. Physiological regeneration of skin appendages and implications for regenerative medicine. Physiology (Bethesda) 2012; 27:61-72. [PMID: 22505663 DOI: 10.1152/physiol.00028.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The concept of regenerative medicine is relatively new, but animals are well known to remake their hair and feathers regularly by normal regenerative physiological processes. Here, we focus on 1) how extrafollicular environments can regulate hair and feather stem cell activities and 2) how different configurations of stem cells can shape organ forms in different body regions to fulfill changing physiological needs.
Collapse
Affiliation(s)
- Cheng-Ming Chuong
- Department of Pathology, University of Southern California, School of Medicine, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
41
|
Levin M. Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. Biosystems 2012; 109:243-61. [PMID: 22542702 DOI: 10.1016/j.biosystems.2012.04.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
Abstract
Establishment of shape during embryonic development, and the maintenance of shape against injury or tumorigenesis, requires constant coordination of cell behaviors toward the patterning needs of the host organism. Molecular cell biology and genetics have made great strides in understanding the mechanisms that regulate cell function. However, generalized rational control of shape is still largely beyond our current capabilities. Significant instructive signals function at long range to provide positional information and other cues to regulate organism-wide systems properties like anatomical polarity and size control. Is complex morphogenesis best understood as the emergent property of local cell interactions, or as the outcome of a computational process that is guided by a physically encoded map or template of the final goal state? Here I review recent data and molecular mechanisms relevant to morphogenetic fields: large-scale systems of physical properties that have been proposed to store patterning information during embryogenesis, regenerative repair, and cancer suppression that ultimately controls anatomy. Placing special emphasis on the role of endogenous bioelectric signals as an important component of the morphogenetic field, I speculate on novel approaches for the computational modeling and control of these fields with applications to synthetic biology, regenerative medicine, and evolutionary developmental biology.
Collapse
Affiliation(s)
- Michael Levin
- Department of Biology, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave., Medford, MA 02155, USA.
| |
Collapse
|
42
|
Gao Z, Yang F, McMahon C, Li C. Mapping the morphogenetic potential of antler fields through deleting and transplanting subregions of antlerogenic periosteum in sika deer (Cervus nippon). J Anat 2012; 220:131-43. [PMID: 22122063 PMCID: PMC3275768 DOI: 10.1111/j.1469-7580.2011.01457.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2011] [Indexed: 11/30/2022] Open
Abstract
Morphogenetic fields are a localised and regionally regulated group of cells capable of responding to signals leading to the development of organs. In this study, we sought to determine if antlers develop from such a field. We divided antler fields into four subregions: anterior, posterior, medial and lateral. The antlerogenic periosteum (AP) in each subregion (half of the AP) was deleted and then transplanted into an ectopic site. Antlers form from the cells exclusively residing in the AP, which is located in an antler field. The morphogenetic potential of each subregion was assessed by the antler growth from both the defective field and the transplantation site. The results showed that when the AP anterior half was absent, the fields formed antlers missing the first tine, whereas when the anterior half was present, the ectopic sites regenerated antlers containing the first tine. When the medial half was deleted, the fields could only grow spike antlers, and when the medial half was present, the ectopic sites developed branched antlers. In contrast, the antler fields were able to compensate the defects caused by ablation of the posterior or the lateral half to form relatively normal antlers; and the ectopic sites containing these grafted halves only formed spike antlers. Therefore, antler morphogenetic information was primarily held in the AP anterior-medial halves. This study substantiates the presence of morphogenetic fields in regulating the distinct pattern of antler growth, and demonstrates that antler development is a useful model for the study of morphogenetic fields.
Collapse
Affiliation(s)
- Zhiguang Gao
- Institute of Wild Economic Animals and Plants, Chinese Academy of Agricultural SciencesJilin, China
- Beihua UniversityJilin, China
- State Key Laboratory for Molecular Biology of Special Economic AnimalsJilin, China
| | - Fuhe Yang
- Institute of Wild Economic Animals and Plants, Chinese Academy of Agricultural SciencesJilin, China
- State Key Laboratory for Molecular Biology of Special Economic AnimalsJilin, China
| | - Chris McMahon
- Developmental Biology Group, AgResearch, Invermay Agricultural CentreMosgiel, New Zealand
| | - Chunyi Li
- State Key Laboratory for Molecular Biology of Special Economic AnimalsJilin, China
- Developmental Biology Group, AgResearch, Invermay Agricultural CentreMosgiel, New Zealand
| |
Collapse
|
43
|
Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. BIOMATTER 2011; 1:121-64. [PMID: 23507744 PMCID: PMC3549886 DOI: 10.4161/biom.18790] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
44
|
Abstract
The MRL (Murphy Roths Large) mouse has provided a unique model of adult mammalian regeneration as multiple tissues show this important phenotype. Furthermore, the healing employs a blastema-like structure similar to that seen in amphibian regenerating tissue. Cells from the MRL mouse display DNA damage, cell cycle G2/M arrest, and a reduced level of p21CIP1/WAF. A functional role for p21 was confirmed when tissue injury in an adult p21-/- mouse showed a healing phenotype that matched the MRL mouse, with the replacement of tissues, including cartilage, and with hair follicle formation and a lack of scarring. Since the major canonical function of p21 is part of the p53/p21 axis, we explored the consequences of p53 deletion. A regenerative response was not seen in a p53-/- mouse and the elimination of p53 from the MRL background had no negative effect on the regeneration of the MRL.p53-/- mouse. An exploration of other knockout mice to identify p21-dependent, p53-independent regulatory pathways involved in the regenerative response revealed another significant finding showing that elimination of transforming growth factor-β1 displayed a healing response as well. These results are discussed in terms of their effect on senescence and differentiation.
Collapse
|
45
|
Pita-Thomas W, Nieto-Sampedro M, Maza RM, Nieto-Diaz M. Factors promoting neurite outgrowth during deer antler regeneration. J Neurosci Res 2011; 88:3034-47. [PMID: 20629188 DOI: 10.1002/jnr.22459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Every year male deers completely regenerate their antlers. During this process, antlers are reinnervated by sensory fibers, growing at the highest rate recorded for any adult mammal. Despite its clinical potential, only a few studies have dealt with this fascinating phenomenon. Among the possible factors underlying fast growth of the antler's innervation, the effects of the antler's endocrine and paracrine factors were evaluated, using an in vitro assay for sensory neurite growth. We found that soluble molecules secreted by the velvet, the modified skin that covers the antler, strongly promote neurite outgrowth. Using specific blocking antibodies, we demonstrated that nerve growth factor is partially responsible for these effects, although other unidentified molecules are also involved. On the contrary, neither endocrine serum factors nor antler substrates promoted neurite outgrowth, although antler substrata from deep velvet layers cause neurite outgrowth orientation. Taken together, our results point to the existence in the deep velvet of an environment that promotes oriented axon growth, in agreement with the distribution of the antler innervation.
Collapse
Affiliation(s)
- Wolfgang Pita-Thomas
- Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.
| | | | | | | |
Collapse
|
46
|
Kužmová E, Bartoš L, Kotrba R, Bubenik GA. Effect of different factors on proliferation of antler cells, cultured in vitro. PLoS One 2011; 6:e18053. [PMID: 21464927 PMCID: PMC3065459 DOI: 10.1371/journal.pone.0018053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/24/2011] [Indexed: 01/14/2023] Open
Abstract
Antlers as a potential model for bone growth and development have become an object of rising interest. To elucidate processes explaining how antler growth is regulated, in vitro cultures have been established. However, until now, there has been no standard method to cultivate antler cells and in vitro results are often opposite to those reported in vivo. In addition, many factors which are often not taken into account under in vitro conditions may play an important role in the development of antler cells. In this study we investigated the effects of the antler growth stage, the male individuality, passaged versus primary cultures and the effect of foetal calf serum concentrations on proliferative potential of mixed antler cell cultures in vitro, derived from regenerating antlers of red deer males (Cervus elaphus). The proliferation potential of antler cells was measured by incorporation of (3)H thymidine. Our results demonstrate that there is no significant effect of the antler growth stage, whereas male individuality and all other examined factors significantly affected antler cell proliferation. Furthermore, our results suggest that primary cultures may better represent in vivo conditions and processes occurring in regenerating antlers. In conclusion, before all main factors affecting antler cell proliferation in vitro will be satisfactorily investigated, results of in vitro studies focused on hormonal regulation of antler growth should be taken with extreme caution.
Collapse
Affiliation(s)
- Erika Kužmová
- Department of Ethology, Institute of Animal Science, Prague, Uhříněves, Czech Republic.
| | | | | | | |
Collapse
|
47
|
Improbable appendages: Deer antler renewal as a unique case of mammalian regeneration. Semin Cell Dev Biol 2009; 20:535-42. [DOI: 10.1016/j.semcdb.2008.11.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/03/2008] [Accepted: 11/17/2008] [Indexed: 01/19/2023]
|
48
|
Abstract
Chronic kidney disease (CKD) is increasing at the rate of 6-8% per annum in the US alone. At present, dialysis and transplantation remain the only treatment options. However, there is hope that stem cells and regenerative medicine may provide additional regenerative options for kidney disease. Such new treatments might involve induction of repair using endogenous or exogenous stem cells or the reprogramming of the organ to reinitiate development. This review addresses the current state of understanding with respect to the ability of non-renal stem cell sources to influence renal repair, the existence of endogenous renal stem cells and the biology of normal renal repair in response to damage. It also examines the remaining challenges and asks the question of whether there is one solution for all forms of renal disease.
Collapse
Affiliation(s)
- C Hopkins
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
49
|
Abstract
Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.
Collapse
Affiliation(s)
- Ali M Riazi
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
50
|
Abstract
Augmentation of regenerative ability is a powerful strategy being pursued for the biomedical management of traumatic injury, cancer, and degeneration. While considerable attention has been focused on embryonic stem cells, it is clear that much remains to be learned about how somatic cells may be controlled in the adult organism. The tadpole of the frog Xenopus laevis is a powerful model system within which fundamental mechanisms of regeneration are being addressed. The tadpole tail contains spinal cord, muscle, vasculature, and other terminally differentiated cell types and can fully regenerate itself through tissue renewal--a process that is most relevant to mammalian healing. Recent insight into this process has uncovered fascinating molecular details of how a complex appendage senses injury and rapidly repairs the necessary morphology. Here, we review what is known about the chemical and bioelectric signals underlying this process and draw analogies to evolutionarily conserved pathways in other patterning systems. The understanding of this process is not only of fundamental interest for the evolutionary and cell biology of morphogenesis, but will also generate information that is crucial to the development of regenerative therapies for human tissues and organs.
Collapse
Affiliation(s)
- A.-S. Tseng
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - M. Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| |
Collapse
|