1
|
Padmanaban N, Ambosie R, Choy S, Marcus S, Nilsson SR, Keene AC, Kowalko JE, Duboué ER. Automated behavioral profiling using neural networks reveals differences in stress-like behavior between cave and surface-dwelling Astyanax mexicanus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635725. [PMID: 39975198 PMCID: PMC11838477 DOI: 10.1101/2025.01.30.635725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Behavioral stress responses allow animals to quickly adapt to local environments and are critical for survival. Stress responses provide an ideal model for investigating the evolution of complex behaviors due to their conservation across species, critical role in survival, and integration of behavioral and physiological components. The Mexican cavefish (Astyanax mexicanus) has evolved dramatically different stress responses compared to river-dwelling surface fish morphs, providing a model to investigate the neural and evolutionary basis of stress-like responses. Surface morphs inhabit predator-rich environments whereas cave-dwelling morphs occupy predator-free habitats. While these key ecological variables may underlie differences in stress responses, the complexity of the behavioral differences has not been thoroughly examined. By leveraging automated pose-tracking and machine learning tools, we quantified a range of behaviors associated with stress, including freezing, bottom-dwelling, and hyperactivity, during a novel tank assay. Surface fish exhibited heightened stress responses characterized by prolonged bottom-dwelling and frequent freezing, while cavefish demonstrated reduced stress behaviors, marked by greater exploration and minimal freezing. Analysis of F2 hybrids revealed that a subset of behaviors, freezing and bottom-dwelling, co-segregated, suggesting shared genetic or physiological underpinnings. Our findings illustrate the power of computational tools for high-throughput behavioral phenotyping, enabling precise quantification of complex traits and revealing the genetic and ecological factors driving their evolution. This study provides a framework for understanding how integrated behavioral and physiological traits evolve, offering broader insights into the mechanisms underlying the diversification of animal behavior in natural systems.
Collapse
Affiliation(s)
- Naresh Padmanaban
- Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter FL 33458
| | - Rianna Ambosie
- Department of Biological Sciences, Lehigh University 111 Research Dr., Allentown PA, 18015
| | - Stefan Choy
- Department of Biological Sciences, Lehigh University 111 Research Dr., Allentown PA, 18015
| | - Shoshanah Marcus
- Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter FL 33458
| | | | - Alex C. Keene
- Texas A&M University, 3258 TAMU, College Station, Texas 77843
| | - Johanna E. Kowalko
- Department of Biological Sciences, Lehigh University 111 Research Dr., Allentown PA, 18015
| | - Erik R. Duboué
- Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter FL 33458
| |
Collapse
|
2
|
Holtz N, Albertson RC. Variable Craniofacial Shape and Development among Multiple Cave-Adapted Populations of Astyanax mexicanus. Integr Org Biol 2024; 6:obae030. [PMID: 39234027 PMCID: PMC11372417 DOI: 10.1093/iob/obae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
Astyanax mexicanus is a freshwater fish species with blind cave morphs and sighted surface morphs. Like other troglodytic species, independently evolved cave-dwelling A. mexicanus populations share several stereotypic phenotypes, including the expansion of certain sensory systems, as well as the loss of eyes and pigmentation. Here, we assess the extent to which there is also parallelism in craniofacial development across cave populations. Since multiple forces may be acting upon variation in the A. mexicanus system, including phylogenetic history, selection, and developmental constraint, several outcomes are possible. For example, eye regression may have triggered a conserved series of compensatory developmental events, in which case we would expect to observe highly similar craniofacial phenotypes across cave populations. Selection for cave-specific foraging may also lead to the evolution of a conserved craniofacial phenotype, especially in regions of the head directly associated with feeding. Alternatively, in the absence of a common axis of selection or strong developmental constraints, craniofacial shape may evolve under neutral processes such as gene flow, drift, and bottlenecking, in which case patterns of variation should reflect the evolutionary history of A. mexicanus. Our results found that cave-adapted populations do share certain anatomical features; however, they generally did not support the hypothesis of a conserved craniofacial phenotype across caves, as nearly every pairwise comparison was statistically significant, with greater effect sizes noted between more distantly related cave populations with little gene flow. A similar pattern was observed for developmental trajectories. We also found that morphological disparity was lower among all three cave populations versus surface fish, suggesting eye loss is not associated with increased variation, which would be consistent with a release of developmental constraint. Instead, this pattern reflects the relatively low genetic diversity within cave populations. Finally, magnitudes of craniofacial integration were found to be similar among all groups, meaning that coordinated development among anatomical units is robust to eye loss in A. mexicanus. We conclude that, in contrast to many conserved phenotypes across cave populations, global craniofacial shape is more variable, and patterns of shape variation are more in line with population structure than developmental architecture or selection.
Collapse
Affiliation(s)
- N Holtz
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - R C Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Jiménez AG, Nash-Braun E, Meyers JR. Chronic Thermal Acclimation Effects on Critical Thermal Maxima (CT max) and Oxidative Stress Differences in White Epaxial Muscle between Surface and Cave Morphotypes of the Mexican Cavefish ( Astyanax mexicanus). Physiol Biochem Zool 2023; 96:369-377. [PMID: 37713718 DOI: 10.1086/726338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
AbstractIn the face of increasing environmental temperatures, operative differences between mitochondrial function and whole-animal phenotypic response to the environment are underrepresented in research, especially in subtemperate ectothermic vertebrates. A novel approach to exploring this connection is to examine model species that are genetically similar but that have different whole-animal phenotypes, each of which inhabits different environments. The blind Mexican cavefish (Astyanax mexicanus) has the following two morphotypes: a surface form found in aboveground rivers and an obligate cave-dwelling form. Each morphotype inhabits vastly different thermal and oxygen environments. Whole-animal and mitochondrial responses to thermal acclimation and oxidative stress, with respect to increasing temperatures, have not been previously determined in either morphotype of this species. Here, we chronically acclimated both morphotypes to three temperatures (14°C, 25°C, and 31°C) to establish potential for acclimation and critical thermal maxima (CTmax) for each morphotype of this species. After measuring CTmax in six cohorts, we additionally measured enzymatic antioxidant capacity (catalase, superoxide dismutase, and glutathione peroxidase activities), peroxyl scavenging capacity, and lipid peroxidation damage in white epaxial muscle for each individual. We found a significant effect of acclimation temperature on CTmax (F = 29.57 , P < 0.001 ) but no effect of morphotype on CTmax (F = 2.092 , P = 0.162 ). Additionally, we found that morphotype had a significant effect on glutathione peroxidase activity, with the surface morphotype having increased glutathione peroxidase activity compared with the cave morphotype (F = 6.270 , P = 0.020 ). No other oxidative stress variable demonstrated significant differences. Increases in CTmax with chronic thermal acclimation to higher temperatures suggests that there is some degree of phenotypic plasticity in this species that nominally occupies thermally stable environments. The decreased glutathione peroxidase activity in the cave morphotype may be related to decreased environmental oxygen concentration and decreased metabolic rate in this environmentally constrained morphotype compared to in its surface-living counterparts.
Collapse
|
4
|
Batista da Silva I, Aciole Barbosa D, Kavalco KF, Nunes LR, Pasa R, Menegidio FB. Discovery of putative long non-coding RNAs expressed in the eyes of Astyanax mexicanus (Actinopterygii: Characidae). Sci Rep 2023; 13:12051. [PMID: 37491348 PMCID: PMC10368750 DOI: 10.1038/s41598-023-34198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 07/27/2023] Open
Abstract
Astyanax mexicanus is a well-known model species, that has two morphotypes, cavefish, from subterranean rivers and surface fish, from surface rivers. They are morphologically distinct due to many troglomorphic traits in the cavefish, such as the absence of eyes. Most studies on A. mexicanus are focused on eye development and protein-coding genes involved in the process. However, lncRNAs did not get the same attention and very little is known about them. This study aimed to fill this knowledge gap, identifying, describing, classifying, and annotating lncRNAs expressed in the embryo's eye tissue of cavefish and surface fish. To do so, we constructed a concise workflow to assemble and evaluate transcriptomes, annotate protein-coding genes, ncRNAs families, predict the coding potential, identify putative lncRNAs, map them and predict interactions. This approach resulted in the identification of 33,069 and 19,493 putative lncRNAs respectively mapped in cavefish and surface fish. Thousands of these lncRNAs were annotated and identified as conserved in human and several species of fish. Hundreds of them were validated in silico, through ESTs. We identified lncRNAs associated with genes related to eye development. This is the case of a few lncRNAs associated with sox2, which we suggest being isomorphs of the SOX2-OT, a lncRNA that can regulate the expression of sox2. This work is one of the first studies to focus on the description of lncRNAs in A. mexicanus, highlighting several lncRNA targets and opening an important precedent for future studies focusing on lncRNAs expressed in A. mexicanus.
Collapse
Affiliation(s)
- Iuri Batista da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - David Aciole Barbosa
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Karine Frehner Kavalco
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - Luiz R Nunes
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, 09606-045, Brazil
| | - Rubens Pasa
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil.
| | - Fabiano B Menegidio
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil.
| |
Collapse
|
5
|
Patch A, Paz A, Holt KJ, Duboué ER, Keene AC, Kowalko JE, Fily Y. Kinematic analysis of social interactions deconstructs the evolved loss of schooling behavior in cavefish. PLoS One 2022; 17:e0265894. [PMID: 35385509 PMCID: PMC8985933 DOI: 10.1371/journal.pone.0265894] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Fish display a remarkable diversity of social behaviors, both within and between species. While social behaviors are likely critical for survival, surprisingly little is known about how they evolve in response to changing environmental pressures. With its highly social surface form and multiple populations of a largely asocial, blind, cave-dwelling form, the Mexican tetra, Astyanax mexicanus, provides a powerful model to study the evolution of social behavior. Here we use motion tracking and analysis of swimming kinematics to quantify social swimming in four Astyanax mexicanus populations. In the light, surface fish school, maintaining both close proximity and alignment with each other. In the dark, surface fish no longer form coherent schools, however, they still show evidence of an attempt to align and maintain proximity when they find themselves near another fish. In contrast, cavefish from three independently-evolved populations (Pachón, Molino, Tinaja) show little preference for proximity or alignment, instead exhibiting behaviors that suggest active avoidance of each other. Two of the three cave populations we studied also slow down when more fish are present in the tank, a behavior which is not observed in surface fish in light or the dark, suggesting divergent responses to conspecifics. Using data-driven computer simulations, we show that the observed reduction in swimming speed is sufficient to alter the way fish explore their environment: it can increase time spent exploring away from the walls. Thus, the absence of schooling in cavefish is not merely a consequence of their inability to see, but may rather be a genuine behavioral adaptation that impacts the way they explore their environment.
Collapse
Affiliation(s)
- Adam Patch
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Alexandra Paz
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States of America
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Karla J. Holt
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Erik R. Duboué
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States of America
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| | - Johanna E. Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| |
Collapse
|
6
|
Sadier A, Sears KE, Womack M. Unraveling the heritage of lost traits. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:107-118. [PMID: 33528870 DOI: 10.1002/jez.b.23030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022]
Abstract
We synthesize ontogenetic work spanning the past century that show evolutionarily lost structures are rarely entirely absent from earlier developmental stages. We discuss morphological and genetic insights from developmental studies reveal about the evolution of trait loss and regain.
Collapse
Affiliation(s)
- Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Molly Womack
- Department of Biology, Utah State University, Logan, Utah, USA
| |
Collapse
|
7
|
Flórez JS, Cadena CD, Donascimiento C, Torres M. Repeated colonization of caves leads to phenotypic convergence in catfishes (Siluriformes: Trichomycterus) at a small geographical scale. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Across various animal groups, adaptation to the challenging conditions of cave environments has resulted in convergent evolution. We document a Neotropical cavefish system with ample potential to study questions related to convergent adaptation to cave environments at the population level. In the karstic region of the Andes of Santander, Colombia, cave-dwelling catfish in the genus Trichomycterus exhibit variable levels of reduction of eyes and body pigmentation relative to surface congeners. We tested whether cave-dwelling, eye-reduced, depigmented Trichomycterus from separate caves in Santander were the result of a single event of cave colonization and subsequent dispersal, or of multiple colonizations to caves by surface ancestors followed by phenotypic convergence. Using mitochondrial DNA sequences to reconstruct phylogenetic relationships, we found that caves in this region have been colonized independently by two separate clades. Additional events of cave colonization – and possibly recolonization of surface streams – may have occurred in one of the clades, where surface and cave-dwelling populations exhibit shallow differentiation, suggesting recent divergence or divergence with gene flow. We also identify potentially undescribed species and likely problems with the circumscription of named taxa. The system appears promising for studies on a wide range of ecological and evolutionary questions.
Collapse
Affiliation(s)
| | | | - Carlos Donascimiento
- Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Villa de Leyva, Colombia
| | - Mauricio Torres
- Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
8
|
Tovar RU, Cantu V, Fremaux B, Gonzalez Jr P, Spikes A, García DM. Comparative development and ocular histology between epigean and subterranean salamanders ( Eurycea) from central Texas. PeerJ 2021; 9:e11840. [PMID: 34395082 PMCID: PMC8325428 DOI: 10.7717/peerj.11840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
The salamander clade Eurycea from the karst regions of central Texas provides an ideal platform for comparing divergent nervous and sensory systems since some species exhibit extreme phenotypes thought to be associated with inhabiting a subterranean environment, including highly reduced eyes, while others retain an ancestral ocular phenotype appropriate for life above ground. We describe ocular morphology, comparing three salamander species representing two phenotypes-the surface-dwelling Barton Springs salamander (E. sosorum) and San Marcos salamander (E. nana) and the obligate subterranean Texas blind salamander (E. rathbuni) - in terms of structure and size of their eyes. Eyes were examined using confocal microscopy and measurements were made using ImageJ. Statistical analysis of data was carried out using R. We also provide a developmental series and track eye development and immunolocalization of Pax6 in E. sosorum and E. rathbuni. Adult histology of the surface-dwelling San Marcos salamander (E. nana) shows similarities to E. sosorum. The eyes of adults of the epigean species E. nana and E. sosorum appear fully developed with all the histological features of a fully functional eye. In contrast, the eyes of E. rathbuni adults have fewer layers, lack lenses and other features associated with vision as has been reported previously. However, in early developmental stages eye morphology did not differ significantly between E. rathbuni and E. sosorum. Parallel development is observed between the two phenotypes in terms of morphology; however, Pax6 labeling seems to decrease in the latter stages of development in E.rathbuni. We test for immunolabeling of the visual pigment proteins opsin and rhodopsin and observe immunolocalization around photoreceptor disks in E. nana and E. sosorum, but not in the subterranean E. rathbuni. Our results from examining developing salamanders suggest a combination of underdevelopment and degeneration contribute to the reduced eyes of adult E. rathbuni.
Collapse
Affiliation(s)
- Ruben U. Tovar
- Department of Biology, Texas State University, San Marcos, TX, United States of America
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Valentin Cantu
- San Marcos Aquatic Resources Center, U.S. Fish and Wildlife Service, San Marcos, TX, United States of America
- Uvalde National Fish Hatchery, U.S. Fish and Wildlife Service, Uvalde, TX, United States of America
| | - Brian Fremaux
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Pedro Gonzalez Jr
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Amanda Spikes
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Dana M. García
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| |
Collapse
|
9
|
Swain A, Hoffman T, Leyba K, Fagan WF. Exploring the Evolution of Perception: An Agent-Based Approach. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.698041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Perception is central to the survival of an individual for many reasons, especially as it affects the ability to gather resources. Consequently, costs associated with perception are partially shaped by resource availability. Understanding the interplay of environmental factors (such as the density and distribution of resources) with species-specific factors (such as growth rate, mutation, and metabolic costs) allows the exploration of possible trajectories by which perception may evolve. Here, we used an agent-based foraging model with a context-dependent movement strategy in which each agent switches between undirected and directed movement based on its perception of resources. This switching behavior is central to our goal of exploring how environmental and species-specific factors determine the evolution and maintenance of perception in an ecological system. We observed a non-linear response in the evolved perceptual ranges as a function of parameters in our model. Overall, we identified two groups of parameters, one of which promotes evolution of perception and another group that restricts it. We found that resource density, basal energy cost, perceptual cost and mutation rate were the best predictors of the resultant perceptual range distribution, but detailed exploration indicated that individual parameters affect different parts of the distribution in different ways.
Collapse
|
10
|
Maternal control of visceral asymmetry evolution in Astyanax cavefish. Sci Rep 2021; 11:10312. [PMID: 33986376 PMCID: PMC8119719 DOI: 10.1038/s41598-021-89702-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
The direction of visceral organ asymmetry is highly conserved during vertebrate evolution with heart development biased to the left and pancreas and liver development restricted to opposing sides of the midline. Here we show that reversals in visceral organ asymmetry have evolved in Astyanax mexicanus, a teleost species with interfertile surface-dwelling (surface fish) and cave-dwelling (cavefish) forms. Visceral organ asymmetry is conventional in surface fish but some cavefish have evolved reversals in heart, liver, and pancreas development. Corresponding changes in the normally left-sided expression of the Nodal-Pitx2/Lefty signaling system are also present in the cavefish lateral plate mesoderm (LPM). The Nodal antagonists lefty1 (lft1) and lefty2 (lft2), which confine Nodal signaling to the left LPM, are expressed in most surface fish, however, lft2, but not lft1, expression is absent during somitogenesis of most cavefish. Despite this difference, multiple lines of evidence suggested that evolutionary changes in L-R patterning are controlled upstream of Nodal-Pitx2/Lefty signaling. Accordingly, reciprocal hybridization of cavefish and surface fish showed that modifications of heart asymmetry are present in hybrids derived from cavefish mothers but not from surface fish mothers. The results indicate that changes in visceral asymmetry during cavefish evolution are influenced by maternal genetic effects.
Collapse
|
11
|
Kowalko JE, Franz-Odendaal TA, Rohner N. Introduction to the special issue-cavefish-adaptation to the dark. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:393-396. [PMID: 33258551 DOI: 10.1002/jez.b.23014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
12
|
Gainett G, Ballesteros JA, Kanzler CR, Zehms JT, Zern JM, Aharon S, Gavish-Regev E, Sharma PP. Systemic paralogy and function of retinal determination network homologs in arachnids. BMC Genomics 2020; 21:811. [PMID: 33225889 PMCID: PMC7681978 DOI: 10.1186/s12864-020-07149-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/13/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Arachnids are important components of cave ecosystems and display many examples of troglomorphisms, such as blindness, depigmentation, and elongate appendages. Little is known about how the eyes of arachnids are specified genetically, let alone the mechanisms for eye reduction and loss in troglomorphic arachnids. Additionally, duplication of Retinal Determination Gene Network (RDGN) homologs in spiders has convoluted functional inferences extrapolated from single-copy homologs in pancrustacean models. RESULTS We investigated a sister species pair of Israeli cave whip spiders, Charinus ioanniticus and C. israelensis (Arachnopulmonata, Amblypygi), of which one species has reduced eyes. We generated embryonic transcriptomes for both Amblypygi species, and discovered that several RDGN homologs exhibit duplications. We show that duplication of RDGN homologs is systemic across arachnopulmonates (arachnid orders that bear book lungs), rather than being a spider-specific phenomenon. A differential gene expression (DGE) analysis comparing the expression of RDGN genes in field-collected embryos of both species identified candidate RDGN genes involved in the formation and reduction of eyes in whip spiders. To ground bioinformatic inference of expression patterns with functional experiments, we interrogated the function of three candidate RDGN genes identified from DGE using RNAi in the spider Parasteatoda tepidariorum. We provide functional evidence that one of these paralogs, sine oculis/Six1 A (soA), is necessary for the development of all arachnid eye types. CONCLUSIONS Our work establishes a foundation to investigate the genetics of troglomorphic adaptations in cave arachnids, and links differential gene expression to an arthropod eye phenotype for the first time outside of Pancrustacea. Our results support the conservation of at least one RDGN component across Arthropoda and provide a framework for identifying the role of gene duplications in generating arachnid eye diversity.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Charlotte R Kanzler
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John M Zern
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shlomi Aharon
- National Natural History Collections, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
13
|
Diversity of Olfactory Responses and Skills in Astyanax Mexicanus Cavefish Populations Inhabiting different Caves. DIVERSITY 2020. [DOI: 10.3390/d12100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Animals in many phyla are adapted to and thrive in the constant darkness of subterranean environments. To do so, cave animals have presumably evolved mechano- and chemosensory compensations to the loss of vision, as is the case for the blind characiform cavefish, Astyanax mexicanus. Here, we systematically assessed the olfactory capacities of cavefish and surface fish of this species in the lab as well as in the wild, in five different caves in northeastern Mexico, using an olfactory setup specially developed to test and record olfactory responses during fieldwork. Overall cavefish showed lower (i.e., better) olfactory detection thresholds than surface fish. However, wild adult cavefish from the Pachón, Sabinos, Tinaja, Chica and Subterráneo caves showed highly variable responses to the three different odorant molecules they were exposed to. Pachón and Subterráneo cavefish showed the highest olfactory capacities, and Chica cavefish showed no response to the odors presented. We discuss these data with regard to the environmental conditions in which these different cavefish populations live. Our experiments in natural settings document the diversity of cave environments inhabited by a single species of cavefish, A. mexicanus, and highlight the complexity of the plastic and genetic mechanisms that underlie cave adaptation.
Collapse
|
14
|
Exploring the Expression of Cardiac Regulators in a Vertebrate Extremophile: The Cichlid Fish Oreochromis (Alcolapia) alcalica. J Dev Biol 2020; 8:jdb8040022. [PMID: 33020460 PMCID: PMC7712675 DOI: 10.3390/jdb8040022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
Although it is widely accepted that the cellular and molecular mechanisms of vertebrate cardiac development are evolutionarily conserved, this is on the basis of data from only a few model organisms suited to laboratory studies. Here, we investigate gene expression during cardiac development in the extremophile, non-model fish species, Oreochromis (Alcolapia) alcalica. We first characterise the early development of O. alcalica and observe extensive vascularisation across the yolk prior to hatching. We further investigate heart development by identifying and cloning O. alcalica orthologues of conserved cardiac transcription factors gata4, tbx5, and mef2c for analysis by in situ hybridisation. Expression of these three key cardiac developmental regulators also reveals other aspects of O. alcalica development, as these genes are expressed in developing blood, limb, eyes, and muscle, as well as the heart. Our data support the notion that O. alcalica is a direct-developing vertebrate that shares the highly conserved molecular regulation of the vertebrate body plan. However, the expression of gata4 in O. alcalica reveals interesting differences in the development of the circulatory system distinct from that of the well-studied zebrafish. Understanding the development of O. alcalica embryos is an important step towards providing a model for future research into the adaptation to extreme conditions; this is particularly relevant given that anthropogenic-driven climate change will likely result in more freshwater organisms being exposed to less favourable conditions.
Collapse
|
15
|
Sinha S, Jones BM, Traniello IM, Bukhari SA, Halfon MS, Hofmann HA, Huang S, Katz PS, Keagy J, Lynch VJ, Sokolowski MB, Stubbs LJ, Tabe-Bordbar S, Wolfner MF, Robinson GE. Behavior-related gene regulatory networks: A new level of organization in the brain. Proc Natl Acad Sci U S A 2020; 117:23270-23279. [PMID: 32661177 PMCID: PMC7519311 DOI: 10.1073/pnas.1921625117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuronal networks are the standard heuristic model today for describing brain activity associated with animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of networked activities in the brain-the gene regulatory network (GRN)-that orchestrates expression levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights into the relationships between these two types of networks and discuss their interplay in spatial as well as temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-related GRNs by drawing inspiration from the rich literature on GRNs related to animal development, comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a third timescale, which is believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization and cis-regulatory architecture underlies this special class of behavior, and review literature that suggests an affirmative answer.
Collapse
Affiliation(s)
- Saurabh Sinha
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801;
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Beryl M Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
| | - Syed A Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Informatics Program, University of Illinois, Urbana-Champaign, IL 61820
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109
| | - Paul S Katz
- Department of Biology, University of Massachusetts, Amherst, MA 01003
| | - Jason Keagy
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14260
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Lisa J Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Shayan Tabe-Bordbar
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801;
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
- Department of Entomology, University of Illinois, Urbana-Champaign, IL 61801
| |
Collapse
|
16
|
Sears CR, Boggs TE, Gross JB. Dark-rearing uncovers novel gene expression patterns in an obligate cave-dwelling fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:518-529. [PMID: 32372488 DOI: 10.1002/jez.b.22947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/01/2023]
Abstract
Extreme environments often result in the evolution of dramatic adaptive features. The Mexican tetra, Astyanax mexicanus, includes 30 different populations of cave-dwelling forms that live in perpetual darkness. As a consequence, many populations have evolved eye loss, reduced pigmentation, and amplification of nonvisual sensory systems. Closely-related surface-dwelling morphs demonstrate typical vision, pigmentation, and sensation. Transcriptomic assessments in this system have revealed important developmental changes associated with the cave morph, however, they have not accounted for photic rearing conditions. Prior studies reared individuals under a 12:12 hr light/dark (LD) cycle. Here, we reared cavefish under constant darkness (DD) for 5+ years. From these experimental individuals, we performed mRNA sequencing and compared gene expression of surface fish reared under LD conditions to cavefish reared under DD conditions to identify photic-dependent gene expression differences. Gene Ontology enrichment analyses revealed a number of previously underappreciated cave-associated changes impacting blood physiology and olfaction. We further evaluated the position of differentially expressed genes relative to QTL positions from prior studies and found several candidate genes associated with these ecologically relevant lighting conditions. In sum, this work highlights photic conditions as a key environmental factor impacting gene expression patterns in blind cave-dwelling fish.
Collapse
Affiliation(s)
- Connor R Sears
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Tyler E Boggs
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
17
|
Camarillo H, Arias Rodriguez L, Tobler M. Functional consequences of phenotypic variation between locally adapted populations: Swimming performance and ventilation in extremophile fish. J Evol Biol 2020; 33:512-523. [DOI: 10.1111/jeb.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Henry Camarillo
- Division of Biology Kansas State University Manhattan KS USA
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco Villahermosa México
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|
18
|
Developmental Transcriptomic Analysis of the Cave-Dwelling Crustacean, Asellus aquaticus. Genes (Basel) 2019; 11:genes11010042. [PMID: 31905778 PMCID: PMC7016750 DOI: 10.3390/genes11010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
Cave animals are a fascinating group of species often demonstrating characteristics including reduced eyes and pigmentation, metabolic efficiency, and enhanced sensory systems. Asellus aquaticus, an isopod crustacean, is an emerging model for cave biology. Cave and surface forms of this species differ in many characteristics, including eye size, pigmentation, and antennal length. Existing resources for this species include a linkage map, mapped regions responsible for eye and pigmentation traits, sequenced adult transcriptomes, and comparative embryological descriptions of the surface and cave forms. Our ultimate goal is to identify genes and mutations responsible for the differences between the cave and surface forms. To advance this goal, we decided to use a transcriptomic approach. Because many of these changes first appear during embryonic development, we sequenced embryonic transcriptomes of cave, surface, and hybrid individuals at the stage when eyes and pigment become evident in the surface form. We generated a cave, a surface, a hybrid, and an integrated transcriptome to identify differentially expressed genes in the cave and surface forms. Additionally, we identified genes with allele-specific expression in hybrid individuals. These embryonic transcriptomes are an important resource to assist in our ultimate goal of determining the genetic underpinnings of the divergence between the cave and surface forms.
Collapse
|
19
|
Loomis C, Peuß R, Jaggard JB, Wang Y, McKinney SA, Raftopoulos SC, Raftopoulos A, Whu D, Green M, McGaugh SE, Rohner N, Keene AC, Duboue ER. An Adult Brain Atlas Reveals Broad Neuroanatomical Changes in Independently Evolved Populations of Mexican Cavefish. Front Neuroanat 2019; 13:88. [PMID: 31636546 PMCID: PMC6788135 DOI: 10.3389/fnana.2019.00088] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
A shift in environmental conditions impacts the evolution of complex developmental and behavioral traits. The Mexican cavefish, Astyanax mexicanus, is a powerful model for examining the evolution of development, physiology, and behavior because multiple cavefish populations can be compared to an extant, ancestral-like surface population of the same species. Many behaviors have diverged in cave populations of A. mexicanus, and previous studies have shown that cavefish have a loss of sleep, reduced stress, an absence of social behaviors, and hyperphagia. Despite these findings, surprisingly little is known about the changes in neuroanatomy that underlie these behavioral phenotypes. Here, we use serial sectioning to generate brain atlases of surface fish and three independent cavefish populations. Volumetric reconstruction of serial-sectioned brains confirms convergent evolution on reduced optic tectum volume in all cavefish populations tested. In addition, we quantified volumes of specific neuroanatomical loci within several brain regions that have previously been implicated in behavioral regulation, including the hypothalamus, thalamus, and habenula. These analyses reveal an enlargement of the hypothalamus in all cavefish populations relative to surface fish, as well as subnuclei-specific differences within the thalamus and prethalamus. Taken together, these analyses support the notion that changes in environmental conditions are accompanied by neuroanatomical changes in brain structures associated with behavior. This atlas provides a resource for comparative neuroanatomy of additional brain regions and the opportunity to associate brain anatomy with evolved changes in behavior.
Collapse
Affiliation(s)
- Cody Loomis
- Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, United States
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Robert Peuß
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - James B. Jaggard
- Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, United States
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Sean A. McKinney
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Stephan C. Raftopoulos
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Austin Raftopoulos
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Daniel Whu
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Matthew Green
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Suzanne E. McGaugh
- Department of Ecology, University of Minnesota, St. Paul, MN, United States
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, KS, United States
| | - Alex C. Keene
- Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, United States
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Erik R. Duboue
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
20
|
Koch EJ, McFall-Ngai M. Model systems for the study of how symbiotic associations between animals and extracellular bacterial partners are established and maintained. DRUG DISCOVERY TODAY. DISEASE MODELS 2019; 28:3-12. [PMID: 32855643 PMCID: PMC7449258 DOI: 10.1016/j.ddmod.2019.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This contribution describes the current state of experimental model development and use as a strategy for gaining insight into the form and function of certain types of host-microbe associations. Development of quality models for the study of symbiotic systems will be critical not only to facilitate an understanding of mechanisms underlying symbiosis, but also for providing insights into how drug development can promote healthy animal-microbe interactions as well as the treatment of pathogenic infections. Because of the growing awareness over the last decade of the importance of symbiosis in biology, a number of model systems has emerged to examine how these partnerships are maintained within and across generations of the host. The focus here will be upon host-bacterial symbiotic systems that, as in humans, (i) are acquired from the environment each generation, or horizontally transmitted, and (ii) are defined by interactions at the interface of their cellular boundaries, i.e., extracellular symbiotic associations. As with the use of models in other fields of biology where complexity is daunting (e.g., developmental biology or brain circuitry), each model has its strengths and weaknesses, i.e., no one model system will provide easy access to all the questions defining what is conserved in cell-cell interactions in symbiosis and what creates diversity within such partnerships. Rather, as discussed here, the more models explored, the richer our understanding of these associations is likely to be.
Collapse
Affiliation(s)
- Eric J. Koch
- Kewalo Marine Laboratory, University of Hawaiʻi at Mānoa, 41 Ahui Street, Honolulu, Hawaii 96813 USA
| | - Margaret McFall-Ngai
- Kewalo Marine Laboratory, University of Hawaiʻi at Mānoa, 41 Ahui Street, Honolulu, Hawaii 96813 USA
| |
Collapse
|
21
|
Yoshizawa M, Hixon E, Jeffery WR. Neural Crest Transplantation Reveals Key Roles in the Evolution of Cavefish Development. Integr Comp Biol 2019; 58:411-420. [PMID: 29718239 DOI: 10.1093/icb/icy006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Evolutionary changes in Astyanax mexicanus cavefish with respect to conspecific surface fish, including the regression of eyes, loss of pigmentation, and modification of the cranial skeleton, involve derivatives of the neural crest. However, the role of neural crest cells in cavefish evolution and development is poorly understood. One of the reasons is that experimental methods for neural crest analysis are not well developed in the Astyanax system. Here we describe neural crest transplantation between Astyanax surface fish and cavefish embryos. We found differences in the migration of cranial neural crest cells transplanted from the surface fish anterior hindbrain to the same region of surface fish or cavefish hosts. Cranial neural crest cells migrated extensively throughout the head, and to a lesser extent the trunk, in surface fish hosts but their migration was mostly restricted to the anterior and dorsal head regions in cavefish hosts. Cranial neural crest cells derived from the surface fish transplants invaded the degenerating eyes of cavefish hosts, resulting in increased eye size and suggesting that cavefish neural crest cells are defective in forming optic derivatives. We found that melanophores were formed in albino cavefish from grafts of surface fish trunk neural crest cells, showing that the cavefish tissue environment is conducive for pigment cell development, and implicating intrinsic changes in cavefish neural crest cells in loss of body pigmentation. It is concluded that changes in neural crest cells play key roles in the evolution of cavefish development.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Biology, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Ernest Hixon
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
22
|
Mojaddidi H, Fernandez FE, Erickson PA, Protas ME. Embryonic origin and genetic basis of cave associated phenotypes in the isopod crustacean Asellus aquaticus. Sci Rep 2018; 8:16589. [PMID: 30409988 PMCID: PMC6224564 DOI: 10.1038/s41598-018-34405-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Characteristics common to animals living in subterranean environments include the reduction or absence of eyes, lessened pigmentation and enhanced sensory systems. How these characteristics have evolved is poorly understood for the majority of cave dwelling species. In order to understand the evolution of these changes, this study uses an invertebrate model system, the freshwater isopod crustacean, Asellus aquaticus, to examine whether adult differences between cave and surface dwelling individuals first appear during embryonic development. We hypothesized that antennal elaboration, as well as eye reduction and pigment loss, would be apparent during embryonic development. We found that differences in pigmentation, eye formation, and number of segments of antenna II were all present by the end of embryonic development. In addition, we found that cave and surface hatchlings do not significantly differ in the relative size of antenna II and the duration of embryonic development. To investigate whether the regions responsible for eye and pigment differences could be genetically linked to differences in article number, we genotyped F2 hybrids for the four previously mapped genomic regions associated with eye and pigment differences and phenotyped these F2 hybrids for antenna II article number. We found that the region previously known to be responsible for both presence versus absence of pigment and eye size also was significantly associated with article number. Future experiments will address whether pleiotropy and/or genetic linkage play a role in the evolution of cave characteristics in Asellus aquaticus.
Collapse
Affiliation(s)
- Hafasa Mojaddidi
- Dominican University of California, 50 Acacia Ave, San Rafael, CA, 94901, USA
| | - Franco E Fernandez
- Dominican University of California, 50 Acacia Ave, San Rafael, CA, 94901, USA
| | | | - Meredith E Protas
- Dominican University of California, 50 Acacia Ave, San Rafael, CA, 94901, USA.
| |
Collapse
|
23
|
Herman A, Brandvain Y, Weagley J, Jeffery WR, Keene AC, Kono TJY, Bilandžija H, Borowsky R, Espinasa L, O'Quin K, Ornelas-García CP, Yoshizawa M, Carlson B, Maldonado E, Gross JB, Cartwright RA, Rohner N, Warren WC, McGaugh SE. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol Ecol 2018; 27:4397-4416. [PMID: 30252986 PMCID: PMC6261294 DOI: 10.1111/mec.14877] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022]
Abstract
Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5-7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave-related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave-derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.
Collapse
Affiliation(s)
- Adam Herman
- Plant and Microbial Biology, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Yaniv Brandvain
- Plant and Microbial Biology, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
| | - James Weagley
- Ecology, Evolution, and Behavior, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Thomas J Y Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Helena Bilandžija
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Luis Espinasa
- School of Science, Marist College, Poughkeepsie, New York
| | - Kelly O'Quin
- Department of Biology, Centre College, Danville, Kentucky
| | - Claudia P Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Masato Yoshizawa
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Brian Carlson
- Department of Biology, College of Wooster, Wooster, Ohio
| | - Ernesto Maldonado
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St Louis, Missouri
| | - Suzanne E McGaugh
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
24
|
Ma L, Strickler AG, Parkhurst A, Yoshizawa M, Shi J, Jeffery WR. Maternal genetic effects in Astyanax cavefish development. Dev Biol 2018; 441:209-220. [PMID: 30031754 DOI: 10.1016/j.ydbio.2018.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
Abstract
The role of maternal factors in the evolution of development is poorly understood. Here we describe the use of reciprocal hybridization between the surface dwelling (surface fish, SF) and cave dwelling (cavefish, CF) morphs of the teleost Astyanax mexicanus to investigate the roles of maternal genetic effects in cavefish development. Reciprocal hybridization, a procedure in which F1 hybrids are generated by fertilizing SF eggs with CF sperm (SF × CF hybrids) and CF eggs with SF sperm (CF × SF hybrids), revealed that the CF degenerative eye phenotype showed maternal genetic effects. The eyes of CF × SF hybrids resembled the degenerate eyes of CF in showing ventral reduction of the retina and corresponding displacement of the lens within the optic cup, a smaller lens and eyeball, more lens apoptosis, a smaller cartilaginous sclera, and lens-specific gene expression characteristics compared to SF × CF hybrids, which showed eye and lens gene expression phenotypes resembling SF. In contrast, reciprocal hybridization failed to support roles for maternal genetic effects in the CF regressive pigmentation phenotype or in CF constructive changes related to enhanced jaw development. Maternal transcripts encoded by the pou2f1b, runx2b, and axin1 genes, which are involved in determining ventral embryonic fates, were increased in unfertilized CF eggs. In contrast, maternal mRNAs encoded by the ß-catenin and syntabulin genes, which control dorsal embryonic fates, showed similar expression levels in unfertilized SF and CF eggs. Furthermore, maternal transcripts of a sonic hedgehog gene were detected in SF and CF eggs and early cleaving embryos. This study reveals that CF eye degeneration is controlled by changes in maternal factors produced during oogenesis and introduces A. mexicanus as a model system for studying the role of maternal changes in the evolution of development.
Collapse
Affiliation(s)
- Li Ma
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Allen G Strickler
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Amy Parkhurst
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Janet Shi
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
25
|
Alié A, Devos L, Torres-Paz J, Prunier L, Boulet F, Blin M, Elipot Y, Retaux S. Developmental evolution of the forebrain in cavefish, from natural variations in neuropeptides to behavior. eLife 2018; 7:32808. [PMID: 29405116 PMCID: PMC5800845 DOI: 10.7554/elife.32808] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/12/2018] [Indexed: 01/11/2023] Open
Abstract
The fish Astyanax mexicanus comes in two forms: the normal surface-dwelling and the blind depigmented cave-adapted morphs. Comparing the development of their basal forebrain, we found quantitative differences in numbers of cells in specific clusters for six out of nine studied neuropeptidergic cell types. Investigating the origins of these differences, we showed that early Shh and Fgf signaling impact on the development of NPY and Hypocretin clusters, via effect on Lhx7 and Lhx9 transcription factors, respectively. Finally, we demonstrated that such neurodevelopmental evolution underlies behavioral evolution, linking a higher number of Hypocretin cells with hyperactivity in cavefish. Early embryonic modifications in signaling/patterning at neural plate stage therefore impact neuronal development and later larval behavior, bridging developmental evolution of a neuronal system and the adaptive behavior it governs. This work uncovers novel variations underlying the evolution and adaptation of cavefish to their extreme environment.
Collapse
Affiliation(s)
- Alexandre Alié
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Lucie Devos
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Lise Prunier
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Fanny Boulet
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Maryline Blin
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Yannick Elipot
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Sylvie Retaux
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| |
Collapse
|
26
|
Simon V, Elleboode R, Mahé K, Legendre L, Ornelas-Garcia P, Espinasa L, Rétaux S. Comparing growth in surface and cave morphs of the species Astyanax mexicanus: insights from scales. EvoDevo 2017; 8:23. [PMID: 29214008 PMCID: PMC5710000 DOI: 10.1186/s13227-017-0086-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Background Life in the darkness of caves is accompanied, throughout phyla, by striking phenotypic changes including the loss or severe reduction in eyes and pigmentation. On the other hand, cave animals have undergone constructive changes, thought to be adaptive, to survive in this extreme environment. The present study addresses the question of the evolution of growth in caves, taking advantage of the comparison between the river-dwelling and the cave-dwelling morphs of the Mexican tetra, Astyanax mexicanus. Results A sclerochronology approach was undertaken to document the growth of the species in these two very distinct habitats. Scales from 158 wild Astyanax mexicanus specimens were analyzed from three caves (Pachón, Tinaja and Subterráneo) and two rivers (Rio Gallinas and Arroyo Lagarto) in San Luis Potosi and Tamaulipas, Mexico. A 10–13% reduction in scales size was observed in the cave morphs compared to the surface morphs. Age could be reliably inferred from annual growth increments on the scales from the two morphs of the species. Further comparisons with growth curves in laboratory conditions, obtained using the von Bertalanffy growth model, were also performed. In the wild and in the laboratory, cavefish originating from the Pachón cave reached smaller sizes than surface fish from three different locations: Rio Gallinas and Arroyo Lagarto (wild sampling) and Texas (laboratory population), respectively. Wild Pachón cavefish also seemed to grow to smaller sizes than the two other wild cavefish populations studied, Tinaja and Subterráneo. Finally, growth in the laboratory was faster than in the wild, particularly in the two first years of life. Conclusions These data suggest that cavefish originating from the Pachón cave are subjected to an intrinsic limitation of their final size, which is at least in part independent from energy/food availability. This growth limitation may be an advantageous way of limiting energy expenditure and food needs in the cave environment. Moreover, growth regulation evolved differently in independently evolved cave populations. These results are discussed with regard to the sources of energy or general ecological conditions present in caves, and to the differences in behavior or feeding skills known in cavefish.
Collapse
Affiliation(s)
- Victor Simon
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Avenue de la terrasse, 91198 Gif-sur-Yvette, France.,Université Paris Sud and Paris-Saclay, Orsay, France
| | - Romain Elleboode
- IFREMER, Fisheries Laboratory, Sclerochronology Centre, 150 quai Gambetta, 62321 Boulogne-sur-Mer, France
| | - Kélig Mahé
- IFREMER, Fisheries Laboratory, Sclerochronology Centre, 150 quai Gambetta, 62321 Boulogne-sur-Mer, France
| | - Laurent Legendre
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Luis Espinasa
- School of Science, Marist College, 3399 North Rd, Poughkeepsie, NY 12601 USA
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Avenue de la terrasse, 91198 Gif-sur-Yvette, France.,Université Paris Sud and Paris-Saclay, Orsay, France
| |
Collapse
|
27
|
Hinaux H, Devos L, Blin M, Elipot Y, Bibliowicz J, Alié A, Rétaux S. Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation. Development 2017; 143:4521-4532. [PMID: 27899509 DOI: 10.1242/dev.141291] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/20/2016] [Indexed: 11/20/2022]
Abstract
Natural variations in sensory systems constitute adaptive responses to the environment. Here, we compared sensory placode development in the blind cave-adapted morph and the eyed river-dwelling morph of Astyanax mexicanus Focusing on the lens and olfactory placodes, we found a trade-off between these two sensory components in the two morphs: from neural plate stage onwards, cavefish have larger olfactory placodes and smaller lens placodes. In a search for developmental mechanisms underlying cavefish sensory evolution, we analyzed the roles of Shh, Fgf8 and Bmp4 signaling, which are known to be fundamental in patterning the vertebrate head and are subtly modulated in space and time during cavefish embryogenesis. Modulating these signaling systems at the end of gastrulation shifted the balance toward a larger olfactory derivative. Olfactory tests to assess potential behavioral outcomes of such developmental evolution revealed that Astyanax cavefish are able to respond to a 105-fold lower concentration of amino acids than their surface-dwelling counterparts. We suggest that similar evolutionary developmental mechanisms may be used throughout vertebrates to drive adaptive sensory specializations according to lifestyle and habitat.
Collapse
Affiliation(s)
- Hélène Hinaux
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Lucie Devos
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Maryline Blin
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Yannick Elipot
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Jonathan Bibliowicz
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Alexandre Alié
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Sylvie Rétaux
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
28
|
Stahl BA, Gross JB. A Comparative Transcriptomic Analysis of Development in Two Astyanax Cavefish Populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:515-532. [PMID: 28612405 DOI: 10.1002/jez.b.22749] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
Organisms that are isolated into extreme environments often evolve extreme phenotypes. However, global patterns of dynamic gene expression changes that accompany dramatic environmental changes remain largely unknown. The blind Mexican cavefish, Astyanax mexicanus, has evolved a number of severe cave-associated phenotypes including loss of vision and pigmentation, craniofacial bone fusions, increased fat storage, reduced sleep, and amplified nonvisual sensory systems. Interestingly, surface-dwelling forms have repeatedly entered different caves throughout Mexico, providing a natural set of "replicate" instances of cave isolation. These surrogate "ancestral" surface-dwelling forms persist in nearby rivers, enabling direct comparisons to the "derived" cave-dwelling form. We evaluated changes associated with subterranean isolation by measuring differential gene expression in two geographically distinct cave-dwelling populations (Pachón and Tinaja). To understand the impact of these expression changes on development, we performed RNA-sequencing across four critical stages during which troglomorphic traits first appear in cavefish embryos. Gene ontology (GO) studies revealed similar functional profiles evolved in both independent cave lineages. However, enrichment studies indicated that similar GO profiles were occasionally mediated by different genes. Certain "master" regulators, such as Otx2 and Mitf, appear to be important loci for cave adaptation, as remarkably similar patterns of expression were identified in both independent cave lineages. This work reveals that adaptation to an extreme environment, in two distinct cavefish lineages, evolves through a combination of unique and shared gene expression patterns. Shared expression profiles reflect common environmental pressures, while unique expression likely reflects the fact that similar adaptive traits evolve through diverse genetic mechanisms.
Collapse
Affiliation(s)
- Bethany A Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
29
|
Bassnett S, Šikić H. The lens growth process. Prog Retin Eye Res 2017; 60:181-200. [PMID: 28411123 DOI: 10.1016/j.preteyeres.2017.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/17/2023]
Abstract
The factors that regulate the size of organs to ensure that they fit within an organism are not well understood. A simple organ, the ocular lens serves as a useful model with which to tackle this problem. In many systems, considerable variance in the organ growth process is tolerable. This is almost certainly not the case in the lens, which in addition to fitting comfortably within the eyeball, must also be of the correct size and shape to focus light sharply onto the retina. Furthermore, the lens does not perform its optical function in isolation. Its growth, which continues throughout life, must therefore be coordinated with that of other tissues in the optical train. Here, we review the lens growth process in detail, from pioneering clinical investigations in the late nineteenth century to insights gleaned more recently in the course of cell and molecular studies. During embryonic development, the lens forms from an invagination of surface ectoderm. Consequently, the progenitor cell population is located at its surface and differentiated cells are confined to the interior. The interactions that regulate cell fate thus occur within the obligate ellipsoidal geometry of the lens. In this context, mathematical models are particularly appropriate tools with which to examine the growth process. In addition to identifying key growth determinants, such models constitute a framework for integrating cell biological and optical data, helping clarify the relationship between gene expression in the lens and image quality at the retinal plane.
Collapse
Affiliation(s)
- Steven Bassnett
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, USA.
| | - Hrvoje Šikić
- Department of Mathematics, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
30
|
Hinaux H, Recher G, Alié A, Legendre L, Blin M, Rétaux S. Lens apoptosis in the Astyanax blind cavefish is not triggered by its small size or defects in morphogenesis. PLoS One 2017; 12:e0172302. [PMID: 28235048 PMCID: PMC5325263 DOI: 10.1371/journal.pone.0172302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/02/2017] [Indexed: 01/08/2023] Open
Abstract
Blindness is a convergent trait in many cave animals of various phyla. Astyanax mexicanus cavefish is one of the best studied cave animals; however the mechanisms underlying eye degeneration in this species are not yet completely understood. The lens seems to play a central role, but only relatively late differentiation defects have been implicated in the cavefish lens apoptosis phenotype so far. Here, we used genetic crosses between Astyanax cavefish and surface fish to confirm that during development, lens size is independent of retina size. We then investigated whether the small size of the cavefish lens could directly cause cell death. Laser ablation experiments of lens placode cells in surface fish embryos showed that a small lens size is not sufficient to trigger lens apoptosis. We further examined potential lens morphogenesis defects through classical histology and live-imaging microscopy. From lens placode to lens ball, we found that lens invagination and formation of the lens epithelium and fiber cells occur normally in cavefish. We conclude that the main and deleterious defect in the Astyanax cavefish lens must concern the molecular control of lens cell function.
Collapse
Affiliation(s)
- Hélène Hinaux
- DECA group, Paris-Saclay Institute of Neuroscience, UMR9197, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Gaëlle Recher
- Plateforme BioEmergence, USR3695, CNRS, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Alexandre Alié
- DECA group, Paris-Saclay Institute of Neuroscience, UMR9197, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Laurent Legendre
- UMS AMAGEN (UMS 3504 CNRS / UMS 1374 INRA), CNRS, INRA, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Maryline Blin
- DECA group, Paris-Saclay Institute of Neuroscience, UMR9197, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- DECA group, Paris-Saclay Institute of Neuroscience, UMR9197, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| |
Collapse
|
31
|
Kelley JL, Davies WIL. The Biological Mechanisms and Behavioral Functions of Opsin-Based Light Detection by the Skin. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Walsh SJ, Chakrabarty P. A New Genus and Species of Blind Sleeper (Teleostei: Eleotridae) from Oaxaca, Mexico: First Obligate Cave Gobiiform in the Western Hemisphere. COPEIA 2016. [DOI: 10.1643/ci-15-275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Yoshizawa M. Behaviors of cavefish offer insight into developmental evolution. Mol Reprod Dev 2015; 82:268-80. [PMID: 25728684 PMCID: PMC5024055 DOI: 10.1002/mrd.22471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Abstract
Many developmental processes have evolved through natural selection, yet in only a few cases do we understand if and how a change of developmental process produces a benefit. For example, many studies in evolutionary biology have investigated the developmental mechanisms that lead to novel structures in an animal, but only a few have addressed if these structures actually benefit the animal at the behavioral level of prey hunting and mating. As such, this review discusses an animal's behavior as the integrated functional output of its evolved morphological and physiological traits. Specifically, we focus on recent findings about the blind Mexican cavefish, Astyanax mexicanus, for which clear relationships exist between its physical traits and ecosystem. This species includes two morphotypes: an eyed surface dweller versus many conspecific types of blind cave dwellers, some of which evolved independently; all of the blind subtypes derived from eyed surface dwellers. The blind cavefish evolved under clear selection pressures: food is sparse and darkness is perpetual. Simulating the major aspects of a cave ecosystem in the laboratory is relatively easy, so we can use this species to begin resolving the relationships between evolved traits and selection pressures—relationships which are more complex for other animals models. This review discusses the recent advances in cavefish research that have helped us establish some key relationships between morphological evolution and environmental shifts. Mol. Reprod. Dev. 82: 268–280, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Biology, University of Nevada, Reno, Nevada; Department of Biology, University of Hawaii, Manoa, Hawaii
| |
Collapse
|
34
|
Yoshizawa M, Robinson BG, Duboué ER, Masek P, Jaggard JB, O'Quin KE, Borowsky RL, Jeffery WR, Keene AC. Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. BMC Biol 2015; 13:15. [PMID: 25761998 PMCID: PMC4364459 DOI: 10.1186/s12915-015-0119-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sleep is characterized by extended periods of quiescence and reduced responsiveness to sensory stimuli. Animals ranging from insects to mammals adapt to environments with limited food by suppressing sleep and enhancing their response to food cues, yet little is known about the genetic and evolutionary relationship between these processes. The blind Mexican cavefish, Astyanax mexicanus is a powerful model for elucidating the genetic mechanisms underlying behavioral evolution. A. mexicanus comprises an extant ancestral-type surface dwelling morph and at least five independently evolved cave populations. Evolutionary convergence on sleep loss and vibration attraction behavior, which is involved in prey seeking, have been documented in cavefish raising the possibility that enhanced sensory responsiveness underlies changes in sleep. RESULTS We established a system to study sleep and vibration attraction behavior in adult A. mexicanus and used high coverage quantitative trait loci (QTL) mapping to investigate the functional and evolutionary relationship between these traits. Analysis of surface-cave F2 hybrid fish and an outbred cave population indicates that independent genetic factors underlie changes in sleep/locomotor activity and vibration attraction behavior. High-coverage QTL mapping with genotyping-by-sequencing technology identify two novel QTL intervals that associate with locomotor activity and include the narcolepsy-associated tp53 regulating kinase. These QTLs represent the first genomic localization of locomotor activity in cavefish and are distinct from two QTLs previously identified as associating with vibration attraction behavior. CONCLUSIONS Taken together, these results localize genomic regions underlying sleep/locomotor and sensory changes in cavefish populations and provide evidence that sleep loss evolved independently from enhanced sensory responsiveness.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA. .,Department of Biology, University of Hawaii, Manoa, Honolulu, HI, 96822, USA.
| | - Beatriz G Robinson
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Erik R Duboué
- Department of Biology, New York University, New York, NY, 10012, USA. .,Present address: Carnegie Institution for Science, Department of Embryology, Baltimore, MD, 21218, USA.
| | - Pavel Masek
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - James B Jaggard
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Kelly E O'Quin
- Department of Biology, Centre College, Danville, KY, 40422, USA.
| | | | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Alex C Keene
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
35
|
Adapting to the darkness. Lab Anim (NY) 2014; 44:11. [PMID: 25526040 DOI: 10.1038/laban.675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Yoshizawa M, Jeffery WR. Evolutionary tuning of an adaptive behavior requires enhancement of the neuromast sensory system. Commun Integr Biol 2014. [DOI: 10.4161/cib.14118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Ahi EP, Kapralova KH, Pálsson A, Maier VH, Gudbrandsson J, Snorrason SS, Jónsson ZO, Franzdóttir SR. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr. EvoDevo 2014; 5:40. [PMID: 25419450 PMCID: PMC4240837 DOI: 10.1186/2041-9139-5-40] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/17/2014] [Indexed: 12/30/2022] Open
Abstract
Background Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Results Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Conclusion Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-5-40) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Kalina Hristova Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Valerie Helene Maier
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Jóhannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Sigrídur Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| |
Collapse
|
38
|
Protas M, Jeffery WR. Evolution and development in cave animals: from fish to crustaceans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:823-45. [PMID: 23580903 DOI: 10.1002/wdev.61] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cave animals are excellent models to study the general principles of evolution as well as the mechanisms of adaptation to a novel environment: the perpetual darkness of caves. In this article, two of the major model systems used to study the evolution and development (evo-devo) of cave animals are described: the teleost fish Astyanax mexicanus and the isopod crustacean Asellus aquaticus. The ways in which these animals match the major attributes expected of an evo-devo cave animal model system are described. For both species, we enumerate the regressive and constructive troglomorphic traits that have evolved during their adaptation to cave life, the developmental and genetic basis of these traits, the possible evolutionary forces responsible for them, and potential new areas in which these model systems could be used for further exploration of the evolution of cave animals. Furthermore, we compare the two model cave animals to investigate the mechanisms of troglomorphic evolution. Finally, we propose a few other cave animal systems that would be suitable for development as additional models to obtain a more comprehensive understanding of the developmental and genetic mechanisms involved in troglomorphic evolution.
Collapse
Affiliation(s)
- Meredith Protas
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
39
|
Abstract
In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research.
Collapse
Affiliation(s)
- Manfred Schartl
- Department Physiological Chemistry, Biocenter, University of Würzburg, and Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
40
|
Yoshizawa M, Jeffery WR, van Netten SM, McHenry MJ. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus). ACTA ACUST UNITED AC 2013; 217:886-95. [PMID: 24265419 DOI: 10.1242/jeb.094599] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The characid fish species Astyanax mexicanus offers a classic comparative model for the evolution of sensory systems. Populations of this species evolved in caves and became blind while others remained in streams (i.e. surface fish) and retained a functional visual system. The flow-sensitive lateral line receptors, called superficial neuromasts, are more numerous in cavefish than in surface fish, but it is unclear whether individual neuromasts differ in sensitivity between these populations. The aims of this study were to determine whether the neuromasts in cavefish impart enhanced sensitivity relative to surface fish and to test whether this aids their ability to sense flow in the absence of visual input. Sensitivity was assessed by modeling the mechanics and hydrodynamics of a flow stimulus. This model required that we measure the dimensions of the transparent cupula of a neuromast, which was visualized with fluorescent microspheres. We found that neuromasts within the eye orbit and in the suborbital region were larger and consequently about twice as sensitive in small adult cavefish as in surface fish. Behavioral experiments found that these cavefish, but not surface fish, were attracted to a 35 Hz flow stimulus. These results support the hypothesis that the large superficial neuromasts of small cavefish aid in flow sensing. We conclude that the morphology of the lateral line could have evolved in cavefish to permit foraging in a cave environment.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
41
|
Rétaux S, Casane D. Evolution of eye development in the darkness of caves: adaptation, drift, or both? EvoDevo 2013; 4:26. [PMID: 24079393 PMCID: PMC3849642 DOI: 10.1186/2041-9139-4-26] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/05/2013] [Indexed: 11/10/2022] Open
Abstract
Animals inhabiting the darkness of caves are generally blind and de-pigmented, regardless of the phylum they belong to. Survival in this environment is an enormous challenge, the most obvious being to find food and mates without the help of vision, and the loss of eyes in cave animals is often accompanied by an enhancement of other sensory apparatuses. Here we review the recent literature describing developmental biology and molecular evolution studies in order to discuss the evolutionary mechanisms underlying adaptation to life in the dark. We conclude that both genetic drift (neutral hypothesis) and direct and indirect selection (selective hypothesis) occurred together during the loss of eyes in cave animals. We also identify some future directions of research to better understand adaptation to total darkness, for which integrative analyses relying on evo-devo approaches associated with thorough ecological and population genomic studies should shed some light.
Collapse
Affiliation(s)
- Sylvie Rétaux
- DECA group, Neurobiology & Development Laboratory, CNRS, Gif sur Yvette, France
| | - Didier Casane
- LEGS, CNRS, Gif sur Yvette and Université Paris Diderot, Sorbonne Paris Cité, France
| |
Collapse
|
42
|
|
43
|
Rüschenbaum S, Schlupp I. Non-Visual Mate Choice Ability in a Cavefish (Poecilia mexicana) is not Mechanosensory. Ethology 2013. [DOI: 10.1111/eth.12072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Ingo Schlupp
- Department of Biology; University of Oklahoma; Norman; OK; USA
| |
Collapse
|
44
|
Ghysen A, Dambly-Chaudière C, Coves D, de la Gandara F, Ortega A. Developmental origin of a major difference in sensory patterning between zebrafish and bluefin tuna. Evol Dev 2013. [PMID: 23189756 PMCID: PMC3488297 DOI: 10.1111/j.1525-142x.2012.00529.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The posterior lateral line system (PLL) of teleost fish comprises a number of mechanosensory organs arranged in defined patterns on the body surface. Embryonic patterns are largely conserved among teleosts, yet adult patterns are highly diverse. Although changes in pattern modify the perceptual abilities of the system, their developmental origin remains unknown. Here we compare the processes that underlie the formation of the juvenile PLL pattern in Thunnus thynnus, the bluefin tuna, to the processes that were elucidated in Danio rerio, the zebrafish. In both cases, the embryonic PLL comprises five neuromasts regularly spaced along the horizontal myoseptum, but the juvenile PLL comprises four roughly parallel anteroposterior lines in zebrafish, whereas it is a simple dorsally arched line in tuna fish. We examined whether this difference involves evolutionary novelties, and show that the same mechanisms mediate the transition from embryonic to juvenile patterns in both species. We conclude that the marked difference in juveniles depends on a single change (dorsal vs. ventral migration of neuromasts) in the first days of larval life.
Collapse
|
45
|
Yoshizawa M, Yamamoto Y, O'Quin KE, Jeffery WR. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol 2012; 10:108. [PMID: 23270452 PMCID: PMC3565949 DOI: 10.1186/1741-7007-10-108] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/27/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND How and why animals lose eyesight during adaptation to the dark and food-limited cave environment has puzzled biologists since the time of Darwin. More recently, several different adaptive hypotheses have been proposed to explain eye degeneration based on studies in the teleost Astyanax mexicanus, which consists of blind cave-dwelling (cavefish) and sighted surface-dwelling (surface fish) forms. One of these hypotheses is that eye regression is the result of indirect selection for constructive characters that are negatively linked to eye development through the pleiotropic effects of Sonic Hedgehog (SHH) signaling. However, subsequent genetic analyses suggested that other mechanisms also contribute to eye regression in Astyanax cavefish. Here, we introduce a new approach to this problem by investigating the phenotypic and genetic relationships between a suite of non-visual constructive traits and eye regression. RESULTS Using quantitative genetic analysis of crosses between surface fish, the Pachón cavefish population and their hybrid progeny, we show that the adaptive vibration attraction behavior (VAB) and its sensory receptors, superficial neuromasts (SN) specifically found within the cavefish eye orbit (EO), are genetically correlated with reduced eye size. The quantitative trait loci (QTL) for these three traits form two clusters of congruent or overlapping QTL on Astyanax linkage groups (LG) 2 and 17, but not at the shh locus on LG 13. Ablation of EO SN in cavefish demonstrated a major role for these sensory receptors in VAB expression. Furthermore, experimental induction of eye regression in surface fish via shh overexpression showed that the absence of eyes was insufficient to promote the appearance of VAB or EO SN. CONCLUSIONS We conclude that natural selection for the enhancement of VAB and EO SN indirectly promotes eye regression in the Pachón cavefish population through an antagonistic relationship involving genetic linkage or pleiotropy among the genetic factors underlying these traits. This study demonstrates a trade-off between the evolution of a non-visual sensory system and eye regression during the adaptive evolution of Astyanax to the cave environment.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Yoshiyuki Yamamoto
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Kelly E O'Quin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
46
|
Schobert CS, Stiassny MLJ, Schwab IR, Zeiss C, Schelly RC, Dubielzig RR. Comparative ocular anatomy in a blind African cichlid fish,Lamprologus lethops. Vet Ophthalmol 2012. [DOI: 10.1111/vop.12006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Charles S. Schobert
- Comparative Ocular Pathology Laboratory of Wisconsin; School of Veterinary Medicine; University of Wisconsin-Madison; Madison; WI; 53706; USA
| | | | | | | | - Robert C. Schelly
- Department of Ichthyology; American Museum of Natural History; New York City; NY; USA
| | - Richard R. Dubielzig
- Comparative Ocular Pathology Laboratory of Wisconsin; School of Veterinary Medicine; University of Wisconsin-Madison; Madison; WI; 53706; USA
| |
Collapse
|
47
|
Elipot Y, Hinaux H, Callebert J, Rétaux S. Evolutionary shift from fighting to foraging in blind cavefish through changes in the serotonin network. Curr Biol 2012; 23:1-10. [PMID: 23159600 DOI: 10.1016/j.cub.2012.10.044] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/27/2012] [Accepted: 10/24/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Within the species Astyanax mexicanus, there are several interfertile populations of river-dwelling sighted fish and cave-dwelling blind fish which have evolved morphological and behavioral adaptations, the origins of which are unknown. Here, we have investigated the neural, genetic, and developmental bases for the evolution of aggressive behavior in this teleost. RESULTS We used an intruder-resident behavioral assay to compare aggressiveness quantitatively (attack counts) and qualitatively (pattern and nature of attacks) between the surface and cave populations of Astyanax. Using this paradigm, we characterize aggressive behavior in surface fish, bring support for the genetic component of this trait, and show that it is controlled by raphe serotonergic neurons and that it corresponds to the establishment of dominance between fish. Cavefish have completely lost such aggressive/dominance behavior. The few attacks performed by cavefish during the behavioral test instead correspond to food-seeking behavior, driven by the developmental evolution of their hypothalamic serotonergic paraventricular neurons, itself due to increased Sonic Hedgehog signaling during early forebrain embryogenesis. CONCLUSIONS We propose that during evolution and adaptation to their cave habitat, cavefish have undergone a behavioral shift, due to modifications of their serotonergic neuronal network. They have lost the typical aggressive behavior of surface fish and evolved a food-seeking behavior that is probably more advantageous to surviving in the dark. We have therefore demonstrated a link between the development of a neuronal network and the likely adaptive behaviors it controls.
Collapse
Affiliation(s)
- Yannick Elipot
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 Neurobiologie et Développement, CNRS, Institut Alfred Fessard, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
48
|
Greenwood AK, Cech JN, Peichel CL. Molecular and developmental contributions to divergent pigment patterns in marine and freshwater sticklebacks. Evol Dev 2012; 14:351-62. [PMID: 22765206 DOI: 10.1111/j.1525-142x.2012.00553.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pigment pattern variation across species or populations offers a tractable framework in which to investigate the evolution of development. Juvenile threespine sticklebacks (Gasterosteus aculeatus) from marine and freshwater environments exhibit divergent pigment patterns that are associated with ecological differences. Juvenile marine sticklebacks have a silvery appearance, whereas sticklebacks from freshwater environments exhibit a pattern of vertical bars. We investigated both the developmental and molecular basis of this population-level variation in pigment pattern. Time course imaging during the transition from larval to juvenile stages revealed differences between marine and freshwater fish in spatial patterns of chromatophore differentiation as well as in pigment amount and dispersal. In freshwater fish, melanophores appear primarily within dark bars whereas iridophores appear within light bars. By contrast, in marine fish, these chromatophores are interspersed across the flank. In addition to spatially segregated chromatophore differentiation, pigment amount and dispersal within melanophores varies spatially across the flank of freshwater, but not marine fish. To gain insight into the molecular pathways that underlie the differences in pigment pattern development, we evaluated differential gene expression in the flanks of developing fish using high-throughput cDNA sequencing (RNA-seq) and quantitative PCR. We identified several genes that were differentially expressed across dark and light bars of freshwater fish, and between freshwater and marine fish. Together, these experiments begin to shed light on the process of pigment pattern evolution in sticklebacks.
Collapse
Affiliation(s)
- Anna K Greenwood
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
49
|
Yoshizawa M, Ashida G, Jeffery WR. Parental genetic effects in a cavefish adaptive behavior explain disparity between nuclear and mitochondrial DNA. Evolution 2012; 66:2975-82. [PMID: 22946818 DOI: 10.1111/j.1558-5646.2012.01651.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epigenetic parental genetic effects are important in many biological processes but their roles in the evolution of adaptive traits and their consequences in naturally evolving populations remain to be addressed. By comparing two divergent blind cave-dwelling cavefish populations with a sighted surface-dwelling population (surface fish) of the teleost Astyanax mexicanus, we report here that convergences in vibration attraction behavior (VAB), the lateral line sensory receptors underlying this behavior, and the feeding benefits of this behavior are controlled by parental genetic effects, either maternal or paternal inheritance. From behavioral studies and mathematical evolutionary simulations, we further demonstrate that disparity in nuclear and mitochondrial DNA in one of these cavefish populations that has hybridized with surface fish can be explained by paternal inheritance of VAB. The results suggest that parental genetic effects in adaptive behaviors may be important factors in biasing mitochondrial DNA inheritance in natural populations that are subject to introgression.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
50
|
Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 2011; 188:799-808. [PMID: 21828280 PMCID: PMC3176089 DOI: 10.1534/genetics.111.127324] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic resources for hundreds of species of evolutionary, agricultural, economic, and medical importance are unavailable due to the expense of well-assembled genome sequences and difficulties with multigenerational studies. Teleost fish provide many models for human disease but possess anciently duplicated genomes that sometimes obfuscate connectivity. Genomic information representing a fish lineage that diverged before the teleost genome duplication (TGD) would provide an outgroup for exploring the mechanisms of evolution after whole-genome duplication. We exploited massively parallel DNA sequencing to develop meiotic maps with thrift and speed by genotyping F(1) offspring of a single female and a single male spotted gar (Lepisosteus oculatus) collected directly from nature utilizing only polymorphisms existing in these two wild individuals. Using Stacks, software that automates the calling of genotypes from polymorphisms assayed by Illumina sequencing, we constructed a map containing 8406 markers. RNA-seq on two map-cross larvae provided a reference transcriptome that identified nearly 1000 mapped protein-coding markers and allowed genome-wide analysis of conserved synteny. Results showed that the gar lineage diverged from teleosts before the TGD and its genome is organized more similarly to that of humans than teleosts. Thus, spotted gar provides a critical link between medical models in teleost fish, to which gar is biologically similar, and humans, to which gar is genomically similar. Application of our F(1) dense mapping strategy to species with no prior genome information promises to facilitate comparative genomics and provide a scaffold for ordering the numerous contigs arising from next generation genome sequencing.
Collapse
|