1
|
Du E, Wang A, Fan R, Rong L, Yang R, Xing J, Shi X, Qiao B, Yu R, Xu C. Catestatin enhances ATP-induced activation of glial cells mediated by purinergic receptor P2X 4. J Recept Signal Transduct Res 2021; 42:160-168. [PMID: 33504266 DOI: 10.1080/10799893.2021.1878536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The activation of glial cells and its possible mechanism play an extremely important role in understanding the pathophysiological process of some clinical diseases, and catestatin (CST) is involved in regulating this activation. In this project, we found that CST could enhance the activation of satellite glial cells (SGCs) and microglial cells and that the expression of P2X4 was increased; the co-expression of the P2X4 receptor with glial fibrillary acidic protein (GFAP) and the P2X4 receptor with CD11b was also increased significantly in glial cells of the ATP + CST group, and TNF-α and IL-1β also showed a rising trend; the expression of phosphorylated ERK1/2 was also increased in the ATP + CST group. In summary, we conclude that CST could enhance ATP-induced activation of SGCs and microglial cells mediated by the P2X4 receptor and that the ERK1/2 signaling pathway may be involved in this activation process.
Collapse
Affiliation(s)
- Errong Du
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Anhui Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Rongping Fan
- The Fourth Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Lilou Rong
- The Fourth Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Runan Yang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Juping Xing
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Xiangchao Shi
- Queen Mary School, Medical Department, Nanchang University-Queen Mary University of London, Nanchang, P.R. China
| | - Bao Qiao
- Queen Mary School, Medical Department, Nanchang University-Queen Mary University of London, Nanchang, P.R. China
| | - Ruoyang Yu
- Queen Mary School, Medical Department, Nanchang University-Queen Mary University of London, Nanchang, P.R. China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, P.R. China
| |
Collapse
|
2
|
Martins DO, Marques DP, Venega RAG, Chacur M. Photobiomodulation and B vitamins administration produces antinociception in an orofacial pain model through the modulation of glial cells and cytokines expression. Brain Behav Immun Health 2020; 2:100040. [PMID: 34589831 PMCID: PMC8474295 DOI: 10.1016/j.bbih.2020.100040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic constriction injury (CCI) of infraorbital nerve (IoN) results in whisker pad mechanical allodynia in rats and activation glial cells contributing to the development of orofacial pain. Whisker pad mechanical allodynia (von Frey stimuli) was tested pre and postoperatively and conducted during the treatment time. Photobiomodulation (PBM) and vitamins B complex (VBC) has been demonstrated therapeutic efficacy in ameliorate neuropathic pain. The aim of this study was to evaluate the antinociceptive effect of PBM, VBC or the combined treatment VBC + PBM on orofacial pain due to CCI-IoN. Behavioral and molecular approaches were used to analyses nociception, cellular and neurochemical alterations. CCI-IoN caused mechanical allodynia and cellular alterations including increased expression of glial fibrillary acid protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba-1), administration of VBC (B1/B6/B12 at 180/180/1.8 mg/kg, s.c., 5 times all long 10 sessions) and PBM therapy (904 nm, power of 75Wpico, average power of 0.0434 W, pulse frequency of 9500 Hz, area of the beam 0.13 cm2, 18 s duration, energy density 6 J/cm2, with an energy per point of 0.78 J for 10 sessions) or their combination presented improvement of the nociceptive behavior and decreased expression of GFAP and Iba-1. Additionally, CCI-IoN rats exhibited an upregulation of IL1β, IL6 and TNF-α expression and all treatments prevented this upregulation and also increased IL10 expression. Overall, the present results highlight the pain reliever effect of VBC or PBM alone or in combination, through the modulation of glial cells and cytokines expression in the spinal trigeminal nucleus of rats.
Collapse
Affiliation(s)
- D O Martins
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - D P Marques
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - R A G Venega
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - M Chacur
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| |
Collapse
|
3
|
Das V, Kc R, Li X, Varma D, Qiu S, Kroin JS, Forsyth CB, Keshavarzian A, van Wijnen AJ, Park TJ, Stein GS, O-Sullivan I, Burris TP, Im HJ. Pharmacological targeting of the mammalian clock reveals a novel analgesic for osteoarthritis-induced pain. Gene 2018; 655:1-12. [PMID: 29474860 DOI: 10.1016/j.gene.2018.02.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 01/02/2023]
Abstract
Environmental disruption of the circadian rhythm is linked with increased pain due to osteoarthritis (OA). We aimed to characterize the role of the clock gene in OA-induced pain more systemically using both genetic and pharmacological approaches. Genetically modified mice, (bmal1f/fNav1.8CreERT mice), generated by deleting the critical clock gene, bmal1, from Nav1.8 sensory neurons, were resistant to the development of mechanical hyperalgesia associated with OA induced by partial medial meniscectomy (PMM) of the knee. In wild-type mice, induction of OA by PMM surgery led to a substantial increase in BMAL1 expression in DRG neurons. Interestingly, pharmacological activation of the REV-ERB (a negative regulator of bmal1 transcription) with SR9009 resulted in reduction of BMAL1 expression, and a significant decrease in mechanical hyperalgesia associated with OA. Cartilage degeneration was also significantly reduced in mice treated with the REV-ERB agonist SR9009. Based on these data, we also assessed the effect of pharmacological activation of REV-ERB using a model of environmental circadian disruption with its associated mechanical hyperalgesia, and noted that SR9009 was an effective analgesic in this model as well. Our data clearly demonstrate that genetic disruption of the molecular clock, via deletion of bmal1 in the sensory neurons of the DRG, decreases pain in a model of OA. Furthermore, pharmacological activation of REV-ERB leading to suppression of BMAL1 expression may be an effective method for treating OA-related pain, as well as to reduce joint damage associated with this disease.
Collapse
Affiliation(s)
- Vaskar Das
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA; Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Ranjan Kc
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Xin Li
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Disha Varma
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Sujun Qiu
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA; Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jeffrey S Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Department of Internal Medicine Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | | | - Thomas J Park
- Department of Biological Science, University of Illinois at Chicago, IL, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Insug O-Sullivan
- Department of Medicine, University of Illinois at Chicago, IL, USA
| | - Thomas P Burris
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St Louis, MO, USA.
| | - Hee-Jeong Im
- Department of Bioengineering, University of Illinois at Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL, USA.
| |
Collapse
|
4
|
Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia. Toxins (Basel) 2017; 9:toxins9120406. [PMID: 29311537 PMCID: PMC5744126 DOI: 10.3390/toxins9120406] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022] Open
Abstract
Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms.
Collapse
|
5
|
Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol 2016; 278:91-104. [PMID: 26808661 DOI: 10.1016/j.expneurol.2016.01.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/31/2022]
Abstract
Human SCI is frequently associated with chronic pain that is severe and refractory to medical therapy. Most rodent models used to assess pain outcomes in SCI apply moderate injuries to lower thoracic spinal levels, whereas the majority of human lesions are severe in degree and occur at cervical or upper thoracic levels. To better model and understand mechanisms associated with chronic pain after SCI, we subjected adult rats to T3 severe compression or complete transection lesions, and examined pain-related behaviors for three months. Within one week after injury, rats developed consistent forepaw pain-related behaviors including increased spontaneous lifts, tactile allodynia and cold sensitivity that persisted for three months. Place escape avoidance testing confirmed that withdrawal of the forepaws from a von Frey stimulus represented active pain-related aversion. Spontaneous and evoked pain-related measures were attenuated by gabapentin, further indicating that these behaviors reflect development of pain. Spinal level of injury was relevant: rats with T11 severe SCI did not exhibit forepaw pain-related behaviors. Immunoblotting and immunofluorescence of C6-C8 spinal dorsal horn, reflecting sensory innervation of the forepaw, revealed: 1) expansion of CGRP immunoreactivity in lamina I/II; 2) increased GAP-43 expression; and 3) increased IBA1, GFAP and connexin-43 expression. These findings indicate that aberrant pain fiber sprouting and gliopathy occur after severe SCI. Notably, satellite glial cells (SGCs) in C6-C8 DRGs exhibited increases in GFAP and connexin-43, suggesting ongoing peripheral sensitization. Carbenoxolone, a gap junction inhibitor, and specific peptide inhibitors of connexin-43, ameliorated established tactile allodynia after severe SCI. Collectively, severe T3 SCI successfully models persistent pain states and could constitute a useful model system for examining candidate translational pain therapies after SCI.
Collapse
|
6
|
Cheng W, Zhao Y, Liu H, Fan Q, Lu FF, Li J, Yin Q, Yan CD. Resveratrol attenuates bone cancer pain through the inhibition of spinal glial activation and CX3CR1 upregulation. Fundam Clin Pharmacol 2014; 28:661-70. [PMID: 24872145 DOI: 10.1111/fcp.12084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/11/2014] [Accepted: 05/22/2014] [Indexed: 02/04/2023]
Abstract
The present study examined the effects of intrathecal use of resveratrol on pain hypersensitivities, spinal glia activation, and CX3CR1 expression in the model of bone cancer pain (BCP). The BCP model was established through intrathecally injecting Walker 256 mammary gland carcinoma cells to Sprague-Dawley rats. We found that spinal CX3CR1 expression and glial activation aggravated after inoculation. Resveratrol (i.t.) attenuated bone cancer-induced pain hypersensitivities, decreased CX3CR1 expression and glial activation in the spine in a BCP model. Resveratrol (i.t.) also attenuated mechanical allodynia resulting from intrathecally injecting fractalkine in rats. Inhibition of spinal glial activation and CX3CR1 upregulation may involve in resveratrol's analgesic effects. These findings demonstrated that resveratrol attenuated pain facilitation through inhibiting spinal glial activation and CX3CR1 upregulation in a BCP model.
Collapse
Affiliation(s)
- Wei Cheng
- Affiliated Hospital of Xuzhou Medical College, 99 Huaihai West Road, Xuzhou, Jiangsu, 221002, China; Xuzhou medical College, Xuzhou, 221002, China; Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Xuzhou Medical College, Xuzhou, 221002, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hu JH, Wu MY, Tao M, Yang JP. Changes in protein expression and distribution of spinal CCR2 in a rat model of bone cancer pain. Brain Res 2013; 1509:1-7. [PMID: 23511129 DOI: 10.1016/j.brainres.2013.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 03/02/2013] [Accepted: 03/03/2013] [Indexed: 01/09/2023]
Abstract
Accumulating evidence suggests that chemokine C-C motif receptor 2 (CCR2) plays an important role in neuropathic pain. It has been shown that spinal CCR2 is upregulated in several neuropathic pain models and expressed by neuronal and glial cells in the spinal cord. In this study, we investigated the expression changes and cellular localization of spinal CCR2 in a rat model of bone cancer induced by Walker 256 cell inoculation. The present results indicated that mechanical allodynia progressively increased in bone cancer pain (BCP) rats. Western blot and immunohistochemical analysis demonstrated that the expression of CCR2 in the spinal cord was significantly increased on day 6, 12, and 18 in BCP rats, with a peak on day 6. Furthermore, double immunofluorescence labeling indicated that CCR2 was expressed by both microglia and neurons in the spinal cord. These results suggest that CCR2 may be involved in the development of BCP, and that targeting CCR2 may be a new strategy for the treatment of BCP.
Collapse
Affiliation(s)
- Ji-Hua Hu
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | |
Collapse
|
8
|
Involvement of CX3CR1 in bone cancer pain through the activation of microglia p38 MAPK pathway in the spinal cord. Brain Res 2012; 1465:1-9. [DOI: 10.1016/j.brainres.2012.05.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/21/2012] [Accepted: 05/11/2012] [Indexed: 12/30/2022]
|
9
|
Jha MK, Jeon S, Suk K. Glia as a Link between Neuroinflammation and Neuropathic Pain. Immune Netw 2012; 12:41-7. [PMID: 22740789 PMCID: PMC3382663 DOI: 10.4110/in.2012.12.2.41] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 12/18/2022] Open
Abstract
Contemporary studies illustrate that peripheral injuries activate glial components of the peripheral and central cellular circuitry. The subsequent release of glial stressors or activating signals contributes to neuropathic pain and neuroinflammation. Recent studies document the importance of glia in the development and persistence of neuropathic pain and neuroinflammation as a connecting link, thereby focusing attention on the glial pathology as the general underlying factor in essentially all age-related neurodegenerative diseases. There is wide agreement that excessive glial activation is a key process in nervous system disorders involving the release of strong pro-inflammatory cytokines, which can trigger worsening of multiple disease states. This review will briefly discuss the recent findings that have shed light on the molecular and cellular mechanisms of glia as a connecting link between neuropathic pain and neuroinflammation.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | | | | |
Collapse
|
10
|
Emerging role of microglial kinin B1 receptor in diabetic pain neuropathy. Exp Neurol 2012; 234:373-81. [DOI: 10.1016/j.expneurol.2011.11.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/01/2011] [Accepted: 11/22/2011] [Indexed: 12/28/2022]
|
11
|
Teixeira C, Cury Y, Moreira V, Picolo G, Chaves F. Inflammation induced by Bothrops asper venom. Toxicon 2009; 54:988-97. [DOI: 10.1016/j.toxicon.2009.05.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Teixeira C, Cury Y, Moreira V, Picolo G, Chaves F. Inflammation induced by Bothrops asper venom. Toxicon 2009; 54:67-76. [DOI: 10.1016/j.toxicon.2009.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/13/2009] [Accepted: 03/20/2009] [Indexed: 01/31/2023]
|
13
|
Abstract
Glia have emerged as key contributors to pathological and chronic pain mechanisms. On activation, both astrocytes and microglia respond to and release a number of signalling molecules, which have protective and/or pathological functions. Here we review the current understanding of the contribution of glia to pathological pain and neuroprotection, and how the protective, anti-inflammatory actions of glia are being harnessed to develop new drug targets for neuropathic pain control. Given the prevalence of chronic pain and the partial efficacy of current drugs, which exclusively target neuronal mechanisms, new strategies to manipulate neuron-glia interactions in pain processing hold considerable promise.
Collapse
|
14
|
Watkins LR, Hutchinson MR, Ledeboer A, Wieseler-Frank J, Milligan ED, Maier SF. Norman Cousins Lecture. Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun 2007; 21:131-46. [PMID: 17175134 PMCID: PMC1857294 DOI: 10.1016/j.bbi.2006.10.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 12/19/2022] Open
Abstract
Within the past decade, there has been increasing recognition that glia are far more than simply "housekeepers" for neurons. This review explores two recently recognized roles of glia (microglia and astrocytes) in: (a) creating and maintaining enhanced pain states such as neuropathic pain, and (b) compromising the efficacy of morphine and other opioids for pain control. While glia have little-to-no role in pain under basal conditions, pain is amplified when glia become activated, inducing the release of proinflammatory products, especially proinflammatory cytokines. How glia are triggered to become activated is a key issue, and appears to involve a number of neuron-to-glia signals including neuronal chemokines, neurotransmitters, and substances released by damaged, dying and dead neurons. In addition, glia become increasingly activated in response to repeated administration of opioids. Products of activated glia increase neuronal excitability via numerous mechanisms, including direct receptor-mediated actions, upregulation of excitatory amino acid receptor function, downregulation of GABA receptor function, and so on. These downstream effects of glial activation amplify pain, suppress acute opioid analgesia, contribute to the apparent loss of opioid analgesia upon repeated opioid administration (tolerance), and contribute to the development of opioid dependence. The potential implications of such glial regulation of pain and opioid actions are vast, suggestive that targeting glia and their proinflammatory products may provide a novel and effective therapy for controlling clinical pain syndromes and increasing the clinical utility of analgesic drugs.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology and the Center for Neuroscience, Muenzinger D-244, Campus Box 345, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Milligan ED, Soderquist RG, Malone SM, Mahoney JH, Hughes TS, Langer SJ, Sloane EM, Maier SF, Leinwand LA, Watkins LR, Mahoney MJ. Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. NEURON GLIA BIOLOGY 2006; 2:293-308. [PMID: 18079973 PMCID: PMC2133369 DOI: 10.1017/s1740925x07000488] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research on communication between glia and neurons has increased in the past decade. The onset of neuropathic pain, a major clinical problem that is not resolved by available therapeutics, involves activation of spinal cord glia through the release of proinflammatory cytokines in acute animal models of neuropathic pain. Here, we demonstrate for the first time that the spinal action of the proinflammatory cytokine, interleukin 1 (IL-1) is involved in maintaining persistent (2 months) allodynia induced by chronic-constriction injury (CCI). The anti-inflammatory cytokine IL-10 can suppress proinflammatory cytokines and spinal cord glial amplification of pain. Given that IL-1 is a key mediator of neuropathic pain, developing a clinically viable means of long-term delivery of IL-10 to the spinal cord is desirable. High doses of intrathecal IL-10-gene therapy using naked plasmid DNA (free pDNA-IL-10) is effective, but the dose required limits its potential clinical utility. Here we show that intrathecal gene therapy for neuropathic pain is improved sufficiently using two, distinct synthetic polymers, poly(lactic-co-glycolic) and polyethylenimine, that substantially lower doses of pDNA-IL-10 are effective. In conclusion, synthetic polymers used as i.t. gene-delivery systems are well-tolerated and improve the long-duration efficacy of pDNA-IL-10 gene therapy.
Collapse
Affiliation(s)
- Erin D Milligan
- Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|