1
|
Hsu LW, Goto S, Nakano T, Chen KD, Wang CC, Lai CY, Hou CH, Chang YC, Cheng YF, Chiu KW, Chen CC, Chen SH, Chen CL. The effect of exogenous histone H1 on rat adipose-derived stem cell proliferation, migration, and osteogenic differentiation in vitro. J Cell Physiol 2012; 227:3417-25. [PMID: 22223405 DOI: 10.1002/jcp.24042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adipose-derived stem cells (ASCs) are of great interest for the development of novel cell therapies due to their ease of isolation and expansion, immunosuppressive activity, and multilineage differentiation potential. However, the mechanisms underlying the therapeutic potential of ASCs remain to be elucidated. Others and we have shown that nuclear proteins such as histone H1 and high mobility group box 1 (HMGB1) play important roles in the maturation of dendritic cells (DCs). Furthermore, we previously demonstrated translocation of histone H1 from the nucleus to the cytoplasm and activation of mitogen-activated protein kinases (MAPKs) in DCs. In the present study, we confirmed that histone H1 does not alter the immunophenotype and immunosuppression potential of ASCs, but that histone H1 enhanced wound healing and increased interleukin (IL)-6 expression. Moreover, histone H1 treated-ASCs showed up-regulation of MAPKs extracellular-regulated kinase 1/2 (ERK1/2) and sequential NF-κB translocation. Finally, we found that culture in differentiation media supplemented with histone H1 enhanced ASC osteogenesis. In contrast, inhibition of histone H1 by small interfering RNA (siRNA) reduced osteogenic differentiation markers including ALP. These results suggest that histone H1 may be useful for induction of mesenchymal stem cells in tissue engineering and future potential ASC therapies.
Collapse
Affiliation(s)
- Li-Wen Hsu
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Liu M, Fu L, Liu C, Xiong X, Gao X, Xiao M, Cai H, Hu H, Wang X, Mei C. DH9, a novel PPARγ agonist suppresses the proliferation of ADPKD epithelial cells: An association with an inhibition of β-catenin signaling. Invest New Drugs 2009; 28:783-90. [PMID: 19756375 DOI: 10.1007/s10637-009-9313-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/24/2009] [Indexed: 12/26/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease that exclusively progresses to renal failure. An important target for the treatment of ADPKD is to reduce cystic cell proliferation. PPARγ agonists such as TZDs are insulin sensitizing agents that have also been reported to decrease tumor growth. Here we tested DH9, a newly synthesized PPARγ agonist on the proliferation of an ADPKD cell line, WT9-12. DH9 showed a potent anti-proliferative activity against ADPKD cells. At high concentration, DH9 also induced apoptotic cell death. The effect of DH9 on cell proliferation was mediated by a PPARγ independent mechanism. Since DH9 decreased the levels of β-catenin in cells via a GSK3β mediated degradation pathway, this acts as a mechanism for growth inhibition by DH9.
Collapse
Affiliation(s)
- Moyan Liu
- Nephrology institute of PLA, Department of Internal Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Early in vertebrate development, endodermal signals act on mesoderm to induce cardiogenesis. The F-type SOXs SOX7 and SOX18beta are expressed in the cardiogenic region of the early Xenopus embryo. Injection of RNAs encoding SOX7 or SOX18beta, but not the related F-type SOX, SOX17, leads to the nodal-dependent expression of markers of cardiogenesis in animal cap explants. Injection of morpholinos directed against either SOX7 or SOX18mRNAs lead to a partial inhibition of cardiogenesis in vivo, while co-injection of SOX7 and SOX18 morpholinos strongly inhibited cardiogenesis. SOX7 RNA rescued the effects of the SOX18 morpholino and visa versa, indicating that the proteins have redundant functions. In animal cap explants, it appears that SOX7 and SOX18 act indirectly through Xnr2 to induce mesodermal (Eomesodermin, Snail, Wnt11), organizer (Cerberus) and endodermal (endodermin, Hex) tissues, which then interact to initiate cardiogenesis. Versions of SOX7 and SOX18 with their C-terminal, beta-catenin interaction domains replaced by a transcriptional activator domain failed to antagonize beta-catenin activation of Siamois, but still induced cardiogenesis. These observations identify SOX7 and SOX18 as important, and previously unsuspected, regulators of cardiogenesis in Xenopus.
Collapse
|
4
|
McCrea PD, Park JI. Developmental functions of the P120-catenin sub-family. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:17-33. [PMID: 16942809 DOI: 10.1016/j.bbamcr.2006.06.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/21/2006] [Accepted: 06/26/2006] [Indexed: 01/11/2023]
Abstract
For more than a decade, cell, developmental and cancer investigators have brought about a wide interest in the biology of catenin proteins, an attraction being their varied functions within differing cellular compartments. While the diversity of catenin localizations and roles has been intriguing, it has also posed a challenge to the clear interpretation of loss- or gain-of-function developmental phenotypes. The most deeply studied member of the larger catenin family is beta-catenin, whose contributions span areas including cell adhesion and intracellular signaling/ transcriptional control. More recently, attention has been directed towards p120-catenin, which in conjunction with the p120-catenin sub-family members ARVCF- and delta-catenins, are the subjects of this review. Although the requirement for vertebrate versus invertebrate p120-catenin are at variance, vertebrate p120-catenin sub-family members may each inter-link cadherin, cytoskeletal and gene regulatory functions in embryogenesis and disease.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, Program in Genes and Development, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston TX 77030, USA.
| | | |
Collapse
|
5
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
6
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
7
|
Lyons JP, Mueller UW, Ji H, Everett C, Fang X, Hsieh JC, Barth AM, McCrea PD. Wnt-4 activates the canonical beta-catenin-mediated Wnt pathway and binds Frizzled-6 CRD: functional implications of Wnt/beta-catenin activity in kidney epithelial cells. Exp Cell Res 2004; 298:369-87. [PMID: 15265686 DOI: 10.1016/j.yexcr.2004.04.036] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 04/22/2004] [Indexed: 10/26/2022]
Abstract
The Wnt signaling pathway is central to the development of all animals and to cancer progression, yet largely unknown are the pairings of secreted Wnt ligands to their respective Frizzled transmembrane receptors or, in many cases, the relative contributions of canonical (beta-catenin/LEF/TCF) versus noncanonical Wnt signals. Specifically, in the kidney where Wnt-4 is essential for the mesenchymal to epithelial transition that generates the tissue's collecting tubules, the corresponding Frizzled receptor(s) and downstream signaling mechanism(s) are unclear. In this report, we addressed these issues using Madin-Darby Canine Kidney (MDCK) cells, which are competent to form tubules in vitro. Employing established reporter constructs of canonical Wnt/beta-catenin pathway activity, we have determined that MDCK cells are highly responsive to Wnt-4, -1, and -3A, but not to Wnt-5A and control conditions, precisely reflecting functional findings from Wnt-4 null kidney mesenchyme ex vivo rescue studies. We have confirmed that Wnt-4's canonical signaling activity in MDCK cells is mediated by downstream effectors of the Wnt/beta-catenin pathway using beta-Engrailed and dnTCF-4 constructs that suppress this pathway. We have further found that MDCK cells express the Frizzled-6 receptor and that Wnt-4 forms a biochemical complex with the Frizzled-6 CRD. Since Frizzled-6 did not appear to transduce Wnt-4's canonical signal, data supported recently by Golan et al., there presumably exists another as yet unknown Frizzled receptor(s) mediating Wnt-4 activation of beta-catenin/LEF/TCF. Finally, we report that canonical Wnt/beta-catenin signals cells help maintain cell growth and survival in MDCK cells but do not contribute to standard HGF-induced (nonphysiologic) tubule formation. Our results in combination with work from Xenopus laevis (not shown) lead us to believe that Wnt-4 binds both canonical and noncanonical Frizzled receptors, thereby activating Wnt signaling pathways that may each contribute to kidney tubulogenesis.
Collapse
Affiliation(s)
- Jon P Lyons
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang C, Basta T, Hernandez-Lagunas L, Simpson P, Stemple DL, Artinger KB, Klymkowsky MW. Repression of nodal expression by maternal B1-type SOXs regulates germ layer formation in Xenopus and zebrafish. Dev Biol 2004; 273:23-37. [PMID: 15302595 DOI: 10.1016/j.ydbio.2004.05.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/24/2004] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
B1-type SOXs (SOXs 1, 2, and 3) are the most evolutionarily conserved subgroup of the SOX transcription factor family. To study their maternal functions, we used the affinity-purified antibody antiSOX3c, which inhibits the binding of Xenopus SOX3 to target DNA sequences [Development. 130(2003)5609]. The antibody also cross-reacts with zebrafish embryos. When injected into fertilized Xenopus or zebrafish eggs, antiSOX3c caused a profound gastrulation defect; this defect could be rescued by the injection of RNA encoding SOX3DeltaC-EnR, a SOX3-engrailed repression domain chimera. In antiSOX3c-injected Xenopus embryos, normal animal-vegetal patterning of mesodermal and endodermal markers was disrupted, expression domains were shifted toward the animal pole, and the levels of the endodermal markers SOX17 and endodermin increased. In Xenopus, SOX3 acts as a negative regulator of Xnr5, which encodes a nodal-related TGFbeta-family protein. Two nodal-related proteins are expressed in the early zebrafish embryo, squint and cyclops; antiSOX3c-injection leads to an increase in the level of cyclops expression. In both Xenopus and zebrafish, the antiSOX3c phenotype was rescued by the injection of RNA encoding the nodal inhibitor Cerberus-short (CerS). In Xenopus, antiSOX3c's effects on endodermin expression were suppressed by injection of RNA encoding a dominant negative version of Mixer or a morpholino against SOX17alpha2, both of which act downstream of nodal signaling in the endoderm specification pathway. Based on these data, it appears that maternal B1-type SOX functions together with the VegT/beta-catenin system to regulate nodal expression and to establish the normal pattern of germ layer formation in Xenopus. A mechanistically conserved system appears to act in a similar manner in the zebrafish.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, 80309-0347, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Vincent PA, Xiao K, Buckley KM, Kowalczyk AP. VE-cadherin: adhesion at arm's length. Am J Physiol Cell Physiol 2004; 286:C987-97. [PMID: 15075197 DOI: 10.1152/ajpcell.00522.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
VE-cadherin was first identified in the early 1990s and quickly emerged as an important endothelial cell adhesion molecule. The past decade of research has revealed key roles for VE-cadherin in vascular permeability and in the morphogenic events associated with vascular remodeling. The details of how VE-cadherin functions in adhesion became apparent with structure-function analysis of the cadherin extracellular domain and with the identification of the catenins, a series of cytoplasmic proteins that bind to the cadherin tail and mediate interactions between cadherins and the cytoskeleton. Whereas early work focused on the armadillo family proteins beta-catenin and plakoglobin, more recent investigations have identified p120-catenin (p120(ctn)) and a related group of armadillo family members as key binding partners for the cadherin tail. Furthermore, a series of new studies indicate a key role for p120(ctn) in regulating cadherin membrane trafficking in mammalian cells. These recent studies place p120(ctn) at the hub of a cadherin-catenin regulatory mechanism that controls cadherin plasma membrane levels in cells of both epithelial and endothelial origin.
Collapse
Affiliation(s)
- Peter A Vincent
- Dept. of Dermatology, Emory Univ. School of Medicine, Woodruff Memorial Bldg., 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
10
|
Luo J, Treubert-Zimmermann U, Redies C. Cadherins guide migrating Purkinje cells to specific parasagittal domains during cerebellar development. Mol Cell Neurosci 2004; 25:138-52. [PMID: 14962747 DOI: 10.1016/j.mcn.2003.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 08/04/2003] [Accepted: 10/07/2003] [Indexed: 01/24/2023] Open
Abstract
Several cadherins are expressed in parasagittal Purkinje cell domains, which can be defined by their afferent and efferent connectivity in the developing and mature cerebellum. By in vivo electroporation in chicken embryos, we demonstrate that Purkinje cell progenitors, which overexpress cadherin-6B or cadherin-7, distribute preferentially to those Purkinje cell domains, which express the respective cadherin endogenously. This differential distribution may be based, at least in part, on the guidance of migrating neurons along neurites that express the same cadherin. Selective induction of apoptosis and cadherin-based cell sorting within cortical domains do not seem to contribute to the differential distribution. These results show that cadherins can tell early neurons where to integrate in functional brain gray matter, possibly by a cadherin-based homotypic adhesive mechanism.
Collapse
Affiliation(s)
- Jiankai Luo
- Institute of Anatomy, University of Essen School of Medicine, D-45122 Essen, Germany.
| | | | | |
Collapse
|
11
|
Roitbak T, Ward CJ, Harris PC, Bacallao R, Ness SA, Wandinger-Ness A. A polycystin-1 multiprotein complex is disrupted in polycystic kidney disease cells. Mol Biol Cell 2004; 15:1334-46. [PMID: 14718571 PMCID: PMC363138 DOI: 10.1091/mbc.e03-05-0296] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is typified by the accumulation of fluid-filled cysts and abnormalities in renal epithelial cell function. The disease is principally caused by mutations in the gene encoding polycystin-1, a large basolateral plasma membrane protein expressed in kidney epithelial cells. Our studies reveal that, in normal kidney cells, polycystin-1 forms a complex with the adherens junction protein E-cadherin and its associated catenins, suggesting a role in cell adhesion or polarity. In primary cells from ADPKD patients, the polycystin-1/polycystin-2/E-cadherin/beta-catenin complex was disrupted and both polycystin-1 and E-cadherin were depleted from the plasma membrane as a result of the increased phosphorylation of polycystin-1. The loss of E-cadherin was compensated by the transcriptional upregulation of the normally mesenchymal N-cadherin. Increased cell surface N-cadherin in the disease cells in turn stabilized the continued plasma membrane localization of beta-catenin in the absence of E-cadherin. The results suggest that enhanced phosphorylation of polycystin-1 in ADPKD cells precipitates changes in its localization and its ability to form protein complexes that are critical for the stabilization of adherens junctions and the maintenance of a fully differentiated polarized renal epithelium.
Collapse
Affiliation(s)
- Tamara Roitbak
- Department of Pathology, University of New Mexico, Health Science Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | |
Collapse
|
12
|
Troyanovsky RB, Sokolov E, Troyanovsky SM. Adhesive and lateral E-cadherin dimers are mediated by the same interface. Mol Cell Biol 2003; 23:7965-72. [PMID: 14585958 PMCID: PMC262383 DOI: 10.1128/mcb.23.22.7965-7972.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
E-cadherin is a transmembrane protein that mediates Ca(2+)-dependent cell-cell adhesion. To study cadherin-cadherin interactions that may underlie the adhesive process, a recombinant E-cadherin lacking free sulfhydryl groups and its mutants with novel cysteines were expressed in epithelial A-431 cells. These cysteine mutants, designed according to various structural models of cadherin dimers, were constructed to reveal cadherin dimerization by the bifunctional sulfhydryl-specific cross-linker BM[PE0]3. Cross-linking experiments with the mutants containing a cysteine at strand B of their EC1 domains did show cadherin dimerization. By their properties these dimers correspond to those which have been characterized by co-immunoprecipitation assay. Under standard culture conditions the adhesive dimer is a dominant form. Calcium depletion dissociates adhesive dimers and promotes the formation of lateral dimers. Our data show that both dimers are mediated by the amino-terminal cadherin domain. Furthermore, the interfaces involved in both adhesive and lateral dimerization appear to be the same. The coexistence of the structurally identical adhesive and lateral dimers suggests some flexibility of the extracellular cadherin region.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Division of Dermatology, Washington University Medical School, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
13
|
Zhang C, Basta T, Jensen ED, Klymkowsky MW. The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 2003; 130:5609-24. [PMID: 14522872 DOI: 10.1242/dev.00798] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Xenopus laevis, beta-catenin-mediated dorsal axis formation can be suppressed by overexpression of the HMG-box transcription factor XSOX3. Mutational analysis indicates that this effect is due not to the binding of XSOX3 to beta-catenin nor to its competition with beta-catenin-regulated TCF-type transcription factors for specific DNA binding sites, but rather to SOX3 binding to sites within the promoter of the early VegT- and beta-catenin-regulated dorsal-mesoderm-inducing gene Xnr5. Although B1-type SOX proteins, such as XSOX3, are commonly thought to act as transcriptional activators, XSOX3 acts as a transcriptional repressor of Xnr5 in both the intact embryo and animal caps injected with VegT RNA. Expression of a chimeric polypeptide composed of XSOX3 and a VP16 transcriptional activation domain or morpholino-induced decrease in endogenous XSOX3 polypeptide levels lead to an increase in Xnr5 expression, as does injection of an anti-XSOX3 antibody that inhibits XSOX3 DNA binding. These observations indicate that maternal XSOX3 acts in a novel manner to restrict Xnr5 expression to the vegetal hemisphere.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|
14
|
Piatigorsky J. Dual use of the transcriptional repressor (CtBP2)/ribbon synapse (RIBEYE) gene: how prevalent are multifunctional genes? Trends Neurosci 2001; 24:555-7. [PMID: 11576649 DOI: 10.1016/s0166-2236(00)01894-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vertebrates have ribbon synapses in the retina and in other sensory structures that are specialized for rapid, tonic release of synaptic vesicles (1). The lamellar sheets of the ribbon situated at right angles to the plasma membrane are lined with synaptic vesicles that undergo exocytosis under the influence of Ca(2+). Synaptic ribbons act as a conveyer belt to accelerate the release of this ready supply of synaptic vesicles at the presynaptic membranes. Although the protein composition of the terminals of ribbon synapses is generally similar to that of ordinary synapses in nervous tissue, much less is known about the composition of the ribbons themselves. RIM, a universal component of presynaptic active zones that interacts with rab3 on the synaptic vesicle, has been localized to the ribbons (2). In addition, the kinesin motor protein, KIF3A, is associated with the ribbons and other organelles in presynaptic nerve terminals (3). Recently, an approximately 120 kDa protein called RIBEYE has been identified in purified ribbons of bovine retina. The RIBEYE cDNA was cloned and its gene identified in the database.
Collapse
Affiliation(s)
- J Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|