1
|
Wang L, Zhao J, Mao Y, Liu L, Li C, Wu H, Zhao H, Wu Q. Tartary buckwheat rutin: Accumulation, metabolic pathways, regulation mechanisms, and biofortification strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108503. [PMID: 38484679 DOI: 10.1016/j.plaphy.2024.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Rutin is a significant flavonoid with strong antioxidant property and various therapeutic effects. It plays a crucial role in disease prevention and human health maintenance, especially in anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects. While many plants can synthesize and accumulate rutin, tartary buckwheat is the only food crop possessing high levels of rutin. At present, the rutin content (RC) is regarded as the key index for evaluating the nutritional quality of tartary buckwheat. Consequently, rutin has become the focus for tartary buckwheat breeders and has made considerable progress. Here, we summarize research on the rutin in tartary buckwheat in the past two decades, including its accumulation, biosynthesis and breakdown pathways, and regulatory mechanisms. Furthermore, we propose several strategies to increase the RC in tartary buckwheat seeds based on current knowledge. This review aims to provide valuable references for elevating the quality of tartary buckwheat in the future.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Yuanbin Mao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China.
| |
Collapse
|
2
|
Jie H, He P, Zhao L, Ma Y, Jie Y. Molecular Mechanisms Regulating Phenylpropanoid Metabolism in Exogenously-Sprayed Ethylene Forage Ramie Based on Transcriptomic and Metabolomic Analyses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3899. [PMID: 38005796 PMCID: PMC10675582 DOI: 10.3390/plants12223899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Ramie (Boehmeria nivea [L.] Gaud.), a nutritious animal feed, is rich in protein and produces a variety of secondary metabolites that increase its palatability and functional composition. Ethylene (ETH) is an important plant hormone that regulates the growth and development of various crops. In this study, we investigated the impact of ETH sprays on the growth and metabolism of forage ramie. We explored the mechanism of ETH regulation on the growth and secondary metabolites of forage ramie using transcriptomic and metabolomic analyses. Spraying ramie with ETH elevated the contents of flavonoids and chlorogenic acid and decreased the lignin content in the leaves and stems. A total of 1076 differentially expressed genes (DEGs) and 51 differentially expressed metabolites (DEMs) were identified in the leaves, and 344 DEGs and 55 DEMs were identified in the stems. The DEGs that affect phenylpropanoid metabolism, including BGLU41, LCT, PER63, PER42, PER12, PER10, POD, BAHD1, SHT, and At4g26220 were significantly upregulated in the leaves. Ethylene sprays downregulated tyrosine and chlorogenic acid (3-O-caffeoylquinic acid) in the leaves, but lignin biosynthesis HCT genes, including ACT, BAHD1, and SHT, were up- and downregulated. These changes in expression may ultimately reduce lignin biosynthesis. In addition, the upregulation of caffeoyl CoA-O-methyltransferase (CCoAOMT) may have increased the abundance of its flavonoids. Ethylene significantly downregulated metabolites, affecting phenylpropanoid metabolism in the stems. The differential 4CL and HCT metabolites were downregulated, namely, phenylalanine and tyrosine. Additionally, ETH upregulated 2-hydroxycinnamic acid and the cinnamyl hydroxyl derivatives (caffeic acid and p-coumaric acid). Cinnamic acid is a crucial intermediate in the shikimic acid pathway, which serves as a precursor for the biosynthesis of flavonoids and lignin. The ETH-decreased gene expression and metabolite alteration reduced the lignin levels in the stem. Moreover, the HCT downregulation may explain the inhibited lignin biosynthesis to promote flavonoid biosynthesis. In conclusion, external ETH application can effectively reduce lignin contents and increase the secondary metabolites of ramie without affecting its growth and development. These results provide candidate genes for improving ramie and offer theoretical and practical guidance for cultivating ramie for forage.
Collapse
Affiliation(s)
- Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Pengliang He
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Long Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
- Hunan Provincial Engineering Technology Research Center for Grass Crop Germplasm Innovation and Utilization, Changsha 410128, China
| |
Collapse
|
3
|
Xin J, Li Y, Zhao C, Ge W, Tian R. An integrated transcriptome, metabolomic, and physiological investigation uncovered the underlying tolerance mechanisms of Monochoria korsakowii in response to acute/chronic cadmium exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107888. [PMID: 37442048 DOI: 10.1016/j.plaphy.2023.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Identifying the physiological response and tolerance mechanism of wetland plants to heavy metal exposure can provide theoretical guidance for an early warning for acute metal pollution and metal-contaminated water phytoremediation. A hydroponic experiment was employed to investigate variations in the antioxidant enzyme activity, chlorophyll content, and photosynthesis in leaves of Monochoria korsakowii under 0.12 mM cadmium ion (Cd2+) acute (4 d) and chronic (21 d) exposure. Transcriptome and metabolome were analyzed to elucidate the underlying defensive strategies. The acute/chronic Cd2+ exposure decreased chlorophyll a and b contents, and disturbed photosynthesis in the leaves. The acute Cd2+ exposure increased catalase activity by 36.42%, while the chronic Cd2+ exposure markedly increased ascorbate peroxidase, superoxide dismutase, and glutathione peroxidase activities in the leaves. A total of 2 685 differentially expressed genes (DEGs) in the leaves were identified with the plants exposed to the acute/chronic Cd2+ contamination. In the acute Cd2+ exposure treatment, DEGs were preferentially enriched in the plant hormone transduction pathway, followed by phenylrpopanoid biosynthesis. However, the chronic Cd2+ exposure induced DEGs enriched in the biosynthesis of secondary metabolites pathway as priority. With acute/chronic Cd2+ exposure, a total of 157 and 227 differentially expressed metabolites were identified in the leaves. Conjoint transcriptome and metabolome analysis indicated the plant hormone signal transduction pathway and biosynthesis of secondary metabolites was preferentially activated by the acute and chronic Cd2+ exposure, respectively. The phenylpropanoid pathway functioned as a chemical defense, and the positive role of deoxyxylulose phosphate pathway in leaves against acute/chronic Cd2+ exposure was impaired.
Collapse
Affiliation(s)
- Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Yan Li
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Wenjia Ge
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
4
|
Gao XR, Zhang H, Li X, Bai YW, Peng K, Wang Z, Dai ZR, Bian XF, Zhang Q, Jia LC, Li Y, Liu QC, Zhai H, Gao SP, Zhao N, He SZ. The B-box transcription factor IbBBX29 regulates leaf development and flavonoid biosynthesis in sweet potato. PLANT PHYSIOLOGY 2023; 191:496-514. [PMID: 36377782 PMCID: PMC9806656 DOI: 10.1093/plphys/kiac516] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 06/01/2023]
Abstract
Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.
Collapse
Affiliation(s)
- Xiao-ru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Yi-wei Bai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuo-ru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-feng Bian
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Li-cong Jia
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yan Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Qing-chang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-pei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-zhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| |
Collapse
|
5
|
Chen Q, Zhang R, Li D, Wang F. Transcriptomic and Coexpression Network Analyses Revealed Pine Chalcone Synthase Genes Associated with Pine Wood Nematode Infection. Int J Mol Sci 2021; 22:ijms222011195. [PMID: 34681852 PMCID: PMC8540587 DOI: 10.3390/ijms222011195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
Pine wood nematode (PWN) causes serious diseases in conifers, especially pine species. To investigate the transcriptomic profiles of genes involved in pine-PWN interactions, two different pine species, namely, Pinus thunbergii and P. massoniana, were selected for this study. Weighted gene coexpression network analysis (WGCNA) was used to determine the relationship between changes in gene expression and the PWN population after PWN infection. PWN infection negatively affects the expression of most genes in pine trees, including plant defense-related genes such as genes related to plant hormone signal transduction, plant-pathogen interactions, and the MAPK signaling pathway in plants. However, the expression of chalcone synthase genes and their related genes were proportional to the changes in nematode populations, and chalcone synthase genes were dominant within the coexpression module enriched by genes highly correlated with the nematode population. Many genes that were closely related to chalcone synthase genes in the module were related to flavonoid biosynthesis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis. Pine trees could actively adjust their defense strategies in response to changes in the number of invasive PWNs, but the sustained expression of chalcone synthase genes should play an important role in the inhibition of PWN infection.
Collapse
Affiliation(s)
- Qiaoli Chen
- Key Laboratory of Alien Forest Pests Monitoring and Control—Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin 150040, China; (Q.C.); (R.Z.); (D.L.)
- Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ruizhi Zhang
- Key Laboratory of Alien Forest Pests Monitoring and Control—Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin 150040, China; (Q.C.); (R.Z.); (D.L.)
| | - Danlei Li
- Key Laboratory of Alien Forest Pests Monitoring and Control—Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin 150040, China; (Q.C.); (R.Z.); (D.L.)
- Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Feng Wang
- Key Laboratory of Alien Forest Pests Monitoring and Control—Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin 150040, China; (Q.C.); (R.Z.); (D.L.)
- Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Correspondence: ; Tel.: +86-0451-82190384
| |
Collapse
|
6
|
Metabolite Profiling Reveals Distinct Modulation of Complex Metabolic Networks in Non-Pigmented, Black, and Red Rice ( Oryza sativa L.) Cultivars. Metabolites 2021; 11:metabo11060367. [PMID: 34207595 PMCID: PMC8230048 DOI: 10.3390/metabo11060367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Comprehensive profiling of primary and secondary metabolites was performed to understand metabolic differences associated with color formation in pigmented rice (Oryza sativa L.). Overall, 110 metabolites from non-pigmented, black, and red rice cultivars were identified. Black and red rice contained high levels of flavonoids associated with plant color. Black rice also contained high levels of terpenoids (carotenoids, tocopherols, phytosterols, and monoterpenes). The non-pigmented rice contained relatively low levels of secondary metabolites. Multivariate and pathway analyses were performed to data-mine the metabolite profiles. Hierarchical clustering analysis of correlation coefficients revealed metabolite clusters based on nitrogen and carbon sources. These clusters suggested a negative correlation between nitrogen and carbon. Pathway analysis revealed that black rice was rich in carbon-based secondary metabolites, with relatively low levels of primary metabolites compared with other rice cultivars. These data highlight the complex interactions between nitrogen and carbon metabolism of primary and secondary metabolites in rice. For the first time, the relationships and metabolic differences in terpenoid content (monoterpenes, triterpenes, and tetraterpenes) of non-pigmented and pigmented rice cultivars were analyzed. These findings should greatly contribute to the understanding of pigmented rice metabolome and inform breeding programs for new rice cultivars.
Collapse
|
7
|
Tong Y, Lyu Y, Xu S, Zhang L, Zhou J. Optimum chalcone synthase for flavonoid biosynthesis in microorganisms. Crit Rev Biotechnol 2021; 41:1194-1208. [PMID: 33980085 DOI: 10.1080/07388551.2021.1922350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chalcones and the subsequently generated flavonoids, as well as flavonoid derivatives, have been proven to have a variety of physiological activities and are widely used in: the pharmaceutical, food, feed, and cosmetic industries. As the content of chalcones and downstream products in native plants is low, the production of these compounds by microorganisms has gained the attention of many researchers and has a history of more than 20 years. The mining and engineering of chalcone synthase (CHS) could be one of the most important ways to achieve more efficient production of chalcones and downstream products in microorganisms. CHS has a broad spectrum of substrates, and its enzyme activity and expression level can significantly affect the efficiency of the biosynthesis of flavonoids. This review summarizes the recent advances in the: structure, mechanism, evolution, substrate spectrum, transformation, and expression regulation in the flavonoid biosynthesis of this vital enzyme. Future development directions were also suggested. The findings may further promote the research and development of flavonoids and health products, making them vital in the fields of human diet and health.
Collapse
Affiliation(s)
- Yingjia Tong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Zheng J, Liu L, Tao H, An Y, Wang L. Transcriptomic Profiling of Apple Calli With a Focus on the Key Genes for ALA-Induced Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:640606. [PMID: 33841467 PMCID: PMC8033201 DOI: 10.3389/fpls.2021.640606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 05/30/2023]
Abstract
The red color is an attractive trait of fruit and determines its market acceptance. 5-Aminolevulinic acid (ALA), an eco-friendly plant growth regulator, has played a universal role in plant secondary metabolism regulation, particularly in flavonoid biosynthesis. It has been widely reported that ALA can up-regulate expression levels of several structural genes related to flavonoid metabolism and anthocyanin accumulation. However, the molecular mechanisms behind ALA-induced expression of these genes are complicated and still far from being completely understood. In this study, transcriptome analysis identified the differentially expressed genes (DEGs) associated with ALA-induced anthocyanin accumulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the flavonoid biosynthesis (ko00941) pathway was significantly enhanced in the ALA-treated apple calli at 24, 48, and 72 h after the treatment. Expression pattern revealed that ALA up-regulated the expression of the structural genes related to not only anthocyanin biosynthesis (MdCHS, MdCHI, MdF3'H, MdDFR, MdANS, and MdUFGT) but also anthocyanin transport (MdGST and MdMATE). Two R2R3-MYB transcription factors (MdMYB10 and MdMYB9), which are the known positive regulators of anthocyanin biosynthesis, were significantly induced by ALA. Gene overexpression and RNA interference assays demonstrated that MdMYB10 and MdMYB9 were involved in ALA-induced anthocyanin biosynthesis. Moreover, MdMYB10 and MdMYB9 might positively regulate the transcription of MdMATE8 by binding to the promoter region. These results indicate that MdMYB10 and MdMYB9 modulated structural gene expression of anthocyanin biosynthesis and transport in response to ALA-mediated apple calli coloration at the transcript level. We herein provide new details regarding transcriptional regulation of ALA-induced color development.
Collapse
Affiliation(s)
- Jie Zheng
- School of Life Sciences, Huaibei Normal University, Huaibei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Longbo Liu
- School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Huihui Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuyan An
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Chen C, Zhou G, Chen J, Liu X, Lu X, Chen H, Tian Y. Integrated Metabolome and Transcriptome Analysis Unveils Novel Pathway Involved in the Formation of Yellow Peel in Cucumber. Int J Mol Sci 2021; 22:ijms22031494. [PMID: 33540857 PMCID: PMC7867363 DOI: 10.3390/ijms22031494] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Yellow peel will adversely affect the appearance quality of cucumber fruit, but the metabolites and the molecular mechanism of pigment accumulation in cucumber peel remain unclear. Flavonoid metabolome and transcriptome analyses were carried out on the young peel and old peel of the color mutant L19 and the near-isogenic line L14. The results showed that there were 165 differential flavonoid metabolites in the old peel between L14 and L19. The total content of representative flavonoid metabolites in the old peel of L14 was 95 times that of L19, and 35 times that of young peel of L14, respectively. This might explain the difference of pigment accumulation in yellow peel. Furthermore, transcriptome analysis showed that there were 3396 and 1115 differentially expressed genes in the yellow color difference group (Young L14 vs. Old L14 and Old L14 vs. Old L19), respectively. These differentially expressed genes were significantly enriched in the MAPK signaling pathway-plant, plant-pathogen interaction, flavonoid biosynthesis and cutin, suberine and wax biosynthesis pathways. By analyzing the correlation between differential metabolites and differentially expressed genes, six candidate genes related to the synthesis of glycitein, kaempferol and homoeriodictyol are potentially important. In addition, four key transcription factors that belong to R2R3-MYB, bHLH51 and WRKY23 might be the major drivers of transcriptional changes in the peel between L14 and L19. Then, the expression patterns of these important genes were confirmed by qRT-PCR. These results suggested that the biosynthesis pathway of homoeriodictyol was a novel way to affect the yellowing of cucumber peel. Together, the results of this study provide a research basis for the biosynthesis and regulation of flavonoids in cucumber peel and form a significant step towards identifying the molecular mechanism of cucumber peel yellowing.
Collapse
Affiliation(s)
- Chen Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Geng Zhou
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Juan Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Xiaohong Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
| | - Huiming Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Correspondence: (H.C.); (Y.T.); Tel.: +86-731-8463-5292 (H.C. & Y.T.)
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Correspondence: (H.C.); (Y.T.); Tel.: +86-731-8463-5292 (H.C. & Y.T.)
| |
Collapse
|
10
|
Latif S, Weston PA, Barrow RA, Gurusinghe S, Piltz JW, Weston LA. Metabolic Profiling Provides Unique Insights to Accumulation and Biosynthesis of Key Secondary Metabolites in Annual Pasture Legumes of Mediterranean Origin. Metabolites 2020; 10:metabo10070267. [PMID: 32605241 PMCID: PMC7407162 DOI: 10.3390/metabo10070267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
Annual legumes from the Mediterranean region are receiving attention in Australia as alternatives to traditional pasture species. The current study employed novel metabolic profiling approaches to quantify key secondary metabolites including phytoestrogens to better understand their biosynthetic regulation in a range of field-grown annual pasture legumes. In addition, total polyphenol and proanthocyanidins were quantified using Folin-Ciocalteu and vanillin assays, respectively. Metabolic profiling coupled with biochemical assay results demonstrated marked differences in the abundance of coumestans, flavonoids, polyphenols, and proanthocyanidins in annual pasture legume species. Genetically related pasture legumes segregated similarly from a chemotaxonomic perspective. A strong and positive association was observed between the concentration of phytoestrogens and upregulation of the flavonoid biosynthetic pathway in annual pasture legumes. Our findings suggest that evolutionary differences in metabolic dynamics and biosynthetic regulation of secondary metabolites have logically occurred over time in various species of annual pasture legumes resulting in enhanced plant defense.
Collapse
Affiliation(s)
- Sajid Latif
- Graham Center for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (P.A.W.); (R.A.B.); (S.G.); (L.A.W.)
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Correspondence:
| | - Paul A. Weston
- Graham Center for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (P.A.W.); (R.A.B.); (S.G.); (L.A.W.)
- School of Agriculture and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Russell A. Barrow
- Graham Center for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (P.A.W.); (R.A.B.); (S.G.); (L.A.W.)
- Plus 3 Australia Pty Ltd., P.O. Box 4345, Hawker, ACT 2614, Australia
| | - Saliya Gurusinghe
- Graham Center for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (P.A.W.); (R.A.B.); (S.G.); (L.A.W.)
| | - John W. Piltz
- New South Wales Department of Primary Industries, Wagga Wagga, NSW 2678, Australia;
| | - Leslie A. Weston
- Graham Center for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (P.A.W.); (R.A.B.); (S.G.); (L.A.W.)
- School of Agriculture and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
11
|
Pandith SA, Ramazan S, Khan MI, Reshi ZA, Shah MA. Chalcone synthases (CHSs): the symbolic type III polyketide synthases. PLANTA 2019; 251:15. [PMID: 31776718 DOI: 10.1007/s00425-019-03307-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/02/2019] [Indexed: 05/08/2023]
Abstract
Present review provides a thorough insight on some significant aspects of CHSs over a period of about past three decades with a better outlook for future studies toward comprehending the structural and mechanistic intricacy of this symbolic enzyme. Polyketide synthases (PKSs) form a large family of iteratively acting multifunctional proteins that are involved in the biosynthesis of spectrum of natural products. They exhibit remarkable versatility in the structural configuration and functional organization with an incredible ability to generate different classes of compounds other than the characteristic secondary metabolite constituents. Architecturally, chalcone synthase (CHS) is considered to be the simplest representative of Type III PKSs. The enzyme is pivotal for phenylpropanoid biosynthesis and is also well known for catalyzing the initial step of the flavonoid/isoflavonoid pathway. Being the first Type III enzyme to be discovered, CHS has been subjected to ample investigations which, to a greater extent, have tried to understand its structural complexity and promiscuous functional behavior. In this context, we vehemently tried to collect the fragmented information entirely focussed on this symbolic enzyme from about past three-four decades. The aim of this review is to selectively summarize data on some of the fundamental aspects of CHSs viz, its history and distribution, localization, structure and analogs in non-plant hosts, promoter analyses, and role in defense, with an emphasis on mechanistic studies in different species and vis-à-vis mutation-led changes, and evolutionary significance which has been discussed in detail. The present review gives an insight with a better perspective for the scientific community for future studies devoted towards delimiting the mechanistic and structural basis of polyketide biosynthetic machinery vis-à-vis CHS.
Collapse
Affiliation(s)
- Shahzad A Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Salika Ramazan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Mohd Ishfaq Khan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
12
|
Wang Z, Yu Q, Shen W, El Mohtar CA, Zhao X, Gmitter FG. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC PLANT BIOLOGY 2018; 18:189. [PMID: 30208944 PMCID: PMC6134715 DOI: 10.1186/s12870-018-1418-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Citrus flavonoids are considered as the important secondary metabolites because of their biological and pharmacological activities. Chalcone synthase (CHS) is a key enzyme that catalyses the first committed step in the flavonoid biosynthetic pathway. CHS genes have been isolated and characterized in many plants. Previous studies indicated that CHS is a gene superfamily. In citrus, the number of CHS members and their contribution to the production of flavonoids remains a mystery. In our previous study, the copies of CitCHS2 gene were found in different citrus species and the sequences are highly conserved, but the flavonoid content varied significantly among those species. RESULTS From seventy-seven CHS and CHS-like gene sequences, ten CHS members were selected as candidates according to the features of their sequences. Among these candidates, expression was detected from only three genes. A predicted CHS sequence was identified as a novel CHS gene. The structure analysis showed that the gene structure of this novel CHS is very similar to other CHS genes. All three CHS genes were highly conserved and had a basic structure that included one intron and two exons, although they had different expression patterns in different tissues and developmental stages. These genes also presented different sensitivities to methyl jasmonate (MeJA) treatment. In transgenic plants, the expression of CHS genes was significantly correlated with the production of flavonoids. The three CHS genes contributed differently to the production of flavonoids. CONCLUSION Our study indicated that CitCHS is a gene superfamily including at least three functional members. The expression levels of the CHS genes are highly correlated to the biosynthesis of flavonoids. The CHS enzyme is dynamically produced from several CHS genes, and the production of total flavonoids is regulated by the overall expression of CHS family genes.
Collapse
Affiliation(s)
- Zhibin Wang
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Wanxia Shen
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
| | - Choaa A. El Mohtar
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
| | - Fredrick G. Gmitter
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| |
Collapse
|
13
|
Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, Tang X. Comparative transcriptome analysis of soybean response to bean pyralid larvae. BMC Genomics 2017; 18:871. [PMID: 29132375 PMCID: PMC5683215 DOI: 10.1186/s12864-017-4256-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Soybean is one of most important oilseed crop worldwide, however, its production is often limited by many insect pests. Bean pyralid is one of the major soybean leaf-feeding insects in China. To explore the defense mechanisms of soybean resistance to bean pyralid, the comparative transcriptome sequencing was completed between the leaves infested with bean pyralid larvae and no worm of soybean (Gantai-2-2 and Wan82-178) on the Illumina HiSeq™ 2000 platform. RESULTS In total, we identified 1744 differentially expressed genes (DEGs) in the leaves of Gantai-2-2 (1064) and Wan82-178 (680) fed by bean pyralid for 48 h, compared to 0 h. Interestingly, 315 DEGs were shared by Gantai-2-2 and Wan82-178, while 749 and 365 DEGs specifically identified in Gantai-2-2 and Wan82-178, respectively. When comparing Gantai-2-2 with Wan82-178, 605 DEGs were identified at 0 h feeding, and 468 DEGs were identified at 48 h feeding. Gene Ontology (GO) annotation analysis revealed that the DEGs were mainly involved in the metabolic process, single-organism process, cellular process, responses to stimulus, catalytic activities and binding. Pathway analysis showed that most of the DEGs were associated with the plant-pathogen interaction, phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, peroxisome, plant hormone signal transduction, terpenoid backbone biosynthesis, and so on. Finally, we used qRT-PCR to validate the expression patterns of several genes and the results showed an excellent agreement with deep sequencing. CONCLUSIONS According to the comparative transcriptome analysis results and related literature reports, we concluded that the response to bean pyralid feeding might be related to the disturbed functions and metabolism pathways of some key DEGs, such as DEGs involved in the ROS removal system, plant hormone metabolism, intracellular signal transduction pathways, secondary metabolism, transcription factors, biotic and abiotic stresses. We speculated that these genes may have played an important role in synthesizing substances to resist insect attacks in soybean. Our results provide a valuable resource of soybean defense genes that will benefit other studies in this field.
Collapse
Affiliation(s)
- Weiying Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zudong Sun
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhaoyan Cai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Huaizhu Chen
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhenguang Lai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Shouzhen Yang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Xiangmin Tang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| |
Collapse
|
14
|
Abdel-Ghany SE, Day I, Heuberger AL, Broeckling CD, Reddy ASN. Production of Phloroglucinol, a Platform Chemical, in Arabidopsis using a Bacterial Gene. Sci Rep 2016; 6:38483. [PMID: 27924918 PMCID: PMC5141504 DOI: 10.1038/srep38483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
Phloroglucinol (1,3,5-trihydroxybenzene; PG) and its derivatives are phenolic compounds that are used for various industrial applications. Current methods to synthesize PG are not sustainable due to the requirement for carbon-based precursors and co-production of toxic byproducts. Here, we describe a more sustainable production of PG using plants expressing a native bacterial or a codon-optimized synthetic PhlD targeted to either the cytosol or chloroplasts. Transgenic lines were analyzed for the production of PG using gas and liquid chromatography coupled to mass spectroscopy. Phloroglucinol was produced in all transgenic lines and the line with the highest PhlD transcript level showed the most accumulation of PG. Over 80% of the produced PG was glycosylated to phlorin. Arabidopsis leaves have the machinery to glycosylate PG to form phlorin, which can be hydrolyzed enzymatically to produce PG. Furthermore, the metabolic profile of plants with PhlD in either the cytosol or chloroplasts was altered. Our results provide evidence that plants can be engineered to produce PG using a bacterial gene. Phytoproduction of PG using a bacterial gene paves the way for further genetic manipulations to enhance the level of PG with implications for the commercial production of this important platform chemical in plants.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.,Department of Botany, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Irene Day
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Adam L Heuberger
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA
| | - Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Sanjari S, Shobbar ZS, Ebrahimi M, Hasanloo T, Sadat-Noori SA, Tirnaz S. Chalcone synthase genes from milk thistle (Silybum marianum): isolation and expression analysis. J Genet 2015; 94:611-7. [PMID: 26690515 DOI: 10.1007/s12041-015-0560-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Silymarin is a flavonoid compound derived from milk thistle (Silybum marianum) seeds which has several pharmacological applications. Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids; thereby, the identification of CHS encoding genes in milk thistle plant can be of great importance. In the current research, fragments of CHS genes were amplified using degenerate primers based on the conserved parts of Asteraceae CHS genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced amino acid sequences led to the identification of two different members of CHS gene family,SmCHS1 and SmCHS2. Third member, full-length cDNA (SmCHS3) was isolated by rapid amplification of cDNA ends (RACE), whose open reading frame contained 1239 bp including exon 1 (190 bp) and exon 2 (1049 bp), encoding 63 and 349 amino acids, respectively. In silico analysis of SmCHS3 sequence contains all the conserved CHS sites and shares high homology with CHS proteins from other plants.Real-time PCR analysis indicated that SmCHS1 and SmCHS3 had the highest transcript level in petals in the early flowering stage and in the stem of five upper leaves, followed by five upper leaves in the mid-flowering stage which are most probably involved in anthocyanin and silymarin biosynthesis.
Collapse
Affiliation(s)
- Sepideh Sanjari
- Molecular Physiology Department, Agricultural Biotechnology Research Institute of Iran, Seed and Plant Improvement Institute Campus, P.O. Box: 31535-1897, Karaj, Iran.
| | | | | | | | | | | |
Collapse
|
16
|
Venger AM, Volkova NE, Sivolap YM. Molecular-genetic polymorphism of chs_H1 gene in Ukrainian hop varieties. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715050102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Mukherjee C, Sircar D, Chatterjee M, Das S, Mitra A. Combating photooxidative stress in green hairy roots of Daucus carota cultivated under light irradiation. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:179-187. [PMID: 24331434 DOI: 10.1016/j.jplph.2013.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 06/03/2023]
Abstract
The light-dependent generation of active oxygen species, which can disrupt normal metabolic process of plant, is termed as photo-oxidative stress. Plants are equipped with enzymatic and non-enzymatic antioxidative defence system to reduce the effect of such stress. Hairy root culture of Daucus carota when cultivated under continuous illumination (250 μmol m(-2)s(-1)) turned green. To know the reason behind that and photo-oxidative stress response in green hairy roots, activities of several antioxidant enzymes were measured. When compared with normal hairy roots, green hairy roots showed an enhanced superoxide dismutase (SOD) activity. Treatment with a SOD inhibitor diethyldithiocarbamate led to suppression of SOD activity in a concentration-dependent manner in green hairy roots. Interestingly, SOD-suppressed root showed three-fold enhanced caffeic acid glucoside accumulation in the soluble fraction as compared to untreated ones. While ascorbate peroxidase activity showed marginal increase in green hairy roots, a decrease in the activities of guaiacol peroxidase and catalase were observed. SDS-PAGE of crude protein profile from green hairy roots showed a distinct band, which was absent in normal hairy roots. MALDI-TOF-MS/MS analysis of the extracted protein confirmed it as the large subunit of RuBisCO. RT-PCR based expression analysis of betaine aldehyde dehydrogenase showed enhanced transcript levels in green hairy roots as compared to normal hairy roots, whereas reverse trends were observed with the transcripts accumulation for phenylalanine ammonia-lyase and chalcone synthase. These findings corroborate with the in vitro BADH activities in hairy roots, and thus indicate an important role of this stress enzyme in combating photo-oxidative stress in green hairy roots upon continuous light exposure.
Collapse
Affiliation(s)
- Chiranjit Mukherjee
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Debabrata Sircar
- Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Moniya Chatterjee
- Division of Plant Biology, Bose Institute, P1/12, CIT Road, Scheme VIIM, Kolkata 700 054, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, P1/12, CIT Road, Scheme VIIM, Kolkata 700 054, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| |
Collapse
|
18
|
Abu Zahra H, Kuwamoto S, Uno T, Kanamaru K, Yamagata H. A cis-element responsible for cGMP in the promoter of the soybean chalcone synthase gene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:92-8. [PMID: 24286716 DOI: 10.1016/j.plaphy.2013.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/29/2013] [Indexed: 05/07/2023]
Abstract
The cyclic nucleotides cGMP and cAMP have been reported to play key roles in the regulation of plant processes and responses. We have previously reported that several genes encoding flavonoid biosynthetic enzymes, including chalcone synthase (CHS) in soybean (Glycine max L.), were induced by cGMP but not cAMP. The soybean genome contains nine CHS gene copies (GmCHS1-9). We investigated the responsiveness of several GmCHS genes to cGMP, cAMP, NO, and white light. Quantitative RT-PCR analysis showed that the transcript levels of GmCHS7 and GmCHS8 were increased by 3.6- and 3.8-fold, respectively, with cGMP whereas the transcript levels of GmCHS2 remained constant. Although cAMP had no effect on the transcript levels of the three genes, NO had an activation effect on all three. White light activated the three genes in a transient manner, with GmCHS2, GmCHS7, and GmCHS8 transcript levels increasing 3-fold after 3 h and decreasing to basal levels after 9 h. The GmCHS8 promoter contains several important cis-elements, including the G-box and H-box forming the Unit-I-like sequence and the MYB binding sequence, a target of the GmMYB176 transcription factor regulating the expression of GmCHS8. A transient gene expression assay revealed the activation of the Unit-I-like sequence, but not of the MYB binding sequence, by cGMP. The combination of G-box and H-box was necessary for cGMP responsiveness. Taken together, these results suggest that the Unit-I-like sequence in the promoters of GmCHS7 and GmCHS8 is a cGMP responsive cis-element in these genes and that NO exerts its effect via cis-elements other than the Unit-I-like sequence.
Collapse
Affiliation(s)
- Hamad Abu Zahra
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | - Satoru Kuwamoto
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | - Tomohide Uno
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | - Kengo Kanamaru
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | - Hiroshi Yamagata
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
19
|
Herbel V, Orth C, Wenzel R, Ahmad M, Bittl R, Batschauer A. Lifetimes of Arabidopsis cryptochrome signaling states in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:583-92. [PMID: 23398192 DOI: 10.1111/tpj.12144] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/16/2013] [Accepted: 02/03/2013] [Indexed: 05/20/2023]
Abstract
One crucial component in light signaling is the quantity of photoreceptor present in the active signaling state. The lifetime of the signaling state of a photoreceptor is limited because of thermal or otherwise back reversion of the chromophore to the ground state, and/or degradation of the photoreceptor in the light-activated state. It was previously shown that the lit state of plant cryptochromes contains flavin-neutral semiquinone, and that the half-lives of the lit state were in the range of 3-4 min in vitro. However, it was unknown how long-lived the signaling states of plant cryptochromes are in situ. Based on the loss of degradation of cry2 after prolonged dark incubation and loss of reversibility of photoactivated cry1 by a pulse of green light, we estimate the in vivo half-lives of the signaling states of cry1 and cry2 to be in the range of 5 and 16 min, respectively. Based on electron paramagnetic resonance measurements, the lifetime of the Arabidopsis cry1 lit state in insect cells was found to be ~6 min, and thus very similar to the lifetime of the signaling state in planta. Thus, the signaling state lifetimes of plant cryptochromes are not, or are only moderately, stabilized in planta.
Collapse
Affiliation(s)
- Vera Herbel
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University, 35032, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Lin X, Zhang J, Li Y, Luo H, Wu Q, Sun C, Song J, Li X, Wei J, Lu A, Qian Z, Khan IA, Chen S. Functional genomics of a living fossil tree, Ginkgo, based on next-generation sequencing technology. PHYSIOLOGIA PLANTARUM 2011; 143:207-18. [PMID: 21834857 DOI: 10.1111/j.1399-3054.2011.01500.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ginkgo biloba is monotypic species native to China and has old, dioecious, medicinally important characteristics. The functional genes related to these characteristics have not been effectively explored due to a limited number of expressed sequence tags (ESTs) from Ginkgo. To discover novel functional genes efficiently and to understand the development of a living fossil tree, Ginkgo, we used massive parallel pyrosequencing on the Roche 454 GS FLX Titanium platform to generate 64 057 ESTs. The ESTs combined with the 21 590 Ginkgo ESTs in genbank were assembled into 22 304 unique putative transcripts, in which 13 922 novel unique putative transcripts were identified by 454 sequencing. After being assigned to putative functions with Gene Ontology terms, a detailed view of the Ginkgo biological systems was displayed, including characterization of unique putative transcripts with homology to known key enzymes and transcription factors involved in ginkgolide/bilobalide and flavonoid biosynthetic pathways, as well as unique putative transcripts related to development, response to disease and defence. The fact that three full-length Ginkgo genes encoding key enzymes were found and cloned, suggests that high-throughput sequencing technology is superior to traditional gene-by-gene approach in discovery of genes. Additionally, a total of 204 simple sequence repeat motifs were detected. Our study not only lays the foundations for transcriptome-led studies in biosynthetic mechanisms, but also contributes significantly to the understanding of functional genomics and development in non-model plants.
Collapse
Affiliation(s)
- Xiaohan Lin
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dao TTH, Linthorst HJM, Verpoorte R. Chalcone synthase and its functions in plant resistance. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2011; 10:397-412. [PMID: 21909286 PMCID: PMC3148432 DOI: 10.1007/s11101-011-9211-7] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 04/16/2011] [Indexed: 05/18/2023]
Abstract
Chalcone synthase (CHS, EC 2.3.1.74) is a key enzyme of the flavonoid/isoflavonoid biosynthesis pathway. Besides being part of the plant developmental program the CHS gene expression is induced in plants under stress conditions such as UV light, bacterial or fungal infection. CHS expression causes accumulation of flavonoid and isoflavonoid phytoalexins and is involved in the salicylic acid defense pathway. This review will discuss CHS and its function in plant resistance.
Collapse
Affiliation(s)
- T. T. H. Dao
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, Leiden, The Netherlands
- Traditional Pharmacy Department, Hanoi Pharmacy University, Hanoi, Vietnam
| | - H. J. M. Linthorst
- Section Plant Cell Physiology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - R. Verpoorte
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
22
|
Sun Y, Tian Q, Yuan L, Jiang Y, Huang Y, Sun M, Tang S, Luo K. Isolation and promoter analysis of a chalcone synthase gene PtrCHS4 from Populus trichocarpa. PLANT CELL REPORTS 2011; 30:1661-1671. [PMID: 21553109 DOI: 10.1007/s00299-011-1075-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/06/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
As perennial plants, Populus species are constantly exposed to environmental stresses, such as wounding and pathogen attack, which lead to production of compounds including lignin, flavonoids and phytoalexins. Chalcone synthase (CHS) is a key enzyme in the flavonoid biosynthesis pathway. In this study, a cDNA clone encoding CHS was isolated from Populus trichocarpa by reverse transcription-polymerase chain reaction (RT-PCR). The full-length cDNA, named PtrCHS4, was 1,314 bp with a 1,173 bp open reading frame that corresponded to a deduced protein of 391 amino acid residues. Multiple sequence alignments showed that PtrCHS4 shared high homology with CHS proteins from other plants. Phylogenetic analysis revealed that PtrCHS4 was most closely related to PhCHS from Petunia hybrida and NaCHS from Nicotiana attenuata. Semi-quantitative RT-PCR analysis identified that the PtrCHS4 gene was abundantly expressed in the leaves and stems, while its expression was drastically reduced in the roots. Transcript abundance of PtrCHS4 was stimulated by 2.5-fold within 24 h of wounding treatment. Promoter analysis confirmed that the PtrCHS4 promoter was capable of directing expression of the GUS reporter in both wounded and unwounded leaves of transgenic Chinese white poplar (P. tomentosa Carr.), indicating that the PtrCHS4 promoter is systemically responsive to wounding stimuli. Furthermore, promoter deletion analysis showed that the proximal 1,592 bp from the transcription start site were required for promoter activation by jasmonic acid and the -1,096 to -148 region was proved to be necessary for establishing wound-induced pattern of expression.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Amino Acid Sequence
- Blotting, Southern
- Cloning, Molecular
- Cyclopentanes/pharmacology
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Gene Expression Regulation, Plant
- Gene Fusion
- Genes, Plant
- Genes, Reporter
- Molecular Sequence Data
- Oxylipins/pharmacology
- Phylogeny
- Plant Leaves/drug effects
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Leaves/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/enzymology
- Plant Roots/genetics
- Plant Stems/enzymology
- Plant Stems/genetics
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/physiology
- Populus/drug effects
- Populus/enzymology
- Populus/genetics
- Populus/physiology
- Promoter Regions, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, Protein/methods
- Stress, Physiological
- Transcriptional Activation
- Transformation, Genetic
- Transgenes
Collapse
Affiliation(s)
- Yiming Sun
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, State Key Laboratory of Eco-environment and Bio-resource of Three Gorges Reservoir Region, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Khan RA. An enzyme-mimetic chemical conversion and biogenetic outline for chemical marker pterocarponoid oxygen heterocycles from Kudzu vine. J Heterocycl Chem 2010. [DOI: 10.1002/jhet.497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
|
25
|
Wang WK, Schaal BA, Chiou YM, Murakami N, Ge XJ, Huang CC, Chiang TY. Diverse selective modes among orthologs/paralogs of the chalcone synthase (Chs) gene family of Arabidopsis thaliana and its relative A. halleri ssp. gemmifera. Mol Phylogenet Evol 2007; 44:503-20. [PMID: 17611127 DOI: 10.1016/j.ympev.2007.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/11/2007] [Accepted: 05/07/2007] [Indexed: 11/16/2022]
Abstract
As a model system, Arabidopsis thaliana and its wild relatives have played an important role in the study of genomics and evolution in plants. In this study, we examined the genetic diversity of the chalcone synthase (Chs) gene, which encodes a key enzyme of the flavonoid pathway and is located on chromosome five, as well as two Chs-like genes on the first and fourth chromosomes of Arabidopsis. The objectives of the study are to determine if natural selection operates differentially on the paralogs of the Chs gene family in A. thaliana and Arabidopsis halleri ssp. gemmifera. The mode of selection was inferred from Tajima's D values from noncoding and coding regions, as well as from the ratio of nonsynonymous to synonymous substitutions. Both McDonald-Kreitman and HKA tests revealed the effects of selection on the allelic distribution, except for the chromosome 1 paralog in ssp. gemmifera. The Chs gene on chromosome 5 was under purifying selection in both species. Significant, negative Tajima's D values at synonymous sites and positive Fay and Wu's H values within coding region, plus reduced genetic variability in introns, indicated effects of background selection in shaping the evolution of this gene region in A. thaliana. The Chs paralog on chromosome 1 was under positive selection in A. thaliana, while interspecific introgression and balancing selection determined the fates of the paralog and resulted in high heterogeneity in ssp. gemmifera. Local adaptation differentiated populations of Japan and China at the locus. In contrast, the other Chs-paralog of chromosome 4 was shaped by purifying selection in A. thaliana, while under positive selection in ssp. gemmifera, as indicated by dn/ds>1. Moreover, these contrasting patterns of selection have likely resulted in functional divergence in Arabidopsis, as indicated by radical amino acid substitutions at the chalcone synthase/stilbene synthase motif of the Chs genes. Unlike previous studies of the evolutionary history of A. thaliana, the high levels of genetic diversity in most gene regions of Chs paralogs and nonsignificant Tajima's D in the intron sequences of the Chs gene family in A. thaliana did not reflect the effects of a recent demographic expansion.
Collapse
Affiliation(s)
- Wei-Kuang Wang
- Department of Life Sciences, Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
26
|
Berleman JE, Hasselbring BM, Bauer CE. Hypercyst mutants in Rhodospirillum centenum identify regulatory loci involved in cyst cell differentiation. J Bacteriol 2004; 186:5834-41. [PMID: 15317789 PMCID: PMC516826 DOI: 10.1128/jb.186.17.5834-5841.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodospirillum centenum is a purple photosynthetic bacterium that forms resting cyst cells when starved for nutrients. In this study, we demonstrate that chalcone synthase gene (chsA) expression is developmentally regulated, with expression of chsA increasing up to 86-fold upon induction of the cyst developmental cycle. Screening for mini-Tn5-induced mutants that exhibit elevated chsA::lacZ expression has led to the isolation of a set of R. centenum mutants that display increased chsA gene expression concomitant with constitutive induction of the cyst developmental cycle. These "hypercyst" mutants have lost the ability to regulate cyst cell formation in response to nutrient availability. Sequence analysis indicates that the mini-Tn5-disrupted genes code for a variety of factors, including metabolic enzymes and a large set of potential regulatory factors, including four gene products with homology to histidine sensor kinases and three with homology to response regulators. Several of the disrupted genes also have sequence similarity to che-like signal transduction components.
Collapse
Affiliation(s)
- James E Berleman
- Department of Biology, Indiana University, Myers Hall, 915 E. Third St., Bloomington, IN 47405, USA
| | | | | |
Collapse
|
27
|
Hemleben V, Dressel A, Epping B, Lukacin R, Martens S, Austin M. Characterization and structural features of a chalcone synthase mutation in a white-flowering line of Matthiola incana R. Br. (Brassicaceae). PLANT MOLECULAR BIOLOGY 2004; 55:455-465. [PMID: 15604692 DOI: 10.1007/s11103-004-1125-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
For Matthiola incana (Brassicaceae), used as a model system to study biochemical and genetical aspects of anthocyanin biosynthesis, several nearly isogenic colored wild type lines and white-flowering mutant lines are available, each with a specific defect in the genes responsible for anthocyanin production (genes e, f, and g). For gene f supposed to code for chalcone synthase (CHS; EC 2.3.1.74), the key enzyme of the flavonoid/anthocyanin biosynthesis pathway belonging to the group of type III polyketide synthases (PKS), the wild type genomic sequence of M. incana line 04 was determined in comparison to the white-flowering CHS mutant line 18. The type of mutation in the chs gene was characterized as a single nucleotide substitution in a triplet AGG coding for an evolutionary conserved arginine into AGT coding for serine (R72S). Northern blots and RT-PCR demonstrated that the mutated gene is expressed in flower petals. Heterologous expression of the wild type and mutated CHS cDNA in E. Scherichia coli, verified by Western blotting and enzyme assays with various starter molecules, revealed that the mutant protein had no detectable activity, indicating that the strictly conserved arginine residue is essential for the enzymatic reaction. This mutation, which previously was not detected by mutagenic screening, is discussed in the light of structural and functional information on alfalfa CHS and related type III PKS enzymes.
Collapse
MESH Headings
- Acyltransferases/chemistry
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Anthocyanins/biosynthesis
- Blotting, Western
- Brassicaceae/enzymology
- Brassicaceae/genetics
- Brassicaceae/metabolism
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Flowers/enzymology
- Flowers/genetics
- Flowers/ultrastructure
- Microscopy, Electron, Scanning
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Mutation, Missense
- Plant Epidermis/enzymology
- Plant Epidermis/genetics
- Plant Epidermis/ultrastructure
- Polymorphism, Single Nucleotide
- Protein Biosynthesis/genetics
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Analysis, DNA
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Vera Hemleben
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 28, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Ghanevati M, Jaworski JG. Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA synthase, FAE1 KCS. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3531-9. [PMID: 12135493 DOI: 10.1046/j.1432-1033.2002.03039.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Arabidopsis FAE1 beta-ketoacyl-CoA synthase (FAE1 KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoAs. Sequence analysis of FAE1 KCS predicted that this condensing enzyme is anchored to a membrane by two adjacent N-terminal membrane-spanning domains. In order to characterize the FAE1 KCS and analyze its mechanism, FAE1 KCS and its mutants were engineered with a His6-tag at their N-terminus, and expressed in Saccharomyces cerevisiae. The membrane-bound enzyme was then solubilized and purified to near homogeneity on a metal affinity column. Wild-type recombinant FAE1 KCS was active with several acyl-CoA substrates, with highest activity towards saturated and monounsaturated C16 and C18. In the absence of an acyl-CoA substrate, FAE1 KCS was unable to carry out decarboxylation of [3-(14)C]malonyl-CoA, indicating that it requires binding of the acyl-CoA for decarboxylation activity. Site-directed mutagenesis was carried out on the FAE1 KCS to assess if this condensing enzyme was mechanistically related to the well characterized soluble condensing enzymes of fatty acid and flavonoid syntheses. A C223A mutant enzyme lacking the acylation site was unable to carry out decarboxylation of malonyl-CoA even when 18:1-CoA was present. Mutational analyses of the conserved Asn424 and His391 residues indicated the importance of these residues for FAE1-KCS activity. The results presented here provide the initial analysis of the reaction mechanism for a membrane-bound condensing enzyme from any source and provide evidence for a mechanism similar to the soluble condensing enzymes.
Collapse
Affiliation(s)
- Mahin Ghanevati
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | | |
Collapse
|
29
|
Ramette A, Moënne-Loccoz Y, Défago G. Polymorphism of the polyketide synthase gene phID in biocontrol fluorescent pseudomonads producing 2,4-diacetylphloroglucinol and comparison of PhID with plant polyketide synthases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:639-652. [PMID: 11332728 DOI: 10.1094/mpmi.2001.14.5.639] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many biocontrol fluorescent pseudomonads can protect plants from soilborne fungal pathogens through production of the antifungal secondary metabolite 2,4-diacetylphloroglucinol (Phl). One of the phl biosynthetic genes, phlD, encodes a polyketide synthase similar to plant chalcone synthases. Here, restriction analysis of phlD from 39 Phl+ biocontrol fluorescent pseudomonads yielded seven different banding patterns. The gene was sequenced in seven strains, representing the different restriction patterns. Cluster analysis of phlD restriction data or phlD sequences indicated that phlD polymorphism was high, and two main clusters were obtained when predicted PhlD sequences were compared. When the seven PhlD sequences were studied with those of other procaryotic polyketide synthases (gram-positive bacteria) and plant chalcone synthases, however, Phl+ pseudomonads, gram-positive bacteria, and plants clustered separately. Yet, sequence analysis of active site regions for PhlD and plant chalcone synthases revealed that PhlD can be considered a member of the chalcone synthase family, which may be interpreted as convergent evolution of key enzymes involved in secondary metabolism. For the 39 Phl+ pseudomonads, a relationship was found among phlD restriction patterns, phylogenetic groups defined by 16S rDNA restriction analysis (confirmed by 16S rDNA sequencing), and production levels of Phl in vitro.
Collapse
Affiliation(s)
- A Ramette
- Institute of Plant Sciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | | | | |
Collapse
|
30
|
Durbin ML, Denton AL, Clegg MT. Dynamics of mobile element activity in chalcone synthase loci in the common morning glory (Ipomoea purpurea). Proc Natl Acad Sci U S A 2001; 98:5084-9. [PMID: 11309503 PMCID: PMC33167 DOI: 10.1073/pnas.091095498] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2001] [Indexed: 11/18/2022] Open
Abstract
Mobile element dynamics in seven alleles of the chalcone synthase D locus (CHS-D) of the common morning glory (Ipomoea purpurea) are analyzed in the context of synonymous nucleotide sequence distances for CHS-D exons. By using a nucleotide sequence of CHS-D from the sister species Ipomoea nil (Japanese morning glory [Johzuka-Hisatomi, Y., Hoshino, A., Mori, T., Habu, Y. & Iida, S. (1999) Genes Genet. Syst. 74, 141-147], it is also possible to determine the relative frequency of insertion and loss of elements within the CHS-D locus between these two species. At least four different types of transposable elements exist upstream of the coding region, or within the single intron of the CHS-D locus in I. purpurea. There are three distinct families of miniature inverted-repeat transposable elements (MITES), and some recent transpositions of Activator/Dissociation (Ac/Ds)-like elements (Tip100), of some short interspersed repetitive elements (SINEs), and of an insertion sequence (InsIpCHSD) found in the neighborhood of this locus. The data provide no compelling evidence of the transposition of the mites since the separation of I. nil and I. purpurea roughly 8 million years ago. Finally, it is shown that the number and frequency of mobile elements are highly heterogeneous among different duplicate CHS loci, suggesting that the dynamics observed at CHS-D are locus-specific.
Collapse
Affiliation(s)
- M L Durbin
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
31
|
Ghanevati M, Jaworski JG. Active-site residues of a plant membrane-bound fatty acid elongase beta-ketoacyl-CoA synthase, FAE1 KCS. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:77-85. [PMID: 11341960 DOI: 10.1016/s1388-1981(00)00168-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fatty acid elongase-1 beta-ketoacyl-CoA synthase, FAE1 KCS, a seed-specific elongase condensing enzyme from Arabidopsis, is involved in the production of eicosenoic (C20:1) and erucic (C22:1) acids. Alignment of the amino acid sequences of FAE1 KCS, KCS1, and five other putative elongase condensing enzymes (KCSs) revealed the presence of six conserved cysteine and four conserved histidine residues. Each of the conserved cysteine and histidine residues was individually converted by site-directed mutagenesis to both alanine and serine, and alanine and lysine respectively. After expression in yeast cells, the mutant enzymes were analyzed for their fatty acid elongase activity. Our results indicated that only cysteine 223 is an essential residue for enzyme activity, presumably for acyl chain transfer. All histidine substitutions resulted in complete loss of elongase activity. The loss of activity of these mutants was not due to their lower expression level since immunoblot analysis confirmed each was expressed to the same extent as the wild type FAE1 KCS.
Collapse
Affiliation(s)
- M Ghanevati
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
32
|
An anther-specific chalcone synthase-like geneD5 related to rice pollen development. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/bf02909679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Wang J, Qu L, Chen J, Gu H, Chen Z. Molecular evolution of the exon 2 of CHS genes and the possibility of its application to plant phylogenetic analysis. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/bf02886256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Shoji T, Yamada Y, Hashimoto T. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. PLANT & CELL PHYSIOLOGY 2000; 41:831-9. [PMID: 10965939 DOI: 10.1093/pcp/pcd001] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nicotine alkaloids are synthesized in the root of Nicotiana species, and their synthesis increases after insect attack, wounding and jasmonate treatment of the leaf. Putrescine N-methyltransferase (PMT) catalyzes the first committed step in nicotine biosynthesis. The expression patterns of the three Nicotiana sylvestris PMT genes (NsPMT1, NsPMT2, and NsPMT3) are reported in this study. Transcripts of the NsPMT genes were detected only in the root, and were up-regulated by methyl jasmonate treatment. When the 5'-flanking regions of NsPMT1, NsPMT2, and NsPMT3 were fused independently to beta-glucuronidase reporter gene and introduced into N. sylvestris by Agrobacterium-mediated transformation, all introduced transgenes were expressed in the cortex, endodermis, and xylem in the root, as well as upregulated by methyl jasmonate treatment. These qualitatively similar patterns of expression for the NsPMT genes are achieved with only 0.25 kb of their conserved 5'-flanking regions, which contained no known jasmonate-responsive elements.
Collapse
Affiliation(s)
- T Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | |
Collapse
|
35
|
Davies C, Heath RJ, White SW, Rock CO. The 1.8 A crystal structure and active-site architecture of beta-ketoacyl-acyl carrier protein synthase III (FabH) from escherichia coli. Structure 2000; 8:185-95. [PMID: 10673437 DOI: 10.1016/s0969-2126(00)00094-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND beta-Ketoacyl-acyl carrier protein synthase III (FabH) initiates elongation in type II fatty acid synthase systems found in bacteria and plants. FabH is a ubiquitous component of the type II system and is positioned ideally in the pathway to control the production of fatty acids. The elucidation of the structure of FabH is important for the understanding of its regulation by feedback inhibition and its interaction with drugs. Although the structures of two related condensing enzymes are known, the roles of the active-site residues have not been experimentally tested. RESULTS The 1.8 A crystal structure of FabH was determined using a 12-site selenium multiwavelength anomalous dispersion experiment. The active site (Cys112, His244 and Asn274) is formed by the convergence of two alpha helices and is accessed via a narrow hydrophobic tunnel. Hydrogen-bonding networks that include two tightly bound water molecules fix the positions of His244 and Asn274, which are critical for the decarboxylation and condensation reactions. Surprisingly, the His244-->Ala mutation does not affect the transacylation reaction suggesting that His244 has only a minor influence on the nucleophilicity of Cys112. CONCLUSIONS The histidine and asparagine active-site residues are both required for the decarboxylation step in the condensation reaction. The nucleophilicity of the active-site cysteine is enhanced by the alpha-helix dipole effect, and an oxyanion hole promotes the formation of the tetrahedral transition state.
Collapse
Affiliation(s)
- C Davies
- Department of Structural Biology, University of Tennessee, School of Biological Sciences, University of Sussex, Memphis, Falmer, 38163, BN1 9QG, USA, UK
| | | | | | | |
Collapse
|
36
|
Oberholzer V, Durbin ML, Clegg MT. Comparative genomics of chalcone synthase and Myb genes in the grass family. Genes Genet Syst 2000; 75:1-16. [PMID: 10846616 DOI: 10.1266/ggs.75.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Most plant genes occur as members of multigene families where new copies arise through duplication. Duplicate genes that do not confer an adaptive advantage to the plant are expected to rapidly erode into pseudogenes owing to the accumulation of transpositions, insertion/deletion mutations and nucleotide changes. Nonfunctional copies will drift to fixation within a few million years and ultimately erode beyond recognition. Duplicate genes that are retained over longer periods of evolutionary time must be positively selected based on some adaptive advantage conferred on the plant species. We explore the dynamics of the recruitment of new duplicate genes for chalcone synthase, the enzyme that catalyzes the first committed step of flavonoid biosynthesis, and for the myb family of transcriptional activators. Our analyses show that new chs genes are recruited into the genome of grasses at a rate of one new copy every 15 to 25 million years. In contrast, the myb gene family is much older and many duplicate copies appear to predate the separation of the angiosperm lineage from other seed plants. The general pattern suggests a rapid adaptive proliferation of new chs genes but a more ancient elaboration of regulatory gene functions. Our analyses also reveal accelerated rates of protein evolution following gene duplication and evidence is presented for interlocus exchange among duplicate gene loci.
Collapse
Affiliation(s)
- V Oberholzer
- Department of Botany & Plant Sciences, University of California, Riverside 92521, USA
| | | | | |
Collapse
|
37
|
The Family of Chalcone Synthase-Related Proteins: Functional Diversity and Evolution. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0079-9920(00)80004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
38
|
|
39
|
Laplaze L, Gherbi H, Frutz T, Pawlowski K, Franche C, Macheix JJ, Auguy F, Bogusz D, Duhoux E. Flavan-containing cells delimit Frankia-infected compartments in Casuarina glauca nodules. PLANT PHYSIOLOGY 1999; 121:113-22. [PMID: 10482666 PMCID: PMC59359 DOI: 10.1104/pp.121.1.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We investigated the involvement of polyphenols in the Casuarina glauca-Frankia symbiosis. Histological analysis revealed a cell-specific accumulation of phenolics in C. glauca nodule lobes, creating a compartmentation in the cortex. Histochemical and biochemical analyses indicated that these phenolic compounds belong to the flavan class of flavonoids. We show that the same compounds were synthesized in nodules and uninfected roots. However, the amount of each flavan was dramatically increased in nodules compared with uninfected roots. The use of in situ hybridization established that chalcone synthase transcripts accumulate in flavan-containing cells at the apex of the nodule lobe. Our findings are discussed in view of the possible role of flavans in plant-microbe interactions.
Collapse
Affiliation(s)
- L Laplaze
- Physiologie Cellulaire et Moléculaire des Arbres, GeneTrop Institut de Recherche pour le Développement, 911 Avenue Agropolis, 34032 Montpellier cedex 1, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Johzuka-Hisatomi Y, Hoshino A, Mori T, Habu Y, Iida S. Characterization of the chalcone synthase genes expressed in flowers of the common and Japanese morning glories. Genes Genet Syst 1999; 74:141-7. [PMID: 10650842 DOI: 10.1266/ggs.74.141] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The CHS genes encoding chalcone synthase for flavonoid biosynthesis in the common and Japanese morning glories comprise a multigene family. Among these Ipomoea CHS genes, the CHS-D gene is the most abundantly expressed in the pigmented young flower buds and is primarily responsible for flower pigmentation. Majority of the remaining CHS transcripts in the flower buds are produced from the CHS-E gene. We characterized the genomic DNA segments of these CHS-D and CHS-E genes. Both genes have two exons with identical intron positions and carry several copies of two mobile element-like sequences with short terminal inverted repeats, MELS3 and MELS6 of around 200-300 bp. Small tandem repeats were also found in these CHS gene regions. The CHS-D and CHS-E genes are expressed predominantly in flower limbs and tubes, respectively. These structural and functional features and their evolutionary implications are discussed.
Collapse
|
41
|
Jiang Z, Swem LR, Rushing BG, Devanathan S, Tollin G, Bauer CE. Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 1999; 285:406-9. [PMID: 10411503 DOI: 10.1126/science.285.5426.406] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A phytochrome-like protein called Ppr was discovered in the purple photosynthetic bacterium Rhodospirillum centenum. Ppr has a photoactive yellow protein (PYP) amino-terminal domain, a central domain with similarity to phytochrome, and a carboxyl-terminal histidine kinase domain. Reconstitution experiments demonstrate that Ppr covalently attaches the blue light-absorbing chromophore p-hydroxycinnamic acid and that it has a photocycle that is spectrally similar to, but kinetically slower than, that of PYP. Ppr also regulates chalcone synthase gene expression in response to blue light with autophosphorylation inhibited in vitro by blue light. Phylogenetic analysis demonstrates that R. centenum Ppr may be ancestral to cyanobacterial and plant phytochromes.
Collapse
Affiliation(s)
- Z Jiang
- Department of Biology, Indiana University, Jordan Hall, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
42
|
Napoli CA, Fahy D, Wang HY, Taylor LP. white anther: A petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. PLANT PHYSIOLOGY 1999; 120:615-22. [PMID: 10364414 PMCID: PMC59301 DOI: 10.1104/pp.120.2.615] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/1998] [Accepted: 03/08/1999] [Indexed: 05/18/2023]
Abstract
A mutation in an inbred line of petunia (Petunia hybrida) produces a reduction in the deep-purple corolla pigmentation and changes the anther color from yellow to white. In addition, the mutant, designated white anther (wha), is functionally male sterile. The inability of pollen from wha plants to germinate in vitro provides a physiological basis for the lack of seed set observed in self-crosses of the mutant. Biochemical complementation with nanomolar amounts of kaempferol, a flavonol aglycone, confirms that the inability of the wha pollen to germinate is due to a lack of this essential compound. Transgenic complementation with a functional ChsA (Chalcone synthase A) cDNA suggests that the genetic lesion responsible for the wha phenotype is in Chs, the gene for the first enzyme in the flavonol biosynthesis pathway. The genetic background of the parental line, as well as the pollen phenotype, allowed us to deduce that the wha mutation is in ChsA. To our knowledge, wha is the first induced, nontransgenic Chs mutant described in petunia, and analysis of the mutation confirms earlier molecular and genetic observations that only two Chs genes (A and J) are expressed in reproductive tissues and that they are differentially regulated in corolla and anther.
Collapse
Affiliation(s)
- CA Napoli
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (C.A.N., H.-Y.W.)
| | | | | | | |
Collapse
|
43
|
Bangera MG, Thomashow LS. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 1999; 181:3155-63. [PMID: 10322017 PMCID: PMC93771 DOI: 10.1128/jb.181.10.3155-3163.1999] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polyketide metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) is produced by many strains of fluorescent Pseudomonas spp. with biocontrol activity against soilborne fungal plant pathogens. Genes required for 2,4-DAPG synthesis by P. fluorescens Q2-87 are encoded by a 6.5-kb fragment of genomic DNA that can transfer production of 2,4-DAPG to 2,4-DAPG-nonproducing recipient Pseudomonas strains. In this study the nucleotide sequence was determined for the 6.5-kb fragment and flanking regions of genomic DNA from strain Q2-87. Six open reading frames were identified, four of which (phlACBD) comprise an operon that includes a set of three genes (phlACB) conserved between eubacteria and archaebacteria and a gene (phlD) encoding a polyketide synthase with homology to chalcone and stilbene synthases from plants. The biosynthetic operon is flanked on either side by phlE and phlF, which code respectively for putative efflux and regulatory (repressor) proteins. Expression in Escherichia coli of phlA, phlC, phlB, and phlD, individually or in combination, identified a novel polyketide biosynthetic pathway in which PhlD is responsible for the production of monoacetylphloroglucinol (MAPG). PhlA, PhlC, and PhlB are necessary to convert MAPG to 2,4-DAPG, and they also may function in the synthesis of MAPG.
Collapse
Affiliation(s)
- M G Bangera
- Department of Microbiology, Washington State University, Pullman, Washington 99164-4233, USA
| | | |
Collapse
|
44
|
Flavell RB, O'Dell M, Metzlaff M. Transgene-promoted epigenetic switches of chalcone synthase activity in petunia plants. NOVARTIS FOUNDATION SYMPOSIUM 1998; 214:144-54; discussion 154-67. [PMID: 9601016 DOI: 10.1002/9780470515501.ch9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetic variation affecting pigment pattern formation in petunia flowers due to the insertion of transgenes encoding chalcone synthase is described. The loss of pigment formation in petals or parts of petals is due to the post-transcriptional degradation of chalcone synthase RNA, from both the endogenous petunia chalcone synthase genes and from the chalcone synthase transgenes. The RNA cleavage pathway and its control are described. Different epigenetic states of RNA breakdown are correlated with specific cytosine methylation changes in the coding sequences of the genes. The probability, extent and developmental location of chalcone synthase RNA breakdown are related to the number and organization of transgenes in the genome but epigenetic switches that affect RNA turnover probably occur in meristems and between sexual generations. Hypotheses to explain how the transgenes influence the levels of chalcone synthase RNA breakdown and how different epigenetic states are created are discussed.
Collapse
Affiliation(s)
- R B Flavell
- John Innes Centre, Colney, Norwich, Norfolk, UK
| | | | | |
Collapse
|
45
|
Zhang Y, Qu L, Liu M, Qin X, Gu H, Chen Z. Structural and expressional analysis of a cDNA that expresses predominantly in rice stamens. CHINESE SCIENCE BULLETIN-CHINESE 1998. [DOI: 10.1007/bf02898956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Noh B, Spalding EP. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings. PLANT PHYSIOLOGY 1998; 116:503-9. [PMID: 9489009 PMCID: PMC35107 DOI: 10.1104/pp.116.2.503] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/1997] [Accepted: 10/23/1997] [Indexed: 05/20/2023]
Abstract
Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 microM NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.
Collapse
Affiliation(s)
- B Noh
- Department of Botany, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
47
|
Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1998; 1:213-22. [PMID: 9659918 DOI: 10.1016/s1097-2765(00)80022-2] [Citation(s) in RCA: 451] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arabidopsis COP1 acts as a light-inactivable repressor of photomorphogenic development, but its molecular mode of action remains unclear. Here, we show that COP1 negatively regulates HY5, a bZIP protein and a positive regulator of photomorphogenic development. Both in vitro and in vivo assays indicate that COP1 interacts directly and specifically with HY5. The hyperphotomorphogenic phenotype caused by the over-expression of a mutant HY5, which lacks the COP1-interactive domain, supports the regulatory role of HY5-COP1 interaction. Further, HY5 is capable of directly interacting with the CHS1 minimal promoter and is essential for its light activation. We propose that the direct interaction with and regulation of transcription factors by COP1 may represent the molecular mechanism for its control of gene expression and photomorphogenic development.
Collapse
Affiliation(s)
- L H Ang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- David A. Hopwood
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
49
|
Habu Y, Fukada-Tanaka S, Hisatomi Y, Iida S. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochem Biophys Res Commun 1997; 234:516-21. [PMID: 9177304 DOI: 10.1006/bbrc.1997.6666] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using amplified restriction fragment length polymorphism (AFLP) technology, we have developed a new protocol for the fingerprinting of mRNA that allows systematic comparison of the differential expression of genes between mRNA samples. The major advantage of our protocol is the use of only a single restriction enzyme that recognizes a 4-bp sequence but allows screening of large numbers of different cDNAs. Using this new protocol, we compared mRNA samples obtained from the flower buds of two lines of the common morning glory (Ipomoea purpurea) with red and white flowers, respectively. Approximately 50 bands were observed in each lane of a denaturing polyacrylamide gel and the results were highly reproducible, as indicated by the results of analysis of two sets of independent mRNA samples. Two cDNA fragments, which were differentially amplified in the samples from the two lines, were shown to have been derived from a single gene that was actively expressed in the buds of red flowers but not in those of white flowers. A full-length cDNA of this gene was cloned from a bud cDNA library. Sequence analysis showed that this cDNA carries a sequence highly homologous to the chalcone synthase (CHS) genes, the key enzyme in the flavonoid biosynthetic pathway.
Collapse
Affiliation(s)
- Y Habu
- National Institute for Basic Biology, Myodaijicho, Okazaki, Japan.
| | | | | | | |
Collapse
|
50
|
Metzlaff M, O'Dell M, Cluster PD, Flavell RB. RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell 1997; 88:845-54. [PMID: 9118227 DOI: 10.1016/s0092-8674(00)81930-3] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transgenic Petunia plants with a chsA coding sequence under the control of a 35S promoter sometimes lose endogene and transgene chalcone synthase activity and purple flower pigment through posttranscriptional chsA RNA degradation. In these plants, shorter poly(A)+ and poly(A)- chsA RNAs are found, and a 3' end-specific RNA fragment from the endogene is more resistant to degradation. The termini of this RNA fragment are located in a region of complementarity between the chsA 3' coding region and its 3' untranslated region. Equivalent chsA RNA fragments remain in the white flower tissue of a nontransgenic Petunia variety. We present a model involving cycles of RNA-RNA pairing between complementary sequences followed by endonucleolytic RNA cleavages to describe how RNA degradation is likely to be promoted.
Collapse
MESH Headings
- Acyltransferases/genetics
- Blotting, Northern
- Endoribonucleases/metabolism
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Plant/physiology
- Genes, Plant/physiology
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- Phenotype
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plants, Genetically Modified/physiology
- Polymerase Chain Reaction
- RNA, Double-Stranded/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/chemistry
- RNA, Messenger/physiology
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Transcription, Genetic/physiology
- Transgenes/physiology
Collapse
Affiliation(s)
- M Metzlaff
- John Innes Centre, Norwich Research Park, Colney, United Kingdom
| | | | | | | |
Collapse
|