1
|
Li C, Lei Y, Tian Y, Xu S, Shen X, Wu H, Bao S, Wang F. The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain. Mol Pain 2020; 15:1744806919847366. [PMID: 30977423 PMCID: PMC6509976 DOI: 10.1177/1744806919847366] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain developing after peripheral or central nerve injury is the result of pathological changes generated through complex mechanisms. Disruption in the homeostasis of excitatory and inhibitory neurons within the central nervous system is a crucial factor in the formation of hyperalgesia or allodynia occurring with neuropathic pain. The central GABAergic pathway has received attention for its extensive distribution and function in neural circuits, including the generation and development of neuropathic pain. GABAergic inhibitory changes that occur in the interneurons along descending modulatory and nociceptive pathways in the central nervous system are believed to generate neuronal plasticity, such as synaptic plasticity or functional plasticity of the related genes or proteins, that is the foundation of persistent neuropathic pain. The primary GABAergic plasticity observed in neuropathic pain includes GABAergic synapse homo- and heterosynaptic plasticity, decreased synthesis of GABA, down-expression of glutamic acid decarboxylase and GABA transporter, abnormal expression of NKCC1 or KCC2, and disturbed function of GABA receptors. In this review, we describe possible mechanisms associated with GABAergic plasticity, such as central sensitization and GABAergic interneuron apoptosis, and the epigenetic etiologies of GABAergic plasticity in neuropathic pain. Moreover, we summarize potential therapeutic targets of GABAergic plasticity that may allow for successful relief of hyperalgesia from nerve injury. Finally, we compare the effects of the GABAergic system in neuropathic pain to other types of chronic pain to understand the contribution of GABAergic plasticity to neuropathic pain.
Collapse
Affiliation(s)
- Caijuan Li
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanying Lei
- 2 Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Yi Tian
- 3 Department of Anesthesiology, Haikou Affiliated Hospital of Xiangya Medical School, Central South University, Haikou People's Hospital, Haikou, China
| | - Shiqin Xu
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaofeng Shen
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Haibo Wu
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Senzhu Bao
- 2 Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Fuzhou Wang
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,4 Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Domingues JT, Cattani D, Cesconetto PA, Nascimento de Almeida BA, Pierozan P, Dos Santos K, Razzera G, Mena Barreto Silva FR, Pessoa-Pureur R, Zamoner A. Reverse T 3 interacts with αvβ3 integrin receptor and restores enzyme activities in the hippocampus of hypothyroid developing rats: Insight on signaling mechanisms. Mol Cell Endocrinol 2018; 470:281-294. [PMID: 29155306 DOI: 10.1016/j.mce.2017.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 01/18/2023]
Abstract
In the present study we provide evidence that 3,3',5'-triiodothyronine (reverse T3, rT3) restores neurochemical parameters induced by congenital hypothyroidism in rat hippocampus. Congenital hypothyroidism was induced by adding 0.05% propylthiouracil in the drinking water from gestation day 8 and continually up to lactation day 15. In the in vivo rT3 exposure, hypothyroid 12-day old pups were daily injected with rT3 (50 ng/kg body weight) or saline until day 14. In the ex vivo rT3 treatment, hippocampal slices from 15-day-old hypothyroid pups were incubated for 30 min with or without rT3 (1 nM). We found that ex vivo and/or in vivo exposure to rT3 failed in restoring the decreased 14C-glutamate uptake; however, restored the phosphorylation of glial fibrillary acidic protein (GFAP), 45Ca2+ influx, aspartate transaminase (AST), glutamine synthetase (GS) and gamma-glutamate transferase (GGT) activities, as well as glutathione (GSH) levels in hypothyroid hippocampus. In addition, rT3 improved 14C-2-deoxy-D-glucose uptake and lactate dehydrogenase (LDH) activity. Receptor agonists/antagonists (RGD peptide and AP-5), kinase inhibitors of p38MAPK, ERK1/2, CaMKII, PKA (SB239063, PD98059, KN93 and H89, respectively), L-type voltage-dependent calcium channel blocker (nifedipine) and intracellular calcium chelator (BAPTA-AM) were used to determine the mechanisms of the nongenomic rT3 action on GGT activity. Using molecular docking analysis, we found rT3 interaction with αvβ3 integrin receptors, nongenomically activating signaling pathways (PKA, CaMKII, p38MAPK) that restored GGT activity. We provide evidence that rT3 is an active TH metabolite and our results represent an important contribution to elucidate the nonclassical mechanism of action of this metabolite in hypothyroidism.
Collapse
Affiliation(s)
- Juliana Tonietto Domingues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Daiane Cattani
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Patricia Acordi Cesconetto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karin Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Razzera
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Wang Z, Zhang A, Zhao B, Gan J, Wang G, Gao F, Liu B, Gong T, Liu W, Edden RA. GABA+ levels in postmenopausal women with mild-to-moderate depression: A preliminary study. Medicine (Baltimore) 2016; 95:e4918. [PMID: 27684829 PMCID: PMC5265922 DOI: 10.1097/md.0000000000004918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND It is increasingly being recognized that alterations of the GABAergic system are implicated in the pathophysiology of depression. This study aimed to explore in vivo gamma-aminobutyric acid (GABA) levels in the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and posterior-cingulate cortex (PCC) of postmenopausal women with depression using magnetic resonance spectroscopy (H-MRS). METHODS Nineteen postmenopausal women with depression and thirteen healthy controls were enrolled in the study. All subjects underwent H-MRS of the ACC/mPFC and PCC using the "MEGA Point Resolved Spectroscopy Sequence" (MEGA-PRESS) technique. The severity of depression was assessed by 17-item Hamilton Depression Scale (HAMD). Quantification of MRS data was performed using Gannet program. Differences of GABA+ levels from patients and controls were tested using one-way analysis of variance. Spearman correlation coefficients were used to evaluate the linear associations between GABA+ levels and HAMD scores, as well as estrogen levels. RESULTS Significantly lower GABA+ levels were detected in the ACC/mPFC of postmenopausal women with depression compared to healthy controls (P = 0.002). No significant correlations were found between 17-HAMD/14-HAMA and GABA+ levels, either in ACC/mPFC (P = 0.486; r = 0.170/P = 0.814; r = -0.058) or PCC (P = 0.887; r = 0.035/ P = 0.987; r = -0.004) in the patients; there is also no significant correlation between GABA+ levels and estrogen levels in patients group (ACC/mPFC: P = 0.629, r = -0.018; PCC: P = 0.861, r = 0.043). CONCLUSION Significantly lower GABA+ levels were found in the ACC/mPFC of postmenopausal women with depression, suggesting that the dysfunction of the GABAergic system may also be involved in the pathogenesis of depression in postmenopausal women.
Collapse
Affiliation(s)
- Zhensong Wang
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
- No. 2 Affiliated Hospital of Shandong Traditional Chinese Medicine University
| | - Aiying Zhang
- Affiliated Eye Hospital of Shandong Traditional Chinese Medicine University
| | - Bin Zhao
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
| | - Jie Gan
- No. 2 Affiliated Hospital of Shandong Traditional Chinese Medicine University
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
- Correspondence: Guangbin Wang, Shandong Medical Imaging Research Institute Affiliated to Shandong University, No. 324, Jing-Wu Road, Jinan, China (e-mail: )
| | - Fei Gao
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
| | - Bo Liu
- Qi Lu Hospital of Shandong University, Jinan, China
| | - Tao Gong
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
| | - Wen Liu
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine
- FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| |
Collapse
|
4
|
Liu B, Wang G, Gao D, Gao F, Zhao B, Qiao M, Yang H, Yu Y, Ren F, Yang P, Chen W, Rae CD. Alterations of GABA and glutamate-glutamine levels in premenstrual dysphoric disorder: a 3T proton magnetic resonance spectroscopy study. Psychiatry Res 2015; 231:64-70. [PMID: 25465316 DOI: 10.1016/j.pscychresns.2014.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/13/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Increasing evidence has suggested that the GABAergic neurotransmitter system is involved in the pathogenesis of premenstrual dysphoric disorder (PMDD). We used proton magnetic resonance spectroscopy ((1)H MRS) to investigate whether PMDD is associated with alterations in brain GABA levels. Levels of glutamate-glutamine (Glx) were also explored. Participants comprised 22 women with PMDD and 22 age-matched healthy controls who underwent 3T (1)H MRS during the late luteal phase of the menstrual cycle. GABA+ and Glx levels were quantified in the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and the left basal ganglia (ltBG). Water-scaled GABA+ concentrations and GABA+/tCr ratios were significantly lower in both the ACC/mPFC and ltBG regions of PMDD women than in healthy controls. Glx/tCr ratios were significantly higher in the ACC/mPFC region of PMDD women than healthy controls. Our preliminary findings provide the first report of abnormal levels of GABA+ and Glx in mood-related brain regions of women with PMDD, indicating that dysregulation of the amino acid neurotransmitter system may be an important neurobiological mechanism in the pathogenesis of PMDD.
Collapse
Affiliation(s)
- Bo Liu
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China
| | - Dongmei Gao
- Basic Medical College, Shandong University of Traditional Chinese Medicine, No. 44, Wenhua Xi Road, 250012 Jinan, PR China
| | - Fei Gao
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China
| | - Bin Zhao
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China.
| | - Mingqi Qiao
- Basic Medical College, Shandong University of Traditional Chinese Medicine, No. 44, Wenhua Xi Road, 250012 Jinan, PR China
| | - Huan Yang
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China
| | - Yanhong Yu
- Basic Medical College, Shandong University of Traditional Chinese Medicine, No. 44, Wenhua Xi Road, 250012 Jinan, PR China
| | - Fuxin Ren
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China
| | - Ping Yang
- Philips Healthcare, Shanghai, PR China
| | | | - Caroline D Rae
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales 2031, Australia
| |
Collapse
|
5
|
Bai X, Edden RAE, Gao F, Wang G, Wu L, Zhao B, Wang M, Chan Q, Chen W, Barker PB. Decreased γ-aminobutyric acid levels in the parietal region of patients with Alzheimer's disease. J Magn Reson Imaging 2014; 41:1326-31. [PMID: 24863149 DOI: 10.1002/jmri.24665] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/06/2014] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To determine whether there are in vivo differences of γ-aminobutyric acid (GABA) levels in frontal and parietal regions of Alzheimer's disease (AD) patients, compared with healthy controls using magnetic resonance spectroscopy ((1) H-MRS). MATERIALS AND METHODS Fifteen AD patients and fifteen age- and gender-matched healthy controls underwent (1) H-MRS of the frontal and parietal lobes using the "MEGA-Point Resolved Spectroscopy Sequence" (MEGA-PRESS) technique, and cognitive levels of subjects were evaluated using Mini-Mental State Examination (MMSE) tests. MRS data were processed using the Gannet program. Because the signal detected by MEGA-PRESS includes contributions from GABA, macromolecules and homocarnosine, it is labeled as "GABA+" rather than GABA. Differences of GABA+/Cr ratios between AD patients and controls were tested using covariance analysis, adjusting for gray matter fraction. The relationship between GABA+/Cr and MMSE scores was also analyzed. RESULTS Significant lower GABA+/Cr ratios were found in the parietal region of AD patients compared with controls (P = 0.041). In AD patients, no significant correlations between GABA+/Cr and MMSE scores were found in either the frontal (r = -0.164; P = 0.558) or parietal regions (r = 0.025; P = 0.929). CONCLUSION Decreased GABA+/Cr levels were present in the parietal region of patients with AD in vivo, suggesting that abnormalities of the GABAergic system may be present in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xue Bai
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Long Z, Medlock C, Dzemidzic M, Shin YW, Goddard AW, Dydak U. Decreased GABA levels in anterior cingulate cortex/medial prefrontal cortex in panic disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:131-5. [PMID: 23391588 PMCID: PMC3758115 DOI: 10.1016/j.pnpbp.2013.01.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 12/18/2022]
Abstract
Changes of various brain metabolites including γ-aminobutyric acid (GABA), measured by 1H-magnetic resonance spectroscopy (MRS), have been reported in panic disorder (PD). Deficits in GABA have been implicated in the pathophysiology of PD. Furthermore, it has been suggested that cortical metabolite changes in PD are familial. Eleven PD patients, including five with and six without a PD family history, and eight age- and gender-matched healthy controls without a family history of psychopathology were recruited. Each subject underwent MRS exams and behavioral assessments (resting visual analog anxiety level and the Panic Disorder Severity Scale). GABA was detected with a MEGA-PRESS J-editing sequence and fitted to minimize macromolecule contaminations. A significant decrease in GABA, expressed as the ratio of GABA over total creatine (GABA/tCr), was detected in the anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC) in PD patients (p<0.05), which tends to be pronounced in patients with a PD family history. No other patient/control differences in metabolites were noted in the ACC/mPFC or occipital cortex (OCC). Overall, our results indicate that deficits in GABA levels in PD patients vary by brain regions and possibly by family history status.
Collapse
Affiliation(s)
- Zaiyang Long
- School of Health Sciences, Purdue University, West Lafayette, IN, United States,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Carla Medlock
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mario Dzemidzic
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yong-Wook Shin
- Department of Psychiatry, Ulsan University School of Medicine, Seoul, Republic of Korea
| | - Andrew W. Goddard
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, United States,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States,Corresponding author at: School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, United States. Tel.: +1 765 494 0550, (U. Dydak)
| |
Collapse
|
7
|
Kékesi KA, Juhász G, Simor A, Gulyássy P, Szegő EM, Hunyadi-Gulyás E, Darula Z, Medzihradszky KF, Palkovits M, Penke B, Czurkó A. Altered functional protein networks in the prefrontal cortex and amygdala of victims of suicide. PLoS One 2012; 7:e50532. [PMID: 23272063 PMCID: PMC3516509 DOI: 10.1371/journal.pone.0050532] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 10/26/2012] [Indexed: 12/18/2022] Open
Abstract
Probing molecular brain mechanisms related to increased suicide risk is an important issue in biological psychiatry research. Gene expression studies on post mortem brains indicate extensive changes prior to a successful suicide attempt; however, proteomic studies are scarce. Thus, we performed a DIGE proteomic analysis of post mortem tissue samples from the prefrontal cortex and amygdala of suicide victims to identify protein changes and biomarker candidates of suicide. Among our matched spots we found 46 and 16 significant differences in the prefrontal cortex and amygdala, respectively; by using the industry standard t test and 1.3 fold change as cut off for significance. Because of the risk of false discoveries (FDR) in these data, we also made FDR adjustment by calculating the q-values for all the t tests performed and by using 0.06 and 0.4 as alpha thresholds we reduced the number of significant spots to 27 and 9 respectively. From these we identified 59 proteins in the cortex and 11 proteins in the amygdala. These proteins are related to biological functions and structures such as metabolism, the redox system, the cytoskeleton, synaptic function, and proteolysis. Thirteen of these proteins (CBR1, DPYSL2, EFHD2, FKBP4, GFAP, GLUL, HSPA8, NEFL, NEFM, PGAM1, PRDX6, SELENBP1 and VIM,) have already been suggested to be biomarkers of psychiatric disorders at protein or genome level. We also pointed out 9 proteins that changed in both the amygdala and the cortex, and from these, GFAP, INA, NEFL, NEFM and TUBA1 are interacting cytoskeletal proteins that have a functional connection to glutamate, GABA, and serotonin receptors. Moreover, ACTB, CTSD and GFAP displayed opposite changes in the two examined brain structures that might be a suitable characteristic for brain imaging studies. The opposite changes of ACTB, CTSD and GFAP in the two brain structures were validated by western blot analysis.
Collapse
Affiliation(s)
- Katalin Adrienna Kékesi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sayed RH, Salem HA, El-Sayeh BM. Potential protective effect of taurine against dibromoacetonitrile-induced neurotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:849-857. [PMID: 23021633 DOI: 10.1016/j.etap.2012.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 08/26/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Dibromoacetonitrile (DBAN) is a disinfection by-product of water chlorination. Epidemiological studies indicate that it might present a potential hazard to human health. The present study aimed to investigate the possible neurotoxicity of DBAN in rats and possible protection by taurine. Based on initial dose-response experiment, DBAN (60 mg/kg) was administrated orally for 7 days. DBAN administration significantly impaired behavior of rats. Further, DBAN produced significant decrease of monoamines, γ-aminobutyric acid (GABA), glutamate contents, acetylcholinestrase (AChE) and aspartate aminotransferase (AST) activities, in rat brain. On the other hand, a significant increase in malondialdehyde (MDA), nitric oxide (NO) contents and lactic dehydrogenase (LDH) activity was observed. Co-administration of taurine (200mg/kg, i.p.) with DBAN mitigated most tested parameters. In conclusion, the present study indicates that DBAN has the propensity to cause significant oxidative damage in rat brain. However, taurine has a promising role in attenuating the obtained hazardous effects of DBAN.
Collapse
Affiliation(s)
- Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | | |
Collapse
|
9
|
Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J Neurosci 2012; 32:6149-60. [PMID: 22553021 DOI: 10.1523/jneurosci.6343-11.2012] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) accompanied by chronic neuropathic pain is a major dose-limiting side effect of a large number of antitumoral agents including paclitaxel (Taxol). Thus, CIPN is one of most common causes of dose reduction and discontinuation of what is otherwise a life-saving therapy. Neuropathological changes in spinal cord are linked to CIPN, but the causative mediators and mechanisms remain poorly understood. We report that formation of peroxynitrite (PN) in response to activation of nitric oxide synthases and NADPH oxidase in spinal cord contributes to neuropathological changes through two mechanisms. The first involves modulation of neuroexcitatory and proinflammatory (TNF-α and IL-1β) and anti-inflammatory (IL-10 and IL-4) cytokines in favor of the former. The second involves post-translational nitration and modification of glia-derived proteins known to be involved in glutamatergic neurotransmission (astrocyte-restricted glutamate transporters and glutamine synthetase). Targeting PN with PN decomposition catalysts (PNDCs) not only blocked the development of paclitaxel-induced neuropathic pain without interfering with antitumor effects, but also reversed it once established. Herein, we describe our mechanistic study on the role(s) of PN and the prevention of neuropathic pain in rats using known PNDCs (FeTMPyP(5+) and MnTE-2-PyP(5+)). We also demonstrate the prevention of CIPN with our two new orally active PNDCs, SRI6 and SRI110. The improved chemical design of SRI6 and SRI110 also affords selectivity for PN over other reactive oxygen species (such as superoxide). Our findings identify PN as a critical determinant of CIPN, while providing the rationale toward development of superoxide-sparing and "PN-targeted" therapeutics.
Collapse
|
10
|
Desai SN, Desai PV. Aspartate aminotransferase and alanine aminotransferase activities of rat brain during crush syndrome. Neurosci Lett 2008; 447:58-61. [PMID: 18834929 DOI: 10.1016/j.neulet.2008.09.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 09/04/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Crush syndrome develops due to muscle crush injury often found in patients extricated from prolonged compression after disasters. It leads to rhabdomyolysis, kidney failure and hypovolemic shock, followed by decreased blood supply, to tissue under compression and general body parts including brain. In the present study, experimental model of crush syndrome in albino rats was induced by, 2h of compression followed by 48 h of decompression, of femoral muscle tissue. Aspartate and alanine aminotransferase activities of rat brain regions during crush syndrome were investigated. After exposure to 2h compression in comparison to normal/control levels, both cytosolic AST and ALT activities reduced. Cytosolic AST activity reduced by 31.2%, 26.1% and 19.4% in olfactory lobes, cerebral cortex and cerebellum, respectively, whereas cytosolic ALT activity decreased by 51.1%, 52.4%, 47.4% and 36.9% in olfactory lobes, cerebral cortex, cerebellum and medulla oblongata, respectively.
Collapse
Affiliation(s)
- Shanti N Desai
- Department of Zoology, Physiology and Biochemistry Laboratory, Goa University, Panaji, Goa, India.
| | | |
Collapse
|
11
|
Shanti ND, Shashikumar KC, Desai PV. Influence of proline on rat brain activities of alanine aminotransferase, aspartate aminotransferase and acid phosphatase. Neurochem Res 2005; 29:2197-206. [PMID: 15672540 DOI: 10.1007/s11064-004-7026-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hyperprolinemia type II (HPII) is an autosomal recessive disorder caused by the severe deficiency of enzyme delta1-pyrroline-5-carboxylic acid dehydrogenase leading to tissue accumulation of proline. Chronic administration of Pro led to significant reduction of cytosolic ALT activity of olfactory lobes (50.57%), cerebrum (40%) and medulla oblongata (13.71%) only. Whereas mitochondrial ALT activity was reduced significantly in, all brain regions such as olfactory lobes (73.23%), cerebrum (70.26%), cerebellum (65.39%) and medulla oblongata (65.18%). The effect of chronic Pro administration on cytosolic AST activity was also determined. The cytosolic AST activity from olfactory lobes, cerebrum and medulla oblongata reduced by 75.71, 67.53 and 76.13%, respectively while cytosolic AST activity from cerebellum increased by 28.05%. The mitochondrial AST activity lowered in olfactory lobes (by 72.45%), cerebrum (by 78%), cerebellum (by 49.56%) and medulla oblongata (by 69.30%). In vitro studies also showed increase in brain tissue proline and decrease in glutamate levels. In vitro studies indicated that proline has direct inhibitory effect on these enzymes and glutamate levels in brain tissue showed positive correlation with AST and ALT activities. Acid phosphatase (ACP) activity reduced significantly in olfactory lobes (40.33%) and cerebrum (20.82%) whereas it elevated in cerebellum (97.32%) and medulla oblongata (76.33%). The histological studies showed degenerative changes in brain. Following proline treatment, the animals became sluggish and showed low responses to tail pricks and lifting by tails and showed impaired balancing. These observations indicate influence of proline on AST, ALT and ACP activities of different brain regions leading to lesser synthesis of glutamate thereby causing neurological dysfunctions.
Collapse
Affiliation(s)
- N Desai Shanti
- Department of Zoology, Goa University, Panjim, Goa, India
| | | | | |
Collapse
|
12
|
Kugler P, Schleyer V. Developmental expression of glutamate transporters and glutamate dehydrogenase in astrocytes of the postnatal rat hippocampus. Hippocampus 2004; 14:975-85. [PMID: 15390174 DOI: 10.1002/hipo.20015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutamate is the major excitatory transmitter in the CNS and plays distinct roles in a number of developmental events. Its extracellular concentration, which mediates these activities, is regulated by glutamate transporters in glial cells and neurons. In the present study, we have used nonradioactive in situ hybridization, immunocytochemistry, and immunoblotting to show the cellular and regional expression of the high-affinity glutamate transporters GLAST (EAAT1) and generic GLT1 (EAAT2; glial form of GLT1) in the rat hippocampus during postnatal development (P1-60). The results of transporter expression were compared with the localization and activity pattern of glutamate dehydrogenase (GDH), an important glutamate-metabolizing enzyme. The study showed that both transporters and GDH were demonstrable at P1 (day of birth). The expression of GLAST (detected by in situ hybridization and immunocytochemistry) in the early postnatal development was higher than GLT1. Thereafter, the expression of both transporters increased, showing adult levels at between P20 and P30 (detected by in situ hybridization and immunoblotting). At these time points, the expression of GLT1 appeared to be significantly higher than the GLAST expression. GLT1 and GLAST proteins were demonstrable only in astrocytes. The increase of GDH activities (steepest increase from P5-P8), which were localized preferentially in astrocytes, was in agreement with the increase of transporter expression, preferentially with that of GLT1. These observations suggest that the extent of glutamate transporter expression and of glutamate-metabolizing GDH activity in astrocytes is intimately correlated with the formation of glutamatergic synapses in the developing hippocampus.
Collapse
Affiliation(s)
- Peter Kugler
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
13
|
Bawari M, Babu GN. Metabolic responses in discrete regions of rat brain following acute administration of glutamate. Neurochem Res 2003; 28:1345-9. [PMID: 12938856 DOI: 10.1023/a:1024940230816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamate is a major excitatory neurotransmitter in the mammalian brain. Nevertheless, high extracellular levels of this amino acid have been shown to be toxic to several neuronal populations, but no data are available to show how glutamate homeostasis is altered in response to local infusion of glutamate. In the present study, 1 microM of glutamate was stereotactically injected into cerebral cortex, striatum, and hippocampus of adult rat brain, and the activities of key metabolic enzymes, lactate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase were evaluated by postmortem analysis in tissue homogenates. The results show that glutamate bolus, induced significant alterations in vivo glutamate and energy metabolism, as evidenced by marked alterations in these enzyme activities, whereas dizocilpine, a glutamate receptor antagonist, negated many of the effects induced by high glutamate. However, the degree of involvement of these observations in glutamate-induced neurotoxicity remains to be ascertained.
Collapse
Affiliation(s)
- Meenakshi Bawari
- Department of Neurology, SGPG Institute of Medical Sciences, Lucknow, UP, 226014 India
| | | |
Collapse
|
14
|
Fischer P, Bonow I, Büttner DW, Kamal IH, Liebau E. An aspartate aminotransferase of Wolbachia endobacteria from Onchocerca volvulus is recognized by IgG1 antibodies from residents of endemic areas. Parasitol Res 2003; 90:38-47. [PMID: 12743802 DOI: 10.1007/s00436-002-0813-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Accepted: 11/22/2002] [Indexed: 11/26/2022]
Abstract
Wolbachia are intracellular alpha-proteobacteria, closely related to Rickettsia, that infect various arthropods and filarial parasites. In the present study, the cDNA encoding the aspartate aminotransferase (AspAT) of Wolbachia from the human pathogenic filarial parasite Onchocerca volvulus (Ov-WolAspAT) was identified. At the amino acid level, the identity of the Ov-WolAspAT was 56% to Rickettsia prowazekii AspAT and 54% to the AspAT of the nitrogen-fixing bacterium Sinorhizobium meliloti, but the highest degree of identity was found to the putative AspAT of Wolbachia from Brugia malayi and Drosophila melanogaster (85%). All of these bacterial AspATs are members of the AspAT subclass Ib. A 35 kDa fragment of the Ov-WolAspAT was expressed in Escherichia coli, and immunolocalization using polyclonal antibodies against this antigen revealed that Ov-WolAspAT is present in a considerable proportion of the Wolbachia from O. volvulus, as well as in the endobacteria of several other filarial parasites. Western blot analysis using recombinant Ov-WolAspAT as antigen showed that IgG1 antibodies were present in 70 (51%) individuals living in areas endemic for O. volvulus, B. malayi or Wuchereria bancrofti and no IgG4 or IgE antibodies were found. Among 40 sera of persons from Uganda and Liberia who were putatively not infected with human filarial parasites, 11 (28%) individuals presented IgG1 antibodies, while none of the 33 sera from healthy Europeans and none of the 14 sera from patients with proven Rickettsia or Brucella infections reacted with the antigen. These results also show that an intracellular protein of Wolbachia endobacteria (WolAspAT) acts as antigen in human filariasis.
Collapse
Affiliation(s)
- Peter Fischer
- Molecular Parasitology Section, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
15
|
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 213:1-47. [PMID: 11837891 DOI: 10.1016/s0074-7696(02)13011-7] [Citation(s) in RCA: 379] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyrate (GABA) is a major inhibitory neurotransmitter in the adult mammalian brain. GABA is also considered to be a multifunctional molecule that has different situational functions in the central nervous system, the peripheral nervous system, and in some nonneuronal tissues. GABA is synthesized primarily from glutamate by glutamate decarboxylase (GAD), but alternative pathways may be important under certain situations. Two types of GAD appear to have significant physiological roles. GABA functions appear to be triggered by binding of GABA to its ionotropic receptors, GABA(A) and GABA(C), which are ligand-gated chloride channels, and its metabotropic receptor, GABA(B). The physiological, pharmacological, and molecular characteristics of GABA(A) receptors are well documented, and diversity in the pharmacologic properties of the receptor subtypes is important clinically. In addition to its role in neural development, GABA appears to be involved in a wide variety of physiological functions in tissues and organs outside the brain.
Collapse
|
16
|
Burbaeva GS, Turishcheva MS, Vorobyeva EA, Savushkina OK, Tereshkina EB, Boksha IS. Diversity of glutamate dehydrogenase in human brain. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:427-35. [PMID: 11999891 DOI: 10.1016/s0278-5846(01)00273-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three forms of glutamate dehydrogenase (GDH, EC 1.4.1.3) are purified from human brain tissue. Two of them, named GDH I (consisting of 58+/-1-kDa subunit) and GDH II (consisting of 56+/-1 -kDa subunit), are readily solubilized and the third one, GDH III (consisting of 56+/-1-kDa subunit), is a membrane-associated (particulate bound) isoform. Kinetic constants were determined for GDH III. These GDH forms were found to differ in hydrophobicity as indicated by different affinity to Phenyl-Sepharose. All three GDH forms showed microheterogeneity on two-dimensional (2-D) gel electrophoresis. Specific polyclonal antibodies, which enable to determine the levels of immunoreactivities of all the GDH forms in human brain extracts by enzyme-chemiluminescent amplified (ECL)-Western immunoblotting, were obtained.
Collapse
Affiliation(s)
- Gulnur Sh Burbaeva
- Laboratory of Neurochemistry, Mental Health Research Center RAMS, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
17
|
Netopilová M, Haugvicová R, Kubová H, Drsata J, Mares P. Influence of convulsants on rat brain activities of alanine aminotransferase and aspartate aminotransferase. Neurochem Res 2001; 26:1285-91. [PMID: 11885779 DOI: 10.1023/a:1014386416109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There exist differences between 12-day-old and adult rats in the onset of seizures induced by some inhibitors of glutamate decarboxylase (GAD). The aim of study was to investigate if there are differences between both groups in activities of rat brain alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the enzymes involved in glutamate metabolism, after the administration of 3-mercaptopropionic acid as specific GAD inhibitor or isoniazid as less specific general inhibitor of pyridoxal enzymes. Activities of both aminotransferases in a supernatant 20,000 g of the whole brain (containing predominantly cytosolic isoforms of enzymes) were increased at the beginning of 3-mercaptopropionic acid-induced generalized tonic-clonic seizures. At isoniazid-induced generalized tonic-clonic seizures, a significant increase in both enzyme activities was observed in adult rat brain. In the 12-day-old rat brain, ALT and AST activities reached about 40% and about 50-60% of adult control levels, respectively. In in vitro experiments, no influence of 3-mercaptopropionic acid on transaminase activities was found and an inhibitory effect of isoniazid on the enzymes was confirmed. Increased aminotransferase activities might participate in the enhanced synthesis of excitatory amino acid neurotransmitters in the nervous system, which may take a part in the initiation of epileptic seizures. Alternatively, the increased AST activity may be connected with an increased transport of NADH from the cytosol to mitochondria, while the increased ALT activity would represent the transformation of pyruvate to alanine as a consequence of increased glycolysis.
Collapse
Affiliation(s)
- M Netopilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
18
|
Hein C, Horváth E, Kugler P. Glutamate transporter expression in astrocytes of the rat dentate gyrus following lesion of the entorhinal cortex. Eur J Neurosci 2001; 13:1839-48. [PMID: 11403677 DOI: 10.1046/j.0953-816x.2001.01559.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The glutamate transporters GLT-1 and GLAST localized in astrocytes are essential in limiting transmitter signalling and restricting harmful receptor overstimulation. To show changes in the expression of both transporters following lesion of the entorhinal cortex (and degeneration of the glutamatergic tractus perforans), quantitative microscopic in situ hybridization (ISH) using alkaline-phosphatase-labelled oligonucleotide probes was applied to the outer molecular layer of the hippocampal dentate gyrus of rats (termination field of the tractus perforans). Four groups of rats were studied: sham-operated controls, and animals 3, 14 and 60 days following unilateral electrolytic lesion of the entorhinal cortex. The postlesional shrinkage of the terminal field of the perforant path, ipsilateral to the lesion side, was determined and considered in the evaluation of quantitative ISH data. Statistical analysis revealed that ipsilateral to the lesion side there was a significant decrease of the GLT-1 mRNA at every postlesional time-point and of the GLAST mRNA at 14 and 60 days postlesion. The maximal decrease was approximately 45% for GLT-1 and approximately 35% for GLAST. In the terminal field of the perforant path contralateral to the lesion side, no significant changes of ISH labelling were measured. The results were complemented by immunocytochemical data achieved using antibodies against synthetic GLT-1 and GLAST peptides. In accordance with ISH results, there was an obvious decrease of GLT-1 and GLAST immunostaining in the terminal field of the perforant path ipsilateral to the lesion side. From these data we conclude that, following a lesioning of the entorhinal cortex, the loss of glutamatergic synapses in the terminal field of the perforant path resulted in a strong downregulation of glutamate transporters in astrocytes. The decrease of synaptically released glutamate or of other neuronal factors could be involved in this downregulation.
Collapse
Affiliation(s)
- C Hein
- Institute of Anatomy, University of Würzburg, Koellikerstrasse 6, D-97070 Würzburg, Germany; Pharma Research CNS, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
| | | | | |
Collapse
|
19
|
Abstract
The biosynthesis of porphyrins is one of the most conserved parthways known, about the same sequence of reactions taking place in all species. By associating different metals, porphyrins give rise to the "pigments of life": chlorophyll, haem and cobalamin. The unique tetrapyrrolic structure enables it to function in an array of reactions as a single electron carrier and as a catalyst for redox reactions. In this capacity, it constitutes the prosthetic group of enzymes participating in cellular respiration, in conversion reactions involving steroids and lipophilic xenobiotics, in protective mechanisms directed against oxidative stress and in pathways providing central messenger molecules. The formation of haem is accomplished by a sequence of eight dedicated enzymes encoded by different genes, some being active in ubiquitous as well as in erythroid isoforms. Large differences between the participating enzymes with regard to catalytic power, with low capacity steps positioned early in the catalytic chain, constitute a bar against substrate overloading of enzymes processing porphyrins, thus preventing accumulation in the body of these phototoxic compounds under physiological conditions. Most of the haem in the body is produced by the liver and bone marrow, but the mechanisms applied for the control of the synthesis differ between the two organs. The extremely potent hemeprotein enzymes formed in the liver are rapidly turned over in response to current metabolic needs. They have half-lives in the order of minutes or hours and are restored by fast-acting mechanisms for the de novo synthesis, when needed. Uninterrupted and instant availability of the compound is secured by acute deinhibition of the initial enzyme of the synthetic chain, ubiquitous 5-aminolevulinate synthase (ALAS-1), in response to drain of the free cellular haem pool caused by prevailing demands for hemeproteins or by increased catabolism of the compound. In contrast, in the erythroid progenitor cell the haem synthetic machinery is designed for uninterrupted production of huge amounts of haem for combination with globin chains to form hemoglobin at a steady rate. In the erythron the synthesis of the enzymes participating in the formation of haem is under control of erythropoietin, formed under hypoxic conditions. In the absence of iron, to be incorporated in the porphyrin formed in the last step of the synthesis, the mRNA of erythroid 5-aminolevulinate synthase (ALAS-2) is blocked by attachment of an iron-responsive element (IRE) binding cytosolic protein, and transcription of this key enzyme is inhibited. In humans, the genes for each of the haem synthetic enzymes may become the target of mutations that give rise to impaired cellular enzyme activity. Seven of the enzyme deficiencies are associated with accumulation of toxic intermediaries and with disease entities termed porphyrias. The acute porphyrias are characterized by attacks of neuropsychiatric symptoms, which may be due to a toxic surplus of the porphyrin presursor 5-aminolevulinic acid, or a consequence of a deficit of vital hemeproteins resulting from impaired synthesis of haem. In the cutaneous porphyrias, impairment of enzymatic steps where porphyrins are processed gives rise to solar hypersensitivity due to accumulation of phototoxic porphyrins in the skin. Early diagnosis, information to the patient regarding the nature of the illness and counselling aimed at avoidance of triggering factors are cornerstones in the handling of the porphyric diseases. Gene analysis is of incomparable diagnostic reliability in carrier detection, but biochemical methods must be applied in the important task of monitoring porphyric disease activity. In most forms of porphyria the gene carriers run the risk of development of associated diseases in liver or kidneys, a circumstance that prompts application of well-structured surveillance programs.
Collapse
Affiliation(s)
- S Thunell
- Porphyria Centre Sweden, CMMS, Huddinge University Hospital, Sweden.
| |
Collapse
|
20
|
Levenson J, Sherry DM, Dryer L, Chin J, Byrne JH, Eskin A. Localization of glutamate and glutamate transporters in the sensory neurons of Aplysia. J Comp Neurol 2000; 423:121-31. [PMID: 10861541 DOI: 10.1002/1096-9861(20000717)423:1<121::aid-cne10>3.0.co;2-e] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sensorimotor synapse of Aplysia has been used extensively to study the cellular and molecular basis for learning and memory. Recent physiologic studies suggest that glutamate may be the excitatory neurotransmitter used by the sensory neurons (Dale and Kandel [1993] Proc Natl Acad Sci USA. 90:7163-7167; Armitage and Siegelbaum [1998] J Neurosci. 18:8770-8779). We further investigated the hypothesis that glutamate is the excitatory neurotransmitter at this synapse. The somata of sensory neurons in the pleural ganglia showed strong glutamate immunoreactivity. Very intense glutamate immunoreactivity was present in fibers within the neuropil and pleural-pedal connective. Localization of amino acids metabolically related to glutamate was also investigated. Moderate aspartate and glutamine immunoreactivity was present in somata of sensory neurons, but only weak labeling for aspartate and glutamine was present in the neuropil or pleural-pedal connective. In cultured sensory neurons, glutamate immunoreactivity was strong in the somata and processes and was very intense in varicosities; consistent with localization of glutamate in sensory neurons in the intact pleural-pedal ganglion. Cultured sensory neurons showed only weak labeling for aspartate and glutamine. Little or no gamma-aminobutyric acid or glycine immunoreactivity was observed in the pleural-pedal ganglia or in cultured sensory neurons. To further test the hypothesis that the sensory neurons use glutamate as a transmitter, in situ hybridization was performed by using a partial cDNA clone of a putative Aplysia high-affinity glutamate transporter. The sensory neurons, as well as a subset of glia, expressed this mRNA. Known glutamatergic motor neurons B3 and B6 of the buccal ganglion also appeared to express this mRNA. These results, in addition to previous physiological studies (Dale and Kandel [1993] Proc Natl Acad Sci USA. 90:7163-7167; Trudeau and Castellucci [1993] J Neurophysiol. 70:1221-1230; Armitage and Siegelbaum [1998] J Neurosci. 18:8770-8779)) establish glutamate as an excitatory neurotransmitter of the sensorimotor synapse.
Collapse
Affiliation(s)
- J Levenson
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5513, USA
| | | | | | | | | | | |
Collapse
|
21
|
Schmitt A, Kugler P. Cellular and regional expression of glutamate dehydrogenase in the rat nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience 1999; 92:293-308. [PMID: 10392851 DOI: 10.1016/s0306-4522(98)00740-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the central nervous system glutamate dehydrogenase appears to be strongly involved in the metabolism of transmitter glutamate and plays a role in the pathogenesis of neurodegenerative disorders. In order to identify unequivocally the neural cell types expressing this enzyme, non-radioactive in situ hybridization, using a complementary RNA probe and oligonucleotide probes, was applied to sections of the rat central nervous system and, for comparison with peripheral neural cells, to cervical spinal ganglia. The results were complemented by immunocytochemical studies using a polyclonal antibody against purified glutamate dehydrodenase. Glutamate dehydrogenase messenger RNA was detectable at varying amounts in neurons and glial cells (i.e. astrocytes, oligodendrocytes, Bergmann glia, ependymal cells, epithelial cells of the plexus choroideus) throughout the central nervous system and in neurons and satellite cells of spinal ganglia. In some neuronal populations (e.g., pyramidal cells of the hippocampus, motoneurons of the spinal cord and spinal ganglia neurons) messenger RNA-labelling was higher than in other central nervous system neurons. This is remarkable because the immunostaining of neurons in the central nervous system regions studied was at best weak, whereas a predominantly high level of immunoreactivity was detected in astrocytes (and Bergmann glia). Thus, in neurons of the central nervous system, the detected levels of glutamate dehydrogenase messenger RNA and protein seem to be at variance whereas in peripheral neurons of spinal ganglia both in situ hybridization labelling and immunostaining are intense.
Collapse
Affiliation(s)
- A Schmitt
- Institute of Anatomy, University of Würzburg, Germany
| | | |
Collapse
|
22
|
Murphy SM, Pilowsky PM, Llewellyn-Smith IJ. Pre-embedding staining for GAD67 versus postembedding staining for GABA as markers for central GABAergic terminals. J Histochem Cytochem 1998; 46:1261-8. [PMID: 9774625 DOI: 10.1177/002215549804601106] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pre-embedding immunocytochemistry for the active form of glutamate decarboxylase (GAD67) and postembedding staining for gamma-aminobutyric acid (GABA) were compared as markers for central GABAergic terminals in the phrenic motor nucleus, in which phrenic motor neurons had been retrogradely labeled with cholera toxin B-horseradish peroxidase. Nerve terminals with or without GAD67 immunoreactivity were identified in one ultrathin section. GABA was localized with immunogold in an adjacent section after etching and bleaching. GABA labeling density was assessed over 519 GAD67-positive and GAD67-negative nerve terminals in the phrenic motor nucleus. Frequency histograms showed that statistically higher densities of gold particles occurred over most GAD67-positive terminals. However, some GAD67-negative terminals also showed high densities of gold particles, and some GAD67-positive terminals showed low densities. Preabsorption of the anti-GABA antibody with a GABA-protein conjugate, but not with other amino acid-protein conjugates, significantly reduced gold labeling over both GAD67-positive and GAD67-negative terminals. These results show that the presence of GAD67 immunoreactivity correlates strongly with high densities of immunogold labeling for GABA in nerve terminals in the phrenic motor nucleus. Preabsorption controls indicate that authentic GABA was localized in the postembedding labeling procedure. Only a small proportion of intensely GABA-immunoreactive terminals lack GAD67, suggesting that both GAD67 and GABA are reliable markers of GABAergic nerve terminals.
Collapse
Affiliation(s)
- S M Murphy
- Department of Medicine and Centre for Neuroscience, Flinders University, Bedford Park, Australia
| | | | | |
Collapse
|
23
|
Cellular and regional distribution of the glutamate transporter GLAST in the CNS of rats: nonradioactive in situ hybridization and comparative immunocytochemistry. J Neurosci 1997. [PMID: 8987731 DOI: 10.1523/jneurosci.17-01-00001.1997] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oligonucleotide and cRNA probes were used for nonradioactive in situ hybridizations carried out to identify the neural cell types expressing the glutamate transporter GLAST mRNA in the rat CNS. Additionally, the regional distribution of GLAST mRNA-expressing cells was studied, and the results were complemented by immunocytochemical investigations using an antibody against a synthetic GLAST peptide. The findings documented that GLAST is expressed by Bergmann glia and by astrocytes throughout the CNS. The glial localization of GLAST mRNA was verified unequivocally by double-labeling with an astrocytic marker protein. Additionally, GLAST mRNA reactivity and GLAST immunoreactivity were found in ependymal cells. In other neural cell types of the CNS, GLAST expression was not detectable. A high level of astrocytic immunolabeling was observed in the entire gray matter of the brain, with variations in intensity in different regions. Those brain areas that are known to possess high glutamatergic activity and astrocytic glutamate metabolism stained intensely for both GLAST mRNA and GLAST protein. The latter observation suggests that the GLAST glutamate transporter participates in the regulation of extracellular glutamate concentrations, especially in brain areas receiving an intense glutamatergic innervation.
Collapse
|
24
|
Ma Y, Lim DK. Effects of I.C.V. administration of ethylcholine aziridinium (AF64A) on the central glutamatergic nervous systems in rats. Arch Pharm Res 1997; 20:39-45. [DOI: 10.1007/bf02974040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1996] [Indexed: 12/01/2022]
|
25
|
Derouiche A. Possible role of the Müller cell in uptake and metabolism of glutamate in the mammalian outer retina. Vision Res 1996; 36:3875-8. [PMID: 9068840 DOI: 10.1016/s0042-6989(96)00140-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It is not known how glutamate released synaptically in the outer plexiform layer of the retina is inactivated. Since there is no extracellular enzymatic degradation, glutamate released from photoreceptors is taken up intracellularly by at least one of the three transporters known, and metabolized by a glutamate degrading enzyme. In order to elucidate which of the transporters and enzymes are involved in this process, immuno-electron microscopy was carried out on retinal sections of adult albino rats, applying antiserum against either glutamine synthetase (GS) or L-glutamate-L-aspartate transporter (GLAST). Both stainings revealed immunoreactivity in Müller cells and particularly in their processes tightly ensheathing rod photoreceptor terminals. Thus, although this remains to be tested functionally, transmitter uptake and subsequent degradation at photoreceptor terminals might be preferentially controlled by GLAST and GS expressed in the fine Müller cell processes.
Collapse
Affiliation(s)
- A Derouiche
- Institute of Anatomy, J. W. Goethe-University, Frankfurt/M., Germany
| |
Collapse
|
26
|
Abstract
Astrogliosis is a prominent feature of epileptic foci, and may play a causal role in the development of seizures and the persistance of seizure disorders. We have studied morphological changes in astrocytes with respect to the evolution of seizures using the kindling model of epilepsy. Kindling-induced seizures result in a prominent hypertrophy of astrocytes that is accompanied by a reorganization of astrocytic cytoskeleton. The change in the morphology of astrocytes appears to be seizure-intensity dependent, occurs early in the kindling process, and persists for weeks following the last seizure. In addition to hypertrophy, we have observed an increase in proliferation of astrocytes in hippocampus, amygdala and piriform cortex, but no change in the expression of connexin-43 following kindling. Significantly, induction of a localized astrocyte hypertrophy prior to initiation of kindling does not result in seizures and does not facilitate kindling. Altogether these data suggest that 'gliosis' is an adaptive response to seizures.
Collapse
Affiliation(s)
- M Khurgel
- Department Anatomy and Cell Biology, Faculty of Medicine, University of Toronto, Scarborough, Ont.
| | | |
Collapse
|
27
|
Murphy SM, Pilowsky PM, Llewellyn-Smith IJ. Vesicle shape and amino acids in synaptic inputs to phrenic motoneurons: do all inputs contain either glutamate or GABA? J Comp Neurol 1996; 373:200-19. [PMID: 8889922 DOI: 10.1002/(sici)1096-9861(19960916)373:2<200::aid-cne4>3.0.co;2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Varicosities that made synapses or direct contacts with retrogradely labelled rat phrenic motoneurons were examined for their content of immunoreactivity for either glutamate or glutamate decarboxylase, the enzyme involved in synthesis of gamma-aminobutyric acid (GABA). Phrenic motoneurons were identified by retrograde tracing from the diaphragm with cholera toxin B subunit conjugated to horseradish peroxidase. Cell bodies and medium-sized to large dendrites were labelled. Preembedding immunocytochemistry identified glutamate decarboxylase-immunoreactive nerve fibres; glutamate-immunoreactive nerve terminals were identified using postembedding immunogold labelling of ultrathin sections. The presence of glutamate- or glutamate decarboxylase immunoreactivity in nerve terminals was correlated with the morphology of the synaptic vesicles. Two major classes of nerve terminals were identified. Nerve terminals with round (presumably spherical) synaptic vesicles (S terminals) comprised 55% of synapses and contacts on phrenic motoneuron somata and 58% of synapses and direct contacts with dendrites. Nerve terminals with flattened synaptic vesicles (F terminals) comprised 42% of synapses direct contacts with somata and 41% of synapses and direct contacts with dendrites. Analysis of immunogold-labelled sections showed that S terminals contained statistically higher levels of glutamate immunoreactivity than F terminals. At the light microscope level, many glutamate decarboxylase-immunoreactive nerve terminals surrounded retrogradely labelled motoneurons. Varicosities with glutamate decarboxylase immunoreactivity made 33% of all synapses and direct contacts on somata, and 33% of synapses and direct contacts with dendrites of the retrogradely labelled phrenic motoneurons. Flattened synaptic vesicles were present in those glutamate decarboxylase-immunoreactive nerve terminals in which synaptic vesicle morphology could be judged. An additional 10% of all nerve terminals were of the F type, but were not glutamate decarboxylase-immunoreactive. Three percent of terminals on somata and 1% of nerve terminals on dendrites could not be classified as S or F types. These findings suggest that more than 90% of all inputs to phrenic motoneuron cell bodies and proximal dendrites could contain either GABA or glutamate. Some of these glutamatergic and GABAergic nerve fibres undoubtedly represent the source of inspiratory drive to, or expiratory inhibition of, phrenic motoneurons.
Collapse
Affiliation(s)
- S M Murphy
- Department of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | | | | |
Collapse
|
28
|
Schmitt A, Asan E, Püschel B, Jöns T, Kugler P. Expression of the glutamate transporter GLT1 in neural cells of the rat central nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience 1996; 71:989-1004. [PMID: 8684627 DOI: 10.1016/0306-4522(95)00477-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Non-radioactive in situ hybridization using complementary RNA and oligonucleotide probes was applied in order to clearly identify the cell types expressing GLT1 and to show their regional distribution in the central nervous system of the rat. The results were compared with immunocytochemical data achieved using an antibody against a synthetic GLT1 peptide. The study showed that GLT1 was expressed in astrocytes and Bergmann glia which were identified by the detection of an astrocytic marker protein. Additionally, subsets of neurons in different brain regions (e.g., CA3/4 pyramidal cells of the hippocampus, endopiriform nucleus) were labelled by in situ hybridization. In other cell types of the central nervous system (oligodendrocytes, ependymal cells, epithelal cells of the choroid plexus, tanycytes), GLT1 expression was not detectable. The generally dense astrocytic immunolabelling of the gray matter of the brain showed an even higher intensity in regions reported to show high glutamatergic activity and astrocytic glutamate metabolism (e.g., the termination field of the glutamatergic perforant path in the hippocampus). On the basis of the cellular regional distribution of the GLT1 messenger RNA and protein demonstrated in the present study, it is reasonable to assume that this high affinity transporter is of importance for the maintenance of adequate extraneuronal glutamate levels.
Collapse
Affiliation(s)
- A Schmitt
- Institute of Anatomy, University of Würzburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Derouiche A, Rauen T. Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 1995; 42:131-43. [PMID: 8531222 DOI: 10.1002/jnr.490420115] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our aim was to identify proteins that mediate the uptake and degradation of synaptically released glutamate, focusing on the rat retina with its well-defined glutamatergic pathways. Immunoreactivity against the L-glutamate/L-aspartate transporter (GLAST) is present in Müller cells. Ultrastructurally, even the finest glial processes, particularly those ensheathing identified structures of glutamatergic transmission (rod spherules), are immunoreactive for GLAST. Further light and electron microscopic observations revealed that also retinal astrocytes and pigment epithelial cells are immunoreactive for GLAST. No neuronal or microglial staining was observed. This is in line with uptake of exogenous [3H]glutamate previously localized specifically in Müller cells and pigment epithelium (Ehinger and Falck: Brain Res 33:157-172, 1971). Since endogenous glutamate can only be demonstrated in Müller cells if glutamine synthetase (GS) is inhibited (Pow and Robinson: Neuroscience 60:355-366, 1994), the immunocytochemical localization of GS was determined. GS immunoreactivity was found in all but only those cell types immunoreactive for GLAST. The light and electron microscopic patterns of immunoreactivity were very similar, particularly in the outer plexiform layer. The three cell types containing both GS and GLAST (Müller cells, astrocytes, and retinal pigment epithelium) are related developmentally. In the light of the two references quoted the present data indicate that the proteins mediating retinal uptake and degradation of synaptically released glutamate may be GLAST and GS, respectively, and that they may operate in concert to terminate the neurotransmitter action of glutamate.
Collapse
Affiliation(s)
- A Derouiche
- Institute of Anatomy, J.W. Goethe University, Frankfurt/M., Germany
| | | |
Collapse
|
30
|
Kugler P, Weeger T, Horváth E. Glutamate dehydrogenase in astrocytes of the rat dentate gyrus following lesion of the entorhinal cortex. Neuroscience 1995; 64:173-82. [PMID: 7708204 DOI: 10.1016/0306-4522(94)00358-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Applying quantitative microscopic histochemistry, the activity of the mitochondrial glutamate dehydrogenase which is localized in astrocytes was determined in the molecular layer of the dentate gyrus of the rat hippocampus. This hippocampal region contains the important terminations of the glutamatergic perforant path. For comparison, determinations of the mitochondrial succinate dehydrogenase were performed, which is localized preferentially in terminals and dendrites. Two age groups of animals were examined: young adults (three months old) and aged subjects (24 months old). Both age groups were divided into controls, and animals killed three, 21 and 90 days following unilateral electrolytic lesion of the entorhinal cortex. The post-lesional shrinkage of the terminal field of the perforant path, ipsilateral to the lesion side, was determined and considered in the evaluation of enzymatic data. Statistic analysis revealed that ipsilateral to the lesion side there was a significant decrease of glutamate and succinate dehydrogenase activities in the terminal field of the perforant path three, 21 and 90 days following lesion. It is reasonable to assume that the decrease of succinate dehydrogenase activity (50-60%) was caused by the loss of mitochondria localized in degenerating terminals, whereas the decrease of glutamate dehydrogenase activity (20-30%) was related to the decrease of glutamatergic transmission following lesion. In the terminal field of the perforant path contralateral to the lesion side both significant increases and decreases of enzyme activities were measured following lesion. From these results it is concluded that the hippocampus contralateral to the lesion side cannot be considered as an appropriate intraindividual control. The comparison between young and aged animals showed no differences in the demonstration of glutamate dehydrogenase and only restricted differences in the activity level of succinate dehydrogenase post-lesion. Therefore, it is reasonable to assume that the post-lesional reactivity of the enzymes studied was very similar in both age groups.
Collapse
Affiliation(s)
- P Kugler
- Institute of Anatomy, University of Würzburg, Germany
| | | | | |
Collapse
|
31
|
Kugler P. In situ measurements of enzyme activities in the brain. THE HISTOCHEMICAL JOURNAL 1993; 25:329-38. [PMID: 8100559 DOI: 10.1007/bf00159497] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present review focuses on enzymes involved in the metabolism of amino acid neurotransmitters and the microphotometric determinations of their activities in various layers of the rat hippocampus. The enzymes are NAD-linked isocitrate dehydrogenase (NAD-ICDH), glutamate dehydrogenase (GDH), and GABA transaminase (GABAT), all of which are localized in mitochondria. GDH seems to be restricted to astrocytes, whereas NAD-ICDH and GABAT are localized in neurons as well as in astrocytes. NAD-ICDH is an important enzyme of the tricarboxylic acid cycle and may deliver alpha-ketoglutarate for the formation of glutamate and GABA, which serve as neurotransmitters in the hippocampus. GDH catalyses the interconversion of alpha-ketoglutarate and glutamate, whereas GABAT is the important GABA-degrading enzyme and requires alpha-ketoglutarate for its activity. While differing in their cellular distribution and activity levels, NAD-ICDH, GDH and GABAT are significantly correlated in their hippocampal distribution. Furthermore, developmental and pharmacohistochemical studies suggest that the distribution and activity of astrocytic GDH is correlated with amino-acidergic neurotransmission in the hippocampus. The data reported give further evidence for a metabolic relationship between neurons and astrocytes in the turnover and metabolism of glutamate and GABA.
Collapse
Affiliation(s)
- P Kugler
- Department of Anatomy, University of Würzburg, Germany
| |
Collapse
|