1
|
Wang H, Tang P, Zhou Q, Zhang D, Chen Z, Huang H, Qin Y. One-Pot Synthesis of Multisubstituted Butyrolactonimidates: Total Synthesis of (−)-Nephrosteranic Acid. J Org Chem 2015; 80:2494-502. [PMID: 25671631 DOI: 10.1021/jo5029166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Huijing Wang
- Innovative
Drug Research Centre and Bioengineering College, Chongqing University, Chongqing 401331, China
| | - Pei Tang
- Innovative
Drug Research Centre and Bioengineering College, Chongqing University, Chongqing 401331, China
| | - Qilong Zhou
- Innovative
Drug Research Centre and Bioengineering College, Chongqing University, Chongqing 401331, China
| | - Dan Zhang
- Innovative
Drug Research Centre and Bioengineering College, Chongqing University, Chongqing 401331, China
| | - Zhitao Chen
- Innovative
Drug Research Centre and Bioengineering College, Chongqing University, Chongqing 401331, China
| | - Hongxiu Huang
- Key
Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry
of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yong Qin
- Key
Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry
of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Woo J, Cho S, Lee CJ. Isoliquiritigenin, a chalcone compound, enhances spontaneous inhibitory postsynaptic response. Exp Neurobiol 2014; 23:163-8. [PMID: 24963281 PMCID: PMC4065830 DOI: 10.5607/en.2014.23.2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 01/19/2023] Open
Abstract
Isoliquiritigenin (ILTG) is a chalcone compound and shows various pharmacological properties, including antioxidant and anti-inflammatory activities. In recent study, we have reported a novel role of ILTG in sleep through a positive allosteric modulation of gamma-aminobutyric acid type A (GABAA)-benzodiazepine (BZD) receptors. However, the effect of ILTG in GABAAR-mediated synaptic response in brain has not been tested yet. Here we report that ILTG significantly prolonged the decay of spontaneous inhibitory postsynaptic currents (sIPSCs) mediated by GABAAR in mouse hippocampal CA1 pyramidal neurons without affecting amplitude and frequency of sIPSCs. This enhancement was fully inhibited by flumazenil (FLU), a specific GABAA-BZD receptor antagonist. These results suggest a potential role of ILTG as a modulator of GABAergic synaptic transmission.
Collapse
Affiliation(s)
- Junsung Woo
- Center for Neural Science and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea. ; Neuroscience Program, University of Science and Technology (UST), Daejeon 305-350, Korea
| | - Suengmok Cho
- Korea Food Research Institute, Seongnam 463-746, Korea
| | - C Justin Lee
- Center for Neural Science and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea. ; Neuroscience Program, University of Science and Technology (UST), Daejeon 305-350, Korea
| |
Collapse
|
3
|
Kozuska JL, Paulsen IM. The Cys-loop pentameric ligand-gated ion channel receptors: 50 years on. Can J Physiol Pharmacol 2012; 90:771-82. [PMID: 22493950 DOI: 10.1139/y2012-018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This year, 2011, the Department of Pharmacology at the University of Alberta celebrated its 50th anniversary. This timeframe covers nearly the entire history of Cys-loop pentameric ligand-gated ion channel (pLGIC) research. In this review we consider how major technological advancements affected our current understanding of pLGICs, and highlight the contributions made by members of our department. The individual at the center of our story is Susan Dunn; her passing earlier this year has robbed the Department of Pharmacology and the research community of a most insightful colleague. Her dissection of ligand interactions with the nAChR, together with their interpretation, was the hallmark of her extensive collaborations with Michael Raftery. Here, we highlight some electrophysiological studies from her laboratory over the last few years, using the technique that she introduced to the department in Edmonton, the 2-electrode voltage-clamp of Xenopus oocytes. Finally, we discuss some single-channel studies of the anionic GlyR and GABA(A)R that prefaced the introduction of this technique to her laboratory.
Collapse
Affiliation(s)
- Janna L Kozuska
- Department of Pharmacology, University of Alberta, 9-55 Medical Sciences Building, Edmonton, AB T6G2H7, Canada.
| | | |
Collapse
|
4
|
Liao IH, Corbett BA, Gilbert DL, Bunge SA, Sharp FR. Blood gene expression correlated with tic severity in medicated and unmedicated patients with Tourette Syndrome. Pharmacogenomics 2011; 11:1733-41. [PMID: 21142917 DOI: 10.2217/pgs.10.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tourette Syndrome (TS) has been linked to both genetic and environmental factors. Gene-expression studies provide valuable insight into the causes of TS; however, many studies of gene expression in TS do not account for the effects of medication. MATERIALS & METHODS To investigate the effects of medication on gene expression in TS patients, RNA was isolated from the peripheral blood of 20 medicated TS subjects (MED) and 23 unmedicated TS subjects (UNMED), and quantified using whole-genome Affymetrix microarrays. RESULTS D2 dopamine receptor expression correlated positively with tic severity in MED but not UNMED. GABA(A) receptor ε subunit expression negatively correlated with tic severity in UNMED but not MED. Phenylethanolamine N-methyltransferase expression positively correlated with tic severity in UNMED but not MED. CONCLUSION Modulation of tics by TS medication is associated with changes in dopamine, norepinephrine and GABA pathways.
Collapse
|
5
|
Muroi Y, Theusch CM, Czajkowski C, Jackson MB. Distinct structural changes in the GABAA receptor elicited by pentobarbital and GABA. Biophys J 2009; 96:499-509. [PMID: 19167300 DOI: 10.1016/j.bpj.2008.09.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022] Open
Abstract
The barbiturate pentobarbital binds to gamma-aminobutyric acid type A (GABA(A)) receptors, and this interaction plays an important role in the anesthetic action of this drug. Depending on its concentration, pentobarbital can potentiate (approximately 10-100 microM), activate (approximately 100-800 microM), or block (approximately 1-10 mM) the channel, but the mechanisms underlying these three distinct actions are poorly understood. To investigate the drug-induced structural rearrangements in the GABA(A) receptor, we labeled cysteine mutant receptors expressed in Xenopus oocytes with the sulfhydryl-reactive, environmentally sensitive fluorescent probe tetramethylrhodamine-6-maleimide (TMRM). We then used combined voltage clamp and fluorometry to monitor pentobarbital-induced channel activity and local protein movements simultaneously in real time. High concentrations of pentobarbital induced a decrease in TMRM fluorescence (F(TMRM)) of labels tethered to two residues in the extracellular domain (alpha(1)L127C and beta(2)L125C) that have been shown previously to produce an increase in F(TMRM) in response to GABA. Label at beta(2)K274C in the extracellular end of the M2 transmembrane helix reported a small but significant F(TMRM) increase during application of low modulating pentobarbital concentrations, and it showed a much greater F(TMRM) increase at higher concentrations. In contrast, GABA decreased F(TMRM) at this site. These results indicate that GABA and pentobarbital induce different structural rearrangements in the receptor, and thus activate the receptor by different mechanisms. Labels at alpha(1)L127C and beta(2)K274C change their fluorescence by substantial amounts during channel blockade by pentobarbital. In contrast, picrotoxin blockade produces no change in F(TMRM) at these sites, and the pattern of F(TMRM) signals elicited by the antagonist SR95531 differs from that produced by other antagonists. Thus, with either channel block by antagonists or activation by agonists, the structural changes in the GABA(A) receptor protein differ during transitions that are functionally equivalent.
Collapse
Affiliation(s)
- Yukiko Muroi
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
6
|
Abstract
A number of important drugs act on GABA(A) receptors, pentameric GABA-gated chloride channels assembled from among 19 known subunits. In trying to discover the roles in the brain of the subunits and their combinations, with the goal of developing more selective drugs, one tool has been to reduce expression of the subunits and examine the functional consequences. After briefly examining the properties of GABA(A) receptors, this review surveys the means available for receptor subunit reduction, and some of the observations to which their application has led. The methods discussed include radiation-induced deletion, gene knockout, knock-in mutations, antisense, ribozymes, RNA interference, dominant negative constructs, and transcriptional regulation, e.g., via decoy oligonucleotides.
Collapse
Affiliation(s)
- David R Burt
- Department of Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201-1559, USA.
| |
Collapse
|
7
|
Sigel E, Baur R, Furtmueller R, Razet R, Dodd RH, Sieghart W. Differential Cross Talk of ROD Compounds with the Benzodiazepine Binding Site. Mol Pharmacol 2001; 59:1470-7. [PMID: 11353808 DOI: 10.1124/mol.59.6.1470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently identified a novel class of allosteric modulators of GABA(A) receptors, the ROD compounds that are structurally related to bicuculline. Here, the relationship of their site of action relative to other known modulatory sites of this receptor was investigated. Two types of ROD compounds, R1 (ROD164A, ROD185) and R2 (ROD222 and ROD259) could be differentiated. R1 compounds competitively inhibited binding of benzodiazepines in alpha1beta2gamma2 receptors, and their functional effects were partially inhibited by the benzodiazepine antagonist Ro15-1788 in a noncompetitive manner. The enhancement by an R1 compound was not additive with that by diazepam. R2 compounds in contrast failed to inhibit binding of benzodiazepines; the R2 compounds' functional effects were not inhibited by the benzodiazepine antagonist. The enhancement by an R2 compound was additive with that by diazepam. In contrast to benzodiazepines, both R1 and R2 type compounds were still able to enhance alpha1beta2 receptors. ROD164A in alpha1beta2gamma2 receptors was found to be partially antagonized by Ro15-1788 in a noncompetitive way. ROD178B did not affect gamma-aminobutyric acid induced currents, but was able to inhibit both enhancement by R1 and R2 type compounds as well as enhancement by diazepam. R1 and R2 type compounds as well as diazepam enhanced pentobarbital-induced currents in a Ro15-1788-sensitive way. We conclude that R1 type compounds act at the benzodiazepine binding site and additionally at a different R1 site, and that the R1, but not the R2 site is allosterically coupled to the benzodiazepine binding site. ROD178B is a competitive antagonist at the R1 site in that it shows allosteric interaction with the benzodiazepine binding site and displacement of benzodiazepines, and a negative allosteric modulator at the R2 site.
Collapse
Affiliation(s)
- E Sigel
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
8
|
Betti L, Giannaccini G, Gori M, Bistocchi M, Lucacchini A. [3H]Ro 15-1788 binding sites to brain membrane of the saltwater Mugil cephalus. Comp Biochem Physiol C Toxicol Pharmacol 2001; 128:291-7. [PMID: 11255103 DOI: 10.1016/s1532-0456(00)00195-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The equilibrium binding parameters of the benzodiazepine antagonist [3H]Ro 15-1788 (8-fluoro-3-carboethoxy-5,6-dihydro-5-methyl-6-oxo-4H-imidazol-[1,5-a]-1,4 benzodiazepine) were evaluated in brain membranes of the saltwater teleost fish, Mugil cephalus. To test receptor subtype specificity, displacement studies were carried out by competitive binding of [3H]Ro 15-1788 against six benzodiazepine receptor ligands, flunitrazepam [5-(2-fluoro-phenyl)-1,3-dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepin-2-one], alpidem [N,N-dipropyl-6-chloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridine-3-acetamide], zolpidem [N,N-6 trimethyl-2-(4-methyl-phenyl)imidazo[1,2-a]pyridine-3-acetamide hemitartrate], and beta-CCM (methyl beta-carboline-3-carboxylate). Saturation studies showed that [3H]Ro 15-1788 bound saturatably, reversibly and with a high affinity to a single class of binding sites (Kd value of 1.18-1.5 nM and Bmax values of 124-1671 fmol/mg of protein, depending on brain regions). The highest concentration of benzodiazepine recognition sites labeled with [3H]Ro 15-1788 was present in the optic lobe and the olfactory bulb and the lowest concentration was found in the medulla oblongata, cerebellum and spinal cord. The rank order of displacement efficacy of unlabelled ligands observed suggested that central-type benzodiazepine receptors are present in one class of binding sites (Type I-like) in brain membranes of Mugil cephalus. Moreover, the uptake of 36Cl- into M. cephalus brain membrane vesicles was only marginally stimulated by concentrations of GABA that significantly enhanced the 36Cl- uptake into mammalian brain membrane vesicles. The results may indicate a different functional activity of the GABA-coupled chloride ionophore in the fish brain as compared with the mammalian brain.
Collapse
Affiliation(s)
- L Betti
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie dell'Università di Pisa, Sez. Via Bonanno 6, 56100, Pisa, Italy
| | | | | | | | | |
Collapse
|
9
|
Do-Rego JL, Mensah-Nyagan GA, Beaujean D, Vaudry D, Sieghart W, Luu-The V, Pelletier G, Vaudry H. gamma-Aminobutyric acid, acting through gamma -aminobutyric acid type A receptors, inhibits the biosynthesis of neurosteroids in the frog hypothalamus. Proc Natl Acad Sci U S A 2000; 97:13925-30. [PMID: 11087816 PMCID: PMC17677 DOI: 10.1073/pnas.240269897] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most of the actions of neurosteroids on the central nervous system are mediated through allosteric modulation of the gamma-aminobutyric acid type A (GABA(A)) receptor, but a direct effect of GABA on the regulation of neurosteroid biosynthesis has never been investigated. In the present report, we have attempted to determine whether 3beta-hydroxysteroid dehydrogenase (3beta-HSD)-containing neurons, which secrete neurosteroids in the frog hypothalamus, also express the GABA(A) receptor, and we have investigated the effect of GABA on neurosteroid biosynthesis by frog hypothalamic explants. Double immunohistochemical labeling revealed that most 3beta-HSD-positive neurons also contain GABA(A) receptor alpha(3) and beta(2)/beta(3) subunit-like immunoreactivities. Pulse-chase experiments showed that GABA inhibited in a dose-dependent manner the conversion of tritiated pregnenolone into radioactive steroids, including 17-hydroxy-pregnenolone, progesterone, 17-hydroxy-progesterone, dehydroepiandrosterone, and dihydrotestosterone. The effect of GABA on neurosteroid biosynthesis was mimicked by the GABA(A) receptor agonist muscimol but was not affected by the GABA(B) receptor agonist baclofen. The selective GABA(A) receptor antagonists bicuculline and SR95531 reversed the inhibitory effect of GABA on neurosteroid formation. The present results indicate that steroid-producing neurons of the frog hypothalamus express the GABA(A) receptor alpha(3) and beta(2)/beta(3) subunits. Our data also demonstrate that GABA, acting on GABA(A) receptors at the hypothalamic level, inhibits the activity of several key steroidogenic enzymes, including 3beta-HSD and cytochrome P450(C17) (17alpha-hydroxylase).
Collapse
Affiliation(s)
- J L Do-Rego
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, Institut National de la Santé et de la Recherche Médicale, Unité 413, Centre National de la Recherche Scientifique, University of Rouen, Franceg
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Razet R, Thomet U, Furtmüller R, Jursky F, Sigel E, Sieghart W, Dodd RH. Use of bicuculline, a GABA antagonist, as a template for the development of a new class of ligands showing positive allosteric modulation of the GABA(A) receptor. Bioorg Med Chem Lett 2000; 10:2579-83. [PMID: 11086734 DOI: 10.1016/s0960-894x(00)00514-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analogues of bicuculline devoid of the benzo ring fused to the lactone moiety were prepared by reacting 2-(tert-butyl-dimethylsiloxy)furans with 3,4-dihydroisoquinolinium salts. Some of these compounds (e.g., ROD185, 8) acted as modulators of the GABAA receptor, displacing ligands of the benzodiazepine binding site. They also strongly stimulated GABA currents mediated by recombinant GABA(A) receptors expressed in Xenopus oocytes.
Collapse
Affiliation(s)
- R Razet
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Thomet U, Baur R, Razet R, Dodd RH, Furtmüller R, Sieghart W, Sigel E. A novel positive allosteric modulator of the GABA(A) receptor: the action of (+)-ROD188. Br J Pharmacol 2000; 131:843-50. [PMID: 11030736 PMCID: PMC1572371 DOI: 10.1038/sj.bjp.0703558] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
(+)-ROD188 was synthesized in the search for novel ligands of the GABA binding site. It shares some structural similarity with bicuculline. (+)-ROD188 failed to displace [(3)H]-muscimol in binding studies and failed to induce channel opening in recombinant rat alpha1beta2gamma2 GABA(A) receptors functionally expressed in Xenopus oocytes. (+)-ROD188 allosterically stimulated GABA induced currents. Displacement of [(3)H]-Ro15-1788 indicated a low affinity action at the benzodiazepine binding site. In functional studies, stimulation by (+)-ROD188 was little sensitive to the presence of 1 microM of the benzodiazepine antagonist Ro 15-1788, and (+)-ROD188 also stimulated currents mediated by alpha1beta2, indicating a major mechanism of action different from that of benzodiazepines. Allosteric stimulation by (+)-ROD188 was similar in alpha1beta2N265S as in unmutated alpha1beta2, while that by loreclezole was strongly reduced. (+)-ROD188 also strongly stimulated currents elicited by either pentobarbital or 5alpha-pregnan-3alpha-ol-20-one (3alpha-OH-DHP), in line with a mode of action different from that of barbiturates or neurosteroids as channel agonists. Stimulation by (+)-ROD188 was largest in alpha6beta2gamma2 (alpha6beta2gamma2>>alpha1beta2gamma2=alpha5beta2gamma2++ +>alpha2beta2ga mma2= alpha3beta2gamma2), indicating a unique subunit isoform specificity. Miniature inhibitory postsynaptic currents (mIPSC) in cultures of rat hippocampal neurons, caused by spontaneous release of GABA showed a prolonged decay time in the presence of 30 microM (+)-ROD188, indicating an enhanced synaptic inhibitory transmission.
Collapse
Affiliation(s)
- Urs Thomet
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
| | - Roland Baur
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
| | - Rodolphe Razet
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | - Robert H Dodd
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | - Roman Furtmüller
- Section of Biochemical Psychiatry, Department Psychiatry, University of Vienna, A-1090 Wien, Austria
| | - Werner Sieghart
- Section of Biochemical Psychiatry, Department Psychiatry, University of Vienna, A-1090 Wien, Austria
| | - Erwin Sigel
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
- Author for correspondence:
| |
Collapse
|
12
|
Newell JG, Davies M, Bateson AN, Dunn SM. Tyrosine 62 of the gamma-aminobutyric acid type A receptor beta 2 subunit is an important determinant of high affinity agonist binding. J Biol Chem 2000; 275:14198-204. [PMID: 10799496 DOI: 10.1074/jbc.275.19.14198] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-aminobutyric acid type A receptor (GABA(A)R) carries both high (K(D) = 10-30 nm) and low (K(D) = 0.1-1.0 microm) affinity binding sites for agonists. We have used site-directed mutagenesis to identify a specific residue in the rat beta2 subunit that is involved in high affinity agonist binding. Tyrosine residues at positions 62 and 74 were mutated to either phenylalanine or serine and the effects on ligand binding and ion channel activation were investigated after the expression of mutant subunits with wild-type alpha1 and gamma2 subunits in tsA201 cells or in Xenopus oocytes. None of the mutations affected [(3)H]Ro15-4513 binding or impaired allosteric interactions between the low affinity GABA and benzodiazepine sites. Although mutations at position 74 had little effect on [(3)H]muscimol binding, the Y62F mutation decreased the affinity of the high affinity [(3)H]muscimol binding sites by approximately 6-fold, and the Y62S mutation led to a loss of detectable high affinity binding sites. After expression in oocytes, the EC(50) values for both muscimol and GABA-induced activation of Y62F and Y62S receptors were increased by 2- and 6-fold compared with the wild-type. We conclude that Tyr-62 of the beta subunit is an important determinant for high affinity agonist binding to the GABA(A) receptor.
Collapse
Affiliation(s)
- J G Newell
- Department of Pharmacology, Division of Neuroscience, 9-70 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
13
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
14
|
Newell JG, Davies M, Bateson AN. The use of site-directed mutagenesis, transient transfection, and radioligand binding. A method for the characterization of receptor-ligand interactions. Mol Biotechnol 2000; 14:25-45. [PMID: 10911613 DOI: 10.1385/mb:14:1:25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Receptor-ligand interactions have traditionally been evaluated using a number of biochemical techniques including radioligand binding, photoaffinity labeling, crosslinking, and chemical modification. In modern biochemistry, these approaches have largely been superseded by site-directed mutagenesis in the study of protein function, owing in part to a better understanding of the chemical properties of oligonucleotides and to the ease with which mutant clones can now be generated. The Altered Sites II in vitro Mutagenesis System from the Promega Corporation employs oligonucleotides containing two mismatches to introduce specific nucleotide substitutions in the nucleic acid sequence of a target DNA. One of these mismatches will alter the primary sequence of a given protein, whereas the second will give rise to a silent restriction site that is used to screen for mutants. Transient transfection of tsA201 cells with mutant cDNA constructs using calcium phosphate as a carrier for plasmid DNA permits expression of recombinant receptors that can be characterized using radioligand binding assays. In this article, we focus on site-directed mutagenesis, heterologous expression in eukaryotic cells, and radioligand binding as a methodology to enable the characterization of receptor-ligand interactions.
Collapse
Affiliation(s)
- J G Newell
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
15
|
Jacques P, Perret P, Bouchet MJ, Foucaud B, Goeldner M, Benke D. Irreversible site-directed labeling of the 4-aminobutyrate binding site by tritiated meta-sulfonate benzene diazonium. Contribution of a nucleophilic amino acid residue of the alpha1 subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:189-94. [PMID: 10491173 DOI: 10.1046/j.1432-1327.1999.00715.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tritiated meta-sulfonate benzene diazonium ([3H]MSBD), a molecule structurally related to 4-aminobutyrate (GABA), which presents a reactivity toward nucleophilic amino acid residues, was synthesized to investigate the GABA binding site on the GABAA receptor. Irreversible labeling reactions using [3H]MSBD were performed on purified GABAA receptors isolated from cow brain membranes and labeled receptors were analyzed by SDS/PAGE. [3H]MSBD was found to be specifically incorporated into proteins in the 45-60 kDa molecular mass range which were identified as alpha1 subunits and beta2/beta3 subunits by immunoprecipitation with subunit-specific antibodies. The specific immunoprecipitation of alpha and beta subunits confirms that binding of [3H]MSBD occurs at the boundary of these subunits. These labeling results confirm the involvement of nucleophilic residues from the beta subunit but reveal also the contribution of yet unidentified nucleophilic residues on the alpha subunit for the GABA binding site.
Collapse
Affiliation(s)
- P Jacques
- Laboratoire de Chimie Bio-organique, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
16
|
Thomet U, Furtmüller R, Sieghart W, Le Hyaric-Almeida M, Rousseau JF, Dodd RH, Venault P, Chapouthier G, Sigel E. EDPC: a novel high affinity ligand for the benzodiazepine site on rat GABA(A) receptors. Neurosci Lett 1999; 269:63-6. [PMID: 10430505 DOI: 10.1016/s0304-3940(99)00431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rat recombinant alpha1beta2gamma2 gamma-aminobutyric acid type A (GABAA) receptors were functionally expressed in Xenopus laevis oocytes and analyzed for the action of EDPC (Ethyl 3-(1,3-dithian-2-yl)-1H-pyrrolo[2,3-c]pyridine-5-carboxylate) using electrophysiological techniques. EDPC inhibited GABA currents at low concentrations (IC50 approximately/= 2 nM). The inhibition by 100 nM EDPC could be reversed by 1 microM of the benzodiazepine antagonistflumazenil (Ro 15-1788), indicating a negative allosteric modulation via the benzodiazepine binding site. In line with this conclusion are radioactive ligand binding studies. EDPC inhibited the binding of 2 nM [3H]flunitrazepam to membranes from the cerebellum or the cortex with IC50 values of about 8 and 25 nM, respectively.
Collapse
Affiliation(s)
- U Thomet
- Department of Pharmacology, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thomet U, Baur R, Scholze P, Sieghart W, Sigel E. Dual mode of stimulation by the beta-carboline ZK 91085 of recombinant GABA(A) receptor currents: molecular determinants affecting its action. Br J Pharmacol 1999; 127:1231-9. [PMID: 10455270 PMCID: PMC1566114 DOI: 10.1038/sj.bjp.0702639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In electrophysiological measurements the beta-carboline ethyl 6-benzyloxy-beta-carboline-3-carboxylate (ZK 91085) acts as a positive allosteric modulator on rat recombinant alpha1beta2gamma2 GABA(A) receptors and binds with high affinity (IC50-1.5 nM) to the [3H]-flunitrazepam site. Flumazenil was able to partially counteract the current modulation. These observations indicate an action of ZK 91085 at the benzodiazepine binding site. At the dual subunit combination alpha1beta2, which lacks the gamma subunit required for benzodiazepine modulation, we still observed a potentiation of GABA currents. Thus ZK 91085 acts via an additional site on the channel. At the subunit combination alpha1beta1, ZK 91085 potentiation is strongly reduced as compared to alpha1beta2. In binding studies, ZK 91085 was able to decrease [35S]-TBPS binding in alpha1beta2gamma2 and alpha1beta2 but not in alpha1beta1. This selectivity of ZK 91085 for receptors containing the beta2 isoform over those containing the beta1 isoform is reminiscent of the action of loreclezole. To identify amino acid residues important for the second type of modulation, we functionally compared wild type alpha1beta2 and mutant receptors for stimulation by ZK 91085. The mutation beta2N265S, that abolishes loreclezole effects, also abolishes ZK 91085 stimulation. The mutation beta2Y62L increased stimulation by ZK 91085 3-4 fold, locating an influencing entity of the second type of action of ZK 91085 at an alpha/beta subunit interface. Structural intermediates of ZK 91085 and the beta-carboline abecarnil, the latter of which only slightly potentiated GABA currents in alpha1/beta2, were analysed to determine structural requirements for modulation. ZK 91085 thus allosterically stimulates the GABA(A) receptor through two sites of action: the benzodiazepine site and the loreclezole site in contrast to classical beta-carbolines, that confer negative allosteric modulation through the benzodiazepine site.
Collapse
Affiliation(s)
- Urs Thomet
- Department of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | - Roland Baur
- Department of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | - Petra Scholze
- Section of Biochemical Psychiatry, Department of Psychiatry, University of Vienna, A-1090 Wien, Austria
| | - Werner Sieghart
- Section of Biochemical Psychiatry, Department of Psychiatry, University of Vienna, A-1090 Wien, Austria
| | - Erwin Sigel
- Department of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
- Author for correspondence:
| |
Collapse
|
18
|
Liu M, Glowa JR. Alterations of GABAA receptor subunit mRNA levels associated with increases in punished responding induced by acute alprazolam administration: an in situ hybridization study. Brain Res 1999; 822:8-16. [PMID: 10082878 DOI: 10.1016/s0006-8993(98)01205-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Changes in the mRNA encoding alpha1, alpha2, beta2 and gamma2 subunits of the GABAA receptor associated with the anxiolytic effects of alprazolam were measured in 20 brain regions using in situ hybridization techniques. Compared to non-punished controls, punishment decreased alpha1 mRNA levels in two nuclei of the amygdala, the cerebral cortex, and the mediodorsal thalamic nucleus and decreased alpha2 mRNA levels in the hippocampus. Punishment increased beta2 mRNA levels in ventroposterior thalamic nucleus and gamma2 mRNA levels in the CA2 area of the hippocampus. All of these effects were reversed when alprazolam increased punished responding, while alprazolam alone had no effect on either non-punished responding or GABAA receptor subunit regulation in these brain regions. Some brain regions that were unaffected by punishment were altered by alprazolam plus punishment. These results demonstrate that punishment and alprazolam can produce reciprocal changes in the mRNA levels for some subunits of the GABAA receptor. These changes may alter GABAergic synaptic inhibition by altering the density of GABAA receptors or their efficacy to bind drugs. They suggest that the underlying mechanisms by which drugs affect behavior can depend upon the conditions under which behavior is assessed.
Collapse
Affiliation(s)
- M Liu
- Louisiana State University Medical Center-Shreveport, Shreveport, LA 71103-3932, USA
| | | |
Collapse
|
19
|
Rezaee A, Robinson AM, Pitovski DZ. Expression of gamma-aminobutyric acid(A) receptor subunits in the vestibular system. Laryngoscope 1999; 109:329-33. [PMID: 10890788 DOI: 10.1097/00005537-199902000-00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Profile the expression of genes encoding GABAA receptor subunits in the vestibular end organs of a rat. MATERIALS AND METHODS Using a combination of reverse transcription followed by polymerase chain reaction (PCR) with gene-specific primers, expression of mRNAs encoding 13 individual GABA(A) receptor subunits was examined. RESULTS PCR amplification products representing subunit gene expression for alpha1-6, beta1-3, and gamma1-3, but not for delta, subunits were amplified, suggesting multiple molecular levels of regulation of vestibular GABA(A) receptor expression. Nucleotide sequencing confirmed the identity of rat vestibular end-organs subunit cDNAs. CONCLUSION These results give the most direct evidence to date that GABAA receptors composed of the detected subunits are expressed in the mammalian vestibular system, giving new support to previous investigations implicating GABA as a vestibular neurotransmitter.
Collapse
Affiliation(s)
- A Rezaee
- Department of Otolaryngology--Head and Neck Surgery, Northwestern University School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
20
|
Velísková J, Kubová H, Friedman LK, Wu R, Sperber EF, Zukin RS, Moshé SL. The expression of GABA(A) receptor subunits in the substantia nigra is developmentally regulated and region-specific. ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES 1998; 19:205-10. [PMID: 10933458 DOI: 10.1007/bf02427602] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The substantia nigra pars reticulata (SNR) controls the spread of seizures. GABA(A)ergic drug (agonist or antagonist) infusions into the SNR have age-specific and site-specific effects on flurothyl-induced seizures. Developmental and cell-specific regulation of GABA(A) receptor subunit expression may be responsible for these specific effects. To test this hypothesis, in situ hybridization was used to examine regional expression of alpha1 and gamma2L GABA(A) receptor subunit mRNAs in the SNR during development. Distinct temporal and spatial patterns of expression were observed. In rats at postnatal days (PN) 21-60, fewer neurons were labeled with probes directed to alpha1 and gamma2L subunits in SNRanterior compared with SNRposterior. In addition, neurons in SNRanterior contained higher amounts of hybridization grains than in SNRposterior. In PN 15 rats, the labeling of neurons was relatively diffuse throughout the anterior and posterior SNR regions with moderate amounts of hybridization grains for both subunits. The finding of age-related differential distribution of alpha1 and gamma2L subunit mRNAs in the SNR suggests that GABA(A) receptor heterogeneity may play a role in the age-specific and site-specific effects of GABA(A)ergic agents on seizures in the SNR.
Collapse
Affiliation(s)
- J Velísková
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Davies M, Dunn SM. Identification of a unique domain in bovine brain GABAA receptors that is photoaffinity labelled by [3H]Ro15-4513. Biochem Biophys Res Commun 1998; 246:650-3. [PMID: 9618267 DOI: 10.1006/bbrc.1998.8679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used photoaffinity labelling and protein cleavage techniques to identify the site of photoincorporation of [3H]Ro15-4513 into the alpha subunit of the bovine gamma-aminobutyric acid type A (GABAA) receptor. Bovine brain membranes were photoaffinity labelled with [3H]Ro15-4513 and after solubilization and denaturation, proteins were specifically cleaved at either cysteine or tryptophan residues. Peptides were resolved by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Cleavage at cysteine residues generated a labelled peptide of Mr 6.5K, while cleavage at tryptophan residues generated a labelled peptide with an Mr of 5K. Cleavage products of this size indicate that the site of [3H]Ro15-4513 incorporation occurs between the end of the first transmembrane domain and the first four amino acids of the third transmembrane domain (residues 247-289). This region of the GABAA receptor has not previously been implicated in the formation of the benzodiazepine binding site and may be part of a unique recognition domain for inverse agonists.
Collapse
Affiliation(s)
- M Davies
- Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
22
|
Sigel E, Baur R, Netzer R, Rundfeldt C. The antiepileptic drug AWD 131-138 stimulates different recombinant isoforms of the rat GABA(A) receptor through the benzodiazepine binding site. Neurosci Lett 1998; 245:85-8. [PMID: 9605491 DOI: 10.1016/s0304-3940(98)00186-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recombinant gamma-aminobutyric acid A (GABA(A)) receptors of the subunit compositions alpha1beta2gamma2, alpha1beta3gamma2, alpha2beta2gamma2, alpha3beta2gamma2 and alpha5beta2gamma2 were expressed in Xenopus oocytes in a functionally active form. At all subunit combinations, AWD 131-138 dose-dependently stimulated GABA currents. At 10 microM AWD 131-138, this allosteric stimulation amounted in average to about 12-21% of the maximal stimulation achieved using diazepam. The threshold of stimulation was about 0.3-1.0 microM. One micrometer of the benzodiazepine antagonist flumazenil (Ro 15-1788) counteracted the current stimulation by 10 microM AWD 131-138, indicating that this drug acts at the binding site for benzodiazepines.
Collapse
Affiliation(s)
- E Sigel
- Department of Pharmacology, University of Bern, Switzerland.
| | | | | | | |
Collapse
|
23
|
Triller A, Rostaing P, Korn H, Legendre P. Morphofunctional evidence for mature synaptic contacts on the Mauthner cell of 52-hour-old zebrafish larvae. Neuroscience 1997; 80:133-45. [PMID: 9252227 DOI: 10.1016/s0306-4522(97)00092-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In a previous study, miniature inhibitory synaptic events recorded in the Mauthner cell of the 52-hour-old zebrafish larvae (Brachydanio rerio) were found to be mainly glycinergic. Their amplitude distribution was not Gaussian and it was proposed that their large amplitude variation might reflect the activation of immature synapses. However, ultrastructural studies of the synaptic contacts over the M-cell soma of 52 h larvae described here, revealed that numerous synaptic contacts on this neuron are already mature at this developmental stage and that most of them already contain a single active zone. As in the adult goldfish, immunohistochemistry indicates the presence of both glycine- and GABA-immunoreactive boutons which establish synaptic contacts. We also found that, in addition to the predominant glycinergic postsynaptic inhibitory currents, some postsynaptic currents are also GABAergic since they are specifically inhibited by bicuculline (20 microM). GABAergic miniature events (time to peak close to 0.8 ms and decay time-constant close to 45 ms) were only detected in the presence of 11.5 mM [KCl]o. Their amplitude distributions were well fitted by one, or at most two, Gaussian curves. Outside-out recordings showed one class of GABA receptors with a main conductance state of 23 pS. This indicates that the smallest GABAergic miniature inhibitory synaptic events correspond to the opening of 14-20 chloride channels Pre- and postsynaptic factors which contribute to the predominance of glycinergic synaptic currents over GABAergic ones in untreated preparations and to the striking differences between their frequencies and their respective amplitude distribution histograms are discussed with reference to the morphological characteristics of the mature synaptic endings impinging on this still developing neuron.
Collapse
Affiliation(s)
- A Triller
- CJF 94-10 INSERM, Ecole Normale Supérieure, Paris, France
| | | | | | | |
Collapse
|
24
|
Buhr A, Sigel E. A point mutation in the gamma2 subunit of gamma-aminobutyric acid type A receptors results in altered benzodiazepine binding site specificity. Proc Natl Acad Sci U S A 1997; 94:8824-9. [PMID: 9238062 PMCID: PMC23149 DOI: 10.1073/pnas.94.16.8824] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Benzodiazepines allosterically modulate gamma-aminobutyric acid (GABA) evoked chloride currents of gamma-aminobutyric acid type A (GABAA) receptors. Coexpression of either rat gamma2 or gamma3, in combination with alpha1 and beta2 subunits, results both in receptors displaying high [3H]Ro 15-1788 affinity. However, receptors containing a gamma3 subunit display a 178-fold reduced affinity to zolpidem as compared with gamma2-containing receptors. Eight chimeras between gamma2 and gamma3 were constructed followed by nine different point mutations in gamma2, each to the homologous amino acid residue found in gamma3. Chimeric or mutant gamma subunits were coexpressed with alpha1 and beta2 in human embryonic kidney 293 cells to localize amino acid residues responsible for the reduced zolpidem affinity. Substitution of a methionine-to-leucine at position 130 of gamma2 (gamma2M130L) resulted in a 51-fold reduction in zolpidem affinity whereas the affinity to [3H]Ro 15-1788 remained unchanged. The affinity for diazepam was only decreased by about 2-fold. The same mutation resulted in a 9-fold increase in Cl 218872 affinity. A second mutation (gamma2M57I) was found to reduce zolpidem affinity by about 4-fold. Wild-type and gamma2M130L-containing receptors were functionally expressed in Xenopus oocytes. Upon mutation allosteric coupling between agonist and modulatory sites is preserved. Dose-response curves for zolpidem and for diazepam showed that the zolpidem but not the diazepam apparent affinity is drastically reduced. The apparent GABA affinity is not significantly affected by the gamma2M130L mutation. The identified amino acid residues may define part of the benzodiazepine binding pocket of GABAA receptors. As the modulatory site in the GABAA receptor is homologous to the GABA site, and to all agonist sites of related receptors, gamma2M130 may either point to a homologous region important for agonist binding in all receptors or define a new region not underlying this principle.
Collapse
Affiliation(s)
- A Buhr
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
| | | |
Collapse
|
25
|
|
26
|
Westh-Hansen SE, Rasmussen PB, Hastrup S, Nabekura J, Noguchi K, Akaike N, Witt MR, Nielsen M. Decreased agonist sensitivity of human GABAA receptors by an amino acid variant, isoleucine to valine, in the α1 subunit. Eur J Pharmacol 1997. [DOI: 10.1016/s0014-2999(97)89186-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Buhr A, Baur R, Sigel E. Subtle changes in residue 77 of the gamma subunit of alpha1beta2gamma2 GABAA receptors drastically alter the affinity for ligands of the benzodiazepine binding site. J Biol Chem 1997; 272:11799-804. [PMID: 9115236 DOI: 10.1074/jbc.272.18.11799] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recombinant alpha1beta2gamma2 gamma-aminobutyric acid type A (GABAA) receptors were functionally expressed in Xenopus oocytes. Upon the mutation F77L, diazepam and Ro 15-1788 retained the ability to interact with the benzodiazepine binding site, but zolpidem lost this ability. To quantify these data, radioligand binding experiments were performed using membrane preparations of transiently transfected human embryonic kidney 293 cells. The amino acid gamma77, phenylalanine, was also mutated to tyrosine, tryptophan, and isoleucine. Although there was little effect on Ro 15-1788 binding upon mutation to tyrosine, the loss in affinity for diazepam was from 12 to 2,720 nM. The change to leucine, in contrast, resulted in little change in the diazepam affinity, whereas there was a strongly reduced affinity for zolpidem from 17 to 4,870 nM and for methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) from 1.9 to 1,780 nM, respectively. The change to tryptophan resulted in two-phasic displacement curves, and only about 50% of the [3H]flunitrazepam binding could be displaced by zolpidem, DMCM, and Ro 15-1788, respectively, whereas midazolam and diazepam still resulted in 100% displacement, indicating the presence of two sites upon expression of this mutant receptor. Functional expression in Xenopus oocytes showed that all mutant channels displayed a comparatively small change (<4.3-fold) in their apparent agonist affinity and that these channels could still be functionally modulated by ligands of the benzodiazepine binding site. We conclude that subtle changes in gammaF77 drastically affect benzodiazepine pharmacology and that this residue probably interacts directly with most ligands of the benzodiazepine binding site and therefore defines part of the benzodiazepine binding pocket.
Collapse
Affiliation(s)
- A Buhr
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
| | | | | |
Collapse
|
28
|
Boess FG, Steward LJ, Steele JA, Liu D, Reid J, Glencorse TA, Martin IL. Analysis of the ligand binding site of the 5-HT3 receptor using site directed mutagenesis: importance of glutamate 106. Neuropharmacology 1997; 36:637-47. [PMID: 9225289 DOI: 10.1016/s0028-3908(97)00044-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 5-HT3 receptor is a ligand-gated ion channel with significant structural similarity to the nicotinic acetylcholine receptor. Several regions that form the ligand binding site in the nicotinic acetylcholine receptor are partially conserved in the 5-HT3 receptor, presumably reflecting the conserved signal transduction mechanism. Specific amino acid differences in these regions may account for their distinct ligand recognition properties. Using site-directed mutagenesis, we have replaced one of these residues, glutamate 106 (E106), with aspartate (D), asparagine (N), alanine (A) or glutamine (Q) and characterized the ligand-binding and electrophysiological properties of the mutant receptors after transient expression in HEK-293 cells. The affinity for the selective 5-HT3 receptor antagonist [3H]GR65630 was decreased 14-fold in the mutant E106D (Kd = 3.69 +/- 0.32 nM) when compared to wildtype (WT, E106) 5-HT3 receptor (0.27 +/- 0.03 nM), while the affinity for E106N was unchanged (0.42 +/- 0.07 nM, means +/- SEM, n = 3-10). Decreased affinities for both E106D and E106N were observed for the antagonists granisetron, ondansetron and renzapride and for the agonists 5-HT (130- and 30-fold) and 2-methyl-5-HT (250- and 20-fold), respectively. Both mutants still formed 5-HT-activatable ion channels, but the high Hill coefficient of the concentration effect curves in wildtype (2.0) was decreased to unity in both cases. The EC50 of 5-HT was increased seven-fold in E106N (8.7 microM) when compared to wildtype (1.2 microM), but unchanged in E106D, and the potency of the antagonist ondansetron for both mutants was decreased. E106A and E106Q expressed poorly preventing a detailed characterization. These data suggest that E106 contributes to the ligand-binding site of the 5-HT3 receptor and may form an ionic or hydrogen bond interaction with the primary ammonium group of 5-HT.
Collapse
Affiliation(s)
- F G Boess
- Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Three major populations of GABAA receptor binding sites are present in cerebellar membranes: diazepam-sensitive [3H]Ro15-4513 binding sites, diazepam-insensitive [3H]Ro15-4513 binding sites and high-affinity [3H]muscimol binding sites. All three populations contain a beta subunit as shown by immunoprecipitation with antibodies that recognize all beta subunits. The beta 3 subtype of beta subunit is contained in all three populations, but only a similar low fraction (< 20%) in each. Thus, the majority contain beta subunits other than beta 3 (beta 2 and beta 1) and beta 3 subunits are not selectively associated with nor lacking in any of the three binding populations. Antibodies to the gamma 2 subunit precipitated similar fractions of [3H]Ro15-4513, [3H]flunitrazepam and [3H]muscimol binding sites, showing that gamma 2 subunits are present in high-affinity muscimol binding isoforms, as well as a significant fraction of the diazepam-insensitive [3H]Ro15-4513 binding sites. Under conditions that identify the 56 kDa alpha 6 subunit on SDS-PAGE as the diazepam insensitive site of [3H]Ro15-4513 binding in cerebellum, no polypeptide showing diazepam-insensitive binding of [3H]Ro15-4513 could be photoaffinity-labeled in rat thalamus. These results suggest that alpha 4 subunits in the thalamus participate primarily in subunit combinations which bind muscimol but not any benzodiazepine site ligands.
Collapse
Affiliation(s)
- K H Huh
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles 90095, USA
| | | | | |
Collapse
|
30
|
Velísková J, Velísek L, Nunes ML, Moshé SL. Developmental regulation of regional functionality of substantial nigra GABAA receptors involved in seizures. Eur J Pharmacol 1996; 309:167-73. [PMID: 8874135 DOI: 10.1016/0014-2999(96)00341-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
GABAergic (gamma-aminobutyric acid) transmission in the substantia nigra pars reticulata is critical for seizure control. We tested the hypothesis that there is a differential regional distribution and functionality of nigral GABAA receptor sites that is developmentally regulated. In adult rats, we determined the effects on flurothyl seizures of (Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid (ZAPA, a presumed agonist of the low-affinity GABAA receptor site), bicuculline (an antagonist of the low-affinity GABAA receptor site) and gamma-vinyl-GABA (a GABA-transaminase inhibitor), infused bilaterally in anterior or posterior substantia nigra pars reticulata. ZAPA infusions (8 micrograms) were anticonvulsant in anterior substantia nigra but proconvulsant in posterior substantia nigra. Bicuculline infusions (100 ng) were proconvulsant in anterior substantia nigra but ineffective in posterior substantia nigra. An anticonvulsant dose of gamma-vinyl-GABA, when infused in anterior substantia nigra, was proconvulsant when infused in posterior substantia nigra. In 15 day old rats, the effects of ZAPA, were biphasic: 2 micrograms was anticonvulsant while 8 micrograms was proconvulsant. There was no regional specificity. The data suggest that with maturation there is functional segregation of specific GABAA receptor subtypes involved in substantia nigra-mediated seizure control.
Collapse
Affiliation(s)
- J Velísková
- Department of Neurology, Albert Einstein College of Medicine, Bronyx, NY, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Previous studies have indicated that gamma-aminobutyric acid (GABA) plays an important trophic role in the synapse formation between horizontal cells and photoreceptors in postnatal rabbit retina. However, the mechanism of the GABA effect has not been identified. Using fluo-3 Ca2+ imaging and confocal laser scanning microscopy we examined the effect of GABA on [Ca2+]i during postnatal retinal development. GABA (100 microM) evoked a fast and transient increase of [Ca2+]i in selected populations of freshly dissociated retinal cells from postnatal rabbits. This increase was apparent on postnatal day 1 and reached a maximum on day 5. Little increase in [Ca2+]i was observed in retinal cells isolated from adult rabbits. GABA receptor antagonists, picrotoxin and bicuculline, significantly reduced the response. The GABAB agonist, baclofen, did not evoke any [Ca2+]i changes. The GABA-induced increase in [Ca2+]i was observed in all retinal layers in neonatal retinal whole-mount explants. In the outer retina, the increase was seen in cone photoreceptors which were specifically labeled with peanut agglutinin (PNA). The GABA-induced increase in [Ca2+]i may provide an important mechanism for regulating cone synaptogenesis in the outer plexiform layer of the postnatal retina.
Collapse
Affiliation(s)
- B O Huang
- Department of Ophthalmology and Visual Science, University of Texas-Houston Medical School 77030, USA
| | | |
Collapse
|
32
|
Duncalfe LL, Carpenter MR, Smillie LB, Martin IL, Dunn SM. The major site of photoaffinity labeling of the gamma-aminobutyric acid type A receptor by [3H]flunitrazepam is histidine 102 of the alpha subunit. J Biol Chem 1996; 271:9209-14. [PMID: 8621579 DOI: 10.1074/jbc.271.16.9209] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The alpha subunit of the gamma-aminobutyric acid type A (GABA(A)) receptor is known to be photoaffinity labeled by the classical benzodiazepine agonist, [3H]flunitrazepam. To identify the specific site for [3H]flunitrazepam photoincorporation in the receptor subunit, we have subjected photoaffinity labeled GABA(A) receptors from bovine cerebral cortex to specific cleavage with cyanogen bromide and purified the resulting photolabeled peptides by immunoprecipitation with an anti-flunitrazepam polyclonal serum. A major photolabeled peptide component from reversed-phase high performance liquid chromatography of the immunopurified peptides was resolved by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The radioactivity profile indicated that the [3H]flunitrazepam photoaffinity label is covalently associated with a 5.4-kDa peptide. This peptide is glycosylated because treatment with the enzyme, peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase, reduced the molecular mass of the peptide to 3.2 kDa. Direct sequencing of the photolabeled peptide by automated Edman degradation showed that the radioactivity is released in the twelfth cycle. Based on the molecular mass of the peptides that can be generated by cyanogen bromide cleavage of the GABA(A) receptor alpha subunit and the potential sites for asparagine-linked glycosylation, the pattern of release of radioactivity during Edman degradation of the photolabeled peptide was mapped to the known amino acid sequence of the receptor subunit. The major site of photoincorporation by [3H]flunitrazepam on the GABA(A) receptor is shown to be alpha subunit residue His102 (numbering based on bovine alpha 1 sequence).
Collapse
Affiliation(s)
- L L Duncalfe
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
33
|
Khan ZU, Gutiérrez A, Miralles CP, De Blas AL. The gamma subunits of the native GABAA/benzodiazepine receptors. Neurochem Res 1996; 21:147-59. [PMID: 9182240 DOI: 10.1007/bf02529132] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Subunit-specific antibodies to all the gamma subunit isoforms described in mammalian brain (gamma(1), gamma(2S), gamma(2L), and gamma(3) have been made. The proportion of GABA(A) receptors containing each gamma subunit isoform in various brain regions has been determined by quantitative immunoprecipitation. In all tested regions of the rat brain, the gamma(1) and gamma(3) subunits are present in considerable smaller proportion of GABA(A) receptor than the gamma(2) subunit. Immunocytochemistry shows that gamma(1) immunoreactivity concentrates in the stratum oriens and stratum radiatum of the CA1 region of the hippocampus. In the dentate gyrus, gamma(1) immunoreactivity concentrates on the outer 2/3 of the molecular layer coinciding with the localization of the axospinous synapses of the perforant pathway. In contrast, gamma(3) immunoreactivity concentrates on the basket cells and other GABAergic local circuit neurons of the hilus. These cells are also rich in gamma(2S). In the cerebellum, gamma(1)++ immunolabeling was localized on the Bergmann glia. The gamma(2S) and gamma(2L) subunits are differentially expressed in various brain regions. Thus the gamma(2S) is highly expressed in the olfactory bulb and hippocampus whereas the gamma(2L) is very abundant in inferior colliculus and cerebellum, particularly in Purkinje cells, as immunocytochemistry, in situ hybridization and immunoprecipitation techniques have revealed. The gamma(2S) and gamma(2L) coexist in some brain areas and cell types. Moreover, the gamma(2S) and gamma(2L) subunits can coexist in the same GABA(A) receptor pentamer. We have shown that this is the case in some GABA(A) receptors expressed in cerebellar granule cells. These GABA(A) receptors also have alpha and beta subunits forming the pentamer. Immunoblots have shown that the rat gamma(1), gamma(2S), gamma(2L) and gamma(3) subunits are peptides of 47, 45, 47 and 44 kDa respectively. Results also indicate that there are aging-related changes in the expression of the gamma(2S) and gamma(2L) subunits in various brain regions which suggest the existence of aging-related changes in the subunit composition of the GABA(A) receptors which in turn might lead to changes in receptor pharmacology. The results obtained with the various gamma subunit isoforms are discussed in terms of the high molecular and binding heterogeneity of the native GABA(A) receptors in brain.
Collapse
Affiliation(s)
- Z U Khan
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, MO 64110-2499, USA
| | | | | | | |
Collapse
|
34
|
Itier V, Depoortere H, Scatton B, Avenet P. Zolpidem functionally discriminates subtypes of native GABAA receptors in acutely dissociated rat striatal and cerebellar neurons. Neuropharmacology 1996; 35:137-45. [PMID: 8734481 DOI: 10.1016/0028-3908(95)00158-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The whole-cell patch-clamp technique was used to compare the properties of native GABAA receptors in Purkinje and striatal neurons acutely dissociated from neonatal rat brains (7-11 days old). In symmetrical chloride concentrations and at a negative holding voltage, GABA induced inward currents in a concentration-dependent manner with EC50 values of 4 and 8 uM in Purkinje and striatal neurons, respectively. Diazepam potentiated the current induced by 1 uM GABA in Purkinje and striatal neurons with EC50 values of 28 and 42 nM and maximal potentiations of 128 and 182%, respectively. Zolpidem potentiated this GABA-induced current in Purkinje and striatal neurons with EC50 values of 33 and 195 nM and maximal potentiations of 189 and 236%, respectively. These results show that zolpidem, in contrast to diazepam, functionally discriminates subtypes of native GABAA receptors. Zolpidem has greater affinity for GABAA receptors containing omega 1 (Purkinje cells) than for those with omega 2 (striatum) sites and has higher intrinsic activity at these receptors than diazepam. These properties of zolpidem may contribute to its hypnoselective profile.
Collapse
Affiliation(s)
- V Itier
- Synthélabo Recherche, CNS Research Department, Bagneux, France
| | | | | | | |
Collapse
|
35
|
Abstract
Brain GABAA/benzodiazepine receptors are highly heterogeneous. This heterogeneity is largely derived from the existence of many pentameric combinations of at least 16 different subunits that are differentially expressed in various brain regions and cell types. This molecular heterogeneity leads to binding differences for various ligands, such as GABA agonists and antagonists, benzodiazepine agonists, antagonists, and inverse agonists, steroids, barbiturates, ethanol, and Cl- channel blockers. Different subunit composition also leads to heterogeneity in the properties of the Cl- channel (such as conductance and open time); the allosteric interactions among subunits; and signal transduction efficacy between ligand binding and Cl- channel opening. The study of recombinant receptors expressed in heterologous systems has been very useful for understanding the functional roles of the different GABAA receptor subunits and the relationships between subunit composition, ligand binding, and Cl- channel properties. Nevertheless, little is known about the complete subunit composition of the native GABAA receptors expressed in various brain regions and cell types. Several laboratories, including ours, are using subunit-specific antibodies for dissecting the heterogeneity and subunit composition of native (no reconstituted) brain GABAA receptors and for revealing the cellular and subcellular distribution of these subunits in the nervous system. These studies are also aimed at understanding the ligand-binding, transduction mechanisms, and channel properties of the various brain GABAA receptors in relation to synaptic mechanisms and brain function. These studies could be relevant for the discovery and design of new drugs that are selective for some GABAA receptors and that have fewer side effects.
Collapse
Affiliation(s)
- A L De Blas
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City 64110-2499, USA
| |
Collapse
|
36
|
Davies M, Martin IL, Bateson AN, Hadingham KL, Whiting PJ, Dunn SM. Identification of domains in human recombinant GABAA receptors that are photoaffinity labelled by [3H]flunitrazepam and [3H]Ro15-4513. Neuropharmacology 1996; 35:1199-208. [PMID: 9014135 DOI: 10.1016/s0028-3908(96)00085-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used [3H]flunitrazepam and [3H]Ro15-4513 as photoaffinity labelling agents in combination with a chemical cleavage technique to localize the benzodiazepine recognition sites of specific human recombinant alpha 1 beta 1 gamma 2, alpha 1 beta 3 gamma 2 and alpha 6 beta 3 gamma 2 GABAA receptor subtypes. The chemical agent utilized was hydroxylamine, whose substrate is a relatively rare asparagine-glycine amide bond that occurs only in the alpha subunits of the receptors examined in this study. Cleavage products were resolved using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The results of these experiments show that, in the alpha 1 subunit-containing receptors, incorporation of [3H]flunitrazepam occurs within residues 1-103 of the alpha 1 subunit, while incorporation of [3H]Ro15-4513 occurs within the region of the alpha 1 subunit that lies between residue 104 and the C-terminus. Photolabelling of membranes prepared from the alpha 6 beta 3 gamma 2-expressing cell line with [3H]Ro15-4513 resulted in the incorporation of radiolabel into two major protein species of M(r) 56,000 and M(r) 48,000, indicating incorporation into the alpha 6 subunit and possibly also the gamma 2 subunit. Hydroxylamine cleavage of alpha 6-containing receptors labelled with [3H]Ro15-4513 produced a gel profile consistent with the incorporation of the label occurring between residue 125 and the C-terminal. Thus, we have shown that the recognition sites for the agonist [3H]flunitrazepam and the inverse agonist [3H]Ro15-4513 occur within distinct domains of the human GABAA receptor.
Collapse
Affiliation(s)
- M Davies
- Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Tanay VA, Glencorse TA, Greenshaw AJ, Baker GB, Bateson AN. Chronic administration of antipanic drugs alters rat brainstem GABAA receptor subunit mRNA levels. Neuropharmacology 1996; 35:1475-82. [PMID: 9014163 DOI: 10.1016/s0028-3908(96)00065-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mental illness, such as panic disorder and depression, display comorbidity as well as common therapeutic treatments. These features point toward a common etiology and/or therapeutic pathway. There is evidence to suggest that some antipanic agents may mediate their effects by altering gamma-aminobutyric acid (GABA) levels or by modulating the activity of the GABAA receptor. Chronic stimulation of GABAA receptors by agonists or modulators results in changes in the pharmacological properties of the receptor concomitant with alterations in the expression of specific GABAA receptor subunits. Therefore, we investigated the hypothesis that long-term exposure to three antidepressant/antipanic drugs (imipramine, phenelzine and alprazolam) would produce changes in the steady-state levels of those subunit mRNAs that are believed to encode the major GABAA receptor subtype. Further, these changes in gene expression would be different to those produced by the non-antipanic anxiolytic (buspirone). We report here that, following a 21 day treatment, imipramine, phenelzine, alprazolam and buspirone differentially altered rat brainstem levels of GABAA receptor alpha 1-, beta 2- and gamma 2-subunit RNAs. These results demonstrate novel actions of antidepressant/antipanic drugs on GABAergic neurotransmission.
Collapse
Affiliation(s)
- V A Tanay
- Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
38
|
Kellenberger S, Eckenstein S, Baur R, Malherbe P, Buhr A, Sigel E. Subunit stoichiometry of oligomeric membrane proteins: GABAA receptors isolated by selective immunoprecipitation from the cell surface. Neuropharmacology 1996; 35:1403-11. [PMID: 9014157 DOI: 10.1016/s0028-3908(96)00034-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
GABAA receptors are hetero-oligomeric proteins of unknown subunit stoichiometry. In this study alpha 1 beta 3 GABAA receptor channels were functionally expressed in Xenopus oocytes. Direct immunoprecipitation from the oocyte surface was used to exclusively isolate mature GABAA receptors. The subunit ratio was determined by quantitation of the amount of [35S]methionine incorporated into individual receptor subunits. Antibody released from the antigen or antibody not reacted was prevented from reassociation with labeled antigen by addition of excess unlabeled antigen. Variation of the alpha 1 beta 3 ratio of injected cRNAs only slightly affected the subunit ratio in mature receptors. This indicates that the subunit stoichiometry generated is independent of the pools of newly synthesized subunit monomers and supports the view that the receptor assembly is a regulated process. The ratio of alpha 1/beta 3 subunits was found to be 1.1 +/- 0.1 (SEM, n = 6). Our data are in best agreement with a tetrameric receptor with the composition 2 alpha 2 beta. For a pentameric receptor the ratio found slightly favors a receptor with the composition 3 alpha 2 beta. The method developed here is applicable to the determination of the subunit stoichiometry of other recombinant oligomeric membrane proteins.
Collapse
Affiliation(s)
- S Kellenberger
- Department of Pharmacology, University of Bern, Switzerland
| | | | | | | | | | | |
Collapse
|