1
|
Lunghi G, Fazzari M, Ciampa MG, Mauri L, Di Biase E, Chiricozzi E, Sonnino S. Regulation of signal transduction by gangliosides in lipid rafts: focus on GM3-IR and GM1-TrkA interactions. FEBS Lett 2022; 596:3124-3132. [PMID: 36331354 DOI: 10.1002/1873-3468.14532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The interactions between gangliosides and proteins belonging to the same or different lipid domains and their influence on physiological and pathological states have been analysed in detail. A well-known factor impacting on lipid-protein interactions and their biological outcomes is the dynamic composition of plasma membrane. This review focuses on GM1 and GM3 gangliosides because they are an integral part of protein-receptor complexes and dysregulation of their concentration shows a direct correlation with the onset of pathological conditions. We first discuss the interaction between GM3 and insulin receptor in relation to insulin responses, with an increase in GM3 correlating with the onset of metabolic dysfunction. Next, we describe the case of the GM1-TrkA interaction, relevant to nerve-cell differentiation and homeostasis as deficiency in plasma-membrane GM1 is known to promote neurodegeneration. These two examples highlight the fact that interactions between gangliosides and receptor proteins within the plasma membrane are crucial in controlling cell signalling and pathophysiological cellular states.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| |
Collapse
|
2
|
Bou Khalil M, Hou W, Zhou H, Elisma F, Swayne LA, Blanchard AP, Yao Z, Bennett SAL, Figeys D. Lipidomics era: accomplishments and challenges. MASS SPECTROMETRY REVIEWS 2010; 29:877-929. [PMID: 20931646 DOI: 10.1002/mas.20294] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lipid mediators participate in signal transduction pathways, proliferation, apoptosis, and membrane trafficking in the cell. Lipids are highly complex and diverse owing to the various combinations of polar headgroups, fatty acyl chains, and backbone structures. This structural diversity continues to pose a challenge for lipid analysis. Here we review the current state of the art in lipidomics research and discuss the challenges facing this field. The latest technological developments in mass spectrometry, the role of bioinformatics, and the applications of lipidomics in lipid metabolism and cellular physiology and pathology are also discussed.
Collapse
Affiliation(s)
- Maroun Bou Khalil
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Malorni W, Garofalo T, Tinari A, Manganelli V, Misasi R, Sorice M. Analyzing lipid raft dynamics during cell apoptosis. Methods Enzymol 2008; 442:125-40. [PMID: 18662567 DOI: 10.1016/s0076-6879(08)01406-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing lines of evidence suggest a role for lipid rafts, glycosphingolipid-enriched microdomains, in cell life and death. This chapter describes in brief the methods used to analyze raft interactions with proteins involved in apoptosis. This chapter focuses mainly on coimmunoprecipitation methods, which represent a useful tool in analyzing raft dynamics during apoptosis. Glycosphingolipid analysis in the immunoprecipitates is performed by thin-layer chromatography. Moreover, methods for the analysis of mitochondrial raft-like microdomains are also described. Detergent (Triton X-100)-insoluble material from isolated mitochondria can be analyzed by Western blot. Further insights can also come from both light and electron microscopy analyses. These can provide useful information as concerning lipid raft distribution at the cell surface or in the cell cytoplasm. Paradigmatic micrographs are shown. The combined use of all these different approaches appears to be mandatory for analyzing the role of lipid raft dynamics during apoptosis.
Collapse
Affiliation(s)
- Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Inokuchi JI, Kabayama K. Modulation of Growth Factor Receptors in Membrane Microdomains. TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
de Laurentiis A, Donovan L, Arcaro A. Lipid rafts and caveolae in signaling by growth factor receptors. Open Biochem J 2007; 1:12-32. [PMID: 18949068 PMCID: PMC2570545 DOI: 10.2174/1874091x00701010012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 12/29/2022] Open
Abstract
Lipid rafts and caveolae are microdomains of the plasma membrane enriched in sphingolipids and cholesterol, and hence are less fluid than the remainder of the membrane. Caveolae have an invaginated structure, while lipid rafts are flat regions of the membrane. The two types of microdomains have different protein compositions (growth factor receptors and their downstream molecules) suggesting that lipid rafts and caveolae have a role in the regulation of signaling by these receptors. The purpose of this review is to discuss this model, and the implications that it might have regarding a potential role for lipid rafts and caveolae in human cancer. Particular attention will be paid to the epidermal growth factor receptor, for which the largest amount of information is available. It has been proposed that caveolins act as tumor suppressors. The role of lipid rafts is less clear, but they seem to be capable of acting as 'signaling platforms', in which signal initiation and propagation can occur efficiently.
Collapse
Affiliation(s)
- Angela de Laurentiis
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Lorna Donovan
- Division of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | - Alexandre Arcaro
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
- Division of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
6
|
Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, Inokuchi JI. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci U S A 2007; 104:13678-83. [PMID: 17699617 PMCID: PMC1949342 DOI: 10.1073/pnas.0703650104] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane microdomains (lipid rafts) are now recognized as critical for proper compartmentalization of insulin signaling. We previously demonstrated that, in adipocytes in a state of TNFalpha-induced insulin resistance, the inhibition of insulin metabolic signaling and the elimination of insulin receptors (IR) from the caveolae microdomains were associated with an accumulation of the ganglioside GM3. To gain insight into molecular mechanisms behind interactions of IR, caveolin-1 (Cav1), and GM3 in adipocytes, we have performed immunoprecipitations, cross-linking studies of IR and GM3, and live cell studies using total internal reflection fluorescence microscopy and fluorescence recovery after photobleaching techniques. We found that (i) IR form complexes with Cav1 and GM3 independently; (ii) in GM3-enriched membranes the mobility of IR is increased by dissociation of the IR-Cav1 interaction; and (iii) the lysine residue localized just above the transmembrane domain of the IR beta-subunit is essential for the interaction of IR with GM3. Because insulin metabolic signal transduction in adipocytes is known to be critically dependent on caveolae, we propose a pathological feature of insulin resistance in adipocytes caused by dissociation of the IR-Cav1 complex by the interactions of IR with GM3 in microdomains.
Collapse
Affiliation(s)
- Kazuya Kabayama
- *Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Takashige Sato
- Department of Biomembrane and Biofunctional Chemistry, School of Pharmaceutical Sciences and Pharmacy, and
| | - Kumiko Saito
- Department of Biomembrane and Biofunctional Chemistry, School of Pharmaceutical Sciences and Pharmacy, and
| | - Nicoletta Loberto
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Via Fratelli Cervi 93, Segrate 20090, Milan, Italy; and
| | - Alessandro Prinetti
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Via Fratelli Cervi 93, Segrate 20090, Milan, Italy; and
| | - Sandro Sonnino
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Via Fratelli Cervi 93, Segrate 20090, Milan, Italy; and
| | - Masataka Kinjo
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuyuki Igarashi
- Department of Biomembrane and Biofunctional Chemistry, School of Pharmaceutical Sciences and Pharmacy, and
| | - Jin-ichi Inokuchi
- *Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
- Core Research for Evolutional Science and Technology Program, Japan Science and Technology Agency, 4-1-8, Honcho Kawaguchi, Saitama 332-0012, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Rouquette-Jazdanian AK, Pelassy C, Breittmayer JP, Aussel C. Revaluation of the role of cholesterol in stabilizing rafts implicated in T cell receptor signaling. Cell Signal 2005; 18:105-22. [PMID: 15925486 DOI: 10.1016/j.cellsig.2005.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 02/05/2023]
Abstract
T lymphocytes contain two kinetic pools of cholesterol extractable with methyl-beta-cyclodextrin (m-beta-CD): a fast pool (31.5%, t1/2=17 s) and a slow pool (68.5%, t1/2=15 min). Purification of detergent-resistant membranes (DRMs) shows that the fast pool corresponds to buoyant cholesterol. Cholesterol extraction of the fast pool (i.e. cholesterol from rafts) still allows the buoyancy of signaling proteins and their phosphorylation under CD3 stimulation. Cholesterol depletion of the slow pool (i.e. cholesterol from membranes other than rafts) is accompanied by the extraction of the whole raft followed by the inhibition of CD3-induced tyrosine-phosphorylations. Cholesterol oxidase (COase) allows a specific oxidation of raft cholesterol into cholestenone. Cholestenone leaves the DRMs and accumulates as Triton X-100-soluble material. Specific cholesterol-rich raft disruption by COase does not inhibit the activation of either Jurkat cells or T CD4+ lymphocytes. Our study challenges the real role of cholesterol-rich rafts in CD3/TCR signaling and suggests that a cholesterol-poor subtype of rafts is involved in signal transmission via the TCR.
Collapse
Affiliation(s)
- Alexandre K Rouquette-Jazdanian
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 576, IFR 50, Hôpital de l'Archet I, 151 Route de Saint Antoine de Ginestière, B.P. 79, 06202 Nice Cedex 3, France
| | | | | | | |
Collapse
|
8
|
Lingwood CA, Mylvaganam M. Lipid modulation of glycosphingolipid (GSL) receptors: soluble GSL mimics provide new probes of GSL receptor function. Methods Enzymol 2003; 363:264-83. [PMID: 14579581 DOI: 10.1016/s0076-6879(03)01057-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Clifford A Lingwood
- Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G IX8, Canada
| | | |
Collapse
|
9
|
ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury. J Neurosci 2002. [PMID: 12351713 DOI: 10.1523/jneurosci.22-19-08391.2002] [Citation(s) in RCA: 404] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We showed previously in neocortical explants, derived from developing wild-type and estrogen receptor (ER)-alpha gene-disrupted (ERKO) mice, that both 17alpha- and 17beta-estradiol elicit the rapid and sustained phosphorylation and activation of the mitogen-activated protein kinase (MAPK) isoforms, the extracellular signal-regulated kinases ERK1 and ERK2. We proposed that the ER mediating activation of the MAPK cascade, a signaling pathway important for cell division, neuronal differentiation, and neuronal survival in the developing brain, is neither ER-alpha nor ER-beta but a novel, plasma membrane-associated, putative ER with unique properties. The data presented here provide further evidence that points strongly to the existence of a high-affinity, saturable, 3H-estradiol binding site (K(d), approximately 1.6 nm) in the plasma membrane. Unlike neocortical ER-alpha, which is intranuclear and developmentally regulated, and neocortical ER-beta, which is intranuclear and expressed throughout life, this functional, plasma membrane-associated ER, which we have designated "ER-X," is enriched in caveolar-like microdomains (CLMs) of postnatal, but not adult, wild-type and ERKO neocortical and uterine plasma membranes. We show further that ER-X is functionally distinct from ER-alpha and ER-beta, and that, like ER-alpha, it is re-expressed in the adult brain, after ischemic stroke injury. We also confirmed in a cell-free system that ER-alpha is an inhibitory regulator of ERK activation, as we showed previously in neocortical cultures. Association with CLM complexes positions ER-X uniquely to interact rapidly with kinases of the MAPK cascade and other signaling pathways, providing a novel mechanism for mediation of the influences of estrogen on neuronal differentiation, survival, and plasticity.
Collapse
|
10
|
Abstract
Caveolae are spherical invaginations of the plasma membrane and associated vesicles that are found at high surface densities in most cells, endothelia included. Their structural framework has been shown to consist of oligomerized caveolin molecules interacting with cholesterol and sphingolipids. Caveolae have been involved in many cellular functions such as endocytosis, signal transduction, mechano-transduction, potocytosis, and cholesterol trafficking. Some confusion still persists in the field with respect to the relationship between caveolae and the lipid rafts, which have been involved in many of the above functions. In addition to all these, endothelial caveolae have been involved in capillary permeability by their participation in the process of transcytosis. This short review will focus on their structure and components, methods used to determine these components, and the role of caveolae in the transendothelial exchanges between blood plasma and the interstitial fluid.
Collapse
Affiliation(s)
- Radu-Virgil Stan
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093-0651, USA.
| |
Collapse
|
11
|
Shu L, Lee L, Shayman JA. Regulation of phospholipase C-gamma activity by glycosphingolipids. J Biol Chem 2002; 277:18447-53. [PMID: 11886852 DOI: 10.1074/jbc.m111363200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosphingolipid-enriched domains are hot spots for cell signaling within plasma membranes and are characterized by the enrichment of glycosphingolipids. A role for glucosylceramide-based glycosphingolipids in phospholipase C-mediated inositol 1,4,5-trisphosphate formation has been previously documented. These earlier studies utilized a first generation glucosylceramide synthase inhibitor to deplete cells of their glycosphingolipids. Recently, more active and specific glucosylceramide synthase inhibitors, including d-threo-ethylendioxyphenyl-2-palmitoylamino-3-pyrrolidinopropanol (d-t-EtDO-P4), have been designed. d-t-EtDO-P4 has the advantage of blocking glucosylceramide synthase at low nanomolar concentrations but does not cause secondary elevations in cell ceramide levels. In the present study, d-t-EtDO-P4 depleted cellular glucosylceramide and lactosylceramide in cultured ECV304 cells at nanomolar concentrations without obvious cellular toxicity. The expression of several signaling proteins was evaluated in glycosphingolipid-depleted ECV304 cells to study the role of glycosphingolipids in phospholipase C-mediated signaling. No difference was observed in the cellular expression of phospholipase C-gamma between controls and glycolipid-depleted cells. Western blot analysis, however, revealed that depletion of endogenous glycosphingolipids in cultured ECV304 cells with d-t-EtDO-P4 induced tyrosine phosphorylation of phospholipase C-gamma in a concentration-dependent manner with maximum induction at 100 nm. The phosphorylation of phospholipase C-gamma induced by d-t-EtDO-P4 was abolished by exogenously added glucosylceramide, consistent with a specific glycosphingolipid-phospholipase C-gamma interaction. The phospholipase C-gamma phosphorylation was maximally enhanced by bradykinin when cells were exposed to 100 nm d-t-EtDO-P4. The measurement of cellular activity of phospholipase C-gamma, by myo-inositol 1,4,5-trisphosphate radioreceptor assay, demonstrated that depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells with d-t-EtDO-P4 resulted in significantly increased formation of inositol 1,4,5-trisphosphate above base line, and an increased sensitivity of phospholipase C-gamma to bradykinin stimulation. Thus, the activation of phospholipase C-gamma is negatively regulated by membrane glycosphingolipids in ECV304 cells.
Collapse
Affiliation(s)
- Liming Shu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
12
|
Giammarioli AM, Garofalo T, Sorice M, Misasi R, Gambardella L, Gradini R, Fais S, Pavan A, Malorni W. GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association with ezrin cytoskeletal protein. FEBS Lett 2001; 506:45-50. [PMID: 11591368 DOI: 10.1016/s0014-5793(01)02776-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Efficiency of Fas-mediated apoptosis of lymphoid cells is regulated, among other means, by a mechanism involving its association with ezrin, a cytoskeletal protein belonging to the 4.1 family of proteins. In the present work, we provide evidence for a further molecule that associates to ezrin in Fas-triggered apoptosis, the disialoganglioside GD3. In fact, as an early event, GD3 redistributed in membrane-associated domains in uropods and co-localized with ezrin. Co-immunoprecipitation analyses confirmed this result, indicating a GD3-ezrin association. Altogether, these results are suggestive for a role of GD3 in Fas/ezrin-mediated apoptosis, supporting the view that uropods contain a multimolecular signaling complex involved in Fas-mediated apoptosis.
Collapse
Affiliation(s)
- A M Giammarioli
- Department of Ultrastructures, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sorice M, Garofalo T, Misasi R, Longo A, Mattei V, Sale P, Dolo V, Gradini R, Pavan A. Evidence for cell surface association between CXCR4 and ganglioside GM3 after gp120 binding in SupT1 lymphoblastoid cells. FEBS Lett 2001; 506:55-60. [PMID: 11591370 DOI: 10.1016/s0014-5793(01)02830-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CXCR4 (fusin) is a chemokine receptor which is involved as a coreceptor in gp120 binding to the cell surface. In this study we provide evidence that binding of gp120 triggers CXCR4 recruitment to glycosphingolipid-enriched microdomains. Scanning confocal microscopy showed a nearly complete localization of CXCR4 within GM3-enriched plasma membrane domains of SupT1 cells and coimmunoprecipitation experiments revealed that CXCR4 was immunoprecipitated by IgG anti-GM3 after gp120 pretreatment. These findings reveal that gp120 binding induces a strict association between CXCR4 and ganglioside GM3, supporting the view that GM3 and CXCR4 are components of a functional multimolecular complex critical for HIV-1 entry.
Collapse
Affiliation(s)
- M Sorice
- Dipartimento di Medicina Sperimentale e Patologia, Università de Roma La Sapienza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cholesterol-sphingolipid microdomains (lipid rafts) are part of the machinery ensuring correct intracellular trafficking of proteins and lipids. The most apparent roles of rafts are in sorting and vesicle formation, although their roles in vesicle movement and cytoskeletal connections as well as in vesicle docking and fusion are coming into focus. New evidence suggests that compositionally distinct lipid microdomains are assembled and may coexist within a given membrane. Important clues have also been uncovered about the mechanisms coupling raft-dependent signaling and endocytic uptake.
Collapse
Affiliation(s)
- E Ikonen
- Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, PO Box 104, Haartmaninkatu 8, 00251, Helsinki, Finland.
| |
Collapse
|