1
|
Imai H, Kefalov V, Sakurai K, Chisaka O, Ueda Y, Onishi A, Morizumi T, Fu Y, Ichikawa K, Nakatani K, Honda Y, Chen J, Yau KW, Shichida Y. Molecular properties of rhodopsin and rod function. J Biol Chem 2007; 282:6677-84. [PMID: 17194706 PMCID: PMC2885910 DOI: 10.1074/jbc.m610086200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transduction in rod cells begins with photon absorption by rhodopsin and leads to the generation of an electrical response. The response profile is determined by the molecular properties of the phototransduction components. To examine how the molecular properties of rhodopsin correlate with the rod-response profile, we have generated a knock-in mouse with rhodopsin replaced by its E122Q mutant, which exhibits properties different from those of wild-type (WT) rhodopsin. Knock-in mouse rods with E122Q rhodopsin exhibited a photosensitivity about 70% of WT. Correspondingly, their single-photon response had an amplitude about 80% of WT, and a rate of decline from peak about 1.3 times of WT. The overall 30% lower photosensitivity of mutant rods can be explained by a lower pigment photosensitivity (0.9) and the smaller single-photon response (0.8). The slower decline of the response, however, did not correlate with the 10-fold shorter lifetime of the meta-II state of E122Q rhodopsin. This shorter lifetime became evident in the recovery phase of rod cells only when arrestin was absent. Simulation analysis of the photoresponse profile indicated that the slower decline and the smaller amplitude of the single-photon response can both be explained by the shift in the meta-I/meta-II equilibrium of E122Q rhodopsin toward meta-I. The difference in meta-III lifetime between WT and E122Q mutant became obvious in the recovery phase of the dark current after moderate photobleaching of rod cells. Thus, the present study clearly reveals how the molecular properties of rhodopsin affect the amplitude, shape, and kinetics of the rod response.
Collapse
Affiliation(s)
- Hiroo Imai
- Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan
| | - Vladimir Kefalov
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Keisuke Sakurai
- Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan
| | - Osamu Chisaka
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshiki Ueda
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akishi Onishi
- Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan
| | - Takefumi Morizumi
- Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan
| | - Yingbin Fu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kazuhisa Ichikawa
- Department of Brain and Bioinformation Science, Kanazawa Institute of Technology, Ishikawa 924-0838, Japan
| | - Kei Nakatani
- Graduate School of Life and Environmental Sciences, University of Tsukuba and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Ibaraki 305-8572, Japan
| | - Yoshihito Honda
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Jeannie Chen
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - King-Wai Yau
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A. Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 2005; 15:1065-9. [PMID: 15936279 DOI: 10.1016/j.cub.2005.04.063] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 04/26/2005] [Accepted: 04/27/2005] [Indexed: 11/25/2022]
Abstract
Animal photoreceptor cells can be classified into two distinct types, depending on whether the photopigment is borne on the membrane of a modified cilium (ciliary type) or apical microvilli (rhabdomeric type) [1]. Ciliary photoreceptors are well known as vertebrate rods and cones and are also found in several invertebrates. The rhabdomeric photoreceptor, in contrast, is a predominant type of invertebrate visual cell, but morphologically identifiable rhabdomeric photoreceptors have never been found in vertebrates. It is hypothesized that the rhabdomeric photoreceptor cell had evolved to be the photosensitive retinal ganglion cell for the vertebrate circadian photoentrainment [2, 3 and 4] owing to the fact that some molecules involved in cell differentiation are common among them [5]. We focused on the cephalochordate amphioxus because it is the closest living invertebrate to the vertebrates, and interestingly, it has rhabdomeric photoreceptor cells for putative nonvisual functions [6]. Here, we show that the amphioxus homolog of melanopsin [7, 8 and 9], the circadian photopigment in the photosensitive retinal ganglion cells of vertebrates, is expressed in the rhabdomeric photoreceptor cells of the amphioxus and that its biochemical and photochemical properties, not just its primary structure, are considerably similar to those of the visual rhodopsins in the rhabdomeric photoreceptor cells of higher invertebrates. The cephalochordate rhabdomeric photoreceptor represents an evolutionary link between the invertebrate visual photoreceptor and the vertebrate circadian photoreceptor.
Collapse
Affiliation(s)
- Mitsumasa Koyanagi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
3
|
Koyanagi M, Kawano E, Kinugawa Y, Oishi T, Shichida Y, Tamotsu S, Terakita A. Bistable UV pigment in the lamprey pineal. Proc Natl Acad Sci U S A 2004; 101:6687-91. [PMID: 15096614 PMCID: PMC404106 DOI: 10.1073/pnas.0400819101] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lower vertebrates can detect UV light with the pineal complex independently of eyes. Electrophysiological studies, together with chromophore extraction analysis, have suggested that the underlying pigment in the lamprey pineal exhibits a bistable nature, that is, reversible photoreaction by UV and visible light, which is never achieved by known UV pigments. Here we addressed the molecular identification of the pineal UV receptor. Our results showed that the long-hypothesized pigment is a lamprey homologue of parapinopsin, which exhibits an absorption maximum at 370 nm, in the UV region. UV light causes cis-trans isomerization of its retinal(2) chromophore, forming a stable photoproduct having an absorption maximum at 515 nm, in the green region. The photoproduct reverts to the original pigment upon visible light absorption, showing photoregeneration of the pigment. In situ hybridization showed that parapinopsin is selectively expressed in the cells located in the dorsal region of the pineal organ. We successfully obtained the hyperpolarizing responses with a maximum sensitivity of approximately 380 nm from the photoreceptor cells at the dorsal region, in which the outer segment was clearly stained with anti-parapinopsin antibody. These results demonstrated that parapinopsin is the pineal UV pigment having photointerconvertible two stable states. The bistable nature of the parapinopsin can account for the photorecovery of the pineal UV sensitivity by background green light in the lamprey. Furthermore, we isolated the parapinopsin homologues from fish and frog pineal complexes that exhibit UV sensitivity, suggesting that parapinopsin is a common molecular basis for pineal UV reception in the vertebrate.
Collapse
Affiliation(s)
- Mitsumasa Koyanagi
- Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kyoto 606-8502 Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Terakita A, Koyanagi M, Tsukamoto H, Yamashita T, Miyata T, Shichida Y. Counterion displacement in the molecular evolution of the rhodopsin family. Nat Struct Mol Biol 2004; 11:284-9. [PMID: 14981504 DOI: 10.1038/nsmb731] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 01/05/2004] [Indexed: 11/08/2022]
Abstract
The counterion, a negatively charged amino acid residue that stabilizes a positive charge on the retinylidene chromophore, is essential for rhodopsin to receive visible light. The counterion in vertebrate rhodopsins, Glu113 in the third transmembrane helix, has an additional role as an intramolecular switch to activate G protein efficiently. Here we show on the basis of mutational analyses that Glu181 in the second extracellular loop acts as the counterion in invertebrate rhodopsins. Like invertebrate rhodopsins, UV-absorbing parapinopsin has a Glu181 counterion in its G protein-activating state. Its G protein activation efficiency is similar to that of the invertebrate rhodopsins, but significantly lower than that of bovine rhodopsin, with which it shares greater sequence identity. Thus an ancestral vertebrate rhodopsin probably acquired the Glu113 counterion, followed by structural optimization for efficient G protein activation during molecular evolution.
Collapse
Affiliation(s)
- Akihisa Terakita
- Department of Biophysics, Graduate School of Science, Kyoto University,and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Prioleau C, Visiers I, Ebersole BJ, Weinstein H, Sealfon SC. Conserved helix 7 tyrosine acts as a multistate conformational switch in the 5HT2C receptor. Identification of a novel "locked-on" phenotype and double revertant mutations. J Biol Chem 2002; 277:36577-84. [PMID: 12145300 DOI: 10.1074/jbc.m206223200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies in many rhodopsin-like G-protein-coupled receptors are providing a general scheme of the structural processes underlying receptor activation. Microdomains in several receptors have been identified that appear to function as activation switches. However, evidence is emerging that these receptor proteins exist in multiple conformational states. To study the molecular control of this switching process, we investigated the function of a microdomain involving the conserved helix 7 tyrosine in the serotonin 5HT2C receptor. This tyrosine of the NPXXY motif was substituted for all naturally occurring amino acids. Three distinct constitutively active receptor phenotypes were found: moderate, high, and "locked-on" constitutive activity. In contrast to the activity of the other receptor mutants, the high basal signaling of the locked-on Y7.53N mutant was neither increased by agonists nor decreased by inverse agonists. The Y7.53F mutant was uncoupled. Computational modeling based on the rhodopsin crystal structure suggested that Y7.53 interacts with the conserved aromatic ring at position 7.60 in the recently identified helix 8 domain. This provided a basis for seeking revertant mutations to correct the defective function of the Y7.53F receptor. When the Y7.53F receptor was mutated at position 7.60, the wild-type phenotype was restored. These results suggest that Y7.53 and Y7.60 contribute to a common functional microdomain connecting helices 7 and 8 that influences the switching of the 5HT2C receptor among multiple active and inactive conformations.
Collapse
Affiliation(s)
- Cassandra Prioleau
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
6
|
Terakita A, Yamashita T, Nimbari N, Kojima D, Shichida Y. Functional interaction between bovine rhodopsin and G protein transducin. J Biol Chem 2002; 277:40-6. [PMID: 11606568 DOI: 10.1074/jbc.m104960200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the mechanisms of specific coupling of bovine rhodopsin with the G protein transducin (G(t)), we have constructed the bovine rhodopsin mutants whose second or third cytoplasmic loop (loop 2 or 3) was replaced with the corresponding loop of the G(o)-coupled scallop rhodopsin and investigated the difference in the activation abilities for G(t), G(o), and G(i) among these mutants and wild type. We have also prepared the Galpha(i) mutants whose C-terminal 11 or 5 amino acids were replaced with those of Galpha(t), Galpha(o), and Galpha(q) to evaluate the role of the C-terminal tail of the alpha-subunit on the specific coupling of bovine rhodopsin with G(t). Replacement of loop 2 of bovine rhodopsin with that of the scallop rhodopsin caused about a 40% loss of G(t) and G(o) activation, whereas that of loop 3 enhanced the G(o) activation four times with a 60% decrease in the G(t) activation. These results indicated that loop 3 of bovine rhodopsin is one of the regions responsible for the specific coupling with G(t). Loop 3 of bovine rhodopsin discriminates the difference of the 6-amino acid sequence (region A) at a position adjacent to the C-terminal 5 amino acids of the G protein, resulting in the different activation efficiency between G(t) and G(o). In addition, the binding of region A to loop 3 of bovine rhodopsin is essential for activation of G(t) but not G(i), even though the sequence of the region A is almost identical between Galpha(t) and Galpha(i). These results suggest that the binding of loop 3 of bovine rhodopsin to region A in Galpha(t) is one of the mechanisms of specific G(t) activation by bovine rhodopsin.
Collapse
Affiliation(s)
- Akihisa Terakita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
7
|
Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 2001; 40:7761-72. [PMID: 11425302 PMCID: PMC1698954 DOI: 10.1021/bi0155091] [Citation(s) in RCA: 513] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D C Teller
- Department of Ophthalmology, and Biological Structure and Biomolecular Structure Center, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
8
|
Terakita A, Yamashita T, Shichida Y. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family. Proc Natl Acad Sci U S A 2000; 97:14263-7. [PMID: 11106382 PMCID: PMC18906 DOI: 10.1073/pnas.260349597] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinochrome is a member of the rhodopsin family having a chromophore retinal and functioning as a retinal photoisomerase in squid photoreceptor cells. Unlike vertebrate rhodopsins, but like many invertebrate rhodopsins, retinochrome does not have a glutamic acid at position 113 to serve as a counterion for the protonated retinylidene Schiff base. Here we investigated possible counterions in retinochrome by site-specific mutagenesis. Our results showed that the counterion is the glutamic acid at position 181, at which almost all the pigments in the rhodopsin family, including vertebrate and invertebrate rhodopsins, have a glutamic or aspartic acid. The remarkable exceptions are the long-wavelength visual pigments that have a histidine that, together with a nearby lysine, serves as a chloride-binding site. Replacement of Glu-181 of bovine rhodopsin with Gln caused a 10-nm red-shift of absorption maximum. Because the position at 181 is in the extracellular loop connecting the transmembrane helices VI and V, these results demonstrate the importance of this loop to function for spectral tuning in the rhodopsin family.
Collapse
Affiliation(s)
- A Terakita
- Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|