1
|
Haller CJ, Acker J, Arguello AE, Borodavka A. Phase separation and viral factories: unveiling the physical processes supporting RNA packaging in dsRNA viruses. Biochem Soc Trans 2024; 52:2101-2112. [PMID: 39324618 DOI: 10.1042/bst20231304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Understanding of the physicochemical properties and functions of biomolecular condensates has rapidly advanced over the past decade. More recently, many RNA viruses have been shown to form cytoplasmic replication factories, or viroplasms, via phase separation of their components, akin to numerous cellular membraneless organelles. Notably, diverse viruses from the Reoviridae family containing 10-12 segmented double-stranded RNA genomes induce the formation of viroplasms in infected cells. Little is known about the inner workings of these membraneless cytoplasmic inclusions and how they may support stoichiometric RNA assembly in viruses with segmented RNA genomes, raising questions about the roles of phase separation in coordinating viral genome packaging. Here, we discuss how the molecular composition of viroplasms determines their properties, highlighting the interplay between RNA structure, RNA remodelling, and condensate self-organisation. Advancements in RNA structural probing and theoretical modelling of condensates can reveal the mechanisms through which these ribonucleoprotein complexes support the selective enrichment and stoichiometric assembly of distinct viral RNAs.
Collapse
Affiliation(s)
- Cyril J Haller
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - Julia Acker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - A Emilia Arguello
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - Alexander Borodavka
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
- Department of Biochemistry, University of Cambridge, Cambridge, U.K
| |
Collapse
|
2
|
Asuru A, Farquhar ER, Sullivan M, Abel D, Toomey J, Chance MR, Bohon J. The XFP (17-BM) beamline for X-ray footprinting at NSLS-II. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1388-1399. [PMID: 31274468 PMCID: PMC6613119 DOI: 10.1107/s1600577519003576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/13/2019] [Indexed: 05/26/2023]
Abstract
Hydroxyl-radical mediated synchrotron X-ray footprinting (XF) is a powerful solution-state technique in structural biology for the study of macromolecular structure and dynamics of proteins and nucleic acids, with several synchrotron resources available to serve the XF community worldwide. The XFP (Biological X-ray Footprinting) beamline at the NSLS-II was constructed on a three-pole wiggler source at 17-BM to serve as the premier beamline for performing this technique, providing an unparalleled combination of high flux density broadband beam, flexibility in beam morphology, and sample handling capabilities specifically designed for XF experiments. The details of beamline design, beam measurements, and science commissioning results for a standard protein using the two distinct XFP endstations are presented here. XFP took first light in 2016 and is now available for general user operations through peer-reviewed proposals. Currently, beam sizes from 450 µm × 120 µm to 2.7 mm × 2.7 mm (FWHM) are available, with a flux of 1.6 × 1016 photons s-1 (measured at 325 mA ring current) in a broadband (∼5-16 keV) beam. This flux is expected to rise to 2.5 × 1016 photons s-1 at the full NSLS-II design current of 500 mA, providing an incident power density of >500 W mm-2 at full focus.
Collapse
Affiliation(s)
- Awuri Asuru
- Center for Synchrotron Bioscience, Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Systems Biology Graduate Program, Medical Scientist Training Program, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Erik R. Farquhar
- Center for Synchrotron Bioscience, Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Michael Sullivan
- Center for Synchrotron Bioscience, Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Donald Abel
- Center for Synchrotron Bioscience, Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - John Toomey
- Center for Synchrotron Bioscience, Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Mark R. Chance
- Center for Synchrotron Bioscience, Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jen Bohon
- Center for Synchrotron Bioscience, Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Garcia NK, Deperalta G, Wecksler AT. Current Trends in Biotherapeutic Higher Order Structure Characterization by Irreversible Covalent Footprinting Mass Spectrometry. Protein Pept Lett 2019; 26:35-43. [PMID: 30484396 DOI: 10.2174/0929866526666181128141953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Biotherapeutics, particularly monoclonal antibodies (mAbs), are a maturing class of drugs capable of treating a wide range of diseases. Therapeutic function and solutionstability are linked to the proper three-dimensional organization of the primary sequence into Higher Order Structure (HOS) as well as the timescales of protein motions (dynamics). Methods that directly monitor protein HOS and dynamics are important for mapping therapeutically relevant protein-protein interactions and assessing properly folded structures. Irreversible covalent protein footprinting Mass Spectrometry (MS) tools, such as site-specific amino acid labeling and hydroxyl radical footprinting are analytical techniques capable of monitoring the side chain solvent accessibility influenced by tertiary and quaternary structure. Here we discuss the methodology, examples of biotherapeutic applications, and the future directions of irreversible covalent protein footprinting MS in biotherapeutic research and development. CONCLUSION Bottom-up mass spectrometry using irreversible labeling techniques provide valuable information for characterizing solution-phase protein structure. Examples range from epitope mapping and protein-ligand interactions, to probing challenging structures of membrane proteins. By paring these techniques with hydrogen-deuterium exchange, spectroscopic analysis, or static-phase structural data such as crystallography or electron microscopy, a comprehensive understanding of protein structure can be obtained.
Collapse
Affiliation(s)
- Natalie K Garcia
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| | - Galahad Deperalta
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| | - Aaron T Wecksler
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| |
Collapse
|
4
|
Bohon J. Development of Synchrotron Footprinting at NSLS and NSLS-II. Protein Pept Lett 2019; 26:55-60. [PMID: 30484397 DOI: 10.2174/0929866526666181128125125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND First developed in the 1990's at the National Synchrotron Light Source, xray synchrotron footprinting is an ideal technique for the analysis of solution-state structure and dynamics of macromolecules. Hydroxyl radicals generated in aqueous samples by intense x-ray beams serve as fine probes of solvent accessibility, rapidly and irreversibly reacting with solvent exposed residues to provide a "snapshot" of the sample state at the time of exposure. Over the last few decades, improvements in instrumentation to expand the technology have continuously pushed the boundaries of biological systems that can be studied using the technique. CONCLUSION Dedicated synchrotron beamlines provide important resources for examining fundamental biological mechanisms of folding, ligand binding, catalysis, transcription, translation, and macromolecular assembly. The legacy of synchrotron footprinting at NSLS has led to significant improvement in our understanding of many biological systems, from identifying key structural components in enzymes and transporters to in vivo studies of ribosome assembly. This work continues at the XFP (17-BM) beamline at NSLS-II and facilities at ALS, which are currently accepting proposals for use.
Collapse
Affiliation(s)
- Jen Bohon
- Center for Synchrotron Biosciences, Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
5
|
Hao Y, Bohon J, Hulscher R, Rappé MC, Gupta S, Adilakshmi T, Woodson SA. Time-Resolved Hydroxyl Radical Footprinting of RNA with X-Rays. ACTA ACUST UNITED AC 2018; 73:e52. [PMID: 29927103 DOI: 10.1002/cpnc.52] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA footprinting by hydroxyl radical cleavage provides 'snapshots' of RNA tertiary structure or protein interactions that bury the RNA backbone. Generation of hydroxyl radicals with a high-flux synchrotron X-ray beam provides analysis on a short timescale (5-100 msec), which enables the structures of folding intermediates or other transient conformational states to be determined in biochemical solutions or cells. This article provides protocols for using synchrotron beamlines for hydroxyl radical footprinting. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yumeng Hao
- Johns Hopkins University, Baltimore, Maryland
| | - Jen Bohon
- Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland, Ohio
| | | | | | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | | | | |
Collapse
|
6
|
Baud A, Aymé L, Gonnet F, Salard I, Gohon Y, Jolivet P, Brodolin K, Da Silva P, Giuliani A, Sclavi B, Chardot T, Mercère P, Roblin P, Daniel R. SOLEIL shining on the solution-state structure of biomacromolecules by synchrotron X-ray footprinting at the Metrology beamline. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:576-585. [PMID: 28452748 DOI: 10.1107/s1600577517002478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/13/2017] [Indexed: 06/07/2023]
Abstract
Synchrotron X-ray footprinting complements the techniques commonly used to define the structure of molecules such as crystallography, small-angle X-ray scattering and nuclear magnetic resonance. It is remarkably useful in probing the structure and interactions of proteins with lipids, nucleic acids or with other proteins in solution, often better reflecting the in vivo state dynamics. To date, most X-ray footprinting studies have been carried out at the National Synchrotron Light Source, USA, and at the European Synchrotron Radiation Facility in Grenoble, France. This work presents X-ray footprinting of biomolecules performed for the first time at the X-ray Metrology beamline at the SOLEIL synchrotron radiation source. The installation at this beamline of a stopped-flow apparatus for sample delivery, an irradiation capillary and an automatic sample collector enabled the X-ray footprinting study of the structure of the soluble protein factor H (FH) from the human complement system as well as of the lipid-associated hydrophobic protein S3 oleosin from plant seed. Mass spectrometry analysis showed that the structural integrity of both proteins was not affected by the short exposition to the oxygen radicals produced during the irradiation. Irradiated molecules were subsequently analysed using high-resolution mass spectrometry to identify and locate oxidized amino acids. Moreover, the analyses of FH in its free state and in complex with complement C3b protein have allowed us to create a map of reactive solvent-exposed residues on the surface of FH and to observe the changes in oxidation of FH residues upon C3b binding. Studies of the solvent accessibility of the S3 oleosin show that X-ray footprinting offers also a unique approach to studying the structure of proteins embedded within membranes or lipid bodies. All the biomolecular applications reported herein demonstrate that the Metrology beamline at SOLEIL can be successfully used for synchrotron X-ray footprinting of biomolecules.
Collapse
Affiliation(s)
- A Baud
- CNRS, UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025 Evry, France
| | - L Aymé
- INRA, AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - F Gonnet
- CNRS, UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025 Evry, France
| | - I Salard
- CNRS, UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025 Evry, France
| | - Y Gohon
- INRA, AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - P Jolivet
- INRA, AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - K Brodolin
- CPBS, CNRS UMR 5236-UM1/UM2, BP 14491, 34093 Montpellier Cedex 5, France
| | - P Da Silva
- Metrology Beamline, Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - A Giuliani
- Disco Beamline, Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - B Sclavi
- LBPA, CNRS UMR 8113, ENS Cachan, 94235 Cachan, France
| | - T Chardot
- INRA, AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - P Mercère
- Metrology Beamline, Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - P Roblin
- INRA, UAR1008 Caractérisation et Élaboration des Produits Issus de l'Agriculture, F-44316 Nantes, France
| | - R Daniel
- CNRS, UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025 Evry, France
| |
Collapse
|
7
|
Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions. Nat Commun 2016; 7:13288. [PMID: 27848959 PMCID: PMC5116083 DOI: 10.1038/ncomms13288] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 09/20/2016] [Indexed: 11/09/2022] Open
Abstract
Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation. Mapping protein-ligand interactions is fundamental to advance the understanding of cellular processes and to develop drug discovery strategies. Here, the authors present a photo-activated probe that allows highly efficient labelling and identification of protein binding sites using mass spectrometry.
Collapse
|
8
|
Gupta S, Feng J, Chan LJG, Petzold CJ, Ralston CY. Synchrotron X-ray footprinting as a method to visualize water in proteins. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1056-69. [PMID: 27577756 PMCID: PMC5006651 DOI: 10.1107/s1600577516009024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
The vast majority of biomolecular processes are controlled or facilitated by water interactions. In enzymes, regulatory proteins, membrane-bound receptors and ion-channels, water bound to functionally important residues creates hydrogen-bonding networks that underlie the mechanism of action of the macromolecule. High-resolution X-ray structures are often difficult to obtain with many of these classes of proteins because sample conditions, such as the necessity of detergents, often impede crystallization. Other biophysical techniques such as neutron scattering, nuclear magnetic resonance and Fourier transform infrared spectroscopy are useful for studying internal water, though each has its own advantages and drawbacks, and often a hybrid approach is required to address important biological problems associated with protein-water interactions. One major area requiring more investigation is the study of bound water molecules which reside in cavities and channels and which are often involved in both the structural and functional aspects of receptor, transporter and ion channel proteins. In recent years, significant progress has been made in synchrotron-based radiolytic labeling and mass spectroscopy techniques for both the identification of bound waters and for characterizing the role of water in protein conformational changes at a high degree of spatial and temporal resolution. Here the latest developments and future capabilities of this method for investigating water-protein interactions and its synergy with other synchrotron-based methods are discussed.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jun Feng
- Experimental Systems, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Leanne Jade G. Chan
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J. Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Oxidative footprinting in the study of structure and function of membrane proteins: current state and perspectives. Biochem Soc Trans 2016; 43:983-94. [PMID: 26517913 DOI: 10.1042/bst20150130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane proteins, such as receptors, transporters and ion channels, control the vast majority of cellular signalling and metabolite exchange processes and thus are becoming key pharmacological targets. Obtaining structural information by usage of traditional structural biology techniques is limited by the requirements for the protein samples to be highly pure and stable when handled in high concentrations and in non-native buffer systems, which is often difficult to achieve for membrane targets. Hence, there is a growing requirement for the use of hybrid, integrative approaches to study the dynamic and functional aspects of membrane proteins in physiologically relevant conditions. In recent years, significant progress has been made in the field of oxidative labelling techniques and in particular the X-ray radiolytic footprinting in combination with mass spectrometry (MS) (XF-MS), which provide residue-specific information on the solvent accessibility of proteins. In combination with both low- and high-resolution data from other structural biology approaches, it is capable of providing valuable insights into dynamics of membrane proteins, which have been difficult to obtain by other structural techniques, proving a highly complementary technique to address structure and function of membrane targets. XF-MS has demonstrated a unique capability for identification of structural waters and conformational changes in proteins at both a high degree of spatial and a high degree of temporal resolution. Here, we provide a perspective on the place of XF-MS among other structural biology methods and showcase some of the latest developments in its usage for studying water-mediated transmembrane (TM) signalling, ion transport and ligand-induced allosteric conformational changes in membrane proteins.
Collapse
|
10
|
Hulscher RM, Bohon J, Rappé MC, Gupta S, D'Mello R, Sullivan M, Ralston CY, Chance MR, Woodson SA. Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting. Methods 2016; 103:49-56. [PMID: 27016143 PMCID: PMC4921310 DOI: 10.1016/j.ymeth.2016.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/09/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
The assembly of the Escherichia coli ribosome has been widely studied and characterized in vitro. Despite this, ribosome biogenesis in living cells is only partly understood because assembly is coupled with transcription, modification and processing of the pre-ribosomal RNA. We present a method for footprinting and isolating pre-rRNA as it is synthesized in E. coli cells. Pre-rRNA synthesis is synchronized by starvation, followed by nutrient upshift. RNA synthesized during outgrowth is metabolically labeled to facilitate isolation of recent transcripts. Combining this technique with two in vivo RNA probing methods, hydroxyl radical and DMS footprinting, allows the structure of nascent RNA to be probed over time. Together, these can be used to determine changes in the structures of ribosome assembly intermediates as they fold in vivo.
Collapse
Affiliation(s)
- Ryan M Hulscher
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Jen Bohon
- Center for Proteomics and Bioinformatics and Center for Synchrotron Biosciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Mollie C Rappé
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rhijuta D'Mello
- Center for Proteomics and Bioinformatics and Center for Synchrotron Biosciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Michael Sullivan
- Center for Proteomics and Bioinformatics and Center for Synchrotron Biosciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Corie Y Ralston
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics and Center for Synchrotron Biosciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
11
|
Kaur P, Tomechko SE, Kiselar J, Shi W, Deperalta G, Wecksler AT, Gokulrangan G, Ling V, Chance MR. Characterizing monoclonal antibody structure by carboxyl group footprinting. MAbs 2016; 7:540-52. [PMID: 25933350 DOI: 10.1080/19420862.2015.1023683] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Structural characterization of proteins and their antigen complexes is essential to the development of new biologic-based medicines. Amino acid-specific covalent labeling (CL) is well suited to probe such structures, especially for cases that are difficult to examine by alternative means due to size, complexity, or instability. We present here a detailed account of carboxyl group labeling (with glycine ethyl ester (GEE) tagging) applied to a glycosylated monoclonal antibody therapeutic (mAb). The experiments were optimized to preserve the structural integrity of the mAb, and experimental conditions were varied and replicated to establish the reproducibility of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include aspartic acid (D), glutamic acid (E), and the C-terminus (i.e., the target probes), with the experimental data in order to understand the accuracy of the approach. Data from the mAb were compared to reactivity measures of several model peptides to explain observed variations in reactivity. Attenuation of reactivity in otherwise solvent accessible probes is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. A comparison of results with previously published data by Deperalta et al using hydroxyl radical footprinting showed that 55% (32/58) of target residues were GEE labeled in this study whereas the previous study reported 21% of the targets were labeled. Although the number of target residues in GEE labeling is fewer, the two approaches provide complementary information. The results highlight advantages of this approach, such as the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling, reproducibility of replicate experiments (<2% variation in modification extent), the similar reactivity of the three target probes, and significant correlation of reactivity and solvent accessible surface area.
Collapse
Key Words
- 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
- ACN, acetonitrile
- CD, circular dichroism
- CL, covalent labeling
- DR, dose response
- EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
- EIC, extracted ion chromatogram
- GEE, glycine ethyl ester
- HC, heavy chain
- HDX, hydrogen-deuterium exchange
- HRF, hydroxyl radical footprinting
- IT, ion trap
- IgG, immunoglobulin gamma
- LC, light chain
- Lys-C, lysyl endopeptidase
- MS, mass spectrometry
- RC, rate constant
- SASA, solvent accessible surface area
- SEC, size-exclusion chromatography
- acetonitrile
- circular dichroism
- covalent labeling
- dose response
- extracted ion chromatogram
- glycine ethyl ester
- heavy chain
- hydrogen-deuterium exchange
- hydroxyl radical footprinting
- immunoglobulin gamma
- ion trap
- light chain
- lysyl endopeptidase
- mAb, monoclonal antibody
- mass spectrometry
- monoclonal antibody
- rate constant
- size-exclusion chromatography
- solvent accessible surface area
Collapse
Affiliation(s)
- Parminder Kaur
- a Center for Proteomics and Bioinformatics; School of Medicine; Case Western Reserve University ; Cleveland , OH , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gupta S, Celestre R, Feng J, Ralston C. Advancements and Application of Microsecond Synchrotron X-ray Footprinting at the Advanced Light Source. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/08940886.2016.1124684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Fechter P, Parmentier D, Wu Z, Fuchsbauer O, Romby P, Marzi S. Traditional Chemical Mapping of RNA Structure In Vitro and In Vivo. Methods Mol Biol 2016; 1490:83-103. [PMID: 27665595 DOI: 10.1007/978-1-4939-6433-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chemical probing is often used to gain knowledge on the secondary and tertiary structures of RNA molecules either free or engaged in complexes with ligands. The method monitors the reactivity of each nucleotide towards chemicals of various specificities reflecting the hydrogen bonding environment of each nucleotide within the RNA molecule. In addition, information can be obtained on the binding site of a ligand (noncoding RNAs, protein, metabolites), and on RNA conformational changes that accompanied ligand binding or perturbation of the environmental cues. The detection of the modifications can be obtained either by using end-labeled RNA molecules or by primer extension using reverse transcriptase. The goal of this chapter is to provide the reader with an experimental guide to probe the structure of RNA in vitro and in vivo with the most suitable chemical probes.
Collapse
Affiliation(s)
- Pierre Fechter
- Biotechnologie et Signalisation Cellulaire, CNRS-INSERM, ESBS, Université de Strasbourg, 300 boulevard Sebastien Brant, Illkirch, 67412, France
| | - Delphine Parmentier
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France
| | - ZongFu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Olivier Fuchsbauer
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France.
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France
| |
Collapse
|
14
|
Greenberg MM. Reactivity of Nucleic Acid Radicals. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2016; 50:119-202. [PMID: 28529390 DOI: 10.1016/bs.apoc.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleic acid oxidation plays a vital role in the etiology and treatment of diseases, as well as aging. Reagents that oxidize nucleic acids are also useful probes of the biopolymers' structure and folding. Radiation scientists have contributed greatly to our understanding of nucleic acid oxidation using a variety of techniques. During the past two decades organic chemists have applied the tools of synthetic and mechanistic chemistry to independently generate and study the reactive intermediates produced by ionizing radiation and other nucleic acid damaging agents. This approach has facilitated resolving mechanistic controversies and lead to the discovery of new reactive processes.
Collapse
|
15
|
Kaur P, Tomechko S, Kiselar J, Shi W, Deperalta G, Wecksler AT, Gokulrangan G, Ling V, Chance MR. Characterizing monoclonal antibody structure by carbodiimide/GEE footprinting. MAbs 2015; 6:1486-99. [PMID: 25484052 DOI: 10.4161/19420862.2014.975096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Amino acid-specific covalent labeling is well suited to probe protein structure and macromolecular interactions, especially for macromolecules and their complexes that are difficult to examine by alternative means, due to size, complexity, or instability. Here we present a detailed account of carbodiimide-based covalent labeling (with GEE tagging) applied to a glycosylated monoclonal antibody therapeutic, which represents an important class of biologic drugs. Characterization of such proteins and their antigen complexes is essential to development of new biologic-based medicines. In this study, the experiments were optimized to preserve the structural integrity of the protein, and experimental conditions were varied and replicated to establish the reproducibility and precision of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include D, E, and the C-terminus, against the experimental surface accessibility data in order to understand the accuracy of the approach in providing an unbiased assessment of structure. Data from the protein were also compared to reactivity measures of several model peptides to explain sequence or structure-based variations in reactivity. The results highlight several advantages of this approach. These include: the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling (indicating that the label does not significantly perturb the structure of the protein), the high reproducibility of replicate experiments (<2 % variation in modification extent), the similar reactivity of the 3 target probe residues (as suggested by analysis of model peptides), and the overall positive and significant correlation of reactivity and solvent accessible surface area (the latter values predicted by the homology modeling). Attenuation of reactivity, in otherwise solvent accessible probes, is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. The results are also compared with data from hydroxyl radical-mediated oxidative footprinting on the same protein, showing that complementary information is gained from the 2 approaches, although the number of target residues in carbodiimide/GEE labeling is fewer. Overall, this approach is an accurate and precise method for assessing protein structure of biologic drugs.
Collapse
Key Words
- ACN, acetonitrile
- CD, circular dichroism
- CL, covalent labeling
- DR, dose response
- EDC, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
- EIC, extracts the ion chromatogram
- FPOP, fast photochemical oxidation of proteins
- GEE
- GEE, glycine ethyl ester
- HC, heavy chain
- HDX, hydrogen-deuterium exchange
- HRF, hydroxyl radical footprinting
- IT, ion trap
- IgG, immunoglobulin gamma
- LC, light chain
- LysC, Lysyl endopeptidase
- MS, mass spectrometry
- NMR, nuclear magnetic resonance
- RC, rate constant
- SASA, solvent accessible surface area
- SEC, size-exclusion chromatography
- VEGF, vascular endothelial growth factor
- covalent labeling
- footprinting
- mAb, monoclonal antibody
- protein structure
- structural proteomics
Collapse
Affiliation(s)
- Parminder Kaur
- a Center for Proteomics and Bioinformatics ; Case Western Reserve University ; Cleveland , OH USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Paul R, Greenberg MM. Rapid RNA strand scission following C2'-hydrogen atom abstraction. J Am Chem Soc 2015; 137:596-9. [PMID: 25580810 DOI: 10.1021/ja511401g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
C2'-Nucleotide radicals have been proposed as key intermediates in direct strand break formation in RNA exposed to ionizing radiation. Uridin-2'-yl radical (1) was independently generated in single- and double-stranded RNA via photolysis of a ketone precursor. Direct stand breaks result from heterolytic cleavage of the adjacent C3'-carbon-oxygen bond. Trapping of 1 by O2 or β-mercaptoethanol (1 M) does not compete with strand scission, indicating that phosphate elimination is >10(6) s(-1). Uracil loss also does not compete with strand scission. When considered in conjunction with reports that nucleobase radicals produce 1, this chemistry explains why RNA is significantly more susceptible to strand scission by ionizing radiation (hydroxyl radical) than is DNA.
Collapse
Affiliation(s)
- Rakesh Paul
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
17
|
Wu P, Yu Y, McGhee CE, Tan LH, Lu Y. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7849-72. [PMID: 25205057 PMCID: PMC4275547 DOI: 10.1002/adma.201304891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 06/02/2014] [Indexed: 05/22/2023]
Abstract
In this review, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed.
Collapse
Affiliation(s)
- Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Yu
- Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Claire E. McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Li Huey Tan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Sloane JL, Greenberg MM. Interstrand cross-link and bioconjugate formation in RNA from a modified nucleotide. J Org Chem 2014; 79:9792-8. [PMID: 25295850 PMCID: PMC4201359 DOI: 10.1021/jo501982r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
RNA
oligonucleotides containing a phenyl selenide derivative of
5-methyluridine were chemically synthesized by solid-phase synthesis.
The phenyl selenide is rapidly converted to an electrophilic, allylic
phenyl seleneate under mild oxidative conditions. The phenyl seleneate
yields interstrand cross-links when part of a duplex and is useful
for synthesizing oligonucleotide conjugates. Formation of the latter
is illustrated by reaction of an oligonucleotide containing the phenyl
selenide with amino acids in the presence of mild oxidant. The products
formed are analogous to those observed in tRNA that are believed to
be formed posttranslationally via a biosynthetic intermediate that
is chemically homologous to the phenyl seleneate.
Collapse
Affiliation(s)
- Jack L Sloane
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
19
|
Liuni P, Zhu S, Wilson DJ. Oxidative protein labeling with analysis by mass spectrometry for the study of structure, folding, and dynamics. Antioxid Redox Signal 2014; 21:497-510. [PMID: 24512178 DOI: 10.1089/ars.2014.5850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Analytical approaches that can provide insights into the mechanistic processes underlying protein folding and dynamics are few since the target analytes-high-energy structural intermediates-are short lived and often difficult to distinguish from coexisting structures. Folding "intermediates" can be populated at equilibrium using weakly denaturing solvents, but it is not clear that these species are identical to those that are transiently populated during folding under "native" conditions. Oxidative labeling with mass spectrometric analysis is a powerful alternative for structural characterization of proteins and transient protein species based on solvent exposure at specific sites. RECENT ADVANCES Oxidative labeling is increasingly used with exceedingly short (μs) labeling pulses, both to minimize the occurrence of artifactual structural changes due to the incorporation of label and to detect short-lived species. The recent introduction of facile photolytic approaches for producing reactive oxygen species is an important technological advance that will enable more widespread adoption of the technique. CRITICAL ISSUES The most common critique of oxidative labeling data is that even with brief labeling pulses, covalent modification of the protein may cause significant artifactual structural changes. FUTURE DIRECTIONS While the oxidative labeling with the analysis by mass spectrometry is mature enough that most basic methodological issues have been addressed, a complete systematic understanding of side chain reactivity in the context of intact proteins is an avenue for future work. Specifically, there remain issues around the impact of primary sequence and side chain interactions on the reactivity of "solvent-exposed" residues. Due to its analytical power, wide range of applications, and relative ease of implementation, oxidative labeling is an increasingly important technique in the bioanalytical toolbox.
Collapse
Affiliation(s)
- Peter Liuni
- 1 Department of Chemistry, York University , Toronto, Canada
| | | | | |
Collapse
|
20
|
Gupta S, Celestre R, Petzold CJ, Chance MR, Ralston C. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:690-9. [PMID: 24971962 PMCID: PMC4073957 DOI: 10.1107/s1600577514007000] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/29/2014] [Indexed: 05/05/2023]
Abstract
X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale.
Collapse
Affiliation(s)
- Sayan Gupta
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Richard Celestre
- Experimental Systems, Advanced Light Source Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Corie Ralston
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Visualizing the kinetic power stroke that drives proton-coupled zinc(II) transport. Nature 2014; 512:101-4. [PMID: 25043033 PMCID: PMC4144069 DOI: 10.1038/nature13382] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/14/2014] [Indexed: 01/30/2023]
Abstract
The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of Escherichia coli. Its transport site receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux. This membrane protein is a well-characterized member of the family of cation diffusion facilitators that occurs at all phylogenetic levels. Here we show, using X-ray-mediated hydroxyl radical labelling of YiiP and mass spectrometry, that Zn(II) binding triggers a highly localized, all-or-nothing change of water accessibility to the transport site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics reveal a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical re-orientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport site enables a stationary proton gradient to facilitate the conversion of zinc-binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active-transport reaction.
Collapse
|
22
|
Bohon J, D’Mello R, Ralston C, Gupta S, Chance MR. Synchrotron X-ray footprinting on tour. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:24-31. [PMID: 24365913 PMCID: PMC3874017 DOI: 10.1107/s1600577513024715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/04/2013] [Indexed: 05/22/2023]
Abstract
Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results.
Collapse
Affiliation(s)
- Jen Bohon
- Center for Synchrotron Biosciences, Case Western Reserve University, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence e-mail:
| | - Rhijuta D’Mello
- Center for Synchrotron Biosciences, Case Western Reserve University, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Corie Ralston
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
Monroe EB, Heien ML. Electrochemical generation of hydroxyl radicals for examining protein structure. Anal Chem 2013; 85:6185-9. [PMID: 23777226 DOI: 10.1021/ac400107c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of hydroxyl radicals to covalently label the solvent-exposed surface of proteins has been shown to be a powerful tool to examine the structure of proteins and intermolecular interfaces. Current methods to generate hydroxyl radicals for footprinting experiments rely on the laser photolysis of H2O2 or the synchrotron radiolysis of water, which adds significant costs and/or complexity to the experiments. In this work, we develop the electro-Fenton reaction as a means to generate hydroxyl radicals for structural footprinting mass spectrometry experiments to complement current laser and synchrotron-based methods, while reducing the costs and complexity of initiating such experiments. The use of an electrochemical flow cell also enables control of the timing and extent of the radical generation process, while reducing the complexity typically associated with radical footprinting experiments. Ubiquitin, a model protein, was labeled with electro-Fenton generated hydroxyl radicals and top-down proteomics was used to verify oxidation sites on the protein surface.
Collapse
Affiliation(s)
- Eric B Monroe
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| | | |
Collapse
|
24
|
Resendiz MJE, Pottiboyina V, Sevilla MD, Greenberg MM. Direct strand scission in double stranded RNA via a C5-pyrimidine radical. J Am Chem Soc 2012; 134:3917-24. [PMID: 22335525 DOI: 10.1021/ja300044e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleobase radicals are the major family of reactive intermediates produced when nucleic acids are exposed to γ-radiolysis. The 5,6-dihydrouridin-5-yl radical (1), the formal product of hydrogen atom addition and a model for hydroxyl radical addition, was independently generated from a ketone precursor via Norrish Type I photocleavage in single and double stranded RNA. Radical 1 produces direct strand breaks at the 5'-adjacent nucleotide and only minor amounts of strand scission are observed at the initial site of radical generation. Strand scission occurs preferentially in double stranded RNA and in the absence of O(2). The dependence of strand scission efficiency from the 5,6-dihydrouridin-5-yl radical (1) on secondary structure under anaerobic conditions suggests that this reactivity may be useful for extracting additional RNA structural information from hydroxyl radical reactions. Varying the identity of the 5'-adjacent nucleotide has little effect on strand scission. Internucleotidyl strand scission occurs via β-elimination of the 3'-phosphate following C2'-hydrogen atom abstraction by 1. The subsequently formed olefin cation radical yields RNA fragments containing 3'-phosphate or 3'-deoxy-2'-ketonucleotide termini from competing deprotonation pathways. The ketonucleotide end group is favored in the presence of low concentrations of thiol, presumably by reducing the cation radical to the enol. Competition studies with thiol show that strand scission from the 5,6-dihydrouridin-5-yl radical (1) is significantly faster than from the 5,6-dihydrouridin-6-yl radical (2) and is consistent with computational studies using the G3B3 approach that predict the latter to be more stable than 1 by 2.8 kcal/mol.
Collapse
Affiliation(s)
- Marino J E Resendiz
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Many RNAs do not directly code proteins but are nonetheless indispensable to cellular function. These strands fold into intricate three-dimensional shapes that are essential structures in protein synthesis, splicing, and many other processes of gene regulation and expression. A variety of biophysical and biochemical methods are now showing, in real time, how ribosomal subunits and other ribonucleoprotein complexes assemble from their molecular components. Footprinting methods are particularly useful for studying the folding of long RNAs: they provide quantitative information about the conformational state of each residue and require little material. Data from footprinting complement the global information available from small-angle X-ray scattering or cryo-electron microscopy, as well as the dynamic information derived from single-molecule Förster resonance energy transfer (FRET) and NMR methods. In this Account, I discuss how we have used hydroxyl radical footprinting and other experimental methods to study pathways of RNA folding and 30S ribosome assembly. Hydroxyl radical footprinting probes the solvent accessibility of the RNA backbone at each residue in as little as 10 ms, providing detailed views of RNA folding pathways in real time. In conjunction with other methods such as solution scattering and single-molecule FRET, time-resolved footprinting of ribozymes showed that stable domains of RNA tertiary structure fold in less than 1 s. However, the free energy landscapes for RNA folding are rugged, and individual molecules kinetically partition into folding pathways that lead through metastable intermediates, stalling the folding or assembly process. Time-resolved footprinting was used to follow the formation of tertiary structure and protein interactions in the 16S ribosomal RNA (rRNA) during the assembly of 30S ribosomes. As previously observed in much simpler ribozymes, assembly occurs in stages, with individual molecules taking different routes to the final complex. Interactions occur concurrently in all domains of the 16S rRNA, and multistage protection of binding sites of individual proteins suggests that initial encounter complexes between the rRNA and ribosomal proteins are remodeled during assembly. Equilibrium footprinting experiments showed that one primary binding protein was sufficient to stabilize the tertiary structure of the entire 16S 5'-domain. The rich detail available from the footprinting data showed that the secondary assembly protein S16 suppresses non-native structures in the 16S 5'-domain. In doing so, S16 enables a conformational switch distant from its own binding site, which may play a role in establishing interactions with other domains of the 30S subunit. Together, the footprinting results show how protein-induced changes in RNA structure are communicated over long distances, ensuring cooperative assembly of even very large RNA-protein complexes such as the ribosome.
Collapse
Affiliation(s)
- Sarah A. Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Wang L, Chance MR. Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting. Anal Chem 2011; 83:7234-41. [PMID: 21770468 DOI: 10.1021/ac200567u] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Structural MS is a rapidly growing field with many applications in basic research and pharmaceutical drug development. In this feature article the overall technology is described and several examples of how hydroxyl radical based footprinting MS can be used to map interfaces, evaluate protein structure, and identify ligand dependent conformational changes in proteins are described.
Collapse
Affiliation(s)
- Liwen Wang
- Center for Proteomics & Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
27
|
Kiselar JG, Chance MR. Future directions of structural mass spectrometry using hydroxyl radical footprinting. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:1373-82. [PMID: 20812376 PMCID: PMC3012749 DOI: 10.1002/jms.1808] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposure of proteins to a 'white' X-ray beam for milliseconds provides sufficient oxidative modification to surface amino acid side chains, which can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular subdomains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review, we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that the selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal-to-noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis-driven structural mass spectrometry experiments.
Collapse
Affiliation(s)
- Janna G Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
28
|
Kaur P, Kiselar JG, Chance MR. Integrated algorithms for high-throughput examination of covalently labeled biomolecules by structural mass spectrometry. Anal Chem 2009; 81:8141-9. [PMID: 19788317 DOI: 10.1021/ac9013644] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry based structural proteomics approaches for probing protein structures are increasingly gaining in popularity. The potential for such studies is limited because of the lack of analytical techniques for the automated interpretation of resulting data. In this article, a suite of algorithms called ProtMapMS is developed, integrated, and implemented specifically for the comprehensive automatic analysis of mass spectrometry data obtained for protein structure studies using covalent labeling. The functions include data format conversion, mass spectrum interpretation, detection, and verification of all peptide species, confirmation of the modified peptide products, and quantification of the extent of peptide modification. The results thus obtained provide valuable data for use in combination with computational approaches for protein structure modeling. The structures of both monomeric and hexameric forms of insulin were investigated by oxidative protein footprinting followed by high-resolution mass spectrometry. The resultant data was analyzed both manually and using ProtMapMS without any manual intervention. The results obtained using the two methods were found to be in close agreement and overall were consistent with predictions from the crystallographic structure.
Collapse
Affiliation(s)
- Parminder Kaur
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
29
|
Simmons K, Martin JS, Shcherbakova I, Laederach A. Rapid quantification and analysis of kinetic •OH radical footprinting data using SAFA. Methods Enzymol 2009; 468:47-66. [PMID: 20946764 DOI: 10.1016/s0076-6879(09)68003-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The use of highly reactive chemical species to probe the structure and dynamics of nucleic acids is greatly simplified by software that enables rapid quantification of the gel images that result from these experiments. Semiautomated footprinting analysis (SAFA) allows a user to quickly and reproducibly quantify a chemical footprinting gel image through a series of steps that rectify, assign, and integrate the relative band intensities. The output of this procedure is raw band intensities that report on the relative reactivity of each nucleotide with the chemical probe. We describe here how to obtain these raw band intensities using SAFA and the subsequent normalization and analysis procedures required to process these data. In particular, we focus on analyzing time-resolved hydroxyl radical ((•)OH) data, which we use to monitor the kinetics of folding of a large RNA (the L-21 T. thermophila group I intron). Exposing the RNA to bursts of (•)OH radicals at specific time points during the folding process monitors the time progress of the reaction. Specifically, we identify protected (nucleotides that become inaccessible to the (•)OH radical probe when folded) and invariant (nucleotides with constant accessibility to the (•)OH probe) residues that we use for monitoring and normalization of the data. With this analysis, we obtain time-progress curves from which we determine kinetic rates of folding. We also report on a data visualization tool implemented in SAFA that allows users to map data onto a secondary structure diagram.
Collapse
Affiliation(s)
- Katrina Simmons
- Developmental Genetics and Bioinformatics, Wadsworth Center, Albany, New York, USA
| | | | | | | |
Collapse
|
30
|
Newman CA, Resendiz MJE, Sczepanski JT, Greenberg MM. Photochemical generation and reactivity of the 5,6-dihydrouridin-6-yl radical. J Org Chem 2009; 74:7007-12. [PMID: 19691299 PMCID: PMC7831383 DOI: 10.1021/jo9012805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleobase radicals are the major family of reactive intermediates formed when nucleic acids are exposed to hydroxyl radical, which is produced by gamma-radiolysis and Fe.EDTA. Significant advances have been made in understanding the role of nucleobase radicals in oxidative DNA damage by independently generating these species from photochemical precursors. However, this approach has been used much less frequently to study RNA molecules. Norrish type I photocleavage of the tert-butyl ketone (2b) enabled studying the reactivity of 5'-benzoyl-5,6-dihydrouridin-6-yl (1b). High mass balances were observed under aerobic or anaerobic conditions, and O(2) did not affect the photochemical conversion of the ketone (2b) to 1b. Competition studies with O(2) indicate that the radical abstracts hydrogen atoms from beta-mercaptoethanol with a bimolecular rate constant = 2.6 +/- 0.5 x 10(6) M(-1)s(-1). The major product formed in the presence of O(2) was 5'-benzoyl-6-hydroxy-5,6-dihydrouridine (6). In contrast, 5-benzoyl-ribonolactone (7), a hypothetical product resulting from C1'-hydrogen atom abstraction by the peroxyl radical, could not be detected. Overall, tert-butyl ketone 2b is a clean source of 5'-benzoyl-5,6-dihydrouridin-6-yl (1b) and should prove useful for studying the reactivity of the respective radical in RNA.
Collapse
Affiliation(s)
- Cory A. Newman
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218
| | - Marino J. E. Resendiz
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218
| | - Jonathan T. Sczepanski
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218
| |
Collapse
|
31
|
Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proc Natl Acad Sci U S A 2009; 106:14367-72. [PMID: 19706523 DOI: 10.1073/pnas.0901074106] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Structural water molecules may act as prosthetic groups indispensable for proper protein function. In the case of allosteric activation of G protein-coupled receptors (GPCRs), water likely imparts structural plasticity required for agonist-induced signal transmission. Inspection of structures of GPCR superfamily members reveals the presence of conserved embedded water molecules likely important to GPCR function. Coupling radiolytic hydroxyl radical labeling with rapid H(2)O(18) solvent mixing, we observed no exchange of these structural waters with bulk solvent in either ground state or for the Meta II or opsin states. However, the radiolysis approach permitted labeling of selected side chain residues within the transmembrane helices and revealed activation-induced changes in local structural constraints likely mediated by dynamics of both water and protein. These results suggest both a possible general mechanism for water-dependent communication in family A GPCRs based on structural conservation, and a strategy for probing membrane protein structure.
Collapse
|
32
|
Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting. Nat Protoc 2008; 3:288-302. [PMID: 18274531 DOI: 10.1038/nprot.2007.533] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxyl radical (.OH) footprinting provides comprehensive site-specific quantitative information about the structural changes associated with macromolecular folding, interactions and ligand binding. 'Fast Fenton' footprinting is a laboratory-based method for time-resolved .OH footprinting capable of millisecond time resolution readily applicable to DNA and RNA. This protocol utilizes inexpensive chemical reagents (H2O2, Fe(NH4)2(SO4)2, EDTA, thiourea or ethanol) and widely available quench-flow mixers to reveal transient, often short-lived, intermediate states of complex biochemical processes. We describe a protocol developed to study RNA folding that can be readily tailored to particular applications. Once familiar with quench-flow mixer operation and its calibration, nucleic acid labeling and the conduct of a dose-response experiment, a single kinetic experiment of 30 time points takes about 1 h to perform. Sample processing and separation of the .OH reaction products takes several hours. Data analysis can take 45 min to several weeks depending on the depth of analysis conducted.
Collapse
|
33
|
Adilakshmi T, Bellur DL, Woodson SA. Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly. Nature 2008; 455:1268-72. [PMID: 18784650 DOI: 10.1038/nature07298] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 07/30/2008] [Indexed: 11/09/2022]
Abstract
Rapidly growing cells produce thousands of new ribosomes each minute, in a tightly regulated process that is essential to cell growth. How the Escherichia coli 16S ribosomal RNA and the 20 proteins that make up the 30S ribosomal subunit can assemble correctly in a few minutes remains a challenging problem, partly because of the lack of real-time data on the earliest stages of assembly. By providing snapshots of individual RNA and protein interactions as they emerge in real time, here we show that 30S assembly nucleates concurrently from different points along the rRNA. Time-resolved hydroxyl radical footprinting was used to map changes in the structure of the rRNA within 20 milliseconds after the addition of total 30S proteins. Helical junctions in each domain fold within 100 ms. In contrast, interactions surrounding the decoding site and between the 5', the central and the 3' domains require 2-200 seconds to form. Unexpectedly, nucleotides contacted by the same protein are protected at different rates, indicating that initial RNA-protein encounter complexes refold during assembly. Although early steps in assembly are linked to intrinsically stable rRNA structure, later steps correspond to regions of induced fit between the proteins and the rRNA.
Collapse
Affiliation(s)
- Tadepalli Adilakshmi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2685, USA
| | | | | |
Collapse
|
34
|
Sullivan MR, Rekhi S, Bohon J, Gupta S, Abel D, Toomey J, Chance MR. Installation and testing of a focusing mirror at beamline X28C for high flux x-ray radiolysis of biological macromolecules. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:025101. [PMID: 18315323 DOI: 10.1063/1.2839027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The NSLS X28C white-light beamline has been upgraded with a focusing mirror in order to provide increased x-ray density and a wide selection of beam shapes at the sample position. The cylindrical single crystal silicon mirror uses an Indalloy 51 liquid support bath as both a mechanism for heat transfer and a buoyant support to counter the effects of gravity and correct for minor parabolic slope errors. Calorimetric measurements were performed to verify that the calculated more than 200-fold increase in flux density is delivered by the mirror at the smallest beam spot. The properties of the focused beam relevant to radiolytic footprinting, namely, the physical dimensions of the beam, the effective hydroxyl radical dose delivered to the sample, and sample heating upon irradiation, have been studied at several mirror angles.
Collapse
Affiliation(s)
- Michael R Sullivan
- Center for Proteomics and Mass Spectrometry and Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland, Ohio 44106-4988, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Shcherbakova I, Mitra S, Beer RH, Brenowitz M. Following molecular transitions with single residue spatial and millisecond time resolution. Methods Cell Biol 2008; 84:589-615. [PMID: 17964944 DOI: 10.1016/s0091-679x(07)84019-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
"Footprinting" describes assays in which ligand binding or structure formation protects polymers such as nucleic acids and proteins from either cleavage or modification; footprinting allows the accessibility of individual residues to be mapped in solution. Equilibrium and time-dependent footprinting links site-specific structural information with thermodynamic and kinetic transitions, respectively. The hydroxyl radical (*OH) is a uniquely insightful footprinting probe by virtue of it being among the most reactive chemical oxidants; it reports the solvent accessibility of reactive sites on macromolecules with as fine as a single residue resolution. A novel method of millisecond time-resolved *OH footprinting is presented based on the Fenton reaction, Fe(II) + H(2)O(2) --> Fe(III) + *OH + OH(-). It is implemented using a standard three-syringe quench-flow mixer. The utility of this method is demonstrated by its application to the studies on RNA folding. Its applicability to a broad range of biological questions involving the function of DNA, RNA, and proteins is discussed.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
36
|
Xu G, Chance MR. Hydroxyl Radical-Mediated Modification of Proteins as Probes for Structural Proteomics. Chem Rev 2007; 107:3514-43. [PMID: 17683160 DOI: 10.1021/cr0682047] [Citation(s) in RCA: 513] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guozhong Xu
- Center for Proteomics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
37
|
Lease RA, Adilakshmi T, Heilman-Miller S, Woodson SA. Communication between RNA folding domains revealed by folding of circularly permuted ribozymes. J Mol Biol 2007; 373:197-210. [PMID: 17765924 PMCID: PMC2175375 DOI: 10.1016/j.jmb.2007.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 degrees C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 degrees C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T(1) digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.
Collapse
Affiliation(s)
| | | | | | - Sarah A. Woodson
- *Corresponding author: , tel: (410) 516-2015, fax: (410) 516-4118
| |
Collapse
|
38
|
Kieft JS, Costantino DA, Filbin ME, Hammond J, Pfingsten JS. Structural methods for studying IRES function. Methods Enzymol 2007; 430:333-71. [PMID: 17913644 DOI: 10.1016/s0076-6879(07)30013-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Internal ribosome entry sites (IRESs) substitute RNA sequences for some or all of the canonical translation initiation protein factors. Therefore, an important component of understanding IRES function is a description of the three-dimensional structure of the IRES RNA underlying this mechanism. This includes determining the degree to which the RNA folds, the global RNA architecture, and higher resolution information when warranted. Knowledge of the RNA structural features guides ongoing mechanistic and functional studies. In this chapter, we present a roadmap to structurally characterize a folded RNA, beginning from initial studies to define the overall architecture and leading to high-resolution structural studies. The experimental strategy presented here is not unique to IRES RNAs but is adaptable to virtually any RNA of interest, although characterization of RNA-protein interactions requires additional methods. Because IRES RNAs have a specific function, we present specific ways in which the data are interpreted to gain insight into that function. We provide protocols for key experiments that are particularly useful for studying IRES RNA structure and that provide a framework onto which additional approaches are integrated. The protocols we present are solution hydroxyl radical probing, RNase T1 probing, native gel electrophoresis, sedimentation velocity analytical ultracentrifugation, and strategies to engineer RNA for crystallization and to obtain initial crystals.
Collapse
Affiliation(s)
- Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, USA
| | | | | | | | | |
Collapse
|
39
|
Nguyenle T, Laurberg M, Brenowitz M, Noller HF. Following the dynamics of changes in solvent accessibility of 16 S and 23 S rRNA during ribosomal subunit association using synchrotron-generated hydroxyl radicals. J Mol Biol 2006; 359:1235-48. [PMID: 16725154 DOI: 10.1016/j.jmb.2006.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 11/22/2022]
Abstract
We have probed the structure and dynamics of ribosomal RNA in the Escherichia coli ribosome using equilibrium and time-resolved hydroxyl radical (OH) RNA footprinting to explore changes in the solvent-accessible surface of the rRNA with single-nucleotide resolution. The goal of these studies is to better understand the structural transitions that accompany association of the 30 S and 50 S subunits and to build a foundation for the quantitative analysis of ribosome structural dynamics during translation. Clear portraits of the subunit interface surfaces for 16 S and 23 S rRNA were obtained by constructing difference maps between the OH protection maps of the free subunits and that of the associated ribosome. In addition to inter-subunit contacts consistent with the crystal structure, additional OH protections are evident in regions at or near the subunit interface that reflect association-induced conformational changes. Comparison of these data with the comparable difference maps of the solvent-accessible surface of the rRNA calculated for the Thermus thermophilus X-ray crystal structures shows extensive agreement but also distinct differences. As a prelude to time-resolved OH footprinting studies, the reactivity profiles obtained using Fe(II)EDTA and X-ray generated OH were comprehensively compared. The reactivity patterns are similar except for a small number of nucleotides that have decreased reactivity to OH generated from Fe(II)EDTA compared to X-rays. These nucleotides are generally close to ribosomal proteins, which can quench diffusing radicals by virtue of side-chain oxidation. Synchrotron X-ray OH footprinting was used to monitor the kinetics of association of the 30 S and 50 S subunits. The rates individually measured for the inter-subunit contacts are comparable within experimental error. The application of this approach to the study of ribosome dynamics during the translation cycle is discussed.
Collapse
Affiliation(s)
- Thuylinh Nguyenle
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 95064, USA
| | | | | | | |
Collapse
|
40
|
Shcherbakova I, Mitra S, Beer RH, Brenowitz M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res 2006; 34:e48. [PMID: 16582097 PMCID: PMC1421499 DOI: 10.1093/nar/gkl055] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/14/2006] [Accepted: 02/24/2006] [Indexed: 11/20/2022] Open
Abstract
'Footprinting' describes assays in which ligand binding or structure formation protects polymers such as nucleic acids and proteins from either cleavage or modification; footprinting allows the accessibility of individual residues to be mapped in solution. Equilibrium and time-dependent footprinting links site-specific structural information with thermodynamic and kinetic transitions. The hydroxyl radical (*OH) is a particularly valuable footprinting probe by virtue of it being among the most reactive of chemical oxidants; it reports the solvent accessibility of reactive sites on macromolecules with as fine as a single residue resolution. A novel method of millisecond time-resolved .OH footprinting has been developed based on the Fenton reaction, Fe(II) + H2O2 --> Fe(III) + *OH + OH-. This method can be implemented in laboratories using widely available three-syringe quench flow mixers and inexpensive reagents to study local changes in the solvent accessibility of DNA, RNA and proteins associated with their biological function.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry, Albert Einstein College of Medicine1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Chemistry, Fordham University441 East Fordham Road, Bronx, NY 10458, USA
| | - Somdeb Mitra
- Department of Biochemistry, Albert Einstein College of Medicine1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Chemistry, Fordham University441 East Fordham Road, Bronx, NY 10458, USA
| | - Robert H. Beer
- Department of Chemistry, Fordham University441 East Fordham Road, Bronx, NY 10458, USA
| | - Michael Brenowitz
- To whom correspondence should be addressed. Tel: 00 1 718 430 3179; Fax: 00 1 718 430 8565;
| |
Collapse
|
41
|
Shcherbakova I, Brenowitz M. Perturbation of the hierarchical folding of a large RNA by the destabilization of its Scaffold's tertiary structure. J Mol Biol 2005; 354:483-96. [PMID: 16242711 DOI: 10.1016/j.jmb.2005.09.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/06/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
The P4-P6 domain serves as a scaffold against which the periphery and catalytic core organize and fold during Mg2+-mediated folding of the Tetrahymena thermophila ribozyme. The most prominent structural motif of the P4-P6 domain is the tetraloop-tetraloop receptor interaction which "clamps" the distal parts of its hairpin-like structure. Destabilization of the tertiary structure of the P4-P6 domain by perturbation of the tetraloop-tetraloop receptor interaction alters the Mg2+-mediated folding pathway. The folding hierarchy of P5c approximately P4-P6 > periphery > catalytic core that is a striking attribute of the folding of the wild-type RNA is abolished. The initial steps in folding of the mutant RNA are > or =50-fold faster than those of the wild-type ribozyme with the earliest observed tertiary contacts forming around regions known to specifically bind Mg2+. The interaction between the mutant tetraloop and the tetraloop receptor appears coincidently with slowly forming catalytic core tertiary contacts. Thus, the stability conferred upon the P4-P6 domain by the tetraloop-tetraloop receptor interaction dictates the preferred folding pathway by stabilizing an early intermediate. A sub-denaturing concentration of urea diminishes the early barrier to folding the wild-type ribozyme along with complex effects on the subsequent steps of folding the wild-type and mutant RNA.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
42
|
Adilakshmi T, Ramaswamy P, Woodson SA. Protein-independent Folding Pathway of the 16S rRNA 5′ Domain. J Mol Biol 2005; 351:508-19. [PMID: 16023137 DOI: 10.1016/j.jmb.2005.06.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/01/2005] [Accepted: 06/07/2005] [Indexed: 11/21/2022]
Abstract
Evolution of the ribosome from an RNA catalyst suggests that the intrinsic folding pathway of the rRNA dictates the hierarchy of ribosome assembly. To address this possibility, we probed the tertiary folding pathway of the 5' domain of the Escherichia coli 16S rRNA at 20 ms intervals using X-ray-dependent hydroxyl radical footprinting. Comparison with crystallographic structures and footprinting reactions on native 30S ribosomes showed that the RNA formed all of the predicted tertiary interactions in the absence of proteins. In 20 mM MgCl2, many tertiary interactions appeared within 20 ms. By contrast, interactions between H6, H15 and H17 near the spur of the 30S ribosome evolved over several minutes, likely due to mispairing of a central helix junction. The kinetic folding pathway of the RNA corresponded to the expected order of protein binding, suggesting that the RNA folding pathway forms the basis for early steps of ribosome assembly.
Collapse
Affiliation(s)
- Tadepalli Adilakshmi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-7865, USA
| | | | | |
Collapse
|
43
|
Gupta S, Mangel WF, Sullivan M, Takamoto K, Chance MR. Technical Reports: Mapping a Functional Viral Protein in Solution Using Synchrotron X-ray Footprinting Technology. ACTA ACUST UNITED AC 2005. [DOI: 10.1080/08940880500457537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Shcherbakova I, Gupta S, Chance MR, Brenowitz M. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme. J Mol Biol 2004; 342:1431-42. [PMID: 15364572 DOI: 10.1016/j.jmb.2004.07.092] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 07/26/2004] [Accepted: 07/27/2004] [Indexed: 11/23/2022]
Abstract
The time-course of monovalent cation-induced folding of the L-21 Sca1 Tetrahymena thermophila ribozyme and a selected mutant was quantitatively followed using synchrotron X-ray (.OH) footprinting. Initiating folding by increasing the concentration of either Na+ or K+ to 1.5M from an initial condition of approximately 0.008 M Na+ at 42 degrees C resulted in the complete formation of tertiary contacts within the P5abc subdomain and between the peripheral helices within the dead time of our measurements (k>50 s(-1)). These results contrast with folding rates of 2-0.2 s(-1) previously observed for formation of these contacts in 10mM Mg2+ from the same initial condition. Thus, the initial formation of native tertiary contacts is inhibited by divalent but not monovalent cations. The native contacts within the catalytic core form without a detectable burst phase at rates of 0.4-1.0 s(-1) in a manner reminiscent of the Mg2+-dependent folding behavior, although tenfold faster. The tertiary interactions stabilizing the catalytic core interaction with P4-P6 and P2.1, as well as one of the protections internal for the P4-P6 domain, display progress curves with appreciable burst amplitudes and a phase comparable in rate to that of the catalytic core. That the slow folding of the ribozyme's core is a consequence of the alt-P3 secondary structure is shown by the 100% burst phase amplitudes that are observed for folding of the U273A mutant ribozyme within which the native secondary structure (P3) is strengthened. Thus, formation of a misfolded intermediate(s) resulting from the alt-P3 secondary structure is independent of ion valency while the rate at which the respective intermediates are resolved is sensitive to ion valency. The overall portrait painted by these results is that ion valency differentially affects steps in the folding process and that folding in monovalent ion alone for the U273A mutant Tetrahymena ribozyme is fast and direct.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry and Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
45
|
Gupta S, Mangel WF, McGrath WJ, Perek JL, Lee DW, Takamoto K, Chance MR. DNA Binding Provides a Molecular Strap Activating the Adenovirus Proteinase. Mol Cell Proteomics 2004; 3:950-9. [PMID: 15220401 DOI: 10.1074/mcp.m400037-mcp200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human adenovirus proteinase (AVP) requires two cofactors for maximal activity: pVIc, a peptide derived from the C terminus of adenovirus precursor protein pVI, and the viral DNA. Synchrotron protein footprinting was used to map the solvent accessible cofactor binding sites and to identify conformational changes associated with the binding of cofactors to AVP. The binding of pVIc alone or pVIc and DNA together to AVP triggered significant conformational changes adjacent to the active site cleft sandwiched between the two AVP subdomains. In addition, upon binding of DNA to AVP, it was observed that specific residues on each of the two major subdomains were significantly protected from hydroxyl radicals. Based on the locations of these protected side-chain residues and conserved aromatic and positively charged residues within AVP, a three-dimensional model of DNA binding was constructed. The model indicated that DNA binding can alter the relative orientation of the two AVP domains leading to the partial activation of AVP by DNA. In addition, both pVIc and DNA may independently alter the active site conformation as well as drive it cooperatively to fully activate AVP.
Collapse
Affiliation(s)
- Sayan Gupta
- Center for Synchrotron Biosciences, Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Takamoto K, Chance MR, Brenowitz M. Semi-automated, single-band peak-fitting analysis of hydroxyl radical nucleic acid footprint autoradiograms for the quantitative analysis of transitions. Nucleic Acids Res 2004; 32:E119. [PMID: 15319447 PMCID: PMC516076 DOI: 10.1093/nar/gnh117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hydroxyl radical footprinting can probe the solvent accessibility of the ribose moiety of the individual nucleotides of DNA and RNA. Semi-automated analytical tools are presented for the quantitative analyses of nucleic acid footprint transitions in which processes such as folding or ligand binding are followed as a function of time or ligand concentration. Efficient quantitation of the intensities of the electrophoretic bands comprising the footprinting reaction products is achieved by fitting a series of Lorentzian curves to line profiles obtained from gels utilizing sequentially relaxed constraints consistent with electrophoretic mobility. An automated process of data 'standardization' has been developed that corrects for differences in the loading amounts in the electrophoresis. This process enhances the accuracy of the derived transitions and makes generating them easier. Together with visualization of the processed footprinting in false-color two-dimensional maps, DNA and RNA footprinting data can be accurately, precisely and efficiently processed allowing transitions to be objectively and comprehensively analyzed. The utility of this new analysis approach is illustrated by its application to the ion-meditated folding of a large RNA molecule.
Collapse
Affiliation(s)
- Keiji Takamoto
- Department of Biochemistry, Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
47
|
Tsen H, Levene SD. Analysis of Chemical and Enzymatic Cleavage Frequencies in Supercoiled DNA. J Mol Biol 2004; 336:1087-102. [PMID: 15037071 DOI: 10.1016/j.jmb.2003.12.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 11/16/2022]
Abstract
Chemical and enzymatic probing methods are powerful techniques for examining details of sequence-dependent structure in DNA and RNA. Reagents that cleave nucleic acid molecules in a structure-specific, but relatively sequence-non-specific manner, such as hydroxyl radical or DNase I, have been used widely to probe helical geometry in nucleic acid structures, nucleic acid-drug complexes, and in nucleoprotein assemblies. Application of cleavage-based techniques to structures present in superhelical DNA has been hindered by the fact that the cleavage pattern attributable to supercoiling-dependent structures is heavily mixed with non-specific cleavage signals that are inevitable products of multiple cleavage events. We present a rigorous mathematical procedure for extracting the cleavage pattern specific to supercoiled DNA and use this method to investigate the hydroxyl radical cleavage pattern in a cruciform DNA structure formed by a 60 bp inverted repeat sequence embedded in a negatively supercoiled plasmid. Our results support the presence of a stem-loop structure in the expected location and suggest that the helical geometry of the cruciform stem differs from that of the normal duplex form.
Collapse
Affiliation(s)
- Hua Tsen
- Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083, USA
| | | |
Collapse
|
48
|
Su LJ, Brenowitz M, Pyle AM. An Alternative Route for the Folding of Large RNAs: Apparent Two-state Folding by a Group II Intron Ribozyme. J Mol Biol 2003; 334:639-52. [PMID: 14636593 DOI: 10.1016/j.jmb.2003.09.071] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Despite a growing literature on the folding of RNA, our understanding of tertiary folding in large RNAs derives from studies on a small set of molecular examples, with primary focus on group I introns and RNase P RNA. To broaden the scope of RNA folding models and to better understand group II intron function, we have examined the tertiary folding of a ribozyme (D135) that is derived from the self-splicing ai5gamma intron from yeast mitochondria. The D135 ribozyme folds homogeneously and cooperatively into a compact, well-defined tertiary structure that includes all regions critical for active-site organization and substrate recognition. When D135 was treated with increasing concentrations of Mg(2+) and then subjected to hydroxyl radical footprinting, similar Mg(2+) dependencies were seen for internalization of all regions of the molecule, suggesting a highly cooperative folding behavior. In this work, we show that global folding and compaction of the molecule have the same magnesium dependence as the local folding previously observed. Furthermore, urea denaturation studies indicate highly cooperative unfolding of the ribozyme that is governed by thermodynamic parameters similar to those for forward folding. In fact, D135 folds homogeneously and cooperatively from the unfolded state to its native, active structure, thereby demonstrating functional reversibility in RNA folding. Taken together, the data are consistent with two-state folding of the D135 ribozyme, which is surprising given the size and multi-domain structure of the RNA. The findings establish that the accumulation of stable intermediates prior to formation of the native state is not a universal feature of RNA folding and that there is an alternative paradigm in which the folding landscape is relatively smooth, lacking rugged features that obstruct folding to the native state.
Collapse
Affiliation(s)
- Linhui Julie Su
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
49
|
Uchida T, Takamoto K, He Q, Chance MR, Brenowitz M. Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 2003; 328:463-78. [PMID: 12691754 DOI: 10.1016/s0022-2836(03)00247-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synchrotron hydroxyl radical (*OH) footprinting is a technique that monitors the local changes in solvent accessibility of the RNA backbone on milliseconds to minutes time-scales. The Mg(2+)-dependent folding of the L-21 Sca 1 Tetrahymena thermophila ribozyme has been followed using this technique at an elevated concentration of monovalent ion (200 mM NaCl) and as a function of the initial annealing conditions and substrate. Previous studies conducted at low concentrations of monovalent ion displayed sequential folding of the P4-P6 domain, the peripheral helices and the catalytic core, with each protection displaying monophasic kinetics. For ribozyme annealed in buffer containing 200 mM NaCl and folded by the addition of 10 mM MgCl(2), multiple kinetic phases are observed for *OH protections throughout the ribozyme. The independently folding P4-P6 domain is the first to fold with its protections displaying 50-90% burst phase amplitudes. That the folding of P4-P6 within the ribozyme does not display the 100% burst phase of isolated P4-P6 at 200 mM NaCl shows that interactions with the remainder of the ribozyme impede this domain's folding. In addition, *OH protections constituting each side of a tertiary contact are not coincident in some cases, consistent with the formation of transient non-native interactions. While the peripheral contacts and triple helical scaffold exhibit substantial burst phases, the slowest protection to appear is J8/7 in the catalytic core, which displays a minimal burst amplitude and whose formation is coincident with the recovery of catalytic activity. The number of kinetic phases as well as their amplitudes and rates are different when the ribozyme is annealed in low-salt buffer and folded by the concomitant addition of monovalent and divalent cations. Annealed substrate changes the partitioning of the ribozyme among the multiple folding populations. These results provide a map of the early steps in the ribozyme's folding landscape and the degree to which the preferred pathways are dependent upon the initial reaction conditions.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
50
|
Rangan P, Masquida B, Westhof E, Woodson SA. Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme. Proc Natl Acad Sci U S A 2003; 100:1574-9. [PMID: 12574513 PMCID: PMC149874 DOI: 10.1073/pnas.0337743100] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Compact but non-native intermediates have been implicated in the hierarchical folding of several large RNAs, but there is little information on their structure. In this article, ribonuclease and hydroxyl radical cleavage protection assays showed that base pairing of core helices stabilize a compact state of a small group I ribozyme from Azoarcus pre-tRNA(ile). Base pairing of the ribozyme core requires 10-fold less Mg(2+) than stable tertiary interactions, indicating that assembly of helices in the catalytic core represents a distinct phase that precedes the formation of native tertiary structure. Tertiary folding occurs in <100 ms at 37 degrees C. Such rapid folding is unprecedented among group I ribozymes and illustrates the association between structural complexity and folding time. A 3D model of the Azoarcus ribozyme was constructed by identifying homologous sequence motifs in rRNA. The model reveals distinct structural features, such as a large interface between the P4-P6 and P3-P9 domains, that may explain the unusual stability of the Azoarcus ribozyme and the cooperativity of folding.
Collapse
Affiliation(s)
- Prashanth Rangan
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|