1
|
Deng J, Ouyang P, Li W, Zhong L, Gu C, Shen L, Cao S, Yin L, Ren Z, Zuo Z, Deng J, Yan Q, Yu S. Curcumin Alleviates the Senescence of Canine Bone Marrow Mesenchymal Stem Cells during In Vitro Expansion by Activating the Autophagy Pathway. Int J Mol Sci 2021; 22:ijms222111356. [PMID: 34768788 PMCID: PMC8583405 DOI: 10.3390/ijms222111356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 12/16/2022] Open
Abstract
Senescence in mesenchymal stem cells (MSCs) not only hinders the application of MSCs in regenerative medicine but is also closely correlated with biological aging and the development of degenerative diseases. In this study, we investigated the anti-aging effects of curcumin (Cur) on canine bone marrow-derived MSCs (cBMSCs), and further elucidated the potential mechanism of action based on the modulation of autophagy. cBMSCs were expanded in vitro with standard procedures to construct a cell model of premature senescence. Our evidence indicates that compared with the third passage of cBMSCs, many typical senescence-associated phenotypes were observed in the sixth passage of cBMSCs. Cur treatment can improve cBMSC survival and retard cBMSC senescence according to observations that Cur (1 μM) treatment can improve the colony-forming unit-fibroblasts (CFU-Fs) efficiency and upregulated the mRNA expression of pluripotent transcription factors (SOX-2 and Nanog), as well as inhibiting the senescence-associated beta-galactosidase (SA-β-gal) activities and mRNA expression of the senescence-related markers (p16 and p21) and pro-inflammatory molecules (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)). Furthermore, Cur (0.1 μM~10 μM) was observed to increase autophagic activity, as identified by upregulation of microtubule-associated protein 1 light chain 3 (LC3), unc51-like autophagy-activating kinase-1 (ULK1), autophagy-related gene (Atg) 7 and Atg12, and the generation of type II of light chain 3 (LC3-II), thereby increasing autophagic vacuoles and acidic vesicular organelles, as well as causing a significant decrease in the p62 protein level. Moreover, the autophagy activator rapamycin (RAP) and Cur were found to partially ameliorate the senescent features of cBMSCs, while the autophagy inhibitor 3-methyladenine (3-MA) was shown to aggravate cBMSCs senescence and Cur treatment was able to restore the suppressed autophagy and counteract 3-MA-induced cBMSC senescence. Hence, our study highlights the important role of Cur-induced autophagy and its effects for ameliorating cBMSC senescence and provides new insight for delaying senescence and improving the therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Jiaqiang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Weiyao Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Lijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Congwei Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- Laboratory Animal Centre, Southwest Medical University, Luzhou 646000, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- Correspondence: (Q.Y.); (S.Y.); Tel.: +86-139-8160-8208 (Q.Y.); +86-189-8057-3629 (S.Y.)
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- Correspondence: (Q.Y.); (S.Y.); Tel.: +86-139-8160-8208 (Q.Y.); +86-189-8057-3629 (S.Y.)
| |
Collapse
|
2
|
Celaya AM, Sánchez-Pérez I, Bermúdez-Muñoz JM, Rodríguez-de la Rosa L, Pintado-Berninches L, Perona R, Murillo-Cuesta S, Varela-Nieto I. Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss. eLife 2019; 8:39159. [PMID: 30938680 PMCID: PMC6464786 DOI: 10.7554/elife.39159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) such as p38 and the c-Jun N-terminal kinases (JNKs) are activated during the cellular response to stress signals. Their activity is regulated by the MAPK-phosphatase 1 (DUSP1), a key component of the anti-inflammatory response. Stress kinases are well-described elements of the response to otic injury and the otoprotective potential of JNK inhibitors is being tested in clinical trials. By contrast, there are no studies exploring the role of DUSP1 in hearing and hearing loss. Here we show that Dusp1 expression is age-regulated in the mouse cochlea. Dusp1 gene knock-out caused premature progressive hearing loss, as confirmed by auditory evoked responses in Dusp1-/- mice. Hearing loss correlated with cell death in hair cells, degeneration of spiral neurons and increased macrophage infiltration. Dusp1-/- mouse cochleae showed imbalanced redox status and dysregulated expression of cytokines. These data suggest that DUSP1 is essential for cochlear homeostasis in the response to stress during ageing.
Collapse
Affiliation(s)
- Adelaida M Celaya
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Sánchez-Pérez
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Biochemistry Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Biomedicine Unit UCLM-CSIC, Madrid, Spain
| | - Jose M Bermúdez-Muñoz
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Laura Pintado-Berninches
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Rosario Perona
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Domingo-Calap P, Segredo-Otero E, Durán-Moreno M, Sanjuán R. Social evolution of innate immunity evasion in a virus. Nat Microbiol 2019; 4:1006-1013. [PMID: 30833734 PMCID: PMC6544518 DOI: 10.1038/s41564-019-0379-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
Antiviral immunity has been studied extensively from the perspective of
virus-cell interactions, yet the role of virus-virus interactions remains poorly
addressed. Here we demonstrate that viral escape from interferon (IFN)-based
innate immunity is a social process in which IFN-stimulating viruses determine
the fitness of neighbor viruses. We propose a general and simple
social-evolution framework to analyze how natural selection acts on IFN
shutdown, and validate it in cell cultures and mice infected with vesicular
stomatitis virus (VSV). Additionally, we find that IFN shutdown is costly
because it reduces short-term viral progeny production, thus fulfilling the
definition of an altruistic trait. Hence, in well-mixed populations the
IFN-blocking wild-type virus is susceptible to invasion by IFN-stimulating
variants, and spatial structure consequently determines whether IFN shutdown can
evolve. Our findings reveal that fundamental social evolution rules govern viral
innate immunity evasion and virulence, and suggest possible antiviral
interventions.
Collapse
Affiliation(s)
- Pilar Domingo-Calap
- Institute for Integrative Systems Biology, Universitat de València-Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Ernesto Segredo-Otero
- Institute for Integrative Systems Biology, Universitat de València-Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - María Durán-Moreno
- Institute for Integrative Systems Biology, Universitat de València-Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Universitat de València-Consejo Superior de Investigaciones Científicas, Paterna, Spain.
| |
Collapse
|
4
|
Andreu-Moreno I, Sanjuán R. Collective Infection of Cells by Viral Aggregates Promotes Early Viral Proliferation and Reveals a Cellular-Level Allee Effect. Curr Biol 2018; 28:3212-3219.e4. [PMID: 30318351 PMCID: PMC6783297 DOI: 10.1016/j.cub.2018.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/17/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
In addition to the conventional release of free, individual virions, virus dispersal can involve multi-virion assemblies that collectively infect cells. However, the implications of collective infection for viral fitness remain largely unexplored. Using vesicular stomatitis virus, here, we compare the fitness of free versus saliva-aggregated viral particles. We find that aggregation has a positive effect on early progeny production, conferring a fitness advantage relative to equal numbers of free particles in most cell types. The advantage of aggregation resides, at least partially, in increasing the cellular multiplicity of infection. In mouse embryonic fibroblasts, the per capita, short-term viral progeny production peaked for a dose of ca. three infectious particles per cell. This reveals an Allee effect restricting early viral proliferation at the cellular level, which should select for dispersal in groups. We find that genetic complementation between deleterious mutants is probably not the mechanism underlying the fitness advantage of collective infection. Instead, this advantage is cell type dependent and correlates with cellular permissivity to the virus, as well as with the ability of host cells to mount an antiviral innate immune response.
Collapse
Affiliation(s)
- Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, C/Catedrático Agustín Escardino 9, Paterna, València 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, C/Catedrático Agustín Escardino 9, Paterna, València 46980, Spain.
| |
Collapse
|
5
|
Tacconi EM, Lai X, Folio C, Porru M, Zonderland G, Badie S, Michl J, Sechi I, Rogier M, Matía García V, Batra AS, Rueda OM, Bouwman P, Jonkers J, Ryan A, Reina-San-Martin B, Hui J, Tang N, Bruna A, Biroccio A, Tarsounas M. BRCA1 and BRCA2 tumor suppressors protect against endogenous acetaldehyde toxicity. EMBO Mol Med 2018; 9:1398-1414. [PMID: 28729482 PMCID: PMC5623864 DOI: 10.15252/emmm.201607446] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of genome integrity requires the functional interplay between Fanconi anemia (FA) and homologous recombination (HR) repair pathways. Endogenous acetaldehyde, a product of cellular metabolism, is a potent source of DNA damage, particularly toxic to cells and mice lacking the FA protein FANCD2. Here, we investigate whether HR-compromised cells are sensitive to acetaldehyde, similarly to FANCD2-deficient cells. We demonstrate that inactivation of HR factors BRCA1, BRCA2, or RAD51 hypersensitizes cells to acetaldehyde treatment, in spite of the FA pathway being functional. Aldehyde dehydrogenases (ALDHs) play key roles in endogenous acetaldehyde detoxification, and their chemical inhibition leads to cellular acetaldehyde accumulation. We find that disulfiram (Antabuse), an ALDH2 inhibitor in widespread clinical use for the treatment of alcoholism, selectively eliminates BRCA1/2-deficient cells. Consistently, Aldh2 gene inactivation suppresses proliferation of HR-deficient mouse embryonic fibroblasts (MEFs) and human fibroblasts. Hypersensitivity of cells lacking BRCA2 to acetaldehyde stems from accumulation of toxic replication-associated DNA damage, leading to checkpoint activation, G2/M arrest, and cell death. Acetaldehyde-arrested replication forks require BRCA2 and FANCD2 for protection against MRE11-dependent degradation. Importantly, acetaldehyde specifically inhibits in vivo the growth of BRCA1/2-deficient tumors and ex vivo in patient-derived tumor xenograft cells (PDTCs), including those that are resistant to poly (ADP-ribose) polymerase (PARP) inhibitors. The work presented here therefore identifies acetaldehyde metabolism as a potential therapeutic target for the selective elimination of BRCA1/2-deficient cells and tumors.
Collapse
Affiliation(s)
- Eliana Mc Tacconi
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Xianning Lai
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Cecilia Folio
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Manuela Porru
- Area of Translational Research, Regina Elena National Cancer Institute, Rome, Italy
| | - Gijs Zonderland
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Sophie Badie
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Johanna Michl
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Irene Sechi
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Mélanie Rogier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Verónica Matía García
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Oscar M Rueda
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Peter Bouwman
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anderson Ryan
- Department of Oncology, Lung Cancer Translational Science Research Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Joannie Hui
- Department of Chemical Pathology and Paediatrics, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Nelson Tang
- Department of Chemical Pathology and Paediatrics, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | - Annamaria Biroccio
- Area of Translational Research, Regina Elena National Cancer Institute, Rome, Italy
| | - Madalena Tarsounas
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Abstract
Activation of oncogenic signaling paradoxically results in the permanent withdrawal from cell cycle and induction of senescence (oncogene-induced senescence (OIS)). OIS is a fail-safe mechanism used by the cells to prevent uncontrolled tumor growth, and, as such, it is considered as the first barrier against cancer. In order to progress, tumor cells thus need to first overcome the senescent phenotype. Despite the increasing attention gained by OIS in the past 20 years, this field is still rather young due to continuous emergence of novel pathways and processes involved in OIS. Among the many factors contributing to incomplete understanding of OIS are the lack of unequivocal markers for senescence and the complexity of the phenotypes revealed by senescent cells in vivo and in vitro. OIS has been shown to play major roles at both the cellular and organismal levels in biological processes ranging from embryonic development to barrier to cancer progression. Here we will briefly outline major advances in methodologies that are being utilized for induction, identification, and characterization of molecular processes in cells undergoing oncogene-induced senescence. The full description of such methodologies is provided in the corresponding chapters of the book.
Collapse
|
7
|
Silencing of the lncRNA Zeb2-NAT facilitates reprogramming of aged fibroblasts and safeguards stem cell pluripotency. Nat Commun 2018; 9:94. [PMID: 29311544 PMCID: PMC5758807 DOI: 10.1038/s41467-017-01921-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
Aging imposes a barrier to somatic cell reprogramming through poorly understood mechanisms. Here, we report that fibroblasts from old mice express higher levels of Zeb2, a transcription factor that activates epithelial-to-mesenchymal transition. Synthesis of Zeb2 protein is controlled by a natural antisense transcript named Zeb2-NAT. We show that transfection of adult fibroblasts with specific LNA Gapmers induces a robust downregulation of Zeb2-NAT transcripts and Zeb2 protein and enhances the reprogramming of old fibroblasts into pluripotent cells. We further demonstrate that Zeb2-NAT expression is precociously activated by differentiation stimuli in embryonic stem (ES) cells. By knocking down Zeb2-NAT, we were able to maintain ES cells challenged with commitment signals in the ground state of pluripotency. In conclusion, our study identifies a long noncoding RNA that is overlapping and antisense to the Zeb2 locus as a target for rejuvenation strategies. The efficiency of somatic cell reprogramming is lowered by ageing. Here the authors show that the transcription factor Zeb2 and its long non-coding RNA Zeb2-NAT are expressed at high levels in older fibroblasts and their inhibition increases reprogramming efficiency.
Collapse
|
8
|
Sakai T, Imai J, Ito T, Takagaki H, Ui M, Hatta S. The novel antioxidant TA293 reveals the role of cytoplasmic hydroxyl radicals in oxidative stress-induced senescence and inflammation. Biochem Biophys Res Commun 2017; 482:1183-1189. [DOI: 10.1016/j.bbrc.2016.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
|
9
|
Vilas JM, Ferreirós A, Carneiro C, Morey L, Da Silva-Álvarez S, Fernandes T, Abad M, Di Croce L, García-Caballero T, Serrano M, Rivas C, Vidal A, Collado M. Transcriptional regulation of Sox2 by the retinoblastoma family of pocket proteins. Oncotarget 2015; 6:2992-3002. [PMID: 25576924 PMCID: PMC4413632 DOI: 10.18632/oncotarget.2996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/14/2014] [Indexed: 11/25/2022] Open
Abstract
Cellular reprogramming to iPSCs has uncovered unsuspected links between tumor suppressors and pluripotency factors. Using this system, it was possible to identify tumor suppressor p27 as a repressor of Sox2 during differentiation. This led to the demonstration that defects in the repression of Sox2 can contribute to tumor development. The members of the retinoblastoma family of pocket proteins, pRb, p107 and p130, are negative regulators of the cell cycle with tumor suppressor activity and with roles in differentiation. In this work we studied the relative contribution of the retinoblastoma family members to the regulation of Sox2 expression. We found that deletion of Rb or p130 leads to impaired repression of Sox2, a deffect amplified by inactivation of p53. We also identified binding of pRb and p130 to an enhancer with crucial regulatory activity on Sox2 expression. Using cellular reprogramming we tested the impact of the defective repression of Sox2 and confirmed that Rb deficiency allows the generation of iPSCs in the absence of exogenous Sox2. Finally, partial depletion of Sox2 positive cells reduced the pituitary tumor development initiated by Rb loss in vivo. In summary, our results show that Sox2 repression by pRb is a relevant mechanism of tumor suppression.
Collapse
Affiliation(s)
- Jéssica M Vilas
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, E15706 Santiago de Compostela, Spain
| | - Alba Ferreirós
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, E15706 Santiago de Compostela, Spain
| | - Carmen Carneiro
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), E15782 Santiago de Compostela, Spain
| | - Lluis Morey
- Centre for Genomic Regulation and UPF, E08003 Barcelona, Spain
| | - Sabela Da Silva-Álvarez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, E15706 Santiago de Compostela, Spain
| | - Tânia Fernandes
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), E15782 Santiago de Compostela, Spain
| | - María Abad
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), E28029 Madrid, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation and UPF, E08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), E08010 Barcelona, Spain
| | - Tomás García-Caballero
- Departamento de Ciencias Morfológicas, Facultad de Medicina. USC. Complejo Hospitalario de Santiago (CHUS), SERGAS, E15706, Santiago de Compostela, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), E28029 Madrid, Spain
| | - Carmen Rivas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, E28049 Madrid, Spain.,Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), E15706 Santiago de Compostela, Spain
| | - Anxo Vidal
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), E15782 Santiago de Compostela, Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, E15706 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Hernández-Alonso P, Garijo R, Cuevas JM, Sanjuán R. Experimental evolution of an RNA virus in cells with innate immunity defects. Virus Evol 2015; 1:vev008. [PMID: 27774280 PMCID: PMC5014476 DOI: 10.1093/ve/vev008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Experimental evolution studies have shown that RNA viruses respond rapidly to directional selection and thus can adapt efficiently to changes in host cell tropism, antiviral drugs, or other imposed selective pressures. However, the evolution of RNA viruses under relaxed selection has been less extensively explored. Here, we evolved vesicular stomatitis virus in mouse embryonic fibroblasts knocked-out for PKR, a protein with a central role in antiviral innate immunity. Vesicular stomatitis virus adapted to PKR-negative mouse embryonic fibroblasts in a gene-specific manner, since the evolved viruses exhibited little or no fitness improvement in PKR-positive cells. Full-length sequencing revealed the presence of multiple parallel nucleotide substitutions arising in independent evolution lines. However, site-directed mutagenesis showed that the effects of these substitutions were not PKR dependent. In contrast, we found evidence for sign epistasis, such that a given substitution which was positively selected was strongly deleterious when tested as a single mutation. Our results suggest that virus evolution in cells with specific innate immunity defects may drive viral specialization. However, this process is not deterministic at the molecular level, probably because the fixation of mutations which are tolerated under a relaxed selection regime is governed mainly by random genetic drift.
Collapse
Affiliation(s)
- Pablo Hernández-Alonso
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Departament de Genètica, Universitat de València, Paterna 46980, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Departament de Genètica, Universitat de València, Paterna 46980, Spain
| | - José M Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Departament de Genètica, Universitat de València, Paterna 46980, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Departament de Genètica, Universitat de València, Paterna 46980, Spain
| |
Collapse
|
11
|
Badie S, Carlos AR, Folio C, Okamoto K, Bouwman P, Jonkers J, Tarsounas M. BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres. EMBO J 2015; 34:410-24. [PMID: 25582120 PMCID: PMC4339125 DOI: 10.15252/embj.201488947] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/29/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022] Open
Abstract
Loss of telomere protection occurs during physiological cell senescence and ageing, due to attrition of telomeric repeats and insufficient retention of the telomere-binding factor TRF2. Subsequently formed telomere fusions trigger rampant genomic instability leading to cell death or tumorigenesis. Mechanistically, telomere fusions require either the classical non-homologous end-joining (C-NHEJ) pathway dependent on Ku70/80 and LIG4, or the alternative non-homologous end-joining (A-NHEJ), which relies on PARP1 and LIG3. Here, we show that the tumour suppressor BRCA1, together with its interacting partner CtIP, both acting in end resection, also promotes end-joining of uncapped telomeres. BRCA1 and CtIP do not function in the ATM-dependent telomere damage signalling, nor in telomere overhang removal, which are critical for telomere fusions by C-NHEJ. Instead, BRCA1 and CtIP act in the same pathway as LIG3 to promote joining of de-protected telomeres by A-NHEJ. Our work therefore ascribes novel roles for BRCA1 and CtIP in end-processing and fusion reactions at uncapped telomeres, underlining the complexity of DNA repair pathways that act at chromosome ends lacking protective structures. Moreover, A-NHEJ provides a mechanism of previously unanticipated significance in telomere dysfunction-induced genome instability.
Collapse
Affiliation(s)
- Sophie Badie
- Telomere and Genome Stability Group, The CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Oxford, UK
| | - Ana Rita Carlos
- Telomere and Genome Stability Group, The CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Oxford, UK
| | - Cecilia Folio
- Telomere and Genome Stability Group, The CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Oxford, UK
| | - Keiji Okamoto
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter Bouwman
- Division of Molecular Pathology and Cancer Systems Biology Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Systems Biology Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Madalena Tarsounas
- Telomere and Genome Stability Group, The CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Oxford, UK
| |
Collapse
|
12
|
Rojo AI, Rada P, Mendiola M, Ortega-Molina A, Wojdyla K, Rogowska-Wrzesinska A, Hardisson D, Serrano M, Cuadrado A. The PTEN/NRF2 axis promotes human carcinogenesis. Antioxid Redox Signal 2014; 21:2498-514. [PMID: 24892215 PMCID: PMC4245871 DOI: 10.1089/ars.2014.5843] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS A recent study conducted in mice reported that liver-specific knockout of tumor suppressor Pten augments nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcriptional activity. Here, we further investigated how phosphatase and tensin homolog deleted on chromosome 10 (PTEN) controls NRF2 and the relevance of this pathway in human carcin ogenesis. RESULTS Drug and genetic targeting to PTEN and phosphoproteomics approaches indicated that PTEN leads to glycogen synthase kinase-3 (GSK-3)-mediated phosphorylation of NRF2 at residues Ser(335) and Ser(338) and subsequent beta-transducin repeat containing protein (β-TrCP)-dependent but Kelch-like ECH-associated protein 1 (KEAP1)-independent degradation. Rescue experiments in PTEN-deficient cells and xerographs in athymic mice indicated that loss of PTEN leads to increased NRF2 signature which provides a proliferating and tumorigenic advantage. Tissue microarrays from endometrioid carcinomas showed that 80% of PTEN-negative tumors expressed high levels of NRF2 or its target heme oxygenase-1 (HO-1). INNOVATION These results uncover a new mechanism of oncogenic activation of NRF2 by loss of its negative regulation by PTEN/GSK-3/β-TrCP that may be relevant to a large number of tumors, including endometrioid carcinomas. CONCLUSION Increased activity of NRF2 due to loss of PTEN is instrumental in human carcinogenesis and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Ana I Rojo
- 1 Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , and Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Garijo R, Hernández-Alonso P, Rivas C, Diallo JS, Sanjuán R. Experimental evolution of an oncolytic vesicular stomatitis virus with increased selectivity for p53-deficient cells. PLoS One 2014; 9:e102365. [PMID: 25010337 PMCID: PMC4092128 DOI: 10.1371/journal.pone.0102365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/18/2014] [Indexed: 12/17/2022] Open
Abstract
Experimental evolution has been used for various biotechnological applications including protein and microbial cell engineering, but less commonly in the field of oncolytic virotherapy. Here, we sought to adapt a rapidly evolving RNA virus to cells deficient for the tumor suppressor gene p53, a hallmark of cancer cells. To achieve this goal, we established four independent evolution lines of the vesicular stomatitis virus (VSV) in p53-knockout mouse embryonic fibroblasts (p53-/- MEFs) under conditions favoring the action of natural selection. We found that some evolved viruses showed increased fitness and cytotoxicity in p53-/- cells but not in isogenic p53+/+ cells, indicating gene-specific adaptation. However, full-length sequencing revealed no obvious or previously described genetic changes associated with oncolytic activity. Half-maximal effective dose (EC50) assays in mouse p53-positive colon cancer (CT26) and p53-deficient breast cancer (4T1) cells indicated that the evolved viruses were more effective against 4T1 cells than the parental virus or a reference oncolytic VSV (MΔ51), but showed no increased efficacy against CT26 cells. In vivo assays using 4T1 syngeneic tumor models showed that one of the evolved lines significantly delayed tumor growth compared to mice treated with the parental virus or untreated controls, and was able to induce transient tumor suppression. Our results show that RNA viruses can be specifically adapted typical cancer features such as p53 inactivation, and illustrate the usefulness of experimental evolution for oncolytic virotherapy.
Collapse
Affiliation(s)
- Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pablo Hernández-Alonso
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Carmen Rivas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Madrid, Spain
- Centro de Investigación en Medicina Molecular (CIMUS) and Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
- Department of Genetics, Universidad de Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
14
|
Carlos AR, Escandell JM, Kotsantis P, Suwaki N, Bouwman P, Badie S, Folio C, Benitez J, Gomez-Lopez G, Pisano DG, Jonkers J, Tarsounas M. ARF triggers senescence in Brca2-deficient cells by altering the spectrum of p53 transcriptional targets. Nat Commun 2013; 4:2697. [PMID: 24162189 DOI: 10.1038/ncomms3697] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/02/2013] [Indexed: 01/12/2023] Open
Abstract
ARF is a tumour suppressor activated by oncogenic stress, which stabilizes p53. Although p53 is a key component of the response to DNA damage, a similar function for ARF has not been ascribed. Here we show that primary mouse and human cells lacking the tumour suppressor BRCA2 accumulate DNA damage, which triggers checkpoint signalling and ARF activation. Furthermore, senescence induced by Brca2 deletion in primary mouse and human cells is reversed by the loss of ARF, a phenotype recapitulated in cells lacking RAD51. Surprisingly, ARF is not necessary for p53 accumulation per se but for altering the spectrum of genes activated by this transcription factor. Specifically, ARF enables p53 transcription of Dusp4 and Dusp7, which encode a pair of phosphatases known to inactivate the MAP kinases ERK1/2. Our results ascribe a previously unanticipated function to the ARF tumour suppressor in genome integrity, controlled by replicative stress and ATM/ATR-dependent checkpoint responses.
Collapse
Affiliation(s)
- Ana Rita Carlos
- 1] Telomere and Genome Stability Group, The CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Old Campus Road, Oxford OX3 7DQ, UK [2] [3]
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Saha M, Carriere A, Cheerathodi M, Zhang X, Lavoie G, Rush J, Roux PP, Ballif BA. RSK phosphorylates SOS1 creating 14-3-3-docking sites and negatively regulating MAPK activation. Biochem J 2012; 447:159-66. [PMID: 22827337 PMCID: PMC4198020 DOI: 10.1042/bj20120938] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The extent and duration of MAPK (mitogen-activated protein kinase) signalling govern a diversity of normal and aberrant cellular outcomes. Genetic and pharmacological disruption of the MAPK-activated kinase RSK (ribosomal S6 kinase) leads to elevated MAPK activity indicative of a RSK-dependent negative feedback loop. Using biochemical, pharmacological and quantitative MS approaches we show that RSK phosphorylates the Ras activator SOS1 (Son of Sevenless homologue 1) in cultured cells on two C-terminal residues, Ser(1134) and Ser(1161). Furthermore, we find that RSK-dependent SOS1 phosphorylation creates 14-3-3-binding sites. We show that mutating Ser(1134) and Ser(1161) disrupts 14-3-3 binding and modestly increases and extends MAPK activation. Together these data suggest that one mechanism whereby RSK negatively regulates MAPK activation is via site-specific SOS1 phosphorylation.
Collapse
Affiliation(s)
- Madhurima Saha
- Department of Biology, University of Vermont, Burlington, VT, 05405, U.S.A
| | - Audrey Carriere
- Institute for Research in Immunology and Cancer (IRIC), Montréal, Québec, Canada H3C 3J7
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | - Xiaocui Zhang
- Institute for Research in Immunology and Cancer (IRIC), Montréal, Québec, Canada H3C 3J7
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Montréal, Québec, Canada H3C 3J7
| | - John Rush
- Cell Signaling Technology, Inc., 3 Trask Lane, Danvers, MA, 01923, U.S.A
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer (IRIC), Montréal, Québec, Canada H3C 3J7
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Bryan A. Ballif
- Department of Biology, University of Vermont, Burlington, VT, 05405, U.S.A
| |
Collapse
|
16
|
Culurgioni S, Muñoz IG, Moreno A, Palacios A, Villate M, Palmero I, Montoya G, Blanco FJ. Crystal structure of inhibitor of growth 4 (ING4) dimerization domain reveals functional organization of ING family of chromatin-binding proteins. J Biol Chem 2012; 287:10876-84. [PMID: 22334692 DOI: 10.1074/jbc.m111.330001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The protein ING4 binds to histone H3 trimethylated at Lys-4 (H3K4me3) through its C-terminal plant homeodomain, thus recruiting the HBO1 histone acetyltransferase complex to target promoters. The structure of the plant homeodomain finger bound to an H3K4me3 peptide has been described, as well as the disorder and flexibility in the ING4 central region. We report the crystal structure of the ING4 N-terminal domain, which shows an antiparallel coiled-coil homodimer with each protomer folded into a helix-loop-helix structure. This arrangement suggests that ING4 can bind simultaneously two histone tails on the same or different nucleosomes. Dimerization has a direct impact on ING4 tumor suppressor activity because monomeric mutants lose the ability to induce apoptosis after genotoxic stress. Homology modeling based on the ING4 structure suggests that other ING dimers may also exist.
Collapse
|
17
|
Rabien A, Sanchez-Ruderisch H, Schulz P, Otto N, Wimmel A, Wiedenmann B, Detjen KM. Tumor suppressor p16INK4a controls oncogenic K-Ras function in human pancreatic cancer cells. Cancer Sci 2011; 103:169-75. [DOI: 10.1111/j.1349-7006.2011.02140.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
18
|
Muñoz-Fontela C, González D, Marcos-Villar L, Campagna M, Gallego P, González-Santamaría J, Herranz D, Gu W, Serrano M, Aaronson SA, Rivas C. Acetylation is indispensable for p53 antiviral activity. Cell Cycle 2011; 10:3701-5. [PMID: 22033337 DOI: 10.4161/cc.10.21.17899] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor p53 is known to be a direct transcriptional target of type I interferons (IFNs), contributing to virus-induced apoptosis, and in turn activating itself the interferon pathway. Acetylation, among many other post-translational modifications of p53, is thought to exert a crucial role regulating p53 activity. Here, we examined the contribution of this modification on the antiviral activity mediated by p53. Our results show that virus infection induces p53 acetylation at lysine 379, and that this modification is absolutely required for p53-dependent transcriptional transactivation of both, pro-apoptotic and IFN-stimulated genes induced by virus infection, and for p53-mediated control of virus replication. Thus, our study identifies p53 acetylation as an indispensable event that enables the p53-mediated antiviral response.
Collapse
Affiliation(s)
- Cesar Muñoz-Fontela
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Campagna M, Herranz D, Garcia MA, Marcos-Villar L, González-Santamaría J, Gallego P, Gutierrez S, Collado M, Serrano M, Esteban M, Rivas C. SIRT1 stabilizes PML promoting its sumoylation. Cell Death Differ 2011; 18:72-9. [PMID: 20577263 PMCID: PMC3131875 DOI: 10.1038/cdd.2010.77] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 12/18/2022] Open
Abstract
SIRT1, the closest mammalian homolog of yeast Sir2, is an NAD(+)-dependent deacetylase with relevant functions in cancer, aging, and metabolism among other processes. SIRT1 has a diffuse nuclear localization but is recruited to the PML nuclear bodies (PML-NBs) after PML upregulation. However, the functions of SIRT1 in the PML-NBs are unknown. In this study we show that primary mouse embryo fibroblasts lacking SIRT1 contain reduced PML protein levels that are increased after reintroduction of SIRT1. In addition, overexpression of SIRT1 in HEK-293 cells increases the amount of PML protein whereas knockdown of SIRT1 reduces the size and number of PML-NBs and the levels of PML protein in HeLa cells. SIRT1 stimulates PML sumoylation in vitro and in vivo in a deacetylase-independent manner. Importantly, the absence of SIRT1 reduces the apoptotic response of vesicular stomatitis virus-infected cells and favors the extent of this PML-sensitive virus replication. These results show a novel function of SIRT1 in the control of PML and PML-NBs.
Collapse
Affiliation(s)
- M Campagna
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - D Herranz
- Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - M A Garcia
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento sn, Granada 18100, Spain
| | - L Marcos-Villar
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
- Departamento de Microbiología II, Fac Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal sn, Madrid 28040, Spain
| | - J González-Santamaría
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - P Gallego
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - S Gutierrez
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - M Collado
- Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - M Serrano
- Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - M Esteban
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - C Rivas
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| |
Collapse
|
20
|
Tan Y, Chen Y, Yu L, Zhu H, Meng X, Huang X, Meng L, Ding M, Wang Z, Shan L. Two-fold elevation of expression of FoxM1 transcription factor in mouse embryonic fibroblasts enhances cell cycle checkpoint activity by stimulating p21 and Chk1 transcription. Cell Prolif 2010; 43:494-504. [PMID: 20887555 DOI: 10.1111/j.1365-2184.2010.00699.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Forkhead Box M1 (FoxM1) transcription factor regulates expression of cell cycle effective genes and is stabilized by checkpoint kinase 2 (Chk2) to stimulate expression of DNA repair enzymes in response to DNA damage. This study intended to test whether FoxM1 is involved in cell cycle checkpoint pathways. MATERIALS AND METHODS Analysis of senescence and cell proliferation in FoxM1 transgenic (TG) mouse embryonic fibroblasts (MEFs) with 2-fold elevation of FoxM1, and overexpression or knockdown of FoxM1 in an inducible FoxM1 expression cell line, or FoxM1 siRNA. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assays (EMSA), and cotransfection to determine FoxM1 transcription targets, as well as RNase protection assays and western blot analysis, were performed. RESULTS Two-fold elevation of FoxM1 in FoxM1-TG-MEFs resulted in low levels of cell proliferation and increase in permanent cell cycle arrest at early passages (from passage 6 to 9). These phenotypes correlated with increased phosphorylation of p53 on Ser15, elevated expression of cell cycle inhibitor p21 and Chk1 at passage 3. FoxM1 was stabilized in response to DNA damage in MEFs and FoxM1 overexpression induced p21. Knockdown of FoxM1 resulted in decrease in Chk1. ChIP, EMSA and cotransfection assays confirmed that FoxM1 stimulated promoters of p21 and Chk1. CONCLUSIONS Chk1 and p21 are direct transcription targets of FoxM1 and FoxM1 participates in transcriptional responses to stress in normal cells.
Collapse
Affiliation(s)
- Y Tan
- Biomedical Engineering Center and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moreno A, Palacios A, Orgaz JL, Jimenez B, Blanco FJ, Palmero I. Functional impact of cancer-associated mutations in the tumor suppressor protein ING4. Carcinogenesis 2010; 31:1932-8. [PMID: 20705953 DOI: 10.1093/carcin/bgq171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Inhibitor of growth 4 (ING4) is a member of the ING family of tumor suppressor proteins. In this study, we have analyzed the impact of two mutations in ING4 associated with human tumors (Y121N and N214D), testing their behavior in a series of functional, biochemical and structural analyses. We report that the N214D mutation dramatically dampened the ability of ING4 to inhibit proliferation, anchorage-independent growth or cell migration or to sensitize to cell death. In turn, the Y121N mutant did not differ significantly from wild-type ING4 in our assays. Neither of the mutations altered the normal subcellular localization of ING4, showing predominantly nuclear accumulation. We investigated the molecular basis of the defect in the activity of the N214D mutant. The folding and ability to bind histone marks of ING4 was not significantly altered by this mutation. Instead, we found that the functional impairment of the N214D mutant correlates with reduced protein stability due to increased proteasome-mediated degradation. In summary, our data demonstrates that a point mutation of ING4 associated to human tumors leads to the loss of several essential functions of ING4 pertinent to tumor protection and highlight the importance of ING4 function to prevent tumorigenesis.
Collapse
Affiliation(s)
- Alberto Moreno
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
22
|
53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 2010; 17:688-95. [PMID: 20453858 PMCID: PMC2912507 DOI: 10.1038/nsmb.1831] [Citation(s) in RCA: 776] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 04/13/2010] [Indexed: 02/07/2023]
Abstract
Germ-line mutations in BRCA1 predispose to breast and ovarian cancer. BRCA1-mutated tumors show genomic instability, mainly as a consequence of impaired recombinatorial DNA repair. Here we identify 53BP1 as an essential factor for sustaining the growth arrest induced by Brca1 deletion. Depletion of 53BP1 abrogates the ATM-dependent checkpoint response and G2 cell cycle arrest triggered by the accumulation of DNA breaks in Brca1-deleted cells. This effect of 53BP1 is specific to BRCA1 function, as 53BP1 depletion did not alleviate proliferation arrest or checkpoint responses in Brca2-deleted cells. Importantly, loss of 53BP1 partially restores the homologous recombination defect of Brca1-deleted cells and reverts their hypersensitivity to DNA-damaging agents. We find reduced 53BP1 expression in subsets of sporadic triple-negative and BRCA-associated breast cancers, indicating the potential clinical implications of our findings.
Collapse
|
23
|
Thanasoula M, Escandell JM, Martinez P, Badie S, Muñoz P, Blasco MA, Tarsounas M. p53 prevents entry into mitosis with uncapped telomeres. Curr Biol 2010; 20:521-6. [PMID: 20226664 DOI: 10.1016/j.cub.2010.01.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 02/01/2023]
Abstract
Telomeres are protected by capping structures consisting of core protein complexes that bind with sequence specificity to telomeric DNA. In their absence, telomeres trigger a DNA damage response, materialized in accumulation at the telomere of damage response proteins, e.g., phosphorylated histone H2AX (gammaH2AX), into telomere-dysfunction-induced foci. Telomere uncapping occurs transiently in every cell cycle in G2, following DNA replication, but little is known about how protective structures are reassembled or whether this process is controlled by the cell-cycle surveillance machinery. Here, we report that telomere capping is monitored at the G2/M transition by the p53/p21 damage response pathway. Unlike their wild-type counterparts, human and mouse cells lacking p53 or p21 progress into mitosis prematurely with persisting uncapped telomeres. Furthermore, artificially uncapped telomeres delay mitotic entry in a p53- and p21-dependent manner. Uncapped telomeres that persist in mitotic p53-deficient cells are shorter than average and religate to generate end-to-end fusions. These results suggest that a p53-dependent pathway monitors telomere capping after DNA replication and delays G2/M progression in the presence of unprotected telomeres. This mechanism maintains a cell-cycle stage conducive for capping reactions and prevents progression into stages during which uncapped telomeres are prone to deleterious end fusions.
Collapse
Affiliation(s)
- Maria Thanasoula
- Telomere and Genome Stability Group, The CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Old Road Campus, Oxford OX37DQ, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Gómez-Cabello D, Callejas S, Benguría A, Moreno A, Alonso J, Palmero I. Regulation of the microRNA processor DGCR8 by the tumor suppressor ING1. Cancer Res 2010; 70:1866-74. [PMID: 20179197 DOI: 10.1158/0008-5472.can-09-2088] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ING family of tumor suppressor proteins controls several cellular functions relevant to antitumor protection, such as cell cycle control, apoptosis, senescence, or migration. ING proteins are functionally linked to the p53 pathway, and they participate in transcriptional control via the recognition of histone marks and recruitment of protein complexes with chromatin-modifying activity to specific promoters. Here, we have investigated the global effect of ING1 in gene regulation through genome-wide analysis of expression profiles in primary embryonic fibroblasts deficient for the Ing1 locus. We find that Ing1 has a predominant role as transcriptional repressor in this setting, affecting the expression of genes involved in a variety of cellular functions. Within the subset of genes showing differential expression, we have identified DGCR8, a protein involved in the early steps of microRNA biogenesis. We show that ING1 binds to the DGCR8 promoter and controls its transcription through chromatin regulation. We also find that ING1 and DGCR8 can cooperate in restraining proliferation. In summary, this study reveals a novel connection between ING1 and a regulator of microRNA biogenesis and identifies new links between tumor suppressor proteins and the microRNA machinery.
Collapse
|
25
|
The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 2009; 460:1136-9. [PMID: 19668188 DOI: 10.1038/nature08290] [Citation(s) in RCA: 750] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/20/2009] [Indexed: 11/09/2022]
Abstract
The mechanisms involved in the reprogramming of differentiated cells into induced pluripotent stem (iPS) cells by the three transcription factors Oct4 (also known as Pou5f1), Klf4 and Sox2 remain poorly understood. The Ink4/Arf locus comprises the Cdkn2a-Cdkn2b genes encoding three potent tumour suppressors, namely p16(Ink4a), p19(Arf) and p15(Ink4b), which are basally expressed in differentiated cells and upregulated by aberrant mitogenic signals. Here we show that the locus is completely silenced in iPS cells, as well as in embryonic stem (ES) cells, acquiring the epigenetic marks of a bivalent chromatin domain, and retaining the ability to be reactivated after differentiation. Cell culture conditions during reprogramming enhance the expression of the Ink4/Arf locus, further highlighting the importance of silencing the locus to allow proliferation and reprogramming. Indeed, the three factors together repress the Ink4/Arf locus soon after their expression and concomitant with the appearance of the first molecular markers of 'stemness'. This downregulation also occurs in cells carrying the oncoprotein large-T, which functionally inactivates the pathways regulated by the Ink4/Arf locus, thus indicating that the silencing of the locus is intrinsic to reprogramming and not the result of a selective process. Genetic inhibition of the Ink4/Arf locus has a profound positive effect on the efficiency of iPS cell generation, increasing both the kinetics of reprogramming and the number of emerging iPS cell colonies. In murine cells, Arf, rather than Ink4a, is the main barrier to reprogramming by activation of p53 (encoded by Trp53) and p21 (encoded by Cdkn1a); whereas, in human fibroblasts, INK4a is more important than ARF. Furthermore, organismal ageing upregulates the Ink4/Arf locus and, accordingly, reprogramming is less efficient in cells from old organisms, but this defect can be rescued by inhibiting the locus with a short hairpin RNA. All together, we conclude that the silencing of Ink4/Arf locus is rate-limiting for reprogramming, and its transient inhibition may significantly improve the generation of iPS cells.
Collapse
|
26
|
Activation of NF-kB pathway by virus infection requires Rb expression. PLoS One 2009; 4:e6422. [PMID: 19649275 PMCID: PMC2713421 DOI: 10.1371/journal.pone.0006422] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 06/08/2009] [Indexed: 12/02/2022] Open
Abstract
The retinoblastoma protein Rb is a tumor suppressor involved in cell cycle control, differentiation, and inhibition of oncogenic transformation. Besides these roles, additional functions in the control of immune response have been suggested. In the present study we investigated the consequences of loss of Rb in viral infection. Here we show that virus replication is increased by the absence of Rb, and that Rb is required for the activation of the NF-kB pathway in response to virus infection. These results reveal a novel role for tumor suppressor Rb in viral infection surveillance and further extend the concept of a link between tumor suppressors and antiviral activity.
Collapse
|
27
|
Badie S, Liao C, Thanasoula M, Barber P, Hill MA, Tarsounas M. RAD51C facilitates checkpoint signaling by promoting CHK2 phosphorylation. ACTA ACUST UNITED AC 2009; 185:587-600. [PMID: 19451272 PMCID: PMC2711581 DOI: 10.1083/jcb.200811079] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The RAD51 paralogues act in the homologous recombination (HR) pathway of DNA repair. Human RAD51C (hRAD51C) participates in branch migration and Holliday junction resolution and thus is important for processing HR intermediates late in the DNA repair process. Evidence for early involvement of RAD51 during DNA repair also exists, but its function in this context is not understood. In this study, we demonstrate that RAD51C accumulates at DNA damage sites concomitantly with the RAD51 recombinase and is retained after RAD51 disassembly, which is consistent with both an early and a late function for RAD51C. RAD51C recruitment depends on ataxia telangiectasia mutated, NBS1, and replication protein A, indicating it functions after DNA end resection but before RAD51 assembly. Furthermore, we find that RAD51C is required for activation of the checkpoint kinase CHK2 and cell cycle arrest in response to DNA damage. This suggests that hRAD51C contributes to the protection of genome integrity by transducing DNA damage signals in addition to engaging the HR machinery.
Collapse
Affiliation(s)
- Sophie Badie
- Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford OX3 7DQ, England, UK
| | | | | | | | | | | |
Collapse
|
28
|
Efeyan A, Murga M, Martinez-Pastor B, Ortega-Molina A, Soria R, Collado M, Fernandez-Capetillo O, Serrano M. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression. PLoS One 2009; 4:e5475. [PMID: 19421407 PMCID: PMC2675057 DOI: 10.1371/journal.pone.0005475] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/27/2009] [Indexed: 01/03/2023] Open
Abstract
Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.
Collapse
Affiliation(s)
- Alejo Efeyan
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Ana Ortega-Molina
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rebeca Soria
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Collado
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
29
|
Hayashi T, Yano K, Matsui-Hirai H, Yokoo H, Hattori Y, Iguchi A. Nitric oxide and endothelial cellular senescence. Pharmacol Ther 2008; 120:333-9. [PMID: 18930078 DOI: 10.1016/j.pharmthera.2008.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 09/03/2008] [Indexed: 11/15/2022]
Abstract
Cellular senescence is characterized by permanent exit from the cell cycle and the appearance of distinct morphological and functional changes associated with an impairment of cellular homeostasis. Many studies support the occurrence of vascular endothelial cell senescence in vivo, and the senescent phenotype of endothelial cells can be transformed from anti-atherosclerotic to pro-atherosclerotic. Thus, endothelial cell senescence promotes endothelial dysfunction and may contribute to the pathogenesis of age-associated vascular disorders. Emerging evidence suggests that increasing nitric oxide (NO) bioavailability or endothelial NO synthase (eNOS) activity activates telomerase and delays endothelial cell senescence. In this review, we discuss the potential mechanisms underlying the ability of NO to prevent endothelial cell senescence and describe the possible changes in the NO-mediated anti-senescence effect under pathophysiological conditions, including oxidative stress and hyperglycemia. Further understanding of the mechanisms underlying the anti-senescence effect of NO in endothelial cells will provide insights into the potential of eNOS-based anti-senescence therapy for age-associated vascular disorders.
Collapse
Affiliation(s)
- Toshio Hayashi
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Rodríguez C, López P, Pozo M, Duce AM, López-Pelaéz M, Fernández M, Alemany S. COX2 expression and Erk1/Erk2 activity mediate Cot-induced cell migration. Cell Signal 2008; 20:1625-31. [DOI: 10.1016/j.cellsig.2008.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 05/12/2008] [Indexed: 12/22/2022]
|
31
|
Lara MF, Santos M, Ruiz S, Segrelles C, Moral M, Martínez-Cruz AB, Hernández P, Martínez-Palacio J, Lorz C, García-Escudero R, Paramio JM. p107 acts as a tumor suppressor in pRb-deficient epidermis. Mol Carcinog 2008; 47:105-13. [PMID: 17932945 DOI: 10.1002/mc.20367] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The specific deletion of Rb gene in epidermis leads to altered proliferation and differentiation, but not to the development of spontaneous tumors. Our previous data have demonstrated the existence of a functional compensation of Rb loss by Rbl1 (p107) in as the phenotypic differences with respect to controls are intensified. However, the possible evolution of this aggravated phenotype, in particular in relationship with tumorigenesis, has not been evaluated due to the premature death of the double deficient mice. We have now investigated whether p107 can also act as a tumor suppressor in pRb-deficient epidermis using different experimental approaches. We found spontaneous tumor development in doubly-deficient skin grafts. Moreover, Rb-deficient keratinocytes are susceptible to Ha-ras-induced transformation, and this susceptibility is enhanced by p107 loss. Further functional analyses, including microarray gene expression profiling, indicated that the loss of p107, in the absence of pRb, produces the reduction of p53-dependent pro-apoptotic signals. Overall, our data demonstrate that p107 behaves as a tumor suppressor in epidermis in the absence of pRb and suggest novel tumor-suppressive roles for p107 in the context of functional p53 and activated Ras.
Collapse
Affiliation(s)
- M Fernanda Lara
- Molecular Oncology Unit, Division of Biomedicine, CIEMAT, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Koopal S, Furuhjelm JH, Järviluoma A, Jäämaa S, Pyakurel P, Pussinen C, Wirzenius M, Biberfeld P, Alitalo K, Laiho M, Ojala PM. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathog 2007; 3:1348-60. [PMID: 17907806 PMCID: PMC1994968 DOI: 10.1371/journal.ppat.0030140] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 08/09/2007] [Indexed: 12/29/2022] Open
Abstract
Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV)–infected tumor cells that express endothelial cell (EC) markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers. Recent findings have indicated that DNA hyper-replication triggered by oncogenes can induce cellular senescence, which together with the oncogene-induced DNA damage checkpoint confers a barrier to tumorigenesis. Kaposi sarcoma herpesvirus (KSHV) can infect human dermal microvascular endothelial cells (ECs) in vitro, but KSHV infection does not seem to provide growth advantage to the cells, but rather leads to retarded growth. Moreover, the proliferative index has long been known to be low in KSHV-infected spindle cells in Kaposi sarcoma (KS) tumors. Our results provide an explanation for these observations by showing that activation of the DNA damage response, exerted by KSHV and a latent viral protein v-cyclin, functions as a barrier against transformation of KSHV-infected cells. Interestingly, the antiproliferative checkpoints are activated during the initial stages of KSHV infection and KS tumorigenesis. During the course of infection, the infected cells are imposed to overcome the checkpoint, and oncogenic stress elicited by the expression of v-cyclin may further contribute to the induction of genomic instability and malignant transformation.
Collapse
Affiliation(s)
- Sonja Koopal
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Johanna H Furuhjelm
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Annika Järviluoma
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Sari Jäämaa
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Pawan Pyakurel
- Department of Pathology and Oncology, Karolinska Institute/Hospital, Stockholm, Sweden
| | - Christel Pussinen
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Maria Wirzenius
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Peter Biberfeld
- Department of Pathology and Oncology, Karolinska Institute/Hospital, Stockholm, Sweden
| | - Kari Alitalo
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Marikki Laiho
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Päivi M Ojala
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Viña J, Blasco MA, Serrano M. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 2007; 448:375-9. [PMID: 17637672 DOI: 10.1038/nature05949] [Citation(s) in RCA: 392] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/22/2007] [Indexed: 12/17/2022]
Abstract
The tumour-suppressor pathway formed by the alternative reading frame protein of the Cdkn2a locus (Arf) and by p53 (also called Trp53) plays a central part in the detection and elimination of cellular damage, and this constitutes the basis of its potent cancer protection activity. Similar to cancer, ageing also results from the accumulation of damage and, therefore, we have reasoned that Arf/p53 could have anti-ageing activity by alleviating the load of age-associated damage. Here we show that genetically manipulated mice with increased, but otherwise normally regulated, levels of Arf and p53 present strong cancer resistance and have decreased levels of ageing-associated damage. These observations extend the protective role of Arf/p53 to ageing, revealing a previously unknown anti-ageing mechanism and providing a rationale for the co-evolution of cancer resistance and longevity.
Collapse
Affiliation(s)
- Ander Matheu
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abad M, Menéndez C, Füchtbauer A, Serrano M, Füchtbauer EM, Palmero I. Ing1 mediates p53 accumulation and chromatin modification in response to oncogenic stress. J Biol Chem 2007; 282:31060-7. [PMID: 17693408 DOI: 10.1074/jbc.m701639200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ING proteins are putative tumor suppressor proteins linked to the p53 pathway and to the chromatin modification machinery. Here we have analyzed the role of the products of the murine Ing1 locus in cellular tumor-protective responses, using mouse primary fibroblasts where the Ing1 locus has been inactivated by the integration of a betageo cassette. We show that Ing1-deficient mouse embryonic fibroblasts display a defective senescence-like antiproliferative response against oncogenic Ras, affecting several senescence-specific markers. This phenotype is accompanied by a reduced accumulation of p53, which can be explained by the reduced basal p53 protein stability in the Ing1-deficient background. Ing1 deficiency also results in defects in the appearance of heterochromatic marks upon expression of oncogenic Ras, suggestive of impaired heterochromatin formation during oncogene-induced senescence. Our results support an important role for the Ing1 locus in protection against oncogenic stress in vivo, both as a mediator of p53 activation and as a regulator of chromatin remodeling processes.
Collapse
Affiliation(s)
- María Abad
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Efeyan A, Ortega-Molina A, Velasco-Miguel S, Herranz D, Vassilev LT, Serrano M. Induction of p53-Dependent Senescence by the MDM2 Antagonist Nutlin-3a in Mouse Cells of Fibroblast Origin. Cancer Res 2007; 67:7350-7. [PMID: 17671205 DOI: 10.1158/0008-5472.can-07-0200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular senescence is emerging as an important in vivo anticancer response elicited by multiple stresses, including currently used chemotherapeutic drugs. Nutlin-3a is a recently discovered small-molecule antagonist of the p53-destabilizing protein murine double minute-2 (MDM2) that induces cell cycle arrest and apoptosis in cancer cells with functional p53. Here, we report that nutlin-3a induces cellular senescence in murine primary fibroblasts, oncogenically transformed fibroblasts, and fibrosarcoma cell lines. No evidence of drug-induced apoptosis was observed in any case. Nutlin-induced senescence was strictly dependent on the presence of functional p53 as revealed by the fact that cells lacking p53 were completely insensitive to the drug, whereas cells lacking the tumor suppressor alternative reading frame product of the CDKN2A locus underwent irreversible cell cycle arrest. Interestingly, irreversibility was achieved in neoplastic cells faster than in their corresponding parental primary cells, suggesting that nutlin-3a and oncogenic signaling cooperate in activating p53. Our current results suggest that senescence could be a major cellular outcome of cancer therapy by antagonists of the p53-MDM2 interaction, such as nutlin-3a.
Collapse
Affiliation(s)
- Alejo Efeyan
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 2007; 9:493-505. [PMID: 17450133 DOI: 10.1038/ncb1567] [Citation(s) in RCA: 350] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 03/27/2007] [Indexed: 02/06/2023]
Abstract
Activating Ras mutations can induce either proliferation or senescence depending on the cellular context. To determine whether Ras activation has context-dependent effects in the mammary gland, we generated doxycycline-inducible transgenic mice that permit Ras activation to be titrated. Low levels of Ras activation - similar to those found in non-transformed mouse tissues expressing endogenous oncogenic Kras2 - stimulate cellular proliferation and mammary epithelial hyperplasias. In contrast, high levels of Ras activation - similar to those found in tumours bearing endogenous Kras2 mutations - induce cellular senescence that is Ink4a-Arf- dependent and irreversible following Ras downregulation. Chronic low-level Ras induction results in tumour formation, but only after the spontaneous upregulation of activated Ras and evasion of senescence checkpoints. Thus, high-level, but not low-level, Ras activation activates tumour suppressor pathways and triggers an irreversible senescent growth arrest in vivo. We suggest a three-stage model for Ras-induced tumorigenesis consisting of an initial activating Ras mutation, overexpression of the activated Ras allele and, finally, evasion of p53-Ink4a-Arf-dependent senescence checkpoints.
Collapse
MESH Headings
- ADP-Ribosylation Factors/metabolism
- Animals
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cellular Senescence/drug effects
- Cellular Senescence/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Dose-Response Relationship, Drug
- Doxycycline/pharmacology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Hyperplasia
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Mutation
- Oncogene Protein p21(ras)/genetics
- Oncogene Protein p21(ras)/metabolism
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- Promoter Regions, Genetic/drug effects
- Protein Transport
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Signal Transduction
- Time Factors
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Christopher J Sarkisian
- Department of Cancer Biology, The Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | |
Collapse
|
37
|
Efeyan A, Collado M, Velasco-Miguel S, Serrano M. Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumour suppression. Oncogene 2006; 26:1645-9. [PMID: 16964282 DOI: 10.1038/sj.onc.1209972] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein p21Cip1/Waf1 is transcriptionally activated by the tumour suppressor p53 and previous studies have shown that p21 plays a role in tumour suppression. However, the involvement of p21 in p53-mediated tumour suppression remains to be directly demonstrated in vivo. Tumour suppression mediated by p53 can be measured by comparing tumour susceptibility in animals carrying two (wild-type mice) or three (super-p53 mice) copies of the p53 gene. We have taken advantage of this genetically defined system to measure p53-mediated cell-cycle arrest, apoptosis and tumorigenesis, in a p21 wild-type and in a p21-null context. The absence of p21 significantly impaired the enhanced p53-mediated cell-cycle arrest characteristic of super-p53 cells, but did not affect the enhanced apoptosis. Importantly, in an experimental model of fibrosarcoma induction, the absence of p21 significantly decreased the tumour suppression benefit of super-p53 mice. We conclude that cell-cycle arrest through p21 plays a significant role in mediating p53-dependent cancer protection.
Collapse
Affiliation(s)
- A Efeyan
- Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Nieto M, Barradas M, Criado LM, Flores JM, Serrano M, Llano E. Normal cellular senescence and cancer susceptibility in mice genetically deficient in Ras-induced senescence-1 (Ris1). Oncogene 2006; 26:1673-80. [PMID: 16964279 DOI: 10.1038/sj.onc.1209978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oncogenic Ras triggers a permanent cell-cycle arrest known as oncogene-induced senescence (OIS) that constitutes a relevant tumor suppressor mechanism. Ris1 (Ras-induced senescence-1) is a novel gene that was identified in a screen as specifically upregulated during Ras-induced senescence, and that is located at a chromosomal region, 3p21.3, frequently lost in human cancer. Moreover, Ris1 is highly conserved in vertebrates, does not present paralogs, and its sequence does not reveal similarities with other proteins or domains. To analyse the physiological function of Ris1 and test its putative role as a tumor suppressor gene, we have generated mutant mice deficient for this gene. Ris1-null mice are viable, fertile, develop normally and do not display any obvious abnormalities. Of relevance, Ris1-deficient mice had a normal lifespan and did not exhibit predisposition to spontaneous tumors or to tumors induced by chemical carcinogens. Finally, Ris1-deficient embryonic fibroblasts were indistinguishable from wild-type cells regarding their proliferation properties, immortalization, senescence and oncogenic transformation. These findings do not support a role of Ris1 in tumor suppression or in OIS.
Collapse
Affiliation(s)
- M Nieto
- Tumor Suppression Group, Spanish National Cancer Center CNIO, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
García MA, Collado M, Muñoz-Fontela C, Matheu A, Marcos-Villar L, Arroyo J, Esteban M, Serrano M, Rivas C. Antiviral action of the tumor suppressor ARF. EMBO J 2006; 25:4284-92. [PMID: 16957780 PMCID: PMC1570439 DOI: 10.1038/sj.emboj.7601302] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 07/27/2006] [Indexed: 01/12/2023] Open
Abstract
Oncogenic viruses frequently target the pathways controlled by tumor suppressor genes, suggesting an extra function for these proteins as antiviral factors. The control exerted by the tumor suppressor Arf on cellular proliferation is crucial to restrict tumor development; however, a potential contribution of Arf to prevent viral infectivity has remained unexplored. In the present study, we investigated the consequences of loss or increased expression of Arf on viral infection. Our results reveal that ARF expression is induced by interferon and after viral infection. Furthermore, we show that ARF protects against viral infection in a gene dosage-dependent manner, and that this antiviral action is mediated in part by PKR through a mechanism that involves ARF-induced release of PKR from nucleophosmin complexes. Finally, Arf-null mice were hypersensitive to viral infection compared to wild-type mice. Together, our results reveal a novel and unexpected role for the tumor suppressor ARF in viral infection surveillance.
Collapse
Affiliation(s)
- María A García
- Centro Nacional de Biotecnología (CNB), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Collado
- Spanish National Cancer Centre (CNIO), 3 Melchor Fernández Almagro, Madrid, Spain
| | - César Muñoz-Fontela
- Departamento de Microbiología II, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid, Spain
| | - Ander Matheu
- Spanish National Cancer Centre (CNIO), 3 Melchor Fernández Almagro, Madrid, Spain
| | - Laura Marcos-Villar
- Departamento de Microbiología II, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología II, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid, Spain
| | - Mariano Esteban
- Centro Nacional de Biotecnología (CNB), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Serrano
- Spanish National Cancer Centre (CNIO), 3 Melchor Fernández Almagro, Madrid, Spain
- Spanish National Cancer Center (CNIO), 3 Melchor Fernández Almagro, Madrid 28029, Spain. Tel.: +34 91 7328032; Fax: +34 91 7328028; E-mail:
| | - Carmen Rivas
- Departamento de Microbiología II, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid, Spain
| |
Collapse
|
40
|
Abstract
Senescence has been considered a programmed cellular response, parallel to apoptosis, that is turned on when a cell reaches Hayflick's limit. Once cells enter the senescence program, they cease to proliferate and undergo a series of morphological and functional changes. Studies support a central role for Rb protein in controlling this process after it receives senescent signals from the p53 and p16 pathways. Cellular senescence is considered an essential contributor to the aging process and has been shown to be an important tumor suppression mechanism. In addition, emerging evidence suggests that senescence may also be involved in the pathogenesis of stem cell dysfunction and chronic human diseases. Under these circumstances cells undergo stress-induced premature senecence, which has several specific features. Focusing on endothelial cells, we discuss recent advances in our understanding of the stresses and their pathways that prompt the premature senescence response, evaluate their correlation with the apoptotic response, and examine their links to the development of chronic diseases and the impaired function of endothelial progenitor cells, with the emphasis on vasculopathy. Emerging novel therapeutic interventions based on recent experimental findings are also reviewed.
Collapse
Affiliation(s)
- Jun Chen
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, NY 10595, USA.
| | | |
Collapse
|
41
|
García-Cao I, García-Cao M, Tomás-Loba A, Martin-Caballero J, Flores JM, Klatt P, Blasco MA, Serrano M. Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep 2006; 7:546-52. [PMID: 16582880 PMCID: PMC1479549 DOI: 10.1038/sj.embor.7400667] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 02/15/2006] [Accepted: 02/28/2006] [Indexed: 11/09/2022] Open
Abstract
There is a great interest in determining the impact of p53 on ageing and, for this, it is important to discriminate among the known causes of ageing. Telomere loss is a well-established source of age-associated damage, which by itself can recapitulate ageing in mouse models. Here, we have used a genetic approach to interrogate whether p53 contributes to the elimination of telomere-damaged cells and its impact on telomere-driven ageing. We have generated compound mice carrying three functional copies of the p53 gene (super-p53) in a telomerase-deficient background and we have measured the presence of chromosomal abnormalities and DNA damage in several tissues. We have found that the in vivo load of telomere-derived chromosomal damage is significantly decreased in super-p53/telomerase-null mice compared with normal-p53/telomerase-null mice. Interestingly, the presence of extra p53 activity neither accelerates nor delays telomere-driven ageing. From these observations, we conclude that p53 has an active role in eliminating telomere-damaged cells, and we exclude the possibility of an age-promoting effect of p53 on telomere-driven ageing.
Collapse
Affiliation(s)
| | | | | | - Juan Martin-Caballero
- Animal Facility Unit, Spanish National Cancer Center (CNIO), 3 Melchor Fernández Almagro Street, Madrid 28029, Spain
| | - Juana M Flores
- Department of Animal Surgery and Medicine, Veterinary School, Complutense University, Madrid 28040, Spain
| | - Peter Klatt
- Tumor Suppression Group
- Telomeres and Telomerase Group
| | | | - Manuel Serrano
- Tumor Suppression Group
- Tel: +34 917 328 032; Fax: +34 917 328 028; E-mail:
| |
Collapse
|
42
|
Geserick C, Tejera A, González-Suárez E, Klatt P, Blasco MA. Expression of mTert in primary murine cells links the growth-promoting effects of telomerase to transforming growth factor-β signaling. Oncogene 2006; 25:4310-9. [PMID: 16501597 DOI: 10.1038/sj.onc.1209465] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here, we show that ectopic expression of the catalytic subunit of mouse telomerase (mTert) confers a growth advantage to primary murine embryonic fibroblasts (MEFs), which have very long telomeres, as well as facilitates their spontaneous immortalization and increases their colony-forming capacity upon activation of oncogenes. We demonstrate that these telomere length-independent growth-promoting effects of mTert overexpression require catalytically active mTert, as well as the formation of mTert/Terc complexes. The gene expression profile of mTert-overexpressing MEFs indicates that telomerase enhances growth in these cells through the repression of growth-inhibiting genes of the transforming growth factor-beta (TGF-beta) signaling network. We functionally validate this result by showing that mTert abrogates the growth-inhibitory effect of TGF-beta in MEFs, thus demonstrating that telomerase increments the proliferative potential of primary mouse embryonic fibroblasts by targeting the TGF-beta pathway.
Collapse
Affiliation(s)
- C Geserick
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Melchor Fernández Almagro, Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, Tan Y, Ackerson T, Costa RH. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 2005; 25:10875-94. [PMID: 16314512 PMCID: PMC1316960 DOI: 10.1128/mcb.25.24.10875-10894.2005] [Citation(s) in RCA: 513] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/18/2005] [Accepted: 09/26/2005] [Indexed: 12/18/2022] Open
Abstract
The Forkhead box m1 (Foxm1) gene is critical for G(1)/S transition and essential for mitotic progression. However, the transcriptional mechanisms downstream of FoxM1 that control these cell cycle events remain to be determined. Here, we show that both early-passage Foxm1(-)(/)(-) mouse embryonic fibroblasts (MEFs) and human osteosarcoma U2OS cells depleted of FoxM1 protein by small interfering RNA fail to grow in culture due to a mitotic block and accumulate nuclear levels of cyclin-dependent kinase inhibitor (CDKI) proteins p21(Cip1) and p27(Kip1). Using quantitative chromatin immunoprecipitation and expression assays, we show that FoxM1 is essential for transcription of the mitotic regulatory genes Cdc25B, Aurora B kinase, survivin, centromere protein A (CENPA), and CENPB. We also identify the mechanism by which FoxM1 deficiency causes elevated nuclear levels of the CDKI proteins p21(Cip1) and p27(Kip1). We provide evidence that FoxM1 is essential for transcription of Skp2 and Cks1, which are specificity subunits of the Skp1-Cullin 1-F-box (SCF) ubiquitin ligase complex that targets these CDKI proteins for degradation during the G(1)/S transition. Moreover, early-passage Foxm1(-)(/)(-) MEFs display premature senescence as evidenced by high expression of the senescence-associated beta-galactosidase, p19(ARF), and p16(INK4A) proteins. Taken together, these results demonstrate that FoxM1 regulates transcription of cell cycle genes critical for progression into S-phase and mitosis.
Collapse
Affiliation(s)
- I-Ching Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 60607-7170, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cammarano MS, Nekrasova T, Noel B, Minden A. Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Mol Cell Biol 2005; 25:9532-42. [PMID: 16227603 PMCID: PMC1265798 DOI: 10.1128/mcb.25.21.9532-9542.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/14/2005] [Accepted: 07/29/2005] [Indexed: 12/21/2022] Open
Abstract
Exposure of primary cells to mitogenic stimuli or oncogenes often causes them to undergo premature senescence. This is most likely a protective function that prevents uncontrolled proliferation. Pak4 is a target for the Rho GTPase Cdc42. Pak4 is overexpressed in human tumor cell lines, and it is the only member of the Pak family that is highly transforming in immortalized fibroblasts. Here we show that in primary fibroblasts, activated Pak4 inhibits cell proliferation and promotes premature senescence. Furthermore, Pak4 expression levels are upregulated in response to stimuli that promote senescence. Pak4-induced arrest appears to be mediated by a pathway that requires the ERK mitogen-activated protein kinase, as well as the cell cycle inhibitors p16(INK4) and p19(ARF). These new results describing a role for Pak4 in senescence are important for understanding why this protein is associated with cancer and how it promotes transformation in immortalized cells.
Collapse
Affiliation(s)
- Marta S Cammarano
- Columbia University, Biological Sciences MC 2460, Sherman Fairchild Center, Room 813, 1212 Amsterdam Ave., New York, NY 10027, USA
| | | | | | | |
Collapse
|
45
|
Matheu A, Klatt P, Serrano M. Regulation of the INK4a/ARF locus by histone deacetylase inhibitors. J Biol Chem 2005; 280:42433-41. [PMID: 16251190 DOI: 10.1074/jbc.m508270200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the importance of the INK4a/ARF locus in tumor suppression, its modulation by histone deacetylase inhibitors (HDACis) remains to be characterized. Here, we have shown that the levels of p16INK4a are decreased in human and murine fibroblasts upon exposure to relatively high concentrations of trichostatin A and sodium butyrate. Interestingly, the levels of p19ARF are strongly upregulated in murine cells even at low concentrations of HDACis. Using ARF-deficient cells, we have demonstrated that p19ARF plays an active role in HDACi-triggered cytostasis and the contribution of p19ARF to this arrest is of higher magnitude than that of the well established HDACi target p21Waf1/Cip. Moreover, chemically induced fibrosarcomas in ARF-null mice are more resistant to the therapeutic effect of HDACis than similar tumors in wild type or p21Waf1/Cip-null mice. Together, our results have established the tumor suppressor ARF as a relevant target for HDACi chemotherapy.
Collapse
Affiliation(s)
- Ander Matheu
- Molecular Oncology Program, Spanish National Cancer Center (CNIO), 28029 Madrid, Spain
| | | | | |
Collapse
|
46
|
Chua KF, Mostoslavsky R, Lombard DB, Pang WW, Saito S, Franco S, Kaushal D, Cheng HL, Fischer MR, Stokes N, Murphy MM, Appella E, Alt FW. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab 2005; 2:67-76. [PMID: 16054100 DOI: 10.1016/j.cmet.2005.06.007] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 06/22/2005] [Accepted: 06/24/2005] [Indexed: 12/22/2022]
Abstract
The Saccharomyces cerevisiae chromatin silencing factor Sir2 suppresses genomic instability and extends replicative life span. In contrast, we find that mouse embryonic fibroblasts (MEFs) deficient for SIRT1, a mammalian Sir2 homolog, have dramatically increased resistance to replicative senescence. Extended replicative life span of SIRT1-deficient MEFs correlates with enhanced proliferative capacity under conditions of chronic, sublethal oxidative stress. In this context, SIRT1-deficient cells fail to normally upregulate either the p19(ARF) senescence regulator or its downstream target p53. However, upon acute DNA damage or oncogene expression, SIRT1-deficient cells show normal p19(ARF) induction and cell cycle arrest. Together, our findings demonstrate an unexpected SIRT1 function in promoting replicative senescence in response to chronic cellular stress and implicate p19(ARF) as a downstream effector in this pathway.
Collapse
Affiliation(s)
- Katrin F Chua
- Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Goeman F, Thormeyer D, Abad M, Serrano M, Schmidt O, Palmero I, Baniahmad A. Growth inhibition by the tumor suppressor p33ING1 in immortalized and primary cells: involvement of two silencing domains and effect of Ras. Mol Cell Biol 2005; 25:422-31. [PMID: 15601862 PMCID: PMC538761 DOI: 10.1128/mcb.25.1.422-431.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
ING1 was identified as an inhibitor of growth and has been described as a tumor suppressor. Furthermore, the expression of ING1 is induced in senescent cells and antisense ING1 extends the proliferative life span of primary human fibroblasts. Cooperation of p33ING1 with p53 has been suggested to be an important function of ING1 in cell cycle control. Intriguingly, it has been shown that p33ING1 is associated with histone acetylation as well as with histone deacetylation function. Here we show that p33ING1 is a potent transcriptional silencer in various cell types. However, the silencing function is independent of the presence of p53. By use of deletion mutants two potent autonomous and transferable silencing domains were identified, but no evidence of an activation domain was found. The amino (N)-terminal silencing domain is sensitive to the histone deacetylase inhibitor trichostatin A (TSA) whereas the carboxy-terminal silencing function is resistant to TSA, suggesting that p33ING1 confers gene silencing through both HDAC-dependent and -independent mechanisms. Interestingly, the presence of oncogenic Ras, which is able to induce premature senescence, increases the p33ING1-mediated silencing function. Moreover, ING1-mediated silencing was reduced by coexpressing dominant-negative Ras or by treatment with the mitogen-activated protein kinase inhibitor PD98059 but not by treatment with SB203580, an inhibitor of the p38 pathway. In addition, we show that both silencing domains of ING1 are involved in cell cycle control, as measured by inhibition of colony formation of immortalized cells and by thymidine incorporation of primary human diploid fibroblasts (HDF). Interestingly, p33ING1 expression induces features of cellular senescence in HDFs.
Collapse
Affiliation(s)
- Frauke Goeman
- Genetic Institute, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Pantoja C, de los Ríos L, Matheu A, Antequera F, Serrano M. Inactivation of Imprinted Genes Induced by Cellular Stress and Tumorigenesis. Cancer Res 2005. [DOI: 10.1158/0008-5472.26.65.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Cellular proliferation under stressful conditions may result in permanent genetic and epigenetic changes. Using primary mouse embryonic fibroblasts, we have completed a screening test to identify gene expression changes triggered when cells proliferate under stress. In this manner, we have discovered a novel phenomenon that consists of the rapid and coordinated silencing of genes subject to imprinting, including Cdkn1c, Igf2, H19, Ndn1, Grb10, and Meg3. This generalized silencing of imprinted genes is independent of the stress-responsive tumor suppressors p53, p19Arf, and p16Ink4a, and it is also independent of the oxidative culture conditions and the stress response known as “mouse embryonic fibroblast senescence”. In the case of Cdkn1c and H19, their silencing is associated with unscheduled de novo methylation of the normally expressed allele at their corresponding CpG island promoters, thus resulting in biallelic methylation. Finally, we provide evidence for frequent de novo methylation of Cdkn1c in a variety of murine cancer types. Altogether, our data support the concept that silencing of imprinted genes, including methylation of Cdkn1c, constitutes an epigenetic signature of cellular stress and tumorigenesis.
Collapse
Affiliation(s)
| | - Laura de los Ríos
- 2Edificio Departamental, Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Ander Matheu
- 1Spanish National Cancer Center (CNIO), Madrid, Spain, and
| | - Francisco Antequera
- 2Edificio Departamental, Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Manuel Serrano
- 1Spanish National Cancer Center (CNIO), Madrid, Spain, and
| |
Collapse
|
49
|
Finkelstein E, Chang W, Chao PHG, Gruber D, Minden A, Hung CT, Bulinski JC. Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3T3 fibroblasts. J Cell Sci 2004; 117:1533-45. [PMID: 15020680 DOI: 10.1242/jcs.00986] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Direct-current electric fields mediate motility (galvanotaxis) of many cell types. In 3T3 fibroblasts, electric fields increased the proportion, speed and cathodal directionality of motile cells. Analogous to fibroblasts' spontaneous migration, we initially hypothesized that reorientation of microtubule components modulates galvanotaxis. However, cells with intact microtubules did not reorient them in the field and cells without microtubules still migrated, albeit slowly, thus disproving the hypothesis. We next proposed that, in monolayers wounded and placed in an electric field, reorientation of microtubule organizing centers and stable, detyrosinated microtubules towards the wound edge is necessary and/or sufficient for migration. This hypothesis was negated because field exposure mediated migration of unoriented, cathode-facing cells and curtailed migration of oriented, anode-facing cells. This led us to propose that ablating microtubule detyrosination would not affect galvanotaxis. Surprisingly, preventing microtubule detyrosination increased motility speed, suggesting that detyrosination inhibits galvanotaxis. Microtubules might enhance adhesion/de-adhesion remodeling during galvanotaxis; thus, electric fields might more effectively mediate motility of cells poorly or dynamically attached to substrata. Consistent with this hypothesis, incompletely spread cells migrated more rapidly than fully spread cells. Also, overexpression of PAK4, a Cdc42-activated kinase that decreases adhesion, enhanced galvanotaxis speed, whereas its lack decreased speed. Thus, electric fields mediate fibroblast migration via participation of microtubules and adhesive components, but their participation differs from that during spontaneous motility.
Collapse
Affiliation(s)
- Erik Finkelstein
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Matheu A, Pantoja C, Efeyan A, Criado LM, Martín-Caballero J, Flores JM, Klatt P, Serrano M. Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes Dev 2004; 18:2736-46. [PMID: 15520276 PMCID: PMC528894 DOI: 10.1101/gad.310304] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mammalian genes frequently present allelic variants that differ in their expression levels and that, in the case of tumor suppressor genes, can be of relevance for cancer susceptibility and aging. We report here the characterization of a novel mouse model with increased activity for the Ink4a and Arf tumor suppressors. We have generated a "super Ink4a/Arf" mouse strain carrying a transgenic copy of the entire Ink4a/Arf locus. Cells derived from super Ink4a/Arf mice have increased resistance to in vitro immortalization and oncogenic transformation. Importantly, super Ink4a/Arf mice manifest higher resistance to cancer compared to normal, nontransgenic, mice. Finally, super Ink4a/Arf mice have normal aging and lifespan. Together, these results indicate that modest increases in the activity of the Ink4a/Arf tumor suppressor result in a beneficial cancer-resistant phenotype without affecting normal viability or aging.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Animals
- Carcinogens/toxicity
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Cellular Senescence
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/physiology
- Female
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Dosage
- Genes, Tumor Suppressor
- Heterozygote
- Homozygote
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/prevention & control
Collapse
Affiliation(s)
- Ander Matheu
- Spanish National Cancer Center (CNIO), Madrid E-28029, Spain
| | | | | | | | | | | | | | | |
Collapse
|