1
|
Nunes IV, Breitenbach L, Pawusch S, Eigenbrod T, Ananth S, Schad P, Fackler OT, Butter F, Dalpke AH, Chen LS. Bacterial RNA sensing by TLR8 requires RNase 6 processing and is inhibited by RNA 2'O-methylation. EMBO Rep 2024; 25:4674-4692. [PMID: 39363059 DOI: 10.1038/s44319-024-00281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
TLR8 senses single-stranded RNA (ssRNA) fragments, processed via cleavage by ribonuclease (RNase) T2 and RNase A family members. Processing by these RNases releases uridines and purine-terminated residues resulting in TLR8 activation. Monocytes show high expression of RNase 6, yet this RNase has not been analyzed for its physiological contribution to the recognition of bacterial RNA by TLR8. Here, we show a role for RNase 6 in TLR8 activation. BLaER1 cells, transdifferentiated into monocyte-like cells, as well as primary monocytes deficient for RNASE6 show a dampened TLR8-dependent response upon stimulation with isolated bacterial RNA (bRNA) and also upon infection with live bacteria. Pretreatment of bacterial RNA with recombinant RNase 6 generates fragments that induce TLR8 stimulation in RNase 6 knockout cells. 2'O-RNA methyl modification, when introduced at the first uridine in the UA dinucleotide, impairs processing by RNase 6 and dampens TLR8 stimulation. In summary, our data show that RNase 6 processes bacterial RNA and generates uridine-terminated breakdown products that activate TLR8.
Collapse
Affiliation(s)
- Ivanéia V Nunes
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | - Luisa Breitenbach
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah Pawusch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Tatjana Eigenbrod
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Institute of Laboratory Medicine, SLK Clinics Heilbronn GmbH, 74078, Heilbronn, Germany
| | - Swetha Ananth
- Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Paulina Schad
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany
| | - Falk Butter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Alexander H Dalpke
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany.
- University Hospital Heidelberg, Heidelberg, Germany.
| | - Lan-Sun Chen
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Sahoo BK, Velavalapalli VM. Assessing Partial Inhibition of Ribonuclease A Activity by Curcumin through Fluorescence Spectroscopy and Theoretical Studies. J Fluoresc 2023:10.1007/s10895-023-03474-y. [PMID: 37870732 DOI: 10.1007/s10895-023-03474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Molecular interactions and controlled expression of enzymatic activities are fundamental to all cellular functions in an organism. The active polyphenol in turmeric known as curcumin (CCM) is known to exhibit diverse pharmacological activities. Ribonucleases (RNases) are the hydrolytic enzymes that plays important role in ribonucleic acid (RNA) metabolism. Uncontrolled and unwanted cleavage of RNA by RNases may be the cause of cell death leading to disease states. The protein ribonuclease A (RNase A) in the superfamily of RNases cleaves the RNA besides its role in different diseases like autoimmune diseases, and pancreatic disorders. Interaction of CCM with RNase A have been reported along with the possible role of CCM to inhibit the RNase A enzymatic activity. The interaction strength was found to be 104 M-1 order from spectroscopic results. Quenching of RNase A fluorescence by CCM was 104 M-1 order. Non-radiative energy transfer from RNase A (donor) to CCM (acceptor) suggested a distance of 2.42 nm between the donor-acceptor pair. Circular dichroism studies revealed no structural changes in RNase A after binding. Binding-induced conformational variation in protein was observed from synchronous fluorescence studies. Agarose gel electrophoresis revealed a partial inhibition of the RNase A activity by CCM though not significant. Molecular docking and molecular dynamics studies suggested the residues of RNase A involved in the interaction with supporting the experimental finding for the partial inhibition of the enzyme activity. This study may help in designing new CCM analogues or related structures to understand their differential inhibition of the RNase A activity.
Collapse
Affiliation(s)
- Bijaya Ketan Sahoo
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, 502329, India.
| | | |
Collapse
|
3
|
Borgelt L, Wu P. Targeting Ribonucleases with Small Molecules and Bifunctional Molecules. ACS Chem Biol 2023; 18:2101-2113. [PMID: 37382390 PMCID: PMC10594538 DOI: 10.1021/acschembio.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Ribonucleases (RNases) cleave and process RNAs, thereby regulating the biogenesis, metabolism, and degradation of coding and noncoding RNAs. Thus, small molecules targeting RNases have the potential to perturb RNA biology, and RNases have been studied as therapeutic targets of antibiotics, antivirals, and agents for autoimmune diseases and cancers. Additionally, the recent advances in chemically induced proximity approaches have led to the discovery of bifunctional molecules that target RNases to achieve RNA degradation or inhibit RNA processing. Here, we summarize the efforts that have been made to discover small-molecule inhibitors and activators targeting bacterial, viral, and human RNases. We also highlight the emerging examples of RNase-targeting bifunctional molecules and discuss the trends in developing such molecules for both biological and therapeutic applications.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max
Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
| | | |
Collapse
|
4
|
Mondal P, Dasgupta S, Pathak T. Carboxymethyl tethered poly(disubstituted)triazoles built on nucleoside skeletons: A unique class of ribonuclease A inhibitors designed using chemical logic. Bioorg Med Chem 2022; 76:117065. [PMID: 36436488 DOI: 10.1016/j.bmc.2022.117065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 01/05/2023]
Abstract
Molecular docking of N-1,4-disubstituted-1,2,3-triazole tethered carboxymethylated thymidine and uridine with ribonuclease A, indicated their possible binding with the P1, B1 and P2 subsites with varied efficiencies. This theoretical study in combination of our earlier experimental observations was used as the guiding principles for designing a range of 1,4-disubstituted 1, 2, 3- triazole tethered carboxymethylated pyrimidine nucleosides. Triazoles are biologically important molecules and at the same time easily accessible through less complicated synthetic routes as reported about two decades back in the context of "click" reactions. Regioselective propargylation of the nucleosides under controlled conditions followed by the use of CuAAC strategy afforded mono-, bis-, tris- and tetratriazolyl pyrimidine nucleosides. Although the characteristics of nucleosides were lost in these densely functionalized polyheterocycles, the catalytic efficiency of ribonuclease A was significantly reduced by these molecules which were investigated experimentally and by docking studies. Triazoles as linkers helped one or more acidic groups to reach the P1 subsite of ribonuclease A. Enzyme kinetics showed that the efficiency of inhibition reached the highest point with an optimum number of functional groups and were not linearly dependent on the number of triazole tethered carboxymethyl groups. The location of the triazole ring in the molecule affected the efficiency and nature of inhibition which were the result of the overall structure of the modified nucleosides. Thus, the tris-triazolylated thymidine derivative (T-3', 5', N-tris-CH2TzCH2COOH) as opposed to tetra-triazolylated uridine (U-2', 3', 5', N-tetrakis-CH2TzCH2COOH) emerged as the best inhibitor with an inhibition constant value of 2.3 ± 0.05 µM.
Collapse
Affiliation(s)
- Pampa Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
5
|
Das A, Dasgupta S, Pathak T. Crescent-shaped meta-Substituted Benzene Derivatives as a New Class of Non-Nucleoside Ribonuclease A Inhibitors. Bioorg Med Chem 2022; 71:116888. [DOI: 10.1016/j.bmc.2022.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
|
6
|
Zhang X, Hu C, Huang C, Wei Y, Li X, Hu M, Li H, Wu J, Czajkowsky DM, Guo Y, Shao Z. Robust Acquisition of Spatial Transcriptional Programs in Tissues With Immunofluorescence-Guided Laser Capture Microdissection. Front Cell Dev Biol 2022; 10:853188. [PMID: 35399504 PMCID: PMC8990165 DOI: 10.3389/fcell.2022.853188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
The functioning of tissues is fundamentally dependent upon not only the phenotypes of the constituent cells but also their spatial organization in the tissue, as local interactions precipitate intra-cellular events that often lead to changes in expression. However, our understanding of these processes in tissues, whether healthy or diseased, is limited at present owing to the difficulty in acquiring comprehensive transcriptional programs of spatially- and phenotypically-defined cells in situ. Here we present a robust method based on immunofluorescence-guided laser capture microdissection (immuno-LCM-RNAseq) to acquire finely resolved transcriptional programs with as few as tens of cells from snap-frozen or RNAlater-treated clinical tissues sufficient to resolve even isoforms. The protocol is optimized to protect the RNA with a small molecule inhibitor, the ribonucleoside vanadyl complex (RVC), which thereby enables the typical time-consuming immunostaining and laser capture steps of this procedure during which RNA is usually severely degraded in existing approaches. The efficacy of this approach is exemplified by the characterization of differentially expressed genes between the mouse small intestine lacteal cells at the tip versus the main capillary body, including those that function in sensing and responding to local environmental cues to stimulate intra-cellular signalling. With the extensive repertoire of specific antibodies that are presently available, our method provides an unprecedented capability for the analysis of transcriptional networks and signalling pathways during development, pathogenesis, and aging of specific cell types within native tissues.
Collapse
Affiliation(s)
- Xiaodan Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuansheng Hu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wei
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Miaomiao Hu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Bio-X Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Daniel M. Czajkowsky
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Daniel M. Czajkowsky, ; Yan Guo, ; Zhifeng Shao,
| | - Yan Guo
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Daniel M. Czajkowsky, ; Yan Guo, ; Zhifeng Shao,
| | - Zhifeng Shao
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Daniel M. Czajkowsky, ; Yan Guo, ; Zhifeng Shao,
| |
Collapse
|
7
|
Panda A, Karhadkar S, Acharya B, Banerjee A, De S, Dasgupta S. Enhancement of angiogenin inhibition by polyphenol-capped gold nanoparticles. Biopolymers 2021; 112:e23429. [PMID: 33851721 DOI: 10.1002/bip.23429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 11/10/2022]
Abstract
Angiogenin (Ang), is a ribonucleolytic protein that is associated with angiogenesis, the formation of blood vessels. The involvement of Ang in vascularisation makes it a potential target for the identification of compounds that have the potential to inhibit the process. The compounds may be assessed for their ability to inhibit the ribonucleolytic activity of the protein and subsequently blood vessel formation, a crucial requirement for tumor formation. We report an inhibition of the ribonucleolytic activity of Ang with the gallate containing green tea polyphenols, ECG and EGCG that exhibits an increased efficacy upon forming polyphenol-capped gold nanoparticles (ECG-AuNPs and EGCG-AuNPs). The extent of inhibition was confirmed using an agarose gel-based assay followed by fluorescence titration studies that indicated a hundred fold stronger binding of polyphenol-capped gold nanoparticles (GTP-AuNPs) compared to the bare polyphenols. Interestingly, we found a change in the mode of inhibition from a noncompetitive type to a competitive mode of inhibition in case of the GTP-AuNPs, which is in agreement with the 'n' values obtained from the fluorescence quenching studies. The effect on angiogenesis has also been assessed by the chorioallantoic membrane (CAM) assay. We find an increase in the inhibition potency of GTP-AuNPs that could find applications in the development of anti-angiogenic compounds.
Collapse
Affiliation(s)
- Atashi Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Siddhant Karhadkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Bidisha Acharya
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Anwesha Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
8
|
Zhu C, Varona M, Anderson JL. Magnetic Ionic Liquids as Solvents for RNA Extraction and Preservation. ACS OMEGA 2020; 5:11151-11159. [PMID: 32455238 PMCID: PMC7241037 DOI: 10.1021/acsomega.0c01098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/23/2020] [Indexed: 05/24/2023]
Abstract
Ribonucleic acid (RNA) is particularly sensitive to enzymatic degradation by endonucleases prior to sample analysis. In-field preservation has been a challenge for RNA sample preparation. Very recently, hydrophobic magnetic ionic liquids (MIL) have shown significant promise in the area of RNA extraction. In this study, MILs were synthesized and employed as solvents for the extraction and preservation of RNA in aqueous solution. RNA samples obtained from yeast cells were extracted and preserved by the trihexyl(tetradecyl) phosphonium tris(hexafluoroacetylaceto)cobaltate(II) ([P66614 +][Co(hfacac)3 -]) and trihexyl(tetradecyl) phosphonium tris(phenyltrifluoroacetylaceto)cobaltate(II) ([P66614 +][Co(Phtfacac)3 -]) MIL with a dispersion of the supporting media, polypropylene glycol, at room temperature for up to a 7 and 15 day period, respectively. High-quality RNA treated with ribonuclease A (RNase A) was recovered from the tetra(1-octylimidazole)cobaltate(II) di(l-glutamate) ([Co(OIM)4 2+][Glu-]2) and tetra(1-octylimidazole)cobaltate(II) di(l-aspartate) ([Co(OIM)4 2+][Asp-]2) MILs after a 24 h period at room temperature. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and agarose gel electrophoresis were used to determine the effect of RNA preservation. Furthermore, the preservation mechanism was investigated by exploring the partitioning of RNase A into the MIL using high-performance liquid chromatography.
Collapse
|
9
|
Datta D, Dasgupta S, Pathak T. Sulfonic nucleic acids (SNAs): a new class of substrate mimics for ribonuclease A inhibition. Org Biomol Chem 2019; 17:7215-7221. [PMID: 31322157 DOI: 10.1039/c9ob01250h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfonic nucleic acids were identified as inhibitors of ribonuclease A (RNase A). The incorporation of a strongly acidic group (sulfonic, -SO3H) at the 3'-end of pyrimidine nucleosides thymidine and uridine was prompted by the low inhibition constant (Ki) values recorded for carboxymethylsulfonyl (-SO2CH2CO2H) and -CO2H functionalized nucleosides. It was envisaged that the sulfonic acid-modified pyrimidines would bind effectively with the positively charged P1 site of ribonuclease A. Typical harsh conditions used for SO3H incorporation were replaced with milder reaction conditions. The uridine analogue showing a Ki value of 0.96 μM elicited a better result than the thymidine-modified inhibitor. Notably, it was also the best result among all modified non-phosphate acidic nucleosides reported and screened so far as RNase A inhibitors.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
10
|
Chatzileontiadou DSM, Tsika AC, Diamantopoulou Z, Delbé J, Badet J, Courty J, Skamnaki VT, Parmenopoulou V, Komiotis D, Hayes JM, Spyroulias GA, Leonidas DD. Evidence for Novel Action at the Cell-Binding Site of Human Angiogenin Revealed by Heteronuclear NMR Spectroscopy, in silico and in vivo Studies. ChemMedChem 2018; 13:259-269. [PMID: 29314771 DOI: 10.1002/cmdc.201700688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Indexed: 12/11/2022]
Abstract
A member of the ribonuclease A superfamily, human angiogenin (hAng) is a potent angiogenic factor. Heteronuclear NMR spectroscopy combined with induced-fit docking revealed a dual binding mode for the most antiangiogenic compound of a series of ribofuranosyl pyrimidine nucleosides that strongly inhibit hAng's angiogenic activity in vivo. While modeling suggests the potential for simultaneous binding of the inhibitors at the active and cell-binding sites, NMR studies indicate greater affinity for the cell-binding site than for the active site. Additionally, molecular dynamics simulations at 100 ns confirmed the stability of binding at the cell-binding site with the predicted protein-ligand interactions, in excellent agreement with the NMR data. This is the first time that a nucleoside inhibitor is reported to completely inhibit the angiogenic activity of hAng in vivo by exerting dual inhibitory activity on hAng, blocking both the entrance of hAng into the cell and its ribonucleolytic activity.
Collapse
Affiliation(s)
- Demetra S M Chatzileontiadou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.,Current address: Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Australia
| | | | - Zoi Diamantopoulou
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France.,Current address: Cancer Research (UK) Manchester Institute, Manchester, UK
| | - Jean Delbé
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France
| | - Josette Badet
- INSERM U1139, Université Paris Descartes, 4 avenue de l'Observatoire, 75006, Paris, France
| | - José Courty
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Vanessa Parmenopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Dimitri Komiotis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Joseph M Hayes
- Centre for Materials Science and School of Physical Sciences & Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| |
Collapse
|
11
|
Kayet A, Datta D, Das A, Dasgupta S, Pathak T. 1,5-Disubstituted 1,2,3-triazole linked disaccharides: Metal-free syntheses and screening of a new class of ribonuclease A inhibitors. Bioorg Med Chem 2018; 26:455-462. [DOI: 10.1016/j.bmc.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/28/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
|
12
|
Datta D, Dasgupta S, Pathak T. Carboxymethylsulfonylated Ribopyrimidines: Rational Design of Ribonuclease A Inhibitors Employing Chemical Logic. ChemMedChem 2016; 11:620-8. [PMID: 26945688 DOI: 10.1002/cmdc.201600007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 11/11/2022]
Abstract
Hydrolysis of RNA by ribonuclease A crucially depends on the participation of the 2'-OH group as well as the positioning of the internucleotide bond at two different sites of the enzyme. Therefore, ribopyrimidines were modified with -SO2CH2CO2H, an acidic functional group, which was expected to interact with the phosphate binding site. These ribonucleosides were designed to understand the influence of the 2'-OH group of these inhibitors on ribonuclease A inhibition along with the effect of the -SO2CH2CO2H group. The "down" configuration of the 2'-OH group enhanced the inhibitory properties (Ki =1.75 μm) and also imparted important Val43 H-bonding with the furanose oxygen atom of the inhibitors. One of the most important aspects of this work is that there was no serendipitous discovery of the inhibitors. The inhibitors reported in this manuscript were obtained by design by employing chemical logic.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Technology (IIT)-Kharagpur, Kharagpur, 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology (IIT)-Kharagpur, Kharagpur, 721302, India.
| | - Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology (IIT)-Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
13
|
Datta D, Dasgupta S, Pathak T. Ribonuclease A inhibition by carboxymethylsulfonyl-modified xylo- and arabinopyrimidines. ChemMedChem 2014; 9:2138-49. [PMID: 25125220 DOI: 10.1002/cmdc.201402179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Indexed: 11/10/2022]
Abstract
A group of acidic nucleosides were synthesized to develop a new class of ribonuclease A (RNase A) inhibitors. Our recent study on carboxymethylsulfonyl-modified nucleosides revealed some interesting results in RNase A inhibition. This positive outcome triggered an investigation of the role played by secondary sugar hydroxy groups in inhibiting RNase A activity. Uridines and cytidines modified with SO2 CH2 COOH groups at the 2'- and 3'-positions show good inhibitory properties with low inhibition constant (Ki ) values in the range of 109-17 μM. The present work resulted in a set of inhibitors that undergo more effective interactions with the RNase A active site, as visualized by docking studies.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur (India), Fax: (+91) 3222-255303
| | | | | |
Collapse
|
14
|
Debnath J, Dasgupta S, Pathak T. Amino and carboxy functionalized modified nucleosides: a potential class of inhibitors for angiogenin. Bioorg Chem 2013; 52:56-61. [PMID: 24362350 DOI: 10.1016/j.bioorg.2013.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 11/16/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
The 3'-amino and carboxy functionalize thymidines execute their ribonucleolytic inhibition activity for angiogenin. These modified nucleosidic molecules inhibit the ribonucleolytic activity of angiogenin in a competitive manner like the other conventional nucleotidic inhibitors, which have been confirmed from kinetic experiments. The improved inhibition constant (Ki) values 427 ± 7, 775 ± 6 μM clearly indicate modified nucleosides are an obvious option for the designing of inhibitors of angiogenesis process. The chorioallantoic membrane (CAM) assay qualitatively suggests that amino functionalized nucleosides have an effective potency to inhibited angiogenin-induced angiogenesis. Docking studies further demonstrate the interaction of their polar amino group with the P1 site residues of angiogenin, i.e., His-13 and His-114 residues.
Collapse
Affiliation(s)
- Joy Debnath
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu 613401, India.
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
| | - Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
| |
Collapse
|
15
|
Datta D, Samanta A, Dasgupta S, Pathak T. 3′-Oxo-, amino-, thio- and sulfone-acetic acid modified thymidines: Effect of increased acidity on ribonuclease A inhibition. Bioorg Med Chem 2013; 21:4634-45. [DOI: 10.1016/j.bmc.2013.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 01/13/2023]
|
16
|
Debnath J, Dasgupta S, Pathak T. Dinucleosides with Non-Natural Backbones: A New Class of Ribonuclease A and Angiogenin Inhibitors. Chemistry 2012; 18:1618-27. [DOI: 10.1002/chem.201102816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Indexed: 11/11/2022]
|
17
|
Samanta A, Dasgupta S, Pathak T. 5′-Modified pyrimidine nucleosides as inhibitors of ribonuclease A. Bioorg Med Chem 2011; 19:2478-84. [DOI: 10.1016/j.bmc.2010.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/27/2010] [Accepted: 08/28/2010] [Indexed: 10/19/2022]
|
18
|
Thiyagarajan N, Smith BD, Raines RT, Acharya KR. Functional and structural analyses of N-acylsulfonamide-linked dinucleoside inhibitors of RNase A. FEBS J 2011; 278:541-9. [PMID: 21205197 PMCID: PMC3039443 DOI: 10.1111/j.1742-4658.2010.07976.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Molecular probes are useful for both studying and controlling the functions of enzymes and other proteins. The most useful probes have high affinity for their target, along with small size and resistance to degradation. Here, we report on new surrogates for nucleic acids that fulfill these criteria. Isosteres in which phosphoryl [R–O–P(O2−)–O–R′] groups are replaced with N-acylsulfonamidyl [R–C(O)–N−–S(O2)–R′] or sulfonimidyl [R–S(O2)–N−–S(O2)–R′] groups increase the number of nonbridging oxygens from two (phosphoryl) to three (N-acylsulfonamidyl) or four (sulfonimidyl). Six such isosteres were found to be more potent inhibitors of catalysis by bovine pancreatic RNase A than are parent compounds containing phosphoryl groups. The atomic structures of two RNase A·N-acylsulfonamide complexes were determined at high resolution by X-ray crystallography. The N-acylsulfonamidyl groups were observed to form more hydrogen bonds with active site residues than did the phosphoryl groups in analogous complexes. These data encourage the further development and use of N-acylsulfonamides and sulfonimides as antagonists of nucleic acid-binding proteins.
Collapse
|
19
|
Doucet N, Jayasundera TB, Simonović M, Loria JP. The crystal structure of ribonuclease A in complex with thymidine-3'-monophosphate provides further insight into ligand binding. Proteins 2010; 78:2459-68. [PMID: 20602460 DOI: 10.1002/prot.22754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Thymidine-3'-monophosphate (3'-TMP) is a competitive inhibitor analogue of the 3'-CMP and 3'-UMP natural product inhibitors of bovine pancreatic ribonuclease A (RNase A). Isothermal titration calorimetry experiments show that 3'-TMP binds the enzyme with a dissociation constant (K(d)) of 15 microM making it one of the strongest binding members of the five natural bases found in nucleic acids (A, C, G, T, and U). To further investigate the molecular properties of this potent natural affinity, we have determined the crystal structure of bovine pancreatic RNase A in complex with 3'-TMP at 1.55 A resolution and we have performed NMR binding experiments with 3'-CMP and 3'-TMP. Our results show that binding of 3'-TMP is very similar to other natural and non-natural pyrimidine ligands, demonstrating that single nucleotide affinity is independent of the presence or absence of a 2'-hydroxyl on the ribose moiety of pyrimidines and suggesting that the pyrimidine binding subsite of RNase A is not a significant contributor of inhibitor discrimination. Accumulating evidence suggests that very subtle structural, chemical, and potentially motional variations contribute to ligand discrimination in this enzyme.
Collapse
Affiliation(s)
- Nicolas Doucet
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
20
|
Holloway DE, Chavali GB, Leonidas DD, Baker MD, Acharya KR. Influence of naturally-occurring 5'-pyrophosphate-linked substituents on the binding of adenylic inhibitors to ribonuclease a: an X-ray crystallographic study. Biopolymers 2009; 91:995-1008. [PMID: 19191310 PMCID: PMC2816359 DOI: 10.1002/bip.21158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 11/22/2022]
Abstract
Ribonuclease A is the archetype of a functionally diverse superfamily of vertebrate-specific ribonucleases. Inhibitors of its action have potential use in the elucidation of the in vivo roles of these enzymes and in the treatment of pathologies associated therewith. Derivatives of adenosine 5'-pyrophosphate are the most potent nucleotide-based inhibitors known. Here, we use X-ray crystallography to visualize the binding of four naturally-occurring derivatives that contain 5'-pyrophosphate-linked extensions. 5'-ATP binds with the adenine occupying the B(2) subsite in the manner of an RNA substrate but with the gamma-phosphate at the P(1) subsite. Diadenosine triphosphate (Ap(3)A) binds with the adenine in syn conformation, the beta-phosphate as the principal P(1) subsite ligand and without order beyond the gamma-phosphate. NADPH and NADP(+) bind with the adenine stacked against an alternative rotamer of His119, the 2'-phosphate at the P(1) subsite, and without order beyond the 5'-alpha-phosphate. We also present the structure of the complex formed with pyrophosphate ion. The structural data enable existing kinetic data on the binding of these compounds to a variety of ribonucleases to be rationalized and suggest that as the complexity of the 5'-linked extension increases, the need to avoid unfavorable contacts places limitations on the number of possible binding modes.
Collapse
Affiliation(s)
- Daniel E Holloway
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | |
Collapse
|
21
|
Ghosh KS, Sen S, Sahoo BK, Dasgupta S. A spectroscopic investigation into the interactions of 3'-O-carboxy esters of thymidine with bovine serum albumin. Biopolymers 2009; 91:737-44. [PMID: 19402143 DOI: 10.1002/bip.21220] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Binding studies of 3'-O-carboxy esters of thymidine, reported inhibitors of ribonucleases, with bovine serum albumin (BSA) have been explored in this report. Fluorescence spectroscopy in combination with Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy have been used to determine the nature and mode of binding. The binding and quenching parameters were determined from tryptophan fluorescence quenching by Scatchard plots and modified Stern-Volmer plots. The association constants are of the order of 10(4) M(-1) for both the ligands. Thermodynamic parameters suggest that apart from an initial hydrophobic association, hydrogen bonding and van der Waals interactions play a decisive role during protein-ligand complex formation. Minor changes were observed in the secondary structures of human serum albumin (HSA) as revealed by FTIR and CD. Docking studies suggest that the ligands are close to Trp 213, which causes fluorescence quenching.
Collapse
Affiliation(s)
- Kalyan Sundar Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India
| | | | | | | |
Collapse
|
22
|
Inhibition of ribonuclease A by nucleoside–dibasic acid conjugates. Bioorg Med Chem 2009; 17:6491-5. [DOI: 10.1016/j.bmc.2009.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/07/2009] [Accepted: 08/11/2009] [Indexed: 11/18/2022]
|
23
|
Tsirkone VG, Dossi K, Drakou C, Zographos SE, Kontou M, Leonidas DD. Inhibitor design for ribonuclease A: the binding of two 5'-phosphate uridine analogues. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:671-7. [PMID: 19574636 PMCID: PMC2705631 DOI: 10.1107/s1744309109021423] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/05/2009] [Indexed: 11/10/2022]
Abstract
In the quest for the rational design of selective and potent inhibitors for members of the pancreatic ribonuclease A (RNase A) family of biomedical interest, the binding of uridine 5'-phosphate (U5P) and uridine 5'-diphosphate (UDP) to RNase A have been investigated using kinetic studies and X-ray crystallography. Both nucleotides are competitive inhibitors of the enzyme, with K(i) values of 4.0 and 0.65 mM, respectively. They bind to the active site of the enzyme by anchoring two molecules connected to each other by hydrogen bonds and van der Waals interactions. While the first of the inhibitor molecules binds with its nucleobase in the pyrimidinyl-binding subsite, the second is bound at the purine-preferring subsite. The unexpected binding of a pyrimidine at the purine-binding subsite has added new important elements to the rational design approach for the discovery of new potent inhibitors of the RNase A superfamily.
Collapse
Affiliation(s)
- Vicky G. Tsirkone
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Kyriaki Dossi
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Christina Drakou
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Spyros E. Zographos
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Maria Kontou
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos St., 41221 Larissa, Greece
| | - Demetres D. Leonidas
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
24
|
Nucleoside–amino acid conjugates: An alternative route to the design of ribonuclease A inhibitors. Bioorg Med Chem 2009; 17:4921-7. [DOI: 10.1016/j.bmc.2009.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
|
25
|
Samanta A, Leonidas DD, Dasgupta S, Pathak T, Zographos SE, Oikonomakos NG. Morpholino, Piperidino, and Pyrrolidino Derivatives of Pyrimidine Nucleosides as Inhibitors of Ribonuclease A: Synthesis, Biochemical, and Crystallographic Evaluation,. J Med Chem 2009; 52:932-42. [DOI: 10.1021/jm800724t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anirban Samanta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Demetres D. Leonidas
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Spyros E. Zographos
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Nikos G. Oikonomakos
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
26
|
Smith BD, Raines RT. Genetic selection for peptide inhibitors of angiogenin. Protein Eng Des Sel 2008; 21:289-94. [PMID: 18308863 DOI: 10.1093/protein/gzm089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The improper regulation of angiogenesis is implicit in a variety of diseases, including cancer. Angiogenin is unique among angiogenic factors in having ribonucleolytic activity. Inhibitors of this activity could serve as chemotherapeutics. The ribonucleolytic activity of angiogenin is toxic to the Origami strain of Escherichia coli. Herein, this cytotoxicity was used to identify inhibitors from a random nonapeptide library tethered to the C-terminus of human angiogenin. The selected sequences fell into three classes: (i) extremely hydrophobic, (ii) putative protease (ClpXP) substrates and (iii) slightly anionic. Two peptides corresponding to sequences in the last class were synthesized chemically and found to inhibit the ribonucleolytic activity of human angiogenin in vitro with micromolar values of Ki. Both peptides also inhibit bovine pancreatic ribonuclease, a homolog of angiogenin, though one exhibits selectivity for angiogenin. The affinity and selectivity of these peptides are comparable with the best known inhibitors of angiogenin. Moreover, the strategy used to identify them is general and could be applied to other cytotoxins.
Collapse
Affiliation(s)
- Bryan D Smith
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | | |
Collapse
|
27
|
Ghosh KS, Maiti TK, Debnath J, Dasgupta S. Inhibition of Ribonuclease A by polyphenols present in green tea. Proteins 2007; 69:566-80. [PMID: 17623866 DOI: 10.1002/prot.21484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report the effect of the natural polyphenolic compounds from green tea on the catalytic activity of Ribonuclease A (RNase A). The compounds behave as noncompetitive inhibitors of the protein with inhibition constants ranging from 80-1300 microM. The dissociation constants range from 50-150 microM for the RNase A-polyphenol complexes as determined by ultraviolet (UV) and circular dichroism (CD) studies. We have also investigated the changes in the secondary structure of RNase A on complex formation by CD and Fourier transformed infrared (FTIR) spectroscopy. The presence of the gallate moiety has been shown to be important for the inhibition of enzymatic activity. Docking studies for these compounds indicate that the preferred site of binding is the region encompassing residues 34-39 with possible hydrogen bonding with Lys 7 and Arg 10. Finally we have also looked at changes in the accessible surface area of the interacting residues on complex formation for an insight into the residues involved in the interaction.
Collapse
Affiliation(s)
- Kalyan S Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | | | | | |
Collapse
|
28
|
Yakovlev GI, Mitkevich VA, Struminskaya NK, Varlamov VP, Makarov AA. Low molecular weight chitosan is an efficient inhibitor of ribonucleases. Biochem Biophys Res Commun 2007; 357:584-8. [PMID: 17442276 DOI: 10.1016/j.bbrc.2007.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/05/2007] [Indexed: 11/19/2022]
Abstract
RNase inhibitors are commonly used to block the RNase activity in manipulations with RNA-containing preparations. Recently RNase inhibitors, either synthetic or natural, have been intensively sought because they appeared to be promising for therapy of cancer and allergy. However, there is only a limited number of efficient RNase inhibitors. We have shown that a low molecular weight chitosan (M(r) approximately 6 kDa) inhibits activity of pancreatic RNase A and some bacterial RNases with inhibition constants in the range of 30-220 nM at pH 7.0 and ionic strength 0.14 M. The preferential contribution to the chitosan complex formation with RNases is due to establishment of 5-6 ion pairs. The results of this work show that polycations may efficiently inhibit ribonuclease activities.
Collapse
Affiliation(s)
- Gennady I Yakovlev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Leonidas DD, Maiti TK, Samanta A, Dasgupta S, Pathak T, Zographos SE, Oikonomakos NG. The binding of 3′-N-piperidine-4-carboxyl-3′-deoxy-ara-uridine to ribonuclease A in the crystal. Bioorg Med Chem 2006; 14:6055-64. [PMID: 16730994 DOI: 10.1016/j.bmc.2006.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/28/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
The binding of a moderate inhibitor, 3'-N-piperidine-4-carboxyl-3'-deoxy-ara-uridine, to ribonuclease A has been studied by X-ray crystallography at 1.7A resolution. Two inhibitor molecules are bound in the central RNA binding cavity of RNase A exploiting interactions with residues from peripheral binding sites rather than from the active site of the enzyme. The uracyl moiety of the first inhibitor molecule occupies the purine-preferring site of RNase A, while the rest of the molecule projects to the solvent. The second inhibitor molecule binds with the carboxyl group at the pyrimidine recognition site and the uridine moiety exploits interactions with RNase A residues Lys66, His119 and Asp121. Comparative structural analysis of the 3'-N-piperidine-4-carboxyl-3'-deoxy-ara-uridine complex with other RNase A-ligand complexes provides a structural explanation of its potency. The crystal structure of the RNase A-3'-N-piperidine-4-carboxyl-3'-deoxy-ara-uridine complex provides evidence of a novel ligand-binding pattern in RNase A for 3'-N-aminonucleosides that was not anticipated by modelling studies, while it also suggests ways to improve the efficiency and selectivity of such compounds to develop pharmaceuticals against pathologies associated with RNase A homologues.
Collapse
Affiliation(s)
- Demetres D Leonidas
- Institute of Organic and Pharmaceutical Chemistry, The National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
31
|
Maiti TK, Dasgupta S, Pathak T. 3′-N-Alkylamino-3′-deoxy-ara-uridines: A new class of potential inhibitors of ribonuclease A and angiogenin. Bioorg Med Chem 2006; 14:1221-8. [PMID: 16216513 DOI: 10.1016/j.bmc.2005.09.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 11/28/2022]
Abstract
In this study, we report the inhibition of ribonuclease A (RNase A) by certain aminonucleosides. This is the first such instance of the use of this group of compounds to investigate the inhibitory activity of this protein. The compounds synthesized have been tested for their ability to inhibit the ribonucleolytic activity of RNase A by an agarose gel-based assay. A tRNA precipitation assay and inhibition kinetic studies with cytidine 2',3'-cyclic monophosphate as the substrate have also been conducted for two of the compounds. Results indicate substantial inhibitory activity with inhibition association constants in the micromolar range. The experimental studies have been substantiated by docking of the aminonucleoside ligands to RNase A using AutoDock. We find that the ligands preferentially bind to the active site of the protein molecule with a favorable free energy of binding. The study has been extended to a member of the ribonuclease superfamily, angiogenin, which is a potent inducer of blood vessel formation. We show that the aminonucleosides act as potent inhibitors of angiogenin induced angiogenesis.
Collapse
Affiliation(s)
- Tushar K Maiti
- Department of Chemistry, Indian Institute of Technology, Kharagpur
| | | | | |
Collapse
|
32
|
Holloway DE, Chavali GB, Hares MC, Subramanian V, Acharya KR. Structure of murine angiogenin: features of the substrate- and cell-binding regions and prospects for inhibitor-binding studies. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2005; 61:1568-78. [PMID: 16301790 PMCID: PMC1780170 DOI: 10.1107/s0907444905029616] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 09/18/2005] [Indexed: 11/10/2022]
Abstract
Angiogenin is an unusual member of the pancreatic ribonuclease superfamily that induces blood-vessel formation and is a promising anticancer target. The three-dimensional structure of murine angiogenin (mAng) has been determined by X-ray crystallography. Two structures are presented: one is a complex with sulfate ions (1.5 Angstroms resolution) and the other a complex with phosphate ions (1.6 Angstroms resolution). Residues forming the putative B(1), P(1) and B(2) subsites occupy positions similar to their hAng counterparts and are likely to play similar roles. The anions occupy the P(1) subsite, sulfate binding conventionally and phosphate adopting two orientations, one of which is novel. The B(1) subsite is obstructed by Glu116 and Phe119, with the latter assuming a less invasive position than its hAng counterpart. Hydrophobic interactions between the C-terminal segment and the main body of the protein are more extensive than in hAng and may underly the lower enzymatic activity of the murine protein. Elsewhere, the structure of the H3-B2 loop supports the view that hAng Asn61 interacts directly with cell-surface molecules and does not merely stabilize adjacent regions of the hAng structure. mAng crystals appear to offer small-molecule inhibitors a clear route to the active site and may even withstand a reorientation of the C-terminal segment that provides access to the cryptic B(1) subsite. These features represent considerable advantages over crystalline hAng and bAng.
Collapse
|
33
|
Abstract
The binding of inosine 5' phosphate (IMP) to ribonuclease A has been studied by kinetic and X-ray crystallographic experiments at high (1.5 A) resolution. IMP is a competitive inhibitor of the enzyme with respect to C>p and binds to the catalytic cleft by anchoring three IMP molecules in a novel binding mode. The three IMP molecules are connected to each other by hydrogen bond and van der Waals interactions and collectively occupy the B1R1P1B2P0P(-1) region of the ribonucleolytic active site. One of the IMP molecules binds with its nucleobase in the outskirts of the B2 subsite and interacts with Glu111 while its phosphoryl group binds in P1. Another IMP molecule binds by following the retro-binding mode previously observed only for guanosines with its nucleobase at B1 and the phosphoryl group in P(-1). The third IMP molecule binds in a novel mode towards the C-terminus. The RNase A-IMP complex provides structural evidence for the functional components of subsite P(-1) while it further supports the role inferred by other studies to Asn71 as the primary structural determinant for the adenine specificity of the B2 subsite. Comparative structural analysis of the IMP and AMP complexes highlights key aspects of the specificity of the base binding subsites of RNase A and provides a structural explanation for their potencies. The binding of IMP suggests ways to develop more potent inhibitors of the pancreatic RNase superfamily using this nucleotide as the starting point.
Collapse
Affiliation(s)
- George N Hatzopoulos
- Institute of Organic & Pharmaceutical Chemistry, The National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | |
Collapse
|
34
|
Jenkins CL, Thiyagarajan N, Sweeney RY, Guy MP, Kelemen BR, Acharya KR, Raines RT. Binding of non-natural 3'-nucleotides to ribonuclease A. FEBS J 2005; 272:744-55. [PMID: 15670155 DOI: 10.1111/j.1742-4658.2004.04511.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2'-Fluoro-2'-deoxyuridine 3'-phosphate (dU(F)MP) and arabinouridine 3'-phosphate (araUMP) have non-natural furanose rings. dU(F)MP and araUMP were prepared by chemical synthesis and found to have three- to sevenfold higher affinity than uridine 3'-phosphate (3'-UMP) or 2'-deoxyuridine 3'-phosphate (dUMP) for ribonuclease A (RNase A). These differences probably arise (in part) from the phosphoryl groups of 3'-UMP, dU(F)MP, and araUMP (pK(a) = 5.9) being more anionic than that of dUMP (pK(a) = 6.3). The three-dimensional structures of the crystalline complexes of RNase A with dUMP, dU(F)MP and araUMP were determined at < 1.7 A resolution by X-ray diffraction analysis. In these three structures, the uracil nucleobases and phosphoryl groups bind to the enzyme in a nearly identical position. Unlike 3'-UMP and dU(F)MP, dUMP and araUMP bind with their furanose rings in the preferred pucker. In the RNase A.araUMP complex, the 2'-hydroxyl group is exposed to the solvent. All four 3'-nucleotides bind more tightly to wild-type RNase A than to its T45G variant, which lacks the residue that interacts most closely with the uracil nucleobase. These findings illuminate in atomic detail the interaction of RNase A and 3'-nucleotides, and indicate that non-natural furanose rings can serve as the basis for more potent inhibitors of catalysis by RNase A.
Collapse
Affiliation(s)
- Cara L Jenkins
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Makarov AA, Yakovlev GI, Mitkevich VA, Higgin JJ, Raines RT. Zinc(II)-mediated inhibition of ribonuclease Sa by an N-hydroxyurea nucleotide and its basis. Biochem Biophys Res Commun 2004; 319:152-6. [PMID: 15158454 DOI: 10.1016/j.bbrc.2004.04.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Indexed: 11/20/2022]
Abstract
Ribonuclease Sa (RNase Sa) is a secretory ribonuclease from Streptomyces aureofaciens. Herein, 3'-N-hydroxyurea-3'-deoxythymidine 5'-phosphate is shown to be a competitive inhibitor of catalysis by RNase Sa. Inhibition is enhanced by nearly 10-fold in the presence of Zn(2+), which could coordinate to the N-hydroxyurea group along with enzymic residues. The carboxylate of Glu54 is the putative base that abstracts a proton from the 2' hydroxyl group during catalysis of RNA cleavage by RNase Sa. Replacing Glu54 with a glutamine residue has no effect on the affinity of N-hydroxyurea 1 for the enzyme, but eliminates the zinc(II)-dependence of that affinity. These data indicate that an N-hydroxyurea nucleotide can recruit Zn(2+) to inhibit the enzymatic activity of RNase Sa, and suggest that the carboxylate of Glu54 is a ligand for that Zn(2+). These findings further the development of a new class of ribonuclease inhibitors based on the complex of an N-hydroxyurea nucleotide and zinc(II).
Collapse
Affiliation(s)
- Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
36
|
Leonidas DD, Chavali GB, Oikonomakos NG, Chrysina ED, Kosmopoulou MN, Vlassi M, Frankling C, Acharya KR. High-resolution crystal structures of ribonuclease A complexed with adenylic and uridylic nucleotide inhibitors. Implications for structure-based design of ribonucleolytic inhibitors. Protein Sci 2003; 12:2559-74. [PMID: 14573867 PMCID: PMC2366950 DOI: 10.1110/ps.03196603] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The crystal structures of bovine pancreatic ribonuclease A (RNase A) in complex with 3',5'-ADP, 2',5'-ADP, 5'-ADP, U-2'-p and U-3'-p have been determined at high resolution. The structures reveal that each inhibitor binds differently in the RNase A active site by anchoring a phosphate group in subsite P1. The most potent inhibitor of all five, 5'-ADP (Ki = 1.2 microM), adopts a syn conformation (in contrast to 3',5'-ADP and 2',5'-ADP, which adopt an anti), and it is the beta- rather than the alpha-phosphate group that binds to P1. 3',5'-ADP binds with the 5'-phosphate group in P1 and the adenosine in the B2 pocket. Two different binding modes are observed in the two RNase A molecules of the asymmetric unit for 2',5'-ADP. This inhibitor binds with either the 3' or the 5' phosphate groups in subsite P1, and in each case, the adenosine binds in two different positions within the B2 subsite. The two uridilyl inhibitors bind similarly with the uridine moiety in the B1 subsite but the placement of a different phosphate group in P1 (2' versus 3') has significant implications on their potency against RNase A. Comparative structural analysis of the RNase A, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), and human angiogenin (Ang) complexes with these and other phosphonucleotide inhibitors provides a wealth of information for structure-based design of inhibitors specific for each RNase. These inhibitors could be developed to therapeutic agents that could control the biological activities of EDN, ECP, and ANG, which play key roles in human pathologies.
Collapse
Affiliation(s)
- Demetres D Leonidas
- Institute of Organic and Pharmaceutical Chemistry, The National Hellenic Research Foundation, 11635 Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Smith BD, Soellner MB, Raines RT. Potent inhibition of ribonuclease A by oligo(vinylsulfonic acid). J Biol Chem 2003; 278:20934-8. [PMID: 12649287 DOI: 10.1074/jbc.m301852200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonuclease A (RNase A) can make multiple contacts with an RNA substrate. In particular, the enzymatic active site and adjacent subsites bind sequential phosphoryl groups in the RNA backbone through Coulombic interactions. Here, oligomers of vinylsulfonic acid (OVS) are shown to be potent inhibitors of RNase A that exploit these interactions. Inhibition is competitive with substrate and has Ki = 11 pm in assays at low salt concentration. The effect of salt concentration on inhibition indicates that nearly eight favorable Coulombic interactions occur in the RNase A.OVS complex. The phosphonic acid and sulfuric acid analogs of OVS are also potent inhibitors although slightly less effective. OVS is also shown to be a contaminant of MES and other buffers that contain sulfonylethyl groups. Oligomers greater than nine units in length can be isolated from commercial MES buffer. Inhibition by contaminating OVS is responsible for the apparent decrease in catalytic activity that has been observed in assays of RNase A at low salt concentration. Thus, OVS is both a useful inhibitor of RNase A and a potential bane to chemists and biochemists who use ethanesulfonic acid buffers.
Collapse
Affiliation(s)
- Bryan D Smith
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
38
|
Kumar K, Jenkins JL, Jardine AM, Shapiro R. Inhibition of mammalian ribonucleases by endogenous adenosine dinucleotides. Biochem Biophys Res Commun 2003; 300:81-6. [PMID: 12480524 DOI: 10.1016/s0006-291x(02)02800-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The most potent low molecular weight inhibitors of pancreatic RNase superfamily enzymes reported to date are synthetic derivatives of adenosine 5(')-pyrophosphate. Here we have investigated the effects of six natural nucleotides that also incorporate this moiety (NADP(+), NADPH, ATP, Ap(3)A, Ap(4)A, and Ap(5)A) on the activities of RNase A and two of its homologues, eosinophil-derived neurotoxin and angiogenin. With eosinophil-derived neurotoxin and angiogenin, Ap(5)A is comparable to the tightest binding inhibitors identified previously (K(i) values at pH 5.9 are 370 nM and 100 microM, respectively); it ranks among the strongest small antagonists of RNase A as well (K(i)=230 nM). The K(i) for NADPH with angiogenin is similar to that of Ap(5)A. These findings suggest that Ap(5)A and NADPH may serve as useful new leads for inhibitor design. Examination of inhibition under physiological conditions indicates that NADPH, ATP, and Ap(5)A may suppress intracellular RNase activity significantly in vivo.
Collapse
Affiliation(s)
- Kapil Kumar
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, One Kendall Square, Building 600, Third Floor, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
39
|
Jenkins JL, Kao RYT, Shapiro R. Virtual screening to enrich hit lists from high-throughput screening: a case study on small-molecule inhibitors of angiogenin. Proteins 2003; 50:81-93. [PMID: 12471601 DOI: 10.1002/prot.10270] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
"Hit lists" generated by high-throughput screening (HTS) typically contain a large percentage of false positives, making follow-up assays necessary to distinguish active from inactive substances. Here we present a method for improving the accuracy of HTS hit lists by computationally based virtual screening (VS) of the corresponding chemical libraries and selecting hits by HTS/VS consensus. This approach was applied in a case study on the target-enzyme angiogenin, a potent inducer of angiogenesis. In conjunction with HTS of the National Cancer Institute Diversity Set and ChemBridge DIVERSet E (approximately 18,000 compounds total), VS was performed with two flexible library docking/scoring methods, DockVision/Ludi and GOLD. Analysis of the results reveals that dramatic enrichment of the HTS hit rate can be achieved by selecting compounds in consensus with one or both of the VS functions. For example, HTS hits ranked in the top 2% by GOLD included 42% of the true hits, but only 8% of the false positives; this represents a sixfold enrichment over the HTS hit rate. Notably, the HTS/VS method was effective in selecting out inhibitors with midmicromolar dissociation constants typical of leads commonly obtained in primary screens.
Collapse
Affiliation(s)
- Jeremy L Jenkins
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
40
|
Kao RYT, Jenkins JL, Olson KA, Key ME, Fett JW, Shapiro R. A small-molecule inhibitor of the ribonucleolytic activity of human angiogenin that possesses antitumor activity. Proc Natl Acad Sci U S A 2002; 99:10066-71. [PMID: 12118120 PMCID: PMC126625 DOI: 10.1073/pnas.152342999] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The results of previous preclinical and clinical studies have identified angiogenin (ANG) as a potentially important target for anticancer therapy. Here we report the design and implementation of a high-throughput screening assay to identify small molecules that bind to the ribonucleolytic active site of ANG, which is critically involved in the induction of angiogenesis by this protein. Screening of 18,310 compounds from the National Cancer Institute (NCI) Diversity Set and ChemBridge DIVERSet yielded 15 hits that inhibit the enzymatic activity of ANG with K(i) values <100 microM. One of these, NCI compound 65828 [8-amino-5-(4'-hydroxybiphenyl-4-ylazo)naphthalene-2-sulfonate; K(i) = 81 microM], was selected for more detailed studies. Minor changes in ANG or ligand structure markedly reduced potency, demonstrating that inhibition reflects active-site rather than nonspecific binding; these observations are consistent with a computationally generated model of the ANG.65828 complex. Local treatment with modest doses of 65828 significantly delayed the formation of s.c. tumors from two distinct human cancer cell types in athymic mice. ANG is the likely target involved because (i) a 65828 analogue with much lower potency against the enzymatic activity of ANG failed to exert any antitumor effect, (ii) tumors from 65828-treated mice had fewer interior blood vessels than those from control mice, and (iii) 65828 appears to have no direct effect on the tumor cells. Our findings provide considerable support for the targeting of the enzymatic active site of ANG as a strategy for developing new anticancer drugs.
Collapse
Affiliation(s)
- Richard Y T Kao
- Center for Biochemical and Biophysical Sciences, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
41
|
Leonidas DD, Chavali GB, Jardine AM, Li S, Shapiro R, Acharya KR. Binding of phosphate and pyrophosphate ions at the active site of human angiogenin as revealed by X-ray crystallography. Protein Sci 2001; 10:1669-76. [PMID: 11468363 PMCID: PMC2374093 DOI: 10.1110/ps.13601] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human angiogenin (Ang) is an unusual homolog of bovine pancreatic RNase A that utilizes its ribonucleolytic activity to induce the formation of new blood vessels. The pyrimidine-binding site of Ang was shown previously to be blocked by glutamine 117, indicating that Ang must undergo a conformational change to bind and cleave RNA. The mechanism and nature of this change are not known, and no Ang-inhibitor complexes have been characterized structurally thus far. Here, we report crystal structures for the complexes of Ang with the inhibitors phosphate and pyrophosphate, and the structure of the complex of the superactive Ang variant Q117G with phosphate, all at 2.0 A resolution. Phosphate binds to the catalytic site of both Ang and Q117G in essentially the same manner observed in the RNase A-phosphate complex, forming hydrogen bonds with the side chains of His 13, His 114, and Gln 12, and the main chain of Leu 115; it makes an additional interaction with the Lys 40 ammonium group in the Ang complex. One of the phosphate groups of pyrophosphate occupies a similar position. The other phosphate extends toward Gln 117, and lies within hydrogen-bonding distance from the side-chain amide of this residue as well as the imidazole group of His 13 and the main-chain oxygen of Leu 115. The pyrimidine site remains obstructed in all three complex structures, that is, binding to the catalytic center is not sufficient to trigger the conformational change required for catalytic activity, even in the absence of the Gln 117 side chain. The Ang-pyrophosphate complex structure suggests how nucleoside pyrophosphate inhibitors might bind to Ang; this information may be useful for the design of Ang antagonists as potential anti-angiogenic drugs.
Collapse
Affiliation(s)
- D D Leonidas
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | |
Collapse
|