1
|
Shi Y, Tang L, Shao Q, Jiang Y, Wang Z, Peng C, Gu T, Li Z. The dynamic roles of intracellular vacuoles in heavy metal detoxification by Rhodotorula mucilaginosa. J Appl Microbiol 2024; 135:lxae241. [PMID: 39284782 DOI: 10.1093/jambio/lxae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
AIMS Rhodotorula mucilaginosa (Rho) can develop a range of strategies to resist the toxicity of heavy metals. This study aimed to investigate the physiological responses and transcriptomic regulation of the fungus under different heavy metal stresses. METHODS AND RESULTS This study applied transmission electron microscopy and RNA-seq to investigate the fungal resistance to Pb, Cd, and Cu stresses. Under Pb stress, the activated autophagy-related genes, vesicle-fusing ATPase, and vacuolar ATP synthase improved vacuolar sequestration. This offsets the loss of lipids. However, the metal sequestration by vacuoles was not improved under Cd stress. Vacuolar fusion was also inhibited following the interference of intravacuolar Ca2+ due to their similar ionic radii. Cu2+ showed the maximum toxic effects due to its lowest cellular sorption (as low as 7%) with respect to Pb2+ and Cd2+, although the efflux pumps and divalent metal ion transporters partially contributed to the detoxification. CONCLUSIONS Divalent cation transporters and vacuolar sequestration are the critical strategies for Rho to resist Pb stress. Superoxide dismutase (SOD) is the main strategy for Cd resistance in Rho. The intracellular Cu level was decreased by efflux pump and divalent metal ion transporters.
Collapse
Affiliation(s)
- Yixiao Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Qi Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Yizhou Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Chao Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
- National Research Center for Geoanalysis, Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, No. 26, Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China
| |
Collapse
|
2
|
Uemura S, Mochizuki T, Kato Y, Mioka T, Watanabe R, Fuchita M, Yamada M, Noda Y, Moriguchi T, Abe F. Mtc6/Ehg2 is a novel endoplasmic reticulum-resident glycoprotein essential for high-pressure tolerance. J Biochem 2024; 176:155-166. [PMID: 38621657 DOI: 10.1093/jb/mvae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Hydrostatic pressure is a common mechanical stressor that modulates metabolism and reduces cell viability. Eukaryotic cells have genetic programs to cope with hydrostatic pressure stress and maintain intracellular homeostasis. However, the mechanism underlying hydrostatic pressure tolerance remains largely unknown. We have recently demonstrated that maintenance of telomere capping protein 6 (Mtc6) plays a protective role in the survival of the budding yeast Saccharomyces cerevisiae under hydrostatic pressure stress by supporting the integrity of nutrient permeases. The current study demonstrates that Mtc6 acts as an endoplasmic reticulum (ER) membrane protein. Mtc6 comprises two transmembrane domains, a C-terminal cytoplasmic domain and a luminal region with 12 Asn (N)-linked glycans attached to it. Serial mutational analyses showed that the cytoplasmic C-terminal amino acid residues GVPS Mtc6 activity. Multiple N-linked glycans in the luminal region are involved in the structural conformation of Mtc6. Moreover, deletion of MTC6 led to increased degradation of the leucine permease Bap2 under hydrostatic pressure, suggesting that Mtc6 facilitates the proper folding of nutrient permeases in the ER under stress conditions. We propose a novel model of molecular function in which the glycosylated luminal domain and cytoplasmic GVPS sequences of Mtc6 cooperatively support the nutrient permease activity.
Collapse
Affiliation(s)
- Satoshi Uemura
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Yusuke Kato
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Tetsuo Mioka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Riseko Watanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Mai Fuchita
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Mao Yamada
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Yoichi Noda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo,113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo,113-8657, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| |
Collapse
|
3
|
Ragagnin AMG, Sundaramoorthy V, Farzana F, Gautam S, Saravanabavan S, Takalloo Z, Mehta P, Do-Ha D, Parakh S, Shadfar S, Hunter J, Vidal M, Jagaraj CJ, Brocardo M, Konopka A, Yang S, Rayner SL, Williams KL, Blair IP, Chung RS, Lee A, Ooi L, Atkin JD. ALS/FTD-associated mutation in cyclin F inhibits ER-Golgi trafficking, inducing ER stress, ERAD and Golgi fragmentation. Sci Rep 2023; 13:20467. [PMID: 37993492 PMCID: PMC10665471 DOI: 10.1038/s41598-023-46802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severely debilitating neurodegenerative condition that is part of the same disease spectrum as frontotemporal dementia (FTD). Mutations in the CCNF gene, encoding cyclin F, are present in both sporadic and familial ALS and FTD. However, the pathophysiological mechanisms underlying neurodegeneration remain unclear. Proper functioning of the endoplasmic reticulum (ER) and Golgi apparatus compartments is essential for normal physiological activities and to maintain cellular viability. Here, we demonstrate that ALS/FTD-associated variant cyclin FS621G inhibits secretory protein transport from the ER to Golgi apparatus, by a mechanism involving dysregulation of COPII vesicles at ER exit sites. Consistent with this finding, cyclin FS621G also induces fragmentation of the Golgi apparatus and activates ER stress, ER-associated degradation, and apoptosis. Induction of Golgi fragmentation and ER stress were confirmed with a second ALS/FTD variant cyclin FS195R, and in cortical primary neurons. Hence, this study provides novel insights into pathogenic mechanisms associated with ALS/FTD-variant cyclin F, involving perturbations to both secretory protein trafficking and ER-Golgi homeostasis.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Vinod Sundaramoorthy
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shashi Gautam
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Zeinab Takalloo
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Prachi Mehta
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dzung Do-Ha
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Sonam Parakh
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie Hunter
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marta Vidal
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cyril J Jagaraj
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mariana Brocardo
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anna Konopka
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shu Yang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kelly L Williams
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian P Blair
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Roger S Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Julie D Atkin
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
4
|
Stancheva VG, Li XH, Hutchings J, Gomez-Navarro N, Santhanam B, Babu MM, Zanetti G, Miller EA. Combinatorial multivalent interactions drive cooperative assembly of the COPII coat. J Cell Biol 2020; 219:e202007135. [PMID: 32997735 PMCID: PMC7594496 DOI: 10.1083/jcb.202007135] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Protein secretion is initiated at the endoplasmic reticulum by the COPII coat, which self-assembles to form vesicles. Here, we examine the mechanisms by which a cargo-bound inner coat layer recruits and is organized by an outer scaffolding layer to drive local assembly of a stable structure rigid enough to enforce membrane curvature. An intrinsically disordered region in the outer coat protein, Sec31, drives binding with an inner coat layer via multiple distinct interfaces, including a newly defined charge-based interaction. These interfaces combinatorially reinforce each other, suggesting coat oligomerization is driven by the cumulative effects of multivalent interactions. The Sec31 disordered region could be replaced by evolutionarily distant sequences, suggesting plasticity in the binding interfaces. Such a multimodal assembly platform provides an explanation for how cells build a powerful yet transient scaffold to direct vesicle traffic.
Collapse
Affiliation(s)
| | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Joshua Hutchings
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | | | | | | | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | | |
Collapse
|
5
|
A novel ER membrane protein Ehg1/May24 plays a critical role in maintaining multiple nutrient permeases in yeast under high-pressure perturbation. Sci Rep 2019; 9:18341. [PMID: 31797992 PMCID: PMC6892922 DOI: 10.1038/s41598-019-54925-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Previously, we isolated 84 deletion mutants in Saccharomyces cerevisiae auxotrophic background that exhibited hypersensitive growth under high hydrostatic pressure and/or low temperature. Here, we observed that 24 deletion mutants were rescued by the introduction of four plasmids (LEU2, HIS3, LYS2, and URA3) together to grow at 25 MPa, thereby suggesting close links between the genes and nutrient uptake. Most of the highly ranked genes were poorly characterized, including MAY24/YPR153W. May24 appeared to be localized in the endoplasmic reticulum (ER) membrane. Therefore, we designated this gene as EHG (ER-associated high-pressure growth gene) 1. Deletion of EHG1 led to reduced nutrient transport rates and decreases in the nutrient permease levels at 25 MPa. These results suggest that Ehg1 is required for the stability and functionality of the permeases under high pressure. Ehg1 physically interacted with nutrient permeases Hip1, Bap2, and Fur4; however, alanine substitutions for Pro17, Phe19, and Pro20, which were highly conserved among Ehg1 homologues in various yeast species, eliminated interactions with the permeases as well as the high-pressure growth ability. By functioning as a novel chaperone that facilitated coping with high-pressure-induced perturbations, Ehg1 could exert a stabilizing effect on nutrient permeases when they are present in the ER.
Collapse
|
6
|
Tanabe Y, Arai S, Wada I, Adachi H, Kamakura T, Yoda K, Noda Y. Svp26 facilitates ER exit of mannosyltransferases Mnt2 and Mnt3 in Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2019; 65:180-187. [PMID: 30700649 DOI: 10.2323/jgam.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
After being translocated into the ER lumen, membrane and secretory proteins are transported from the ER to the early Golgi by COPII vesicles. Incorporation of these cargo proteins into COPII vesicles are facilitated either by direct interaction of cargo proteins with COPII coat proteins or by ER exit adaptor proteins which mediate the interaction of cargo proteins with COPII coat proteins. Svp26 is one of the ER exit adaptor proteins in yeast Saccharomyces cerevisiae. ER exit of several type II membrane proteins have been reported to be facilitated by Svp26. We demonstrate here that efficient incorporation of Mnt2 and Mnt3 into COPII vesicles is also dependent on the function of Svp26. Mnt2 and Mnt3 are Golgi-localized α-1,3-mannosyltransferases with type II membrane topology involved in protein O-glycosylation. Immunoisolation of the yeast Golgi subcompartments quantitatively showed that Mnt2 and Mnt3 are more abundant in the early Golgi fraction than in the late Golgi fraction. Subcellular fractionation and fluorescence microscopy showed that deletion of the SVP26 gene results in the accumulation of Mnt2 and Mnt3 in ER. Using an in vitro COPII vesicle formation assay, we further demonstrate that Svp26 facilitates incorporation of Mnt2 and Mnt3 into COPII vesicles. Finally, we showed that Mnt2 and Mnt3 were co-immunoprecipitated with Svp26 from digitonin-solubilized membranes. These results indicate that Svp26 functions as an ER exit adaptor protein of Mnt2 and Mnt3.
Collapse
Affiliation(s)
- Yuuki Tanabe
- Department of Biotechnology, The University of Tokyo.,Department of Applied Biological Science, Tokyo University of Science
| | - Seisuke Arai
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine
| | - Hiroyuki Adachi
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Takashi Kamakura
- Department of Applied Biological Science, Tokyo University of Science
| | - Koji Yoda
- Department of Biotechnology, The University of Tokyo
| | - Yoichi Noda
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
7
|
Noda Y, Arai S, Wada I, Yoda K. Both Svp26 and Mnn6 are required for the efficient ER exit of Mnn4 in Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2019; 65:215-224. [PMID: 30842360 DOI: 10.2323/jgam.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Incorporation of membrane and secretory proteins into COPII vesicles are facilitated either by the direct interaction of cargo proteins with COPII coat proteins, or by ER exit adaptor proteins which mediate the interaction of cargo proteins with COPII coat proteins. Svp26 is one of the ER exit adaptor proteins in the yeast Saccharomyces cerevisiae. The ER exit of several type II membrane proteins have been reported to be facilitated by Svp26. We demonstrate here that the efficient incorporation of Mnn4, a type II membrane protein required for mannosyl phosphate transfer to glycoprotein-linked oligosaccharides, into COPII vesicles is also dependent on the function of Svp26. We show that Mnn4 is localized to the Golgi. In addition to Mnn4, Mnn6 is known to be also required for the transfer of mannosyl phosphate to the glycans. We show, by indirect immunofluorescence, that Mnn6 localizes to the ER. As in the case with Svp26, deletion of the MNN6 gene results in the accumulation of Mnn4 in ER. In vitro COPII vesicle budding assays show that Svp26 and Mnn6 facilitate the incorporation of Mnn4 into COPII vesicles. In contrast to Svp26, which is itself efficiently captured into the COPII vesicles, Mnn6 was not incorporated into the COPII vesicles. Mnn4 and Mnn6 have the DXD motif which is often found in the many glycosyltransferases and functions to coordinate a divalent cation essential for the reaction. Alcian blue dye binding assay shows that substitution of the first D in this motif present in Mnn4 by A impairs the Mnn4 function. In contrast, amino acid substitutions in DXD motifs present in Mnn6 did not affect the function of Mnn6. These results suggest that Mnn4 may be directly involved in the mannosyl phosphate transfer reaction.
Collapse
Affiliation(s)
- Yoichi Noda
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Seisuke Arai
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine
| | - Koji Yoda
- Department of Biotechnology, The University of Tokyo
| |
Collapse
|
8
|
Melero A, Chiaruttini N, Karashima T, Riezman I, Funato K, Barlowe C, Riezman H, Roux A. Lysophospholipids Facilitate COPII Vesicle Formation. Curr Biol 2018; 28:1950-1958.e6. [PMID: 29887313 PMCID: PMC6013297 DOI: 10.1016/j.cub.2018.04.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guanosine triphosphatase (GTPase) that initiates COPII assembly. Here we show that overexpression of phospholipase B3 in the thermosensitive sec12-4 mutant partially restores growth and protein transport at non-permissive temperatures. Lipidomics analyses of these cells show a higher content of lysophosphatidylinositol (lysoPI), consistent with the lipid specificity of PLB3. Furthermore, we show that lysoPI is specifically enriched in COPII vesicles isolated from in vitro budding assays. As these results suggested that lysophospholipids could facilitate budding under conditions of defective COPII coat dynamics, we reconstituted COPII binding onto giant liposomes with purified proteins and showed that lysoPI decreases membrane rigidity and enhances COPII recruitment to liposomes. Our results support a mechanical facilitation of COPII budding by lysophospholipids. COPII mutant sec12-4 is rescued by the overexpression of an ER resident phospholipase Lipidomic analysis of COPII vesicles shows enrichment in lysophospholipids Recruitment of COPII proteins to liposomes increases in presence of lysophospholipids Lysophosphatidylinositol lowers the rigidity of membranes in vitro
Collapse
Affiliation(s)
- Alejandro Melero
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; Swiss National Centre for Competence in Research in Chemical Biology, 1211 Geneva, Switzerland
| | | | - Takefumi Karashima
- Department of Bioresource Science and Technology, Hiroshima University, Hiroshima 739-8528, Japan
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Kouichi Funato
- Department of Bioresource Science and Technology, Hiroshima University, Hiroshima 739-8528, Japan
| | - Charles Barlowe
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844, USA
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; Swiss National Centre for Competence in Research in Chemical Biology, 1211 Geneva, Switzerland.
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; Swiss National Centre for Competence in Research in Chemical Biology, 1211 Geneva, Switzerland.
| |
Collapse
|
9
|
An In Vitro TORC1 Kinase Assay That Recapitulates the Gtr-Independent Glutamine-Responsive TORC1 Activation Mechanism on Yeast Vacuoles. Mol Cell Biol 2017; 37:MCB.00075-17. [PMID: 28483912 DOI: 10.1128/mcb.00075-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/01/2017] [Indexed: 01/03/2023] Open
Abstract
Evolutionarily conserved target of rapamycin (TOR) complex 1 (TORC1) responds to nutrients, especially amino acids, to promote cell growth. In the yeast Saccharomyces cerevisiae, various nitrogen sources activate TORC1 with different efficiencies, although the mechanism remains elusive. Leucine, and perhaps other amino acids, was reported to activate TORC1 via the heterodimeric small GTPases Gtr1-Gtr2, the orthologues of the mammalian Rag GTPases. More recently, an alternative Gtr-independent TORC1 activation mechanism that may respond to glutamine was reported, although its molecular mechanism is not clear. In studying the nutrient-responsive TORC1 activation mechanism, the lack of an in vitro assay hinders associating particular nutrient compounds with the TORC1 activation status, whereas no in vitro assay that shows nutrient responsiveness has been reported. In this study, we have developed a new in vitro TORC1 kinase assay that reproduces, for the first time, the nutrient-responsive TORC1 activation. This in vitro TORC1 assay recapitulates the previously predicted Gtr-independent glutamine-responsive TORC1 activation mechanism. Using this system, we found that this mechanism specifically responds to l-glutamine, resides on the vacuolar membranes, and involves a previously uncharacterized Vps34-Vps15 phosphatidylinositol (PI) 3-kinase complex and the PI-3-phosphate [PI(3)P]-binding FYVE domain-containing vacuolar protein Pib2. Thus, this system was proved to be useful for dissecting the glutamine-responsive TORC1 activation mechanism.
Collapse
|
10
|
Parashar S, Mukhopadhyay A. GTPase Sar1 regulates the trafficking and secretion of the virulence factor gp63 in Leishmania. J Biol Chem 2017; 292:12111-12125. [PMID: 28576830 DOI: 10.1074/jbc.m117.784033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/30/2017] [Indexed: 12/30/2022] Open
Abstract
Metalloprotease gp63 (Leishmania donovani gp63 (Ldgp63)) is a critical virulence factor secreted by Leishmania However, how newly synthesized Ldgp63 exits the endoplasmic reticulum (ER) and is secreted by this parasite is unknown. Here, we cloned, expressed, and characterized the GTPase LdSar1 and other COPII components like LdSec23, LdSec24, LdSec13, and LdSec31 from Leishmania to understand their role in ER exit of Ldgp63. Using dominant-positive (LdSar1:H74L) and dominant-negative (LdSar1:T34N) mutants of LdSar1, we found that GTP-bound LdSar1 specifically binds to LdSec23, which binds, in turn, with LdSec24(1-702) to form a prebudding complex. Moreover, LdSec13 specifically interacted with His6-LdSec31(1-603), and LdSec31 bound the prebudding complex via LdSec23. Interestingly, dileucine 594/595 and valine 597 residues present in the Ldgp63 C-terminal domain were critical for binding with LdSec24(703-966), and GFP-Ldgp63L594A/L595A or GFP-Ldgp63V597S mutants failed to exit from the ER. Moreover, Ldgp63-containing COPII vesicle budding from the ER was inhibited by LdSar1:T34N in an in vitro budding assay, indicating that GTP-bound LdSar1 is required for budding of Ldgp63-containing COPII vesicles. To directly demonstrate the function of LdSar1 in Ldgp63 trafficking, we coexpressed RFP-Ldgp63 along with LdSar1:WT-GFP or LdSar1:T34N-GFP and found that LdSar1:T34N overexpression blocks Ldgp63 trafficking and secretion in Leishmania Finally, we noted significantly compromised survival of LdSar1:T34N-GFP-overexpressing transgenic parasites in macrophages. Taken together, these results indicated that Ldgp63 interacts with the COPII complex via LdSec24 for Ldgp63 ER exit and subsequent secretion.
Collapse
Affiliation(s)
- Smriti Parashar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
11
|
Lee H, Noh H, Mun J, Gu C, Sever S, Park S. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat Commun 2016; 7:12799. [PMID: 27619642 PMCID: PMC5027278 DOI: 10.1038/ncomms12799] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023] Open
Abstract
ErbB2 signalling, which is amplified by EphA2 binding, is an important therapeutic target for breast cancer. Despite the importance of the EphA2/ErbB2 complex in promoting breast tumorigenesis, the mechanism by which these receptor tyrosine kinases (RTKs) are exported from the endoplasmic reticulum (ER) remains poorly understood. Here we report that the PTB adaptor Anks1a is specifically localized to the ER on its own serine phosphorylation. Once there, Anks1a acts as an important regulator of COPII-mediated EphA2 ER export. The Anks1a ankyrin repeat domain binds EphA2 and causes it to accumulate at sites of ER exit. Simultaneously, the Anks1a PTB domain binds Sec23. This induces internalization of EphA2 via COPII vesicles, while Anks1a remains behind on the ER membrane. EphA2 also binds ErbB2 in the ER and seems to load ErbB2 into growing COPII carriers. Together, our study reveals a novel mechanism that regulates the loading of RTKs into COPII vesicles. EphA2/ErbB2 complex is important in promoting breast cancer but the mechanism by which these receptor tyrosine kinases are exported from the endoplasmic reticulum is unknown. Here the authors show that Anks1a acts as a cargo adaptor in sorting EphA2 into COPII vesicles, thus modulating the surface level of EphA2.
Collapse
Affiliation(s)
- Haeryung Lee
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Hyuna Noh
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Jiyoung Mun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam-Si, Gyeonggi-Do 13135, Korea
| | - Changkyu Gu
- Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Sanja Sever
- Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Soochul Park
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| |
Collapse
|
12
|
Lee M, Ko YJ, Moon Y, Han M, Kim HW, Lee SH, Kang K, Jun Y. SNAREs support atlastin-mediated homotypic ER fusion in Saccharomyces cerevisiae. J Cell Biol 2015. [PMID: 26216899 PMCID: PMC4523606 DOI: 10.1083/jcb.201501043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dynamin-like GTPases of the atlastin family are thought to mediate homotypic endoplasmic reticulum (ER) membrane fusion; however, the underlying mechanism remains largely unclear. Here, we developed a simple and quantitative in vitro assay using isolated yeast microsomes for measuring yeast atlastin Sey1p-dependent ER fusion. Using this assay, we found that the ER SNAREs Sec22p and Sec20p were required for Sey1p-mediated ER fusion. Consistently, ER fusion was significantly reduced by inhibition of Sec18p and Sec17p, which regulate SNARE-mediated membrane fusion. The involvement of SNAREs in Sey1p-dependent ER fusion was further supported by the physical interaction of Sey1p with Sec22p and Ufe1p, another ER SNARE. Furthermore, our estimation of the concentration of Sey1p on isolated microsomes, together with the lack of fusion between Sey1p proteoliposomes even with a 25-fold excess of the physiological concentration of Sey1p, suggests that Sey1p requires additional factors to support ER fusion in vivo. Collectively, our data strongly suggest that SNARE-mediated membrane fusion is involved in atlastin-initiated homotypic ER fusion.
Collapse
Affiliation(s)
- Miriam Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Integrative Aging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Young-Joon Ko
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Integrative Aging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Yeojin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Integrative Aging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Minsoo Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Integrative Aging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Seoul 143-747, Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 501-759, Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 440-746, Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Integrative Aging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| |
Collapse
|
13
|
Noda Y, Hara T, Ishii M, Yoda K. Distinct adaptor proteins assist exit of Kre2-family proteins from the yeast ER. Biol Open 2014; 3:209-24. [PMID: 24585773 PMCID: PMC4001239 DOI: 10.1242/bio.20146312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Svp26 protein of S. cerevisiae is an ER- and Golgi-localized integral membrane protein with 4 potential membrane-spanning domains. It functions as an adaptor protein that facilitates the ER exit of Ktr3, a mannosyltransferase required for biosynthesis of O-linked oligosaccharides, and the ER exit of Mnn2 and Mnn5, mannosyltransferases, which participate in the biosynthesis of N-linked oligosaccharides. Ktr3 belongs to the Kre2 family, which consists of 9 members of type-II membrane proteins sharing sequence similarities. In this report, we examined all Kre2 family members and found that the Golgi localizations of two others, Kre2 and Ktr1, were dependent on Svp26 by immunofluorescence microscopy and cell fractionations in sucrose density gradients. We show that Svp26 functions in facilitating the ER exit of Kre2 and Ktr1 by an in vitro COPII budding assay. Golgi localization of Ktr4 was not dependent on Svp26. Screening null mutants of the genes encoding abundant COPII membrane proteins for those showing mislocalization of Ktr4 in the ER revealed that Erv41 and Erv46 are required for the correct Golgi localization of Ktr4. We provide biochemical evidence that the Erv41-Erv46 complex functions as an adaptor protein for ER exit of Ktr4. This is the first demonstration of the molecular function of this evolutionally conserved protein complex. The domain switching experiments show that the lumenal domain of Ktr4 is responsible for recognition by the Erv41-Erv46 complex. Thus, ER exit of Kre2-family proteins is dependent on distinct adaptor proteins and our results provide new insights into the traffic of Kre2-family mannosyltransferases.
Collapse
Affiliation(s)
- Yoichi Noda
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
14
|
Springer S, Malkus P, Borchert B, Wellbrock U, Duden R, Schekman R. Regulated Oligomerization Induces Uptake of a Membrane Protein into COPII Vesicles Independent of Its Cytosolic Tail. Traffic 2014; 15:531-45. [DOI: 10.1111/tra.12157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/07/2014] [Accepted: 01/30/2014] [Indexed: 12/22/2022]
Affiliation(s)
| | - Per Malkus
- Department of Systems Biology; Harvard Medical School; Boston MA 02115 USA
| | - Britta Borchert
- Biochemistry and Cell Biology; Jacobs University Bremen; Bremen Germany
| | - Ursula Wellbrock
- Biochemistry and Cell Biology; Jacobs University Bremen; Bremen Germany
| | - Rainer Duden
- Centre for Structural and Cell Biology in Medicine, Institute of Biology; University of Lübeck; Lübeck Germany
| | - Randy Schekman
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology; University of California, Berkeley; Berkeley CA 94720 USA
| |
Collapse
|
15
|
Abstract
Multivesicular bodies (MVBs) deliver cargo destined for degradation to the vacuole or lysosome. The ESCRT (endosomal sorting complex required for transport) pathway is a key mediator of MVB biogenesis, but it also plays critical roles in retroviral budding and cytokinetic abscission. Despite these diverse roles, the ESCRT pathway can be simply seen as a cargo-recognition and membrane-sculpting machine viewable from three distinct perspectives: (1) the ESCRT proteins themselves, (2) the cargo they sort, and (3) the membrane they deform. Here, we review ESCRT function from these perspectives and discuss how ESCRTs may drive vesicle budding.
Collapse
|
16
|
Bacia K, Futai E, Prinz S, Meister A, Daum S, Glatte D, Briggs JAG, Schekman R. Multibudded tubules formed by COPII on artificial liposomes. Sci Rep 2011; 1:17. [PMID: 22355536 PMCID: PMC3216505 DOI: 10.1038/srep00017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/23/2011] [Indexed: 11/09/2022] Open
Abstract
COPII-coated vesicles form at the endoplasmic reticulum for cargo transport to the Golgi apparatus. We used in vitro reconstitution to examine the roles of the COPII scaffold in remodeling the shape of a lipid bilayer. Giant Unilamellar Vesicles were examined using fast confocal fluorescence and cryo-electron microscopy in order to avoid separation steps and minimize mechanical manipulation. COPII showed a preference for high curvature structures, but also sufficient flexibility for binding to low curvatures. The COPII proteins induced beads-on-a-string-like constricted tubules, similar to those previously observed in cells. We speculate about a mechanical pathway for vesicle fission from these multibudded COPII-coated tubules, considering the possibility that withdrawal of the Sar1 amphipathic helix upon GTP hydrolysis leads to lipid bilayer destabilization resulting in fission.
Collapse
Affiliation(s)
- Kirsten Bacia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; HALOmem, University of Halle, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Seipin is a transmembrane protein that resides in the endoplasmic reticulum and concentrates at junctions between the ER and cytosolic lipid droplets. Mutations in the human seipin gene, including the missense mutation A212P, lead to congenital generalized lipodystrophy (CGL), characterized by the lack of normal adipose tissue and accumulation of fat in liver and muscles. In both yeast and CGL patient fibroblasts, seipin is required for normal lipid droplet morphology; in its absence droplets appear to bud abnormally from the ER. Here we report the first purification and physical characterization of seipin. Yeast seipin is in a large discrete protein complex. Affinity purification demonstrated that seipin is the main if not exclusive protein in the complex. Detergent sucrose gradients in H(2)O, and D(2)O and gel filtration were used to determine the size of the seipin complex and account for detergent binding. Both seipin-myc13 (seipin fused to 13 tandem copies of the myc epitope) expressed from the endogenous promoter and overexpressed seipin-mCherry form ∼500 kDa proteins consisting of about 9 copies of seipin. The yeast orthologue of the human A212P allele forms only smaller complexes and is unstable; we hypothesize that this accounts for its null phenotype in humans. Seipin appears as a toroid by negative staining electron microscopy. We speculate that seipin plays at least a structural role in organizing droplets or in communication between droplets and ER.
Collapse
Affiliation(s)
- Derk Binns
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - SungKyung Lee
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Christopher L. Hilton
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Qiu-Xing Jiang
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Joel M. Goodman
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
18
|
Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 2010; 141:1208-19. [PMID: 20603001 DOI: 10.1016/j.cell.2010.05.015] [Citation(s) in RCA: 461] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/19/2010] [Accepted: 04/16/2010] [Indexed: 12/18/2022]
Abstract
The BBSome is a complex of Bardet-Biedl Syndrome (BBS) proteins that shares common structural elements with COPI, COPII, and clathrin coats. Here, we show that the BBSome constitutes a coat complex that sorts membrane proteins to primary cilia. The BBSome is the major effector of the Arf-like GTPase Arl6/BBS3, and the BBSome and GTP-bound Arl6 colocalize at ciliary punctae in an interdependent manner. Strikingly, Arl6(GTP)-mediated recruitment of the BBSome to synthetic liposomes produces distinct patches of polymerized coat apposed onto the lipid bilayer. Finally, the ciliary targeting signal of somatostatin receptor 3 needs to be directly recognized by the BBSome in order to mediate targeting of membrane proteins to cilia. Thus, we propose that trafficking of BBSome cargoes to cilia entails the coupling of BBSome coat polymerization to the recognition of sorting signals by the BBSome.
Collapse
Affiliation(s)
- Hua Jin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Noda Y, Yoda K. Svp26 facilitates endoplasmic reticulum to golgi transport of a set of mannosyltransferases in Saccharomyces cerevisiae. J Biol Chem 2010; 285:15420-15429. [PMID: 20236934 DOI: 10.1074/jbc.m109.086272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Svp26 is a polytopic integral membrane protein found in the ER and early Golgi compartment. In the Deltasvp26 cell, the Golgi mannosyltransferase Ktr3 remains in the ER. Here, we report that two other Golgi mannosyltransferases, Mnn2 and Mnn5 are also mislocalized and found in the ER in the absence of Svp26 and that localization of other mannosyltransferases including Mnn1 are not affected. Mnn2 and Mnn5 bind to Svp26 in vivo as Ktr3 does. Using an in vitro budding assay, the incorporation of Ktr3 and Mnn2 in the COPII vesicles is greatly stimulated by the presence of Svp26. As Svp26 itself is an efficient cargo, Svp26 is likely to support selective incorporation of a set of mannosyltransferases into COPII vesicles by working as their adaptor protein. The domain switching between Svp26-dependent Mnn2 or Ktr3 and Svp26-independent Mnn1 suggests that the lumenal domain of mannosyltransferases, but not the cytoplasmic or transmembrane domain, is responsible for recognition by Svp26.
Collapse
Affiliation(s)
- Yoichi Noda
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Koji Yoda
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan.
| |
Collapse
|
20
|
Abstract
Genetic studies have identified a number of proteins required for the internalization of biosynthetic and endocytic cargo proteins transported to the multivesicular body (MVB). We have developed a cell-free reaction that recapitulates the internalization of a yeast biosynthetic membrane cargo protein, carboxypeptidase S (CPS), into the interior of an endosome. A recombinant form of CPS containing a biotinylation site from an Escherichia coli protein is accumulated in a vps27 yeast mutant blocked in the MVB internalization event. Endosomes isolated from the vps27 mutant are exposed to E. coli biotin ligase, which acts on only those CPS molecules with a cytosol-exposed N-terminal domain. Internalization of biotin-tagged CPS is measured by the detection of trypsin-inaccessible, membrane-protected species. Biotinylated CPS internalization requires ATP and functional forms of Vps27p and Vps4p and depends on the availability of an exposed lysine residue critical for CPS ubiquitylation.
Collapse
|
21
|
Sanyal S, Frank CG, Menon AK. Distinct flippases translocate glycerophospholipids and oligosaccharide diphosphate dolichols across the endoplasmic reticulum. Biochemistry 2008; 47:7937-46. [PMID: 18597486 PMCID: PMC2646664 DOI: 10.1021/bi800723n] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Transbilayer movement, or flip-flop, of lipids across the endoplasmic reticulum (ER) is required for membrane biogenesis, protein glycosylation, and GPI anchoring. Specific ER membrane proteins, flippases, are proposed to facilitate lipid flip-flop, but no ER flippase has been biochemically identified. The glycolipid Glc3Man9GlcNAc2-PP-dolichol is the oligosaccharide donor for protein N-glycosylation reactions in the ER lumen. Synthesis of Glc3Man9GlcNAc2-PP-dolichol is initiated on the cytoplasmic side of the ER and completed on the lumenal side, requiring flipping of the intermediate Man5GlcNAc2-PP-dolichol (M5-DLO) across the ER. Here we report the reconstitution of M5-DLO flipping in proteoliposomes generated from Triton X-100-extracted Saccharomyces cerevisiae microsomal proteins. Flipping was assayed by using the lectin Concanavalin A to capture M5-DLOs that had been translocated from the inner to the outer leaflet of the vesicles. M5-DLO flipping in the reconstituted system was ATP-independent and trypsin-sensitive and required a membrane protein(s) that sedimented at ∼4 S. Man7GlcNAc2-PP-dolichol, a higher-order lipid intermediate, was flipped >10-fold more slowly than M5-DLO at 25 °C. Chromatography on Cibacron Blue dye resin enriched M5-DLO flippase activity ∼5-fold and resolved it from both the ER glycerophospholipid flippase activity and the genetically identified flippase candidate Rft1 [Helenius, J., et al. (2002) Nature 415, 447−450]. The latter result indicates that Rft1 is not the M5-DLO flippase. Our data (i) demonstrate that the ER has at least two distinct flippase proteins, each specifically capable of translocating a class of phospholipid, and (ii) provide, for the first time, a biochemical means of identifying the M5-DLO flippase.
Collapse
Affiliation(s)
- Sumana Sanyal
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
22
|
Noda Y, Yamagishi T, Yoda K. Specific membrane recruitment of Uso1 protein, the essential endoplasmic reticulum-to-Golgi tethering factor in yeast vesicular transport. J Cell Biochem 2007; 101:686-94. [PMID: 17192843 DOI: 10.1002/jcb.21225] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uso1 is a yeast essential protein that functions to tether vesicles in the ER-to-Golgi transport. Its recruitment to the ER-derived vesicles has been demonstrated in in vitro membrane transport systems using semi-intact cells. Here we report that the binding of Uso1 to specific membranes can be detected through simple sucrose density block centrifugation. The purified Uso1 protein binds to slowly sedimenting membranes generated from rapidly sedimenting P10 membranes. These membranes were produced dependent on ATP hydrolysis, contained COPII vesicle components, but had neither of the coat subunits or ER proteins, which indicates that they were representative of the uncoated ER-derived COPII vesicles. The slowly sedimenting membranes of different origins were physically linked when they were mixed in the presence of Uso1. The C-terminal acidic region was not required in membrane binding. The presence of membranes to which Uso1 could bind in the yeast cell lysate was detected using the current method.
Collapse
Affiliation(s)
- Yoichi Noda
- Department of Biotechnology, University of Tokyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
23
|
Bigay J, Antonny B. Real-time assays for the assembly-disassembly cycle of COP coats on liposomes of defined size. Methods Enzymol 2006; 404:95-107. [PMID: 16413261 DOI: 10.1016/s0076-6879(05)04010-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The assembly-disassembly cycle of COPI and COPII coats is controlled by the GTPase cycle of the small G proteins Arf1 and Sar. We describe here two spectroscopic assays that enable real-time studies of some elementary steps of coat assembly and disassembly on artificial liposomes of defined composition and curvature. A flotation assay to assess the effect of membrane curvature on protein adsorption to liposomes is also presented.
Collapse
Affiliation(s)
- Joëlle Bigay
- Institut de Pharmacologie, Moleculaire et Cellulaire, CNRS, Valbonne, France
| | | |
Collapse
|
24
|
Stagg SM, Gürkan C, Fowler DM, LaPointe P, Foss TR, Potter CS, Carragher B, Balch WE. Structure of the Sec13/31 COPII coat cage. Nature 2006; 439:234-8. [PMID: 16407955 DOI: 10.1038/nature04339] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 10/18/2005] [Indexed: 11/09/2022]
Abstract
Endomembranes of eukaryotic cells are dynamic structures that are in continuous communication through the activity of specialized cellular machineries, such as the coat protein complex II (COPII), which mediates cargo export from the endoplasmic reticulum (ER). COPII consists of the Sar1 GTPase, Sec23 and Sec24 (Sec23/24), where Sec23 is a Sar1-specific GTPase-activating protein and Sec24 functions in cargo selection, and Sec13 and Sec31 (Sec13/31), which has a structural role. Whereas recent results have shown that Sec23/24 and Sec13/31 can self-assemble to form COPII cage-like particles, we now show that Sec13/31 can self-assemble to form minimal cages in the absence of Sec23/24. We present a three-dimensional reconstruction of these Sec13/31 cages at 30 A resolution using cryo-electron microscopy and single particle analysis. These results reveal a novel cuboctahedron geometry with the potential to form a flexible lattice and to generate a diverse range of containers. Our data are consistent with a model for COPII coat complex assembly in which Sec23/24 has a non-structural role as a multivalent ligand localizing the self-assembly of Sec13/31 to form a cage lattice driving ER cargo export.
Collapse
Affiliation(s)
- Scott M Stagg
- National Resource for Automated Molecular Microscopy, Departments of Cell, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee MCS, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 2005; 122:605-17. [PMID: 16122427 DOI: 10.1016/j.cell.2005.07.025] [Citation(s) in RCA: 371] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/17/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.
Collapse
Affiliation(s)
- Marcus C S Lee
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94702, USA
| | | | | | | | | | | |
Collapse
|
26
|
Gurkan C, Balch WE. Recombinant Production in Baculovirus‐Infected Insect Cells and Purification of the Mammalian Sec13/Sec31 Complex. Methods Enzymol 2005; 404:58-66. [PMID: 16413257 DOI: 10.1016/s0076-6879(05)04006-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Membrane traffic along the eukaryotic secretory pathway starts with the selective packing of biosynthetic cargo into nascent vesicles that are forming on the endoplasmic reticulum (ER). This process is mediated by the coat protein complex II (COPII) machinery, which at the minimum, comprises the Sar1 GTPase and the cytosolic protein complexes Sec23/Sec24 (Sec23/24) and Sec13/Sec31 (Sec13/31). While the components of the basic COPII machinery are highly conserved from yeast to human, it is now clearly evident that the overall process is under tighter spatial and temporal regulation in higher eukaryotes. Here we describe recombinant production in baculovirus-infected insect cells and subsequent purification to homogeneity of the mammalian Sec13/31 complex for biochemical and biophysical characterization.
Collapse
Affiliation(s)
- Cemal Gurkan
- The Scripps Research Institute, Department of Cell Biology, La Jolla, California, USA
| | | |
Collapse
|
27
|
Kapetanovich L, Baughman C, Lee TH. Nm23H2 facilitates coat protein complex II assembly and endoplasmic reticulum export in mammalian cells. Mol Biol Cell 2004; 16:835-48. [PMID: 15591128 PMCID: PMC545915 DOI: 10.1091/mbc.e04-09-0785] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cytosolic coat protein complex II (COPII) mediates vesicle formation from the endoplasmic reticulum (ER) and is essential for ER-to-Golgi trafficking. The minimal machinery for COPII assembly is well established. However, additional factors may regulate the process in mammalian cells. Here, a morphological COPII assembly assay using purified COPII proteins and digitonin-permeabilized cells has been applied to demonstrate a role for a novel component of the COPII assembly pathway. The factor was purified and identified by mass spectrometry as Nm23H2, one of eight isoforms of nucleoside diphosphate kinase in mammalian cells. Importantly, recombinant Nm23H2, as well as a catalytically inactive version, promoted COPII assembly in vitro, suggesting a noncatalytic role for Nm23H2. Consistent with a function for Nm23H2 in ER export, Nm23H2 localized to a reticular network that also stained for the ER marker calnexin. Finally, an in vivo role for Nm23H2 in COPII assembly was confirmed by isoform-specific knockdown of Nm23H2 by using short interfering RNA. Knockdown of Nm23H2, but not its most closely related isoform Nm23H1, resulted in diminished COPII assembly at steady state and reduced kinetics of ER export. These results strongly suggest a previously unappreciated role for Nm23H2 in mammalian ER export.
Collapse
Affiliation(s)
- Lori Kapetanovich
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
28
|
Malkus P, Graham LA, Stevens TH, Schekman R. Role of Vma21p in assembly and transport of the yeast vacuolar ATPase. Mol Biol Cell 2004; 15:5075-91. [PMID: 15356264 PMCID: PMC524777 DOI: 10.1091/mbc.e04-06-0514] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae vacuolar H+-ATPase (V-ATPase) is a multisubunit complex composed of a peripheral membrane sector (V1) responsible for ATP hydrolysis and an integral membrane sector (V0) required for proton translocation. Biogenesis of V0 requires an endoplasmic reticulum (ER)-localized accessory factor, Vma21p. We found that in vma21Delta cells, the major proteolipid subunit of V0 failed to interact with the 100-kDa V0 subunit, Vph1p, indicating that Vma21p is necessary for V0 assembly. Immunoprecipitation of Vma21p from wild-type membranes resulted in coimmunoprecipitation of all five V0 subunits. Analysis of vmaDelta strains showed that binding of V0 subunits to Vma21p was mediated by the proteolipid subunit Vma11p. Although Vma21p/proteolipid interactions were independent of Vph1p, Vma21p/Vph1p association was dependent on all other V0 subunits, indicating that assembly of V0 occurs in a defined sequence, with Vph1p recruitment into a Vma21p/proteolipid/Vma6p complex representing the final step. An in vitro assay for ER export was used to demonstrate preferential packaging of the fully assembled Vma21p/proteolipid/Vma6p/Vph1p complex into COPII-coated transport vesicles. Pulse-chase experiments showed that the interaction between Vma21p and V0 was transient and that Vma21p/V0 dissociation was concomitant with V0/V1 assembly. Blocking ER export in vivo stabilized the interaction between Vma21p and V0 and abrogated assembly of V0/V1. Although a Vma21p mutant lacking an ER-retrieval signal remained associated with V0 in the vacuole, this interaction did not affect the assembly of vacuolar V0/V1 complexes. We conclude that Vma21p is not involved in regulating the interaction between V0 and V1 sectors, but that it has a crucial role in coordinating the assembly of V0 subunits and in escorting the assembled V0 complex into ER-derived transport vesicles.
Collapse
Affiliation(s)
- Per Malkus
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
29
|
Antonny B, Gounon P, Schekman R, Orci L. Self-assembly of minimal COPII cages. EMBO Rep 2003; 4:419-24. [PMID: 12671686 PMCID: PMC1319167 DOI: 10.1038/sj.embor.embor812] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Revised: 02/26/2003] [Accepted: 02/27/2003] [Indexed: 11/09/2022] Open
Abstract
The small G-protein Sar1 and the cytosolic complexes Sec23/24 and Sec13/31 associate sequentially on endoplasmic reticulum membranes to form a protein coat named COPII, which drives the formation of transport vesicles. Using dynamic light scattering, we show that Sec23/24 and Sec13/31 can self-assemble in a stoichiometric manner in solution to form particles with hydrodynamic radii in the range of 40-60 nm. Self-assembly is favoured by lowering the pH, the ionic strength and/or the temperature. Electron microscopy reveals the formation of spherical particles 60-120 nm in diameter with a tight, rough mesh on their surfaces. We suggest that these structures, which represent a minimal COPII cage, mimic the molecular organization of the membrane-associated COPII coat.
Collapse
Affiliation(s)
- Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Valbonne, France.
| | | | | | | |
Collapse
|
30
|
Abstract
Here, we show that efficient transport of membrane and secretory proteins from the ER of Saccharomyces cerevisiae requires concentrative and signal-mediated sorting. Three independent markers of bulk flow transport out of the ER indicate that in the absence of an ER export signal, molecules are inefficiently captured into coat protein complex II (COPII)-coated vesicles. A soluble secretory protein, glycosylated pro-alpha-factor (gpalphaf), was enriched approximately 20 fold in these vesicles relative to bulk flow markers. In the absence of Erv29p, a membrane protein that facilitates gpalphaf transport (Belden and Barlowe, 2001), gpalphaf is packaged into COPII vesicles as inefficiently as soluble bulk flow markers. We also found that a plasma membrane protein, the general amino acid permease (Gap1p), is enriched approximately threefold in COPII vesicles relative to membrane phospholipids. Mutation of a diacidic sequence present in the COOH-terminal cytosolic domain of Gap1p eliminated concentrative sorting of this protein.
Collapse
Affiliation(s)
- Per Malkus
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|