1
|
Hillmer AT, Mason GF, Fucito LM, O'Malley SS, Cosgrove KP. How Imaging Glutamate, γ-Aminobutyric Acid, and Dopamine Can Inform the Clinical Treatment of Alcohol Dependence and Withdrawal. Alcohol Clin Exp Res 2015; 39:2268-82. [PMID: 26510169 DOI: 10.1111/acer.12893] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/29/2015] [Indexed: 12/29/2022]
Abstract
Neuroimaging studies have dramatically advanced our understanding of the neurochemical basis of alcohol dependence, a major public health issue. In this paper, we review the research generated from neurochemical specific imaging modalities including magnetic resonance spectroscopy, positron emission tomography, and single-photon emission computed tomography in studies of alcohol dependence and withdrawal. We focus on studies interrogating γ-aminobutyric acid (GABA), glutamate, and dopamine, as these are prominent neurotransmitter systems implicated in alcohol dependence. Highlighted findings include diminished dopaminergic functioning and modulation of the GABA system by tobacco smoking during alcohol withdrawal. Then, we consider how these findings impact the clinical treatment of alcohol dependence and discuss directions for future experiments to address existing gaps in the literature, for example, sex differences and smoking comorbidity. These and other considerations provide opportunities to build upon the current neurochemistry imaging literature of alcohol dependence and withdrawal, which may usher in improved therapeutic and relapse prevention strategies.
Collapse
Affiliation(s)
- Ansel T Hillmer
- Departments of Psychiatry and Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Graeme F Mason
- Departments of Psychiatry and Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Lisa M Fucito
- Departments of Psychiatry and Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie S O'Malley
- Departments of Psychiatry and Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly P Cosgrove
- Departments of Psychiatry and Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Vandehey NT, O'Neil JP, Slowey AJ, Boutchko R, Druhan JL, Moses WW, Nico PS. Monitoring Tc dynamics in a bioreduced sediment: an investigation with gamma camera imaging of (99m)Tc-pertechnetate and (99m)Tc-DTPA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12583-12590. [PMID: 23078357 DOI: 10.1021/es302313h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We demonstrate the utility of nuclear medical imaging technologies and a readily available radiotracer, [(99m)Tc]TcO(4)(-), for the noninvasive monitoring of Fe(II) production in acetate-stimulated sediments from Old Rifle, CO, USA. Microcosms consisting of sediment in artificial groundwater media amended with acetate were probed by repeated injection of radiotracer over three weeks. Gamma camera imaging was used to noninvasively quantify the rate and extent of [(99m)Tc]TcO(4)(-) partitioning from solution to sediment. Aqueous Fe(II) and sediment-associated Fe(II) were also measured and correlated with the observed tracer behavior. For each injection of tracer, curves of (99m)Tc concentration in solution vs time were fitted to an analytic function that accounts for both the observed rate of sedimentation as well as the rate of (99m)Tc association with the sediment. The rate and extent of (99m)Tc association with the biostimulated sediment correlated well with the production of Fe(II), and a mechanism of [(99m)Tc]TcO(4)(-) reduction via reaction with surface-bound Fe(II) to form an immobile Tc(IV) species was inferred. After three weeks of bioreduction, a subset of microcosms was aerated in order to reoxidize the Fe(II) to Fe(III), which also destroyed the affinity of the [(99m)Tc]TcO(4)(-) for the sediments. However, within 3 days postoxidation, the rate of Tc(VII) reduction was faster than immediately before oxidation implying a rapid return to more extensive bioreduction. Furthermore, aeration soon after a tracer injection showed that sediment-bound Tc(IV) is rapidly resolubilized to Tc(VII). In contrast to the [(99m)Tc]TcO(4)(-), a second commercially available tracer, (99m)Tc-DTPA (diethylenetriaminepentaacetic acid), had minimal association with sediment in both controls and biostimulated sediments. These experiments show the promise of [(99m)Tc]TcO(4)(-) and (99m)Tc-DTPA as noninvasive imaging probes for a redox-sensitive radiotracer and a conservative flow tracer, respectively.
Collapse
Affiliation(s)
- Nicholas T Vandehey
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Wooten DW, Hillmer AT, Moirano JM, Ahlers EO, Slesarev M, Barnhart TE, Mukherjee J, Schneider ML, Christian BT. Measurement of 5-HT(1A) receptor density and in-vivo binding parameters of [(18)F]mefway in the nonhuman primate. J Cereb Blood Flow Metab 2012; 32:1546-58. [PMID: 22472611 PMCID: PMC3421091 DOI: 10.1038/jcbfm.2012.43] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The goal of this work was to characterize the in-vivo behavior of [(18)F]mefway as a suitable positron emission tomography (PET) radiotracer for the assay of 5-hydroxytryptamine(1A) (5-HT(1A)) receptor density (B(max)). Six rhesus monkeys were studied using a multiple-injection (M-I) protocol consisting of three sequential bolus injections of [(18)F]mefway. Injection times and amounts of unlabeled mefway were optimized for the precise measurement of B(max) and specific binding parameters k(off) and k(on) for estimation of apparent K(D). The PET time series were acquired for 180 minutes with arterial sampling performed throughout. Compartmental analysis using the arterial input function was performed to obtain estimates for K(1), k(2), k(off), B(max), and K(Dapp) in the cerebral cortex and raphe nuclei (RN) using a model that accounted for nontracer doses of mefway. Averaged over subjects, highest binding was seen in the mesial temporal and dorsal anterior cingulate cortices with B(max) values of 42±8 and 36±8 pmol/mL, respectively, and lower values in the superior temporal cortex, RN, and parietal cortex of 24±4, 19±4, and 13±2 pmol/mL, respectively. The K(Dapp) of mefway for the 5-HT(1A) receptor sites was 4.3±1.3 nmol/L. In conclusion, these results show that M-I [(18)F]mefway PET experiments can be used for the in-vivo measurement of 5-HT(1A) receptor density.
Collapse
Affiliation(s)
- Dustin W Wooten
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Vandehey NT, Moirano JM, Converse AK, Holden JE, Mukherjee J, Murali D, Nickles RJ, Davidson RJ, Schneider ML, Christian BT. High-affinity dopamine D2/D3 PET radioligands 18F-fallypride and 11C-FLB457: a comparison of kinetics in extrastriatal regions using a multiple-injection protocol. J Cereb Blood Flow Metab 2010; 30:994-1007. [PMID: 20040928 PMCID: PMC2897717 DOI: 10.1038/jcbfm.2009.270] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
(18)F-Fallypride and (11)C-FLB457 are commonly used PET radioligands for imaging extrastriatal dopamine D(2)/D(3) receptors, but differences in their in vivo kinetics may affect the sensitivity for measuring subtle changes in receptor binding. Focusing on regions of low binding, a direct comparison of the kinetics of (18)F-fallypride and (11)C-FLB457 was made using a MI protocol. Injection protocols were designed to estimate K(1), k(2), f(ND)k(on), B(max), and k(off) in the midbrain and cortical regions of the rhesus monkey. (11)C-FLB457 cleared from the arterial plasma faster and yielded a ND space distribution volume (K(1)/k(2)) that is three times higher than (18)F-fallypride, primarily due to a slower k(2) (FAL:FLB; k(2)=0.54 min(-1):0.18 min(-1)). The dissociation rate constant, k(off), was slower for (11)C-FLB457, resulting in a lower K(Dapp) than (18)F-fallypride (FAL:FLB; 0.39 nM:0.13 nM). Specific D(2)/D(3) binding could be detected in the cerebellum for (11)C-FLB457 but not (18)F-fallypride. Both radioligands can be used to image extrastriatal D(2)/D(3) receptors, with (11)C-FLB457 providing greater sensitivity to subtle changes in low-receptor-density cortical regions and (18)F-fallypride being more sensitive to endogenous dopamine displacement in medium-to-high-receptor-density regions. In the presence of specific D(2)/D(3) binding in the cerebellum, reference region analysis methods will give a greater bias in BP(ND) with (11)C-FLB457 than with (18)F-fallypride.
Collapse
Affiliation(s)
- Nicholas T Vandehey
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
In vivo quantification of monoamine oxidase A in baboon brain: a PET study using [(11)C]befloxatone and the multi-injection approach. J Cereb Blood Flow Metab 2010; 30:792-800. [PMID: 19920845 PMCID: PMC2949159 DOI: 10.1038/jcbfm.2009.242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
[(11)C]befloxatone is a high-affinity, reversible, and selective radioligand for the in vivo visualization of the monoamine oxidase A (MAO-A) binding sites using positron emission tomography (PET). The multi-injection approach was used to study in baboons the interactions between the MAO-A binding sites and [(11)C]befloxatone. The model included four compartments and seven parameters. The arterial plasma concentration, corrected for metabolites, was used as input function. The experimental protocol-three injections of labeled and/or unlabeled befloxatone-allowed the evaluation of all the model parameters from a single PET experiment. In particular, the brain regional concentrations of the MAO-A binding sites (B'(max)) and the apparent in vivo befloxatone affinity (K(d)) were estimated in vivo for the first time. A high binding site density was found in almost all the brain structures (170+/-39 and 194+/-26 pmol/mL in the frontal cortex and striata, respectively, n=5). The cerebellum presented the lowest binding site density (66+/-13 pmol/mL). Apparent affinity was found to be similar in all structures (K(d)V(R)=6.4+/-1.5 nmol/L). This study is the first PET-based estimation of the B(max) of an enzyme.
Collapse
|
6
|
Gallezot JD, Bottlaender MA, Delforge J, Valette H, Saba W, Dollé F, Coulon CM, Ottaviani MP, Hinnen F, Syrota A, Grégoire MC. Quantification of cerebral nicotinic acetylcholine receptors by PET using 2-[18F]fluoro-A-85380 and the multiinjection approach. J Cereb Blood Flow Metab 2008; 28:172-89. [PMID: 17519978 DOI: 10.1038/sj.jcbfm.9600505] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The multiinjection approach was used to study in vivo interactions between alpha4beta2(*) nicotinic acetylcholine receptors and 2-[(18)F]fluoro-A-85380 in baboons. The ligand kinetics was modeled by the usual nonlinear compartment model composed of three compartments (arterial plasma, free and specifically bound ligand in tissue). Arterial blood samples were collected to generate a metabolite-corrected plasma input function. The experimental protocol, which consisted of three injections of labeled or unlabeled ligand, was aiming at identifying all parameters in one experiment. Various parameters, including B'(max) (the binding sites density) and K(d)V(R) (the apparent in vivo affinity of 2-[(18)F]fluoro-A-85380) could then be estimated in thalamus and in several receptor-poor regions. B'(max) estimate was 3.0+/-0.3 pmol/mL in thalamus, and ranged from 0.25 to 1.58 pmol/mL in extrathalamic regions. Although K(d)V(R) could be precisely estimated, the association and dissociation rate constants k(on)/V(R) and k(off) could not be identified separately. A second protocol was then used to estimate k(off) more precisely in the thalamus. Having estimated all model parameters, we performed simulations of 2-[(18)F]fluoro-A-85380 kinetics to test equilibrium hypotheses underlying simplified approaches. These showed that a pseudo-equilibrium is quickly reached between the free and bound compartments, a favorable situation to apply Logan graphical analysis. In contrast, the pseudo-equilibrium between the plasma and free compartments is only reached after several hours. The ratio of radioligand concentration in these two compartments then overestimates the true equilibrium value, an unfavorable situation to estimate distribution volumes from late images after a bolus injection.
Collapse
|
7
|
Morris ED, Yoder KK. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics. J Cereb Blood Flow Metab 2007; 27:606-17. [PMID: 16788713 DOI: 10.1038/sj.jcbfm.9600359] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is great interest in positron emission tomography (PET) as a noninvasive assay of fluctuations in synaptic neurotransmitter levels, but questions remain regarding the optimal choice of tracer for such a task. A mathematical method is proposed for predicting the utility of any PET tracer as a detector of changes in the concentration of an endogenous competitor via displacement of the tracer (a.k.a., its 'vulnerability' to competition). The method is based on earlier theoretical work by Endres and Carson and by the authors. A tracer-specific predictor, the PET Displacement Sensitivity (PDS), is calculated from compartmental model simulations of the uptake and retention of dopaminergic radiotracers in the presence of transient elevations of dopamine (DA). The PDS predicts the change in binding potential (DeltaBP) for a given change in receptor occupancy because of binding by the endogenous competitor. Simulations were performed using estimates of tracer kinetic parameters derived from the literature. For D(2)/D(3) tracers, the calculated PDS indices suggest a rank order for sensitivity to displacement by DA as follows: raclopride (highest sensitivity), followed by fallypride, FESP, FLB, NMSP, and epidepride (lowest). Although the PDS takes into account the affinity constant for the tracer at the binding site, its predictive value cannot be matched by either a single equilibrium constant, or by any one rate constant of the model. Values for DeltaBP have been derived from published studies that employed comparable displacement paradigms with amphetamine and a D(2)/D(3) tracer. The values are in good agreement with the PDS-predicted rank order of sensitivity to displacement.
Collapse
Affiliation(s)
- Evan D Morris
- Biomedical Engineering Department, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
8
|
Morris ED, Yoder KK, Wang C, Normandin MD, Zheng QH, Mock B, Muzic RF, Froehlich JC. ntPET: A New Application of PET Imaging for Characterizing the Kinetics of Endogenous Neurotransmitter Release. Mol Imaging 2005; 4:473-89. [PMID: 16285909 DOI: 10.2310/7290.2005.05130] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/30/2005] [Accepted: 06/15/2005] [Indexed: 11/18/2022] Open
Abstract
We present a new application of positron emission tomography (“ntPET” or “neurotransmitter PET”) designed to recover temporal patterns of neurotransmitter release from dynamic data. Our approach employs an enhanced tracer kinetic model that describes uptake of a labeled dopamine D2/D3 receptor ligand in the presence of a time-varying rise and fall in endogenous dopamine. Data must be acquired during both baseline and stimulus (transient dopamine release) conditions. Data from a reference region in both conditions are used as an input function, which alleviates the need for any arterial blood sampling. We use simulation studies to demonstrate the ability of the method to recover the temporal characteristics of an increase in dopamine concentration that might be expected following a drug treatment. The accuracy and precision of the method—as well as its potential for false-positive responses due to noise or changes in blood flow—were examined. Finally, we applied the ntPET method to small-animal imaging data in order to produce the first noninvasive assay of the time-varying release of dopamine in the rat striatum following alcohol.
Collapse
Affiliation(s)
- Evan D Morris
- Indiana University School of Medicine, Indianapolis, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Schiffer WK, Alexoff DL, Shea C, Logan J, Dewey SL. Development of a simultaneous PET/microdialysis method to identify the optimal dose of 11C-raclopride for small animal imaging. J Neurosci Methods 2004; 144:25-34. [PMID: 15848236 PMCID: PMC2669956 DOI: 10.1016/j.jneumeth.2004.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 10/11/2004] [Indexed: 11/22/2022]
Abstract
In the field of small animal positron emission tomography (PET), the assumptions underlying human and primate kinetic models may not be sustained in rodents. That is, the threshold dose at which a pharmacologic response occurs may be lower in small animals. In order to define this relationship, we combined microPET imaging using 11C-raclopride with microdialysis measures of extracellular fluid (ECF) dopamine (DA). In addition, we performed a series of studies in which a known mass of raclopride was microinfused into one striatum prior to a high specific activity (SA) systemic injection of 11C-raclopride. This single-injection approach provided a high and low SA region of radiotracer binding in the same animal during the same scanning session. Our data demonstrate that the binding potential (BP) declines above 3.5 pmol/ml (0.35 microg), with an ED50 of 8.55+/-5.62 pmol/ml. These data also provide evidence that BP may be compromised by masses of raclopride below 2.0 pmol/ml (0.326 microg). Increases in ECF DA were produced by mass doses of raclopride over 3.9 pmol/ml (0.329 microg) with an ED50 of 8.53+/-2.48 pmol/ml. Taken together, it appears that an optimal range of raclopride mass exists between 2.0 and 3.5 pmol/ml, around which the measured BP can be compromised by system sensitivity, endogenous DA, or excessive competition with unlabeled compound.
Collapse
Affiliation(s)
- Wynne K Schiffer
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, NY 11794-5230, USA.
| | | | | | | | | |
Collapse
|