1
|
Almerekova S, Yermagambetova M, Osmonali B, Vesselova P, Turuspekov Y, Abugalieva S. Complete Plastid Genome Sequences of Four Salsoleae s.l. Species: Comparative and Phylogenetic Analyses. Biomolecules 2024; 14:890. [PMID: 39199278 PMCID: PMC11352783 DOI: 10.3390/biom14080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The taxonomic classification of the genera Salsola L., Pyankovia Akhani and Roalson, and Xylosalsola Tzvelev within Chenopodiaceae Vent. (Amaranthaceae s.l.) remains controversial, with the precise number of species within these genera still unresolved. This study presents a comparative analysis of the complete plastid genomes of S. foliosa, S. tragus, P. affinis, and X. richteri species collected in Kazakhstan. The assembled plastid genomes varied in length, ranging from 151,177 bp to 152,969 bp for X. richteri and S. tragus. These genomes contained 133 genes, of which 114 were unique, including 80 protein-coding, 30 tRNA, and 4 rRNA genes. Thirteen regions, including ndhC-ndhD, rps16-psbK, petD, rpoC2, ndhA, petB, clpP, atpF, ycf3, accD, ndhF-ndhG, matK, and rpl20-rpl22, exhibited relatively high levels of nucleotide variation. A total of 987 SSRs were detected across the four analyzed plastid genomes, primarily located in the intergenic spacer regions. Additionally, 254 repeats were identified, including 92 tandem repeats, 88 forward repeats, 100 palindromic repeats, and only one reverse repeat. A phylogenetic analysis revealed clear clustering into four clusters corresponding to the Salsoleae and Caroxyloneae tribe clades. These nucleotide sequences obtained in this study represent a valuable resource for future phylogenetic analyses within the Salsoleae s.l. tribe.
Collapse
Affiliation(s)
- Shyryn Almerekova
- Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Moldir Yermagambetova
- Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
| | - Bektemir Osmonali
- Laboratory of the Flora of Higher Plants, Institute of Botany and Phytointroduction, Almaty 050040, Kazakhstan; (B.O.); (P.V.)
| | - Polina Vesselova
- Laboratory of the Flora of Higher Plants, Institute of Botany and Phytointroduction, Almaty 050040, Kazakhstan; (B.O.); (P.V.)
| | - Yerlan Turuspekov
- Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saule Abugalieva
- Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
2
|
Hu J, Yao J, Lu J, Liu W, Zhao Z, Li Y, Jiang L, Zha L. The complete chloroplast genome sequences of nine melon varieties ( Cucumis melo L.): lights into comparative analysis and phylogenetic relationships. Front Genet 2024; 15:1417266. [PMID: 39045329 PMCID: PMC11263122 DOI: 10.3389/fgene.2024.1417266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
Melon (Cucumis melo L.) is one of the most extensively grown horticulture crops of the world. Based on the morphological characters, melon was formerly divided into two subspecies, Cucumis melo ssp. melo and C. melo ssp. agrestis. However, the present methods are still inadequate to distinguish between them. The phylogenetic analysis based on chloroplast genome sequences could provide essential evidence for the classification of melon varieties. We sequenced the chloroplast genomes of nine different melon varieties by the Illumina Hiseq and performed bioinformatic analyses including repeat element analysis, genome comparison and phylogenetic analysis. The results showed that the melon chloroplast genome has a typical quadripartite structure that was conserved across the analyzed sequences. Its length ranges between 155, 558 and 156, 569 bp, with a total GC content varying from 36.7% to 37%. We found 127-132 genes in melon chloroplast genomes, including 85-87 protein-coding regions, 34-37 tRNA and 6-8 rRNA genes. The molecular structure, gene order, content, codon usage, long repeats, and simple sequence repeats (SSRs) were mostly conserved among the nine sequenced genomes. Phylogenetic analysis showed that the chloroplast genome could clearly distinguish between C. melo ssp. melo and C. melo ssp. agrestis. This study not only provides valuable knowledge on melon chloroplasts, but also offers a theoretical basis and technical support for the genetic breeding of melons.
Collapse
Affiliation(s)
- Jianpeng Hu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinchen Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jimei Lu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weiwei Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhiqiang Zhao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqian Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lu Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Huang Y, Jin XJ, Zhang CY, Li P, Meng HH, Zhang YH. Plastome evolution of Engelhardia facilitates phylogeny of Juglandaceae. BMC PLANT BIOLOGY 2024; 24:634. [PMID: 38971744 PMCID: PMC11227234 DOI: 10.1186/s12870-024-05293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Engelhardia (Juglandaceae) is a genus of significant ecological and economic importance, prevalent in the tropics and subtropics of East Asia. Although previous efforts based on multiple molecular markers providing profound insights into species delimitation and phylogeography of Engelhardia, the maternal genome evolution and phylogeny of Engelhardia in Juglandaceae still need to be comprehensively evaluated. In this study, we sequenced plastomes from 14 samples of eight Engelhardia species and the outgroup Rhoiptelea chiliantha, and incorporated published data from 36 Juglandaceae and six outgroup species to test phylogenetic resolution. Moreover, comparative analyses of the plastomes were conducted to investigate the plastomes evolution of Engelhardia and the whole Juglandaceae family. RESULTS The 13 Engelhardia plastomes were highly similar in genome size, gene content, and order. They exhibited a typical quadripartite structure, with lengths from 161,069 bp to 162,336 bp. Three mutation hotspot regions (TrnK-rps16, ndhF-rpl32, and ycf1) could be used as effective molecular markers for further phylogenetic analyses and species identification. Insertion and deletion (InDels) may be an important driving factor for the evolution of plastomes in Juglandoideae and Engelhardioideae. A total of ten codons were identified as the optimal codons in Juglandaceae. The mutation pressure mostly contributed to shaping codon usage. Seventy-eight protein-coding genes in Juglandaceae experienced relaxed purifying selection, only rpl22 and psaI genes showed positive selection (Ka/Ks > 1). Phylogenetic results fully supported Engelhardia as a monophyletic group including two sects and the division of Juglandaceae into three subfamilies. The Engelhardia originated in the Late Cretaceous and diversified in the Late Eocene, and Juglandaceae originated in the Early Cretaceous and differentiated in Middle Cretaceous. The phylogeny and divergence times didn't support rapid radiation occurred in the evolution history of Engelhardia. CONCLUSION Our study fully supported the taxonomic treatment of at the section for Engelhardia species and three subfamilies for Juglandaceae and confirmed the power of phylogenetic resolution using plastome sequences. Moreover, our results also laid the foundation for further studying the course, tempo and mode of plastome evolution of Engelhardia and the whole Juglandaceae family.
Collapse
Affiliation(s)
- Yue Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xin-Jie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Can-Yu Zhang
- Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China.
| | - Yong-Hua Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Zhang Z, Shi X, Tian H, Qiu J, Ma H, Tan D. Complete Chloroplast Genome of Megacarpaea megalocarpa and Comparative Analysis with Related Species from Brassicaceae. Genes (Basel) 2024; 15:886. [PMID: 39062665 PMCID: PMC11276580 DOI: 10.3390/genes15070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Megacarpaea megalocarpa, a perennial herbaceous species belonging to the Brassicaceae family, has potential medicinal value. We isolated and characterized the chloroplast (cp) genome of M. megalocarpa and compared it with closely related species. The chloroplast genome displayed a typical quadripartite structure, spanning 154,877 bp, with an overall guanine-cytosine (GC) content of 36.20%. Additionally, this genome contained 129 genes, 105 simple sequence repeats (SSRs), and 48 long repeat sequences. Significantly, the ycf1 gene exhibited a high degree of polymorphism at the small single copy (SSC) region and the inverted repeat a (IRa) boundary. Despite this polymorphism, relative synonymous codon usage (RSCU) values were found to be similar across species, and no large segment rearrangements or inversions were detected. The large single copy (LSC) and SSC regions showed higher sequence variations and nucleotide polymorphisms compared to the IR region. Thirteen distinct hotspot regions were identified as potential molecular markers. Our selection pressure analysis revealed that the protein-coding gene rpl20 is subjected to different selection pressures in various species. Phylogenetic analysis positioned M. megalocarpa within the expanded lineage II of the Brassicaceae family. The estimated divergence time suggests that M. megalocarpa diverged approximately 4.97 million years ago. In summary, this study provides crucial baseline information for the molecular identification, phylogenetic relationships, conservation efforts, and utilization of wild resources in Megacarpaea.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunyan Tan
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (Z.Z.); (X.S.); (H.T.); (J.Q.); (H.M.)
| |
Collapse
|
5
|
Wang T, Li X, Tang C, Cao Z, He H, Ma X, Li Y, De K. Complete chloroplast genomes and phylogenetic relationships of Pedicularis chinensis and Pedicularis kansuensis. Sci Rep 2024; 14:14357. [PMID: 38906909 PMCID: PMC11192948 DOI: 10.1038/s41598-024-63815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024] Open
Abstract
The complete cp genomes of Pedicularis chinensis (GenBank accession number: OQ587614) and Pedicularis kansuensis (GenBank accession number: OQ587613) were sequenced, assembled, and annotated. Their chloroplast (cp) genome lengths were 146,452 bp, and 146,852 bp, respectively; 120 and 116 genes were identified, comprising 75 and 72 protein-coding genes (PCGs), 37 and 36 transfer RNA (tRNA) genes, and 8 and 8 ribosomal RNA (rRNA) genes, for P. chinensis and P. kansuensis, respectively. A simple sequence repeat (SSR) analysis revealed that the repetitive sequences were mainly composed of mononucleotide repeats (A/T motif) and dinucleotide repeats (AT/TA motif). Comparative genomics identified several variant genes (rpl22, rps19, rpl12, ycf1, trnH, psbA, and ndhH) and variant regions (trnS-GGA, trnV-UAC, ndhJ-trnV, ycf4-cemA, ndhE-nhdG, and rpl32-trnL) with a high Pi, indicating the potential to serve as deoxyribo nucleic acid (DNA) barcodes for Pedicularis species identification. The results show that the cp genomes of P. chinensis and P. kansuensis were the same as those of other plants in Pedicularis, with different degrees of AT preference for codons. Large differences in the number of SSRs and the expansion of the inverted repeat (IR) region showed strong variability and interspecific differentiation between these two species and other species represented in the genus Pedicularis. A phylogenetic analysis showed that P. kansuensis had the closest relationship with P. oliveriana, and P. chinensis had the closest relationship with P. aschistorhyncha. These results will facilitate the study of the phylogenetic classification and interspecific evolution of Pedicularis plants.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Zhengfei Cao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Hui He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Xiaoping Ma
- Menyuan Hui Autonomous County Grassland Station, Menyuan, 810300, China
| | - Yuling Li
- Qinghai Academy of Animal and Veterinary Science, Xining, 810016, China
| | - Kejia De
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
6
|
Zeng ZF, Xu M, Qiong L, Wang JW. The complete chloroplast genome of Meconopsis torquata (Papaveraceae), a traditional Tibetan medicine. Mitochondrial DNA B Resour 2024; 9:802-807. [PMID: 38895507 PMCID: PMC11185084 DOI: 10.1080/23802359.2024.2368208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Meconopsis torquata Prain 1906, a national second-class rare and endangered plant, is reported here for the first time for its complete chloroplast genome. The genome is 153,290 bp in length, comprising a large single-copy region (LSC, 83,918 bp), a small single-copy region (SSC, 17,740 bp), and two inverted repeat sequences (IRa and IRb, each 25,816 bp). The overall GC content is 38.7%, with the IR region having the highest content (43.1%). The genome is annotated with 112 unique genes, including 4 rRNA genes, 29 tRNA genes, and 79 protein-coding genes. Analysis of codon usage bias reveals that codons ending in A/T account for 96.7% of those with a Relative Synonymous Codon Usage (RSCU) value above 1. This predominance of A/T-ending codons might be indicative of M. torquata adaptation to high-altitude environments. Phylogenetic analysis reveals a close kinship between M. torquata and M. pinnatifolia and M. paniculata, indicating that the ancestral groups of these species might have a complex evolutionary history. This study uncovers the genetic characteristics and adaptive evolution of M. torquata, offering a new perspective in understanding the phylogenetic relationships within the genus. The findings not only provide a solid theoretical foundation for the conservation and sustainable use of this rare and endangered species but also offer significant scientific support for the conservation of biodiversity.
Collapse
Affiliation(s)
- Zhe-Fei Zeng
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Yani Observation and Research Station for Wetland Ecosystem, Tibet Autonomous Region, Tibet, Nyingchi, China
| | - Min Xu
- Forestry Survey and Planning Research Institute of Tibet Autonomous Region, Lhasa, China
| | - La Qiong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Yani Observation and Research Station for Wetland Ecosystem, Tibet Autonomous Region, Tibet, Nyingchi, China
| | - Jun-Wei Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Yani Observation and Research Station for Wetland Ecosystem, Tibet Autonomous Region, Tibet, Nyingchi, China
| |
Collapse
|
7
|
Kim JE, Kim KM, Kim YS, Chung GY, Che SH, Na CS. Chloroplast Genomes of Vitis flexuosa and Vitis amurensis: Molecular Structure, Phylogenetic, and Comparative Analyses for Wild Plant Conservation. Genes (Basel) 2024; 15:761. [PMID: 38927697 PMCID: PMC11203327 DOI: 10.3390/genes15060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The chloroplast genome plays a crucial role in elucidating genetic diversity and phylogenetic relationships. Vitis vinifera L. (grapevine) is an economically important species, prompting exploration of wild genetic resources to enhance stress resilience. We meticulously assembled the chloroplast genomes of two Korean Vitis L. species, V. flexuosa Thunb. and V. amurensis Rupr., contributing valuable data to the Korea Crop Wild Relatives inventory. Through exhaustive specimen collection spanning diverse ecological niches across South Korea, we ensured comprehensive representation of genetic diversity. Our analysis, which included rigorous codon usage bias assessment and repeat analysis, provides valuable insights into amino acid preferences and facilitates the identification of potential molecular markers. The assembled chloroplast genomes were subjected to meticulous annotation, revealing divergence hotspots enriched with nucleotide diversity, thereby presenting promising candidates for DNA barcodes. Additionally, phylogenetic analysis reaffirmed intra-genus relationships and identified related crops, shedding light on evolutionary patterns within the genus. Comparative examination with chloroplast genomes of other crops uncovered conserved sequences and variable regions, offering critical insights into genetic evolution and adaptation. Our study advances the understanding of chloroplast genomes, genetic diversity, and phylogenetic relationships within Vitis species, thereby laying a foundation for enhancing grapevine genetic diversity and resilience to environmental challenges.
Collapse
Affiliation(s)
- Ji Eun Kim
- Wild Plant Seed Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea;
| | - Keyong Min Kim
- Arboretum Education Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea
| | - Yang Su Kim
- Department of General Affairs, General Affairs Team, Gangeung-Wonju National University, Gangeung 25457, Republic of Korea
| | - Gyu Young Chung
- Department of Forest Science, Andong National University, Andong 36729, Republic of Korea
| | - Sang Hoon Che
- Forest Bioresources Department, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea
| | - Chae Sun Na
- Wild Plant Seed Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea;
| |
Collapse
|
8
|
Zhan Q, Huang Y, Xue X, Chen Y. Comparative chloroplast genomics and phylogenetic analysis of Oreomecon nudicaulis (Papaveraceae). BMC Genom Data 2024; 25:49. [PMID: 38816818 PMCID: PMC11141030 DOI: 10.1186/s12863-024-01236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
Oreomecon nudicaulis, commonly known as mountain poppy, is a significant perennial herb. In 2022, the species O. nudicaulis, which was previously classified under the genus Papaver, was reclassified within the genus Oreomecon. Nevertheless, the phylogenetic status and chloroplast genome within the genus Oreomecon have not yet been reported. This study elucidates the chloroplast genome sequence and structural features of O. nudicaulis and explores its evolutionary relationships within Papaveraceae. Using Illumina sequencing technology, the chloroplast genome of O. nudicaulis was sequenced, assembled, and annotated. The results indicate that the chloroplast genome of O. nudicaulis exhibits a typical circular quadripartite structure. The chloroplast genome is 153,903 bp in length, with a GC content of 38.87%, containing 84 protein-coding genes, 8 rRNA genes, 38 tRNA genes, and 2 pseudogenes. The genome encodes 25,815 codons, with leucine (Leu) being the most abundant codon, and the most frequently used codon is AUU. Additionally, 129 microsatellite markers were identified, with mononucleotide repeats being the most abundant (53.49%). Our phylogenetic analysis revealed that O. nudicaulis has a relatively close relationship with the genus Meconopsis within the Papaveraceae family. The phylogenetic analysis supported the taxonomic status of O. nudicaulis, as it did not form a clade with other Papaver species, consistent with the revised taxonomy of Papaveraceae. This is the first report of a phylogenomic study of the complete chloroplast genome in the genus Oreomecon, which is a significant genus worldwide. This analysis of the O. nudicaulis chloroplast genome provides a theoretical basis for research on genetic diversity, molecular marker development, and species identification, enriching genetic information and supporting the evolutionary relationships among Papaveraceae.
Collapse
Affiliation(s)
- Qingbin Zhan
- College of Criminal Science and Technology, Nanjing Police University, Nanjing, China
- Key Laboratory of State Forestry and Grassland Administration on Wildlife Evidence Technology, Nanjing, China
| | - Yalin Huang
- College of Criminal Science and Technology, Nanjing Police University, Nanjing, China
- Key Laboratory of State Forestry and Grassland Administration on Wildlife Evidence Technology, Nanjing, China
| | - Xiaoming Xue
- College of Criminal Science and Technology, Nanjing Police University, Nanjing, China
- Key Laboratory of State Forestry and Grassland Administration on Wildlife Evidence Technology, Nanjing, China
| | - Yunxia Chen
- College of Criminal Science and Technology, Nanjing Police University, Nanjing, China.
- Key Laboratory of State Forestry and Grassland Administration on Wildlife Evidence Technology, Nanjing, China.
| |
Collapse
|
9
|
Hu X, Liu Y, Chen J, Su X. The complete chloroplast genome of Oxytropis ochrocephala Bunge 1874 (Fabaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour 2024; 9:641-646. [PMID: 38770145 PMCID: PMC11104710 DOI: 10.1080/23802359.2024.2350626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
This study presents the first-ever complete chloroplast (cp) genome sequence of Oxytropis ochrocephala Bunge 1874, a member of the Fabaceae family. The cp genome spans 126,996 base pairs and includes 109 genes, comprising 76 protein-coding genes, 29 tRNA genes, and four rRNA genes. Notably, the genome lacks an inverted repeat (IR) region. Additionally, we constructed phylogenetic trees for 34 species within Trib. Galegeae, employing both maximum likelihood (ML) and Bayesian inference (BI) methods. These analyses robustly support the monophyly of the Oxytropis species, evidenced by high bootstrap values (BP = 100) and posterior probabilities (PP = 1). Within this clade, O. ochrocephala exhibits a sister relationship with other Oxytropis species. Our findings provide valuable insights into the genetic makeup and evolutionary relationships of O. ochrocephala within the Galegeae tribe.
Collapse
Affiliation(s)
- XiaYu Hu
- School of Life Sciences, Qinghai Normal University, Xining, China
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, China
| | - YuPing Liu
- School of Life Sciences, Qinghai Normal University, Xining, China
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - JinYuan Chen
- School of Life Sciences, Qinghai Normal University, Xining, China
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, Xining, China
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| |
Collapse
|
10
|
Zhou C, Tao F, Long R, Yang X, Wu X, Xiang L, Zhou X, Girdthai T. The complete chloroplast genome of Mussaenda pubescens and phylogenetic analysis. Sci Rep 2024; 14:9131. [PMID: 38644374 PMCID: PMC11033256 DOI: 10.1038/s41598-024-55010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 04/23/2024] Open
Abstract
The chloroplast (cp) genome sequence of Mussaenda pubescens, a promising resource that is used as a traditional medicine and drink, is important for understanding the phylogenetic relationships among the Mussaenda family and genetic improvement and reservation. This research represented the first comprehensive description of the morphological characteristics of M. pubescens, as well as an analysis of the complete cp genome and phylogenetic relationship. The results indicated a close relationship between M. pubescens and M. hirsutula based on the morphological characteristics of the flower and leaves. The cp was sequenced using the Illumina NovaSeq 6000 platform. The results indicated the cp genome of M. pubescens spanned a total length of 155,122 bp, including a pair of inverted repeats (IRA and IRB) with a length of 25,871 bp for each region, as well as a large single-copy (LSC) region and a small single-copy (SSC) region with lengths of 85,370 bp and 18,010 bp, respectively. The results of phylogenetic analyses demonstrated that species within the same genus displayed a tendency to group closely together. It was suggested that Antirhea, Cinchona, Mitragyna, Neolamarckia, and Uncaria might have experienced an early divergence. Furthermore, M. hirsutula showed a close genetic connection to M. pubescens, with the two species having partially overlapping distributions in China. This study presents crucial findings regarding the identification, evolution, and phylogenetic research on Mussaenda plants, specifically targeting M. pubescens.
Collapse
Affiliation(s)
- Caibi Zhou
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Fang Tao
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rupiao Long
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Xiaoting Yang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Xingli Wu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Lan Xiang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Xiaolu Zhou
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Teerayoot Girdthai
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
11
|
Yu Y, Wang X, Qu R, OuYang Z, Guo J, Zhao Y, Huang L. Extraction and analysis of high-quality chloroplast DNA with reduced nuclear DNA for medicinal plants. BMC Biotechnol 2024; 24:20. [PMID: 38637734 PMCID: PMC11025248 DOI: 10.1186/s12896-024-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.
Collapse
Affiliation(s)
- Yifan Yu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China
| | - Xinxin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Renjun Qu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhen OuYang
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yujun Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China.
| |
Collapse
|
12
|
Xue H, Xing Y, Bian C, Hou W, Men W, Zheng H, Yang Y, Ying X, Kang T, Xu L. Comparative analysis of chloroplast genomes of Pulsatilla species reveals evolutionary and taxonomic status of newly discovered endangered species Pulsatilla saxatilis. BMC PLANT BIOLOGY 2024; 24:293. [PMID: 38632540 PMCID: PMC11022354 DOI: 10.1186/s12870-024-04940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Pulsatilla saxatilis, a new species of the genus Pulsatilla has been discovered. The morphological information of this species has been well described, but its chloroplast genome characteristics and comparison with species of the same genus remain to be reported. RESULTS Our results showed that the total length of chloroplast (cp.) genome of P. saxatilis is 162,659 bp, with a GC content of 37.5%. The cp. genome contains 134 genes, including 90 known protein-coding genes, 36 tRNA genes, and 8 rRNA genes. P. saxatilis demonstrated similar characteristics to other species of genus Pulsatilla. Herein, we compared cp. genomes of 10 species, including P. saxatilis, and found that the cp. genomes of the genus Pulsatilla are extremely similar, with a length of 162,322-163,851 bp. Furthermore, The SSRs of Pulsatilla ranged from 10 to 22 bp in length. Among the four structural regions of the cp. genome, most long repeats and SSRs were detected in the LSC region, followed by that in the SSC region, and least in IRA/ IRB regions. The most common types of long repeats were forward and palindromic repeats, followed by reverse repeats, and only a few complementary repeats were found in 10 cp. genomes. We also analyzed nucleotide diversity and identified ccsA_ndhD, rps16_trnK-UUU, ccsA, and rbcL, which could be used as potential molecular markers for identification of Pulsatilla species. The results of the phylogenetic tree constructed by connecting the sequences of high variation regions were consistent with those of the cp. gene phylogenetic tree, and the species more closely related to P. saxatilis was identified as the P. campanella. CONCLUSION It was determined that the closest species to P. saxatilis is P. campanella, which is the same as the conclusion based on pollen grain characteristics, but different from the P. chinensis determined based on morphological characteristics. By revealing information on the chloroplast characteristics, development, and evolution of the cp. genome and the potential molecular markers, this study provides effective molecular data regarding the evolution, genetic diversity, and species identification of the genus Pulsatilla.
Collapse
Affiliation(s)
- Hefei Xue
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
- Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, 067000, China
| | - Yanping Xing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
- State Key Laboratory of Dao-di Herbs, Beijing, 100700, China
| | - Che Bian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Wenjuan Hou
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Wenxiao Men
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Han Zheng
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Dao-di Herbs, Beijing, 100700, China
| | - Yanyun Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Tingguo Kang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Liang Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
13
|
Walker EJL, Pampuch M, Chang N, Cochrane RR, Karas BJ. Design and assembly of the 117-kb Phaeodactylum tricornutum chloroplast genome. PLANT PHYSIOLOGY 2024; 194:2217-2228. [PMID: 38114089 PMCID: PMC10980414 DOI: 10.1093/plphys/kiad670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
There is growing impetus to expand the repertoire of chassis available to synthetic biologists. Chloroplast genomes present an interesting alternative for engineering photosynthetic eukaryotes; however, development of the chloroplast as a synthetic biology chassis has been limited by a lack of efficient techniques for whole-genome cloning and engineering. Here, we demonstrate two approaches for cloning the 117-kb Phaeodactylum tricornutum chloroplast genome that have 90% to 100% efficiency when screening as few as 10 yeast (Saccharomyces cerevisiae) colonies following yeast assembly. The first method reconstitutes the genome from PCR-amplified fragments, whereas the second method involves precloning these fragments into individual plasmids from which they can later be released. In both cases, overlapping fragments of the chloroplast genome and a cloning vector are homologously recombined into a singular contig through yeast assembly. The cloned chloroplast genome can be stably maintained and propagated within Escherichia coli, which provides an exciting opportunity for engineering a delivery mechanism for bringing DNA directly to the algal chloroplast. Also, one of the cloned genomes was designed to contain a single SapI site within the yeast URA3 (coding for orotidine-5'-phosphate decarboxylase) open-reading frame, which can be used to linearize the genome and integrate designer cassettes via golden-gate cloning or further iterations of yeast assembly. The methods presented here could be extrapolated to other species-particularly those with a similar chloroplast genome size and architecture (e.g. Thalassiosira pseudonana).
Collapse
Affiliation(s)
- Emma J L Walker
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mark Pampuch
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Nelson Chang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Ryan R Cochrane
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
14
|
Li B, Wang H, Zhang J, Qiu B, Yang C, Li Y. The complete plastome genome sequence of Cynanchum otophyllum (Asclepiadaceae), a unique medicinal species in China. Mitochondrial DNA B Resour 2024; 9:318-321. [PMID: 38476837 PMCID: PMC10930142 DOI: 10.1080/23802359.2023.2290850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/29/2023] [Indexed: 03/14/2024] Open
Abstract
Cynanchum otophyllum Schneid is an important medicinal plant in China. In this paper, the chloroplast genome of C. otophyllum was sequenced based on high-throughput technology, and the chloroplast genome structure characteristics and phylogenetic relationship of C. otophyllum were analyzed. The results showed the complete plastome genome size of C. otophyllumis 160,874bp, including one small single copy (SSC, 19,851bp) and one large single copy (LSC, 92,009bp) regions isolated by a pair of inverted repeat regions (IRs, 24,507bp). The whole plastome genome including 84 protein encoding genes, 8 rRNA and 37 tRNA. Based on the phylogenetic topologies, C. otophyllum shows close association with additional Gomphocarpus and Asclepias genus. This study contributes to an enhanced understanding of the genetic information of C. otophyllum and provides a theoretical basis for the development of molecular markers and phylogeographic of the species, as well as for constructing the phylogenetic tree of Asclepiadaceae.
Collapse
Affiliation(s)
- Bosen Li
- College of Traditional Chinese, Medicine, Yunnan University of Traditional Chinese Medicine, China
| | - Haobin Wang
- College of Traditional Chinese, Medicine, Yunnan University of Traditional Chinese Medicine, China
| | - Junling Zhang
- College of Traditional Chinese, Medicine, Yunnan University of Traditional Chinese Medicine, China
| | - Bin Qiu
- College of Traditional Chinese, Medicine, Yunnan University of Traditional Chinese Medicine, China
| | - Congwei Yang
- College of Traditional Chinese, Medicine, Yunnan University of Traditional Chinese Medicine, China
| | - Yaqiong Li
- College of Traditional Chinese, Medicine, Yunnan University of Traditional Chinese Medicine, China
| |
Collapse
|
15
|
Wang R, Yang Y, Tian H, Yi H, Xu L, Lv Y, Ge J, Zhao Y, Wang L, Zhou S, Wang F. A Scalable and Robust Chloroplast Genotyping Solution: Development and Application of SNP and InDel Markers in the Maize Chloroplast Genome. Genes (Basel) 2024; 15:293. [PMID: 38540352 PMCID: PMC10970264 DOI: 10.3390/genes15030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Maize(Zea mays. L) is a globally important crop, and understanding its genetic diversity is crucial for plant breeding phylogenetic analyses and comparative genetics. While nuclear markers have been extensively used for mapping agriculturally important genes, they are limited in recognizing characteristics, such as cytoplasmic male sterility and reciprocal cross hybrids. In this study, we performed next-generation sequencing of 176samples, and the maize cultivars represented five distinct groups. A total of 89 single nucleotide polymorphisms (SNPs) and 11 insertion/deletion polymorphisms (InDels) were identified. To enable high-throughput detection, we successfully amplified and confirmed 49 SNP and InDel markers, which were defined as a Varietal Chloroplast Panel (VCP) using the Kompetitive Allele Specific PCR (KASP). The specific markers provided a valuable tool for identifying chloroplast groups. The verification experiment, focusing on the identification of reciprocal cross hybrids and cytoplasmic male sterility hybrids, demonstrated the significant advantages of VCP markers in maternal inheritance characterization. Furthermore, only a small subset of these markers is needed to provide useful information, showcasing the effectiveness of these markers in elucidating the artificial selection process of elite maize lines.
Collapse
Affiliation(s)
- Rui Wang
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Yang Yang
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Hongli Tian
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Hongmei Yi
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Liwen Xu
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Yuanda Lv
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Jianrong Ge
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Yikun Zhao
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Lu Wang
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany (LSEB), Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Fengge Wang
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| |
Collapse
|
16
|
Zhang T, Chen X, Yan W, Li M, Huang W, Liu Q, Li Y, Guo C, Shu Y. Comparative Analysis of Chloroplast Pan-Genomes and Transcriptomics Reveals Cold Adaptation in Medicago sativa. Int J Mol Sci 2024; 25:1776. [PMID: 38339052 PMCID: PMC10855486 DOI: 10.3390/ijms25031776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Alfalfa (Medicago sativa) is a perennial forage legume that is widely distributed all over the world; therefore, it has an extremely complex genetic background. Though population structure and phylogenetic studies have been conducted on a large group of alfalfa nuclear genomes, information about the chloroplast genomes is still lacking. Chloroplast genomes are generally considered to be conservative and play an important role in population diversity analysis and species adaptation in plants. Here, 231 complete alfalfa chloroplast genomes were successfully assembled from 359 alfalfa resequencing data, on the basis of which the alfalfa chloroplast pan-genome was constructed. We investigated the genetic variations of the alfalfa chloroplast genome through comparative genomic, genetic diversity, phylogenetic, population genetic structure, and haplotype analysis. Meanwhile, the expression of alfalfa chloroplast genes under cold stress was explored through transcriptome analysis. As a result, chloroplast genomes of 231 alfalfa lack an IR region, and the size of the chloroplast genome ranges from 125,192 bp to 126,105 bp. Using population structure, haplotypes, and construction of a phylogenetic tree, it was found that alfalfa populations could be divided into four groups, and multiple highly variable regions were found in the alfalfa chloroplast genome. Transcriptome analysis showed that tRNA genes were significantly up-regulated in the cold-sensitive varieties, while rps7, rpl32, and ndhB were down-regulated, and the editing efficiency of ycf1, ycf2, and ndhF was decreased in the cold-tolerant varieties, which may be due to the fact that chloroplasts store nutrients through photosynthesis to resist cold. The huge number of genetic variants in this study provide powerful resources for molecular markers.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (T.Z.); (M.L.); (C.G.)
| | - Xiuhua Chen
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Wei Yan
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (W.Y.); (Q.L.)
| | - Manman Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (T.Z.); (M.L.); (C.G.)
| | - Wangqi Huang
- National Engineering Research Center for Ornamental Horticulture, Yunnan Flower Breeding Key Laboratory, Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Qian Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (W.Y.); (Q.L.)
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (W.Y.); (Q.L.)
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (T.Z.); (M.L.); (C.G.)
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (T.Z.); (M.L.); (C.G.)
| |
Collapse
|
17
|
Shim D, Jeon SH, Kim JC, Yoon DK. Comparative Phylogenetic Analysis of Ancient Korean Tea "Hadong Cheon-Nyeon Cha ( Camellia sinensis var. sinensis)" Using Complete Chloroplast Genome Sequences. Curr Issues Mol Biol 2024; 46:1091-1106. [PMID: 38392187 PMCID: PMC10888334 DOI: 10.3390/cimb46020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Wild teas are valuable genetic resources for studying evolution and breeding. Here, we report the complete chloroplast genome of the ancient Korean tea 'Hadong Cheon-nyeon Cha' (C. sinensis var. sinensis), which is known as the oldest tea tree in Korea. This study determined seven Camellia sinensis var. sinenesis, including Hadong Cheon-nyeon Cha (HCNC) chloroplast genome sequences, using Illumina sequencing technology via de novo assembly. The chloroplast genome sizes ranged from 157,019 to 157,114 bp and were organized into quadripartite regions with the typical chloroplast genomes. Further, differences in SNPs and InDels were detected across the seven chloroplast genomes through variance analysis. Principal component and phylogenetic analysis suggested that regional constraints, rather than functional constraints, strongly affected the sequence evolution of the cp genomes in this study. These genomic resources provide evolutionary insight into Korean tea plant cultivars and lay the foundation for a better understanding of the ancient Korean tea plant HCNC.
Collapse
Affiliation(s)
- Doobo Shim
- Institute of Hadong Green Tea, Hadong 52304, Republic of Korea
| | - Seung Ho Jeon
- Department of Agricultural Life Science, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong Cheol Kim
- Institute of Hadong Green Tea, Hadong 52304, Republic of Korea
| | - Dong-Kyung Yoon
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| |
Collapse
|
18
|
Zhou Q, Ding X, Wang H, Farooq Z, Wang L, Yang S. A novel in-situ-process technique constructs whole circular cpDNA library. PLANT METHODS 2024; 20:2. [PMID: 38172924 PMCID: PMC10763311 DOI: 10.1186/s13007-023-01126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The chloroplast genome (cp genome) is directly related to the study and analysis of molecular phylogeny and evolution of plants in the phylogenomics era. The cp genome, whereas, is highly plastic and exists as a heterogeneous mixture of sizes and physical conformations. It is advantageous to purify/enrich the circular chloroplast DNA (cpDNA) to reduce sequence complexity in cp genome research. Large-insert, ordered DNA libraries are more practical for genomics research than conventional, unordered ones. From this, a technique of constructing the ordered BAC library with the goal-insert cpDNA fragment is developed in this paper. RESULTS This novel in-situ-process technique will efficiently extract circular cpDNA from crops and construct a high-quality cpDNA library. The protocol combines the in-situ chloroplast lysis for the high-purity circular cpDNA with the in-situ substitute/ligation for the high-quality cpDNA library. Individually, a series of original buffers/solutions and optimized procedures for chloroplast lysis in-situ is different than bacterial lysis in-situ; the in-situ substitute/ligation that reacts on the MCE membrane is suitable for constructing the goal-insert, ordered cpDNA library while preventing the large-insert cpDNA fragment breakage. The goal-insert, ordered cpDNA library is arrayed on the microtiter plate by three colonies with the definite cpDNA fragment that are homologous-corresponds to the whole circular cpDNA of the chloroplast. CONCLUSION The novel in-situ-process technique amply furtherance of research in genome-wide functional analysis and characterization of chloroplasts, such as genome sequencing, bioinformatics analysis, cloning, physical mapping, molecular phylogeny and evolution.
Collapse
Affiliation(s)
- Qiang Zhou
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xianlong Ding
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zunaira Farooq
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Liang Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shouping Yang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
19
|
Mehmetoğlu E, Kaymaz Y, Ateş D, Kahraman A, Tanyolaç MB. The complete chloroplast genome of Cicer reticulatum and comparative analysis against relative Cicer species. Sci Rep 2023; 13:17871. [PMID: 37857674 PMCID: PMC10587350 DOI: 10.1038/s41598-023-44599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
The chloroplast (cp) genome is an adequate genomic resource to investigate evolutionary relationships among plant species and it carries marker genes available for species identification. The Cicer reticulatum is one of perennial species as the progenitor of cultivated chickpeas. Although a large part of the land plants has a quadruple chloroplast genome organization, the cp genome of C. reticulatum consists of one LSC (Large Single Copy Region), one SSC (Small Single Copy Region), and one IR (Inverted Repeat) region, which indicates that it has an untypical and unique structure. This type of chloroplast genome belongs to the IR-lacking clade. Chloroplast DNA (cpDNA) was extracted from fresh leaves using a high salt-based protocol and sequencing was performed using DNA Nanoball Sequencing technology. The comparative analysis employed between the species to examine genomic differences and gene homology. The study also included codon usage frequency analysis, hotspot divergence analysis, and phylogenetic analysis using various bioinformatics tools. The cp genome of C. reticulatum was found 125,794 bp in length, with an overall GC content of 33.9%. With a total of 79 protein-coding genes, 34 tRNA genes, and 4 rRNA genes. Comparative genomic analysis revealed 99.93% similarity between C. reticulatum and C. arietinum. Phylogenetic analysis further indicated that the closest evolutionary relative to C. arietinum was C. reticulatum, whereas the previously sequenced wild Cicer species displayed slight distinctions across their entire coding regions. Several genomic regions, such as clpP and ycf1, were found to exhibit high nucleotide diversity, suggesting their potential utility as markers for investigating the evolutionary relationships within the Cicer genus. The first complete cp genome sequence of C. reticulatum will provide novel insights for future genetic research on Cicer crops.
Collapse
Affiliation(s)
- Ezgi Mehmetoğlu
- Faculty of Engineering, Department of Bioengineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Yasin Kaymaz
- Faculty of Engineering, Department of Bioengineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Duygu Ateş
- Faculty of Engineering, Department of Bioengineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Abdullah Kahraman
- Faculty of Agriculture, Department of Field Crops, Harran University, S. Urfa, 64000, Şanlıurfa, Turkey
| | | |
Collapse
|
20
|
Kim SC, Ha YH, Park BK, Jang JE, Kang ES, Kim YS, Kimspe TH, Kim HJ. Comparative analysis of the complete chloroplast genome of Papaveraceae to identify rearrangements within the Corydalis chloroplast genome. PLoS One 2023; 18:e0289625. [PMID: 37733832 PMCID: PMC10513226 DOI: 10.1371/journal.pone.0289625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Chloroplast genomes are valuable for inferring evolutionary relationships. We report the complete chloroplast genomes of 36 Corydalis spp. and one Fumaria species. We compared these genomes with 22 other taxa and investigated the genome structure, gene content, and evolutionary dynamics of the chloroplast genomes of 58 species, explored the structure, size, repeat sequences, and divergent hotspots of these genomes, conducted phylogenetic analysis, and identified nine types of chloroplast genome structures among Corydalis spp. The ndh gene family suffered inversion and rearrangement or was lost or pseudogenized throughout the chloroplast genomes of various Corydalis species. Analysis of five protein-coding genes revealed simple sequence repeats and repetitive sequences that can be potential molecular markers for species identification. Phylogenetic analysis revealed three subgenera in Corydalis. Subgenera Cremnocapnos and Sophorocapnos represented the Type 2 and 3 genome structures, respectively. Subgenus Corydalis included all types except type 3, suggesting that chloroplast genome structural diversity increased during its differentiation. Despite the explosive diversification of this subgenus, most endemic species collected from the Korean Peninsula shared only one type of genome structure, suggesting recent divergence. These findings will greatly improve our understanding of the chloroplast genome of Corydalis and may help develop effective molecular markers.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Young-Ho Ha
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Beom Kyun Park
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Ju Eun Jang
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Eun Su Kang
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Young-Soo Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Tae-Hee Kimspe
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Hyuk-Jin Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| |
Collapse
|
21
|
Kousar M, Park J. Comparative Analysis of the Chloroplast Genome of Sicyos angulatus with Other Seven Species of Cucurbitaceae Family. Genes (Basel) 2023; 14:1776. [PMID: 37761916 PMCID: PMC10531474 DOI: 10.3390/genes14091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sicyos angulatus (SA) is an annual plant from the Cucurbitaceae family that is native to the eastern part of North America. This study aims to assemble and annotate the chloroplast genome of S. angulatus, and then compare it with plastomes of the other species representing the Cucurbitaceae family. The chloroplast genome size of S. angulatus is 154,986 bp, including a pair of inverted repeats (IR) of 26,276 bp, and small single-copy region (SSC) of 18,079 bp and large single-copy region (LSC) of 84,355 bp. Compared to other Cucurbitaceae species, the chloroplast genome of S. angulatus is almost 4222 bp smaller than the plastome Gynostemma pentaphyllum. All other seven species have an identical set of tRNA (37), except Citrullus laevigata, which contains 36 tRNA. The IRa/LSC junction in all eight species is located upstream of rpl2 and downstream of trnH gene. Moreover, variation in the size of the gene and the presence of pseudogene ycf1 has been seen because of the IR contraction and expansion. The highest number of tandem repeats was seen in G. pentaphyllum, and then Corynocarpus leavigata. The sequence divergence analysis and topology of the phylogenetic tree indicate that S. angulatus is more similar to genus Citrullus as compared to genus Gynostemma. These findings contribute to developing the genomic marker for the purpose of future genetic studies.
Collapse
Affiliation(s)
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
22
|
Yoon WS, Kim CK, Kim YK. The First Complete Chloroplast Genome of Campanula carpatica: Genome Characterization and Phylogenetic Diversity. Genes (Basel) 2023; 14:1597. [PMID: 37628648 PMCID: PMC10454809 DOI: 10.3390/genes14081597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Campanula carpatica is an ornamental flowering plant belonging to the family Campanulaceae. The complete chloroplast genome of C. carpatica was obtained using Illumina HiSeq X and Oxford Nanopore (Nanopore GridION) platforms. The chloroplast genome exhibited a typical circular structure with a total length of 169,341 bp, comprising a large single-copy region of 102,323 bp, a small single-copy region of 7744 bp, and a pair of inverted repeats (IRa/IRb) of 29,637 bp each. Out of a total 120 genes, 76 were protein-coding genes, 36 were transfer RNA genes, and eight were ribosomal RNA genes. The genomic characteristics of C. carpatica are similar to those of other Campanula species in terms of repetitive sequences, sequence divergence, and contraction/expansion events in the inverted repeat regions. A phylogenetic analysis of 63 shared genes in 16 plant species revealed that Campanula zangezura is the closest relative of C. carpatica. Phylogenetic analysis indicated that C. carpatica was within the Campanula clade, and C. pallida occupied the outermost position of that clade.
Collapse
Affiliation(s)
- Won-Sub Yoon
- Department of Mechanical Design Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju 54874, Republic of Korea;
| | - Yong-Kab Kim
- Department of Information Communication Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
23
|
Ibrahim AA, Alwutayd KM, Safhi FA, Alshegaihi RM, Alqurashi M, Alyamani A, Aloufi S, Alharthi B, Fayad E, Abd El-Moneim D. Characterization and comparative genomic analyses of complete chloroplast genome on Trema orientalis L. GENETIC RESOURCES AND CROP EVOLUTION 2023. [DOI: 10.1007/s10722-023-01678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023]
|
24
|
Raiyemo DA, Tranel PJ. Comparative analysis of dioecious Amaranthus plastomes and phylogenomic implications within Amaranthaceae s.s. BMC Ecol Evol 2023; 23:15. [PMID: 37149567 PMCID: PMC10164334 DOI: 10.1186/s12862-023-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/28/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The genus Amaranthus L. consists of 70-80 species distributed across temperate and tropical regions of the world. Nine species are dioecious and native to North America; two of which are agronomically important weeds of row crops. The genus has been described as taxonomically challenging and relationships among species including the dioecious ones are poorly understood. In this study, we investigated the phylogenetic relationships among the dioecious amaranths and sought to gain insights into plastid tree incongruence. A total of 19 Amaranthus species' complete plastomes were analyzed. Among these, seven dioecious Amaranthus plastomes were newly sequenced and assembled, an additional two were assembled from previously published short reads sequences and 10 other plastomes were obtained from a public repository (GenBank). RESULTS Comparative analysis of the dioecious Amaranthus species' plastomes revealed sizes ranged from 150,011 to 150,735 bp and consisted of 112 unique genes (78 protein-coding genes, 30 transfer RNAs and 4 ribosomal RNAs). Maximum likelihood trees, Bayesian inference trees and splits graphs support the monophyly of subgenera Acnida (7 dioecious species) and Amaranthus; however, the relationship of A. australis and A. cannabinus to the other dioecious species in Acnida could not be established, as it appears a chloroplast capture occurred from the lineage leading to the Acnida + Amaranthus clades. Our results also revealed intraplastome conflict at some tree branches that were in some cases alleviated with the use of whole chloroplast genome alignment, indicating non-coding regions contribute valuable phylogenetic signals toward shallow relationship resolution. Furthermore, we report a very low evolutionary distance between A. palmeri and A. watsonii, indicating that these two species are more genetically related than previously reported. CONCLUSIONS Our study provides valuable plastome resources as well as a framework for further evolutionary analyses of the entire Amaranthus genus as more species are sequenced.
Collapse
Affiliation(s)
- Damilola A Raiyemo
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
25
|
Christinaki AC, Theelen B, Zania A, Coutinho SDA, Cabañes JF, Boekhout T, Kouvelis VN. Co-evolution of large inverted repeats and G-quadruplex DNA in fungal mitochondria may facilitate mitogenome stability: the case of Malassezia. Sci Rep 2023; 13:6308. [PMID: 37072481 PMCID: PMC10113387 DOI: 10.1038/s41598-023-33486-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Mitogenomes are essential due to their contribution to cell respiration. Recently they have also been implicated in fungal pathogenicity mechanisms. Members of the basidiomycetous yeast genus Malassezia are an important fungal component of the human skin microbiome, linked to various skin diseases, bloodstream infections, and they are increasingly implicated in gut diseases and certain cancers. In this study, the comparative analysis of Malassezia mitogenomes contributed to phylogenetic tree construction for all species. The mitogenomes presented significant size and gene order diversity which correlates to their phylogeny. Most importantly, they showed the inclusion of large inverted repeats (LIRs) and G-quadruplex (G4) DNA elements, rendering Malassezia mitogenomes a valuable test case for elucidating the evolutionary mechanisms responsible for this genome diversity. Both LIRs and G4s coexist and convergently evolved to provide genome stability through recombination. This mechanism is common in chloroplasts but, hitherto, rarely found in mitogenomes.
Collapse
Affiliation(s)
- Anastasia C Christinaki
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Alkmini Zania
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | - Javier F Cabañes
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
| |
Collapse
|
26
|
Tian R, Aou X, Song B, Li Z, He X, Zhou S. Plastid Phylogenomic Analyses Reveal a Cryptic Species of Ligusticopsis (Apiaceae, Angiosperms). Int J Mol Sci 2023; 24:ijms24087419. [PMID: 37108580 PMCID: PMC10138589 DOI: 10.3390/ijms24087419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ligusticopsis litangensis is identified and described as a cryptic species from Sichuan Province, China. Although the distribution of this cryptic species overlaps with that of Ligusticopsis capillacea and Ligusticopsis dielsiana, the morphological boundaries between them are explicit and have obviously distinguishable characters. The main distinguishing features of the cryptic species are as follows: long conical multi-branched roots, very short pedicels in compound umbels, unequal rays, oblong-globose fruits, 1-2 vittae per furrow and 3-4 vittae on the commissure. The above-mentioned features differ somewhat from other species within the genus Ligusticopsis, but generally coincide with the morphological boundaries defined for the genus Ligusticopsis. To determine the taxonomic position of L. litangensis, we sequenced and assembled the plastomes of L. litangensis and compared them with the plastomes of 11 other species of the genus Ligusticopsis. Notably, both phylogenetic analyses based on ITS sequences and the complete chloroplast genome robustly supported that three accessions of L. litangensis are monophyletic clade and then nested in Ligusticopsis genus. Moreover, the plastid genomes of 12 Ligusticopsis species, including the new species, were highly conserved in terms of gene order, gene content, codon bias, IR boundaries and SSR content. Overall, the integration of morphological, comparative genomic and phylogenetic evidence indicates that Ligusticopsis litangensis actually represents a new species.
Collapse
Affiliation(s)
- Rongming Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xueyimu Aou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Boni Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zixuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xingjin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Songdong Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Yang Q, Li Y, Cai L, Gan G, Wang P, Li W, Li W, Jiang Y, Li D, Wang M, Xiong C, Chen R, Wang Y. Characteristics, Comparative Analysis, and Phylogenetic Relationships of Chloroplast Genomes of Cultivars and Wild Relatives of Eggplant (Solanum melongena). Curr Issues Mol Biol 2023; 45:2832-2846. [PMID: 37185709 PMCID: PMC10136506 DOI: 10.3390/cimb45040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The eggplant (Solanum melongena) is a popular vegetable around the world. However, the origin and evolution of eggplant has long been considered complex and unclear, which has become the barrier to improvements in eggplant breeding. Sequencing and comparative analyses of 13 complete chloroplast (cp) genomes of seven Solanum species were performed. Genome sizes were between 154,942 and 156,004 bp, the smallest genome was from S. torvum and the largest from S. macrocapon. Thirteen cp genomes showed highly conserved sequences and GC contents, particularly at the subgenus level. All genes in the 13 genomes were annotated. The cp genomes in this study comprised 130 genes (i.e., 80 protein-coding genes, 8 rRNA genes, and 42 tRNA genes), apart from S. sisymbriifolium, which had 129 (79 protein-coding genes, 8 rRNA genes, and 42 tRNA genes.). The rps16 was absent from the cp genome of S. sisymbriifolium, resulting in a nonsense mutation. Twelve hotspot regions of the cp genome were identified, which showed a series of sequence variations and differed significantly in the inverted repeat/single-copy boundary regions. Furthermore, phylogenetic analysis was conducted using 46 cp genomic sequences to determine interspecific genetic and phylogenetic relationships in Solanum species. All species formed two branches, one of which contained all cultivars of the subgenus Leptostemonum. The cp genome data and phylogenetic analysis provides molecular evidence revealing the origin and evolutionary relationships of S. melongena and its wild relatives. Our findings suggest precise intra- and interspecies relatedness within the subgenus Leptostemonum, which has positive implications for work on improvements in eggplant breeding, particularly in producing heterosis, expanding the source of species variation, and breeding new varieties.
Collapse
Affiliation(s)
- Qihong Yang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Ye Li
- Habin Academy of Agricultural Sciences, Harbin 150008, China
| | - Liangyu Cai
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Peng Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Dandan Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Mila Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Xiong
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Riyuan Chen
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| |
Collapse
|
28
|
Li Q, Chen X, Yang D, Xia P. Genetic relationship of Pleione based on the chloroplast genome. Gene 2023; 858:147203. [PMID: 36646186 DOI: 10.1016/j.gene.2023.147203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Pleione (Orchidaceae) is a very famous horticultural plant with a high international reputation for its unique flower shape and abundant color. The small difference in morphological characteristics among Pleione species caused by weak reproductive isolation and easy hybridization makes the taxonomic status of individual species very confusing. Chloroplast (cp) genome information is of great significance for the study of plant phylogeny and taxonomy. In this study, the cp genomes of Pleione were sequenced and the complete cp structure and sequence characteristics of 19 species were compared and analyzed. The cp genome of Pleione species exhibited a conserved tetrad structure and each species encoded 135 protein-coding genes, 38 tRNA and 8 RNA genes. The cp genome sizes of 19 Pleione were 157964-159269 bp and the length of LSC, SSC and IR were 85953-87172 bp, 18499-18712 bp, 26459-26756 bp, respectively. Palindromic and forward repeats accounted for a high proportion and the SSRs were mainly mononucleotide repeats in Pleione. Analysis of chloroplast sequence differences indicated that the differences in coding regions were smaller than those in non-coding regions, and the variation in LSC and SSC regions was greater than that in IR regions. Phylogenetic analysis showed that all Pleione species inferred from the cp genome were clustered together and received high support. However, the genetic relationship of Pleione plants is different from the current update system of this genus. Therefore, the demarcation of Pleione interspecific relationships still needs further investigation due to the lack of sufficient evidence. The cp genome serves as valuable information for the identification of Pleione species and the study of phylogenetic relationships.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China..
| |
Collapse
|
29
|
Zhang M, Zhang XH, Shi S, Chen BH. Lithocarpusdahuensis (Fagaceae), a new species from Fujian Province based on morphology and genomic data. PHYTOKEYS 2023; 222:1-18. [PMID: 37252639 PMCID: PMC10209513 DOI: 10.3897/phytokeys.222.99370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/26/2023] [Indexed: 05/31/2023]
Abstract
Lithocarpusdahuensis, a new Fagaceae species from Fujian Province, China, is described and illustrated. The new species is morphologically similar to L.konishii, but its oblanceolate leaf blade has more pairs of acute teeth on the margin, denser lateral veins, smaller cupules enclosing up to 1/4-1/3 of the nut, and its nut is only half as long as those of L.konishii. The plastome of L.dahuensis was 161,303 bp in length and displayed the typical quadripartite structure. Phylogenetic analyses distinguished L.dahuensis from L.konishii with strong support based on whole plastome and nrITS, respectively.
Collapse
Affiliation(s)
- Miao Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xiao-Hui Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shi Shi
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bing-Hua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
30
|
Hu Y, Sun Y, Zhu QH, Fan L, Li J. Poaceae Chloroplast Genome Sequencing: Great Leap Forward in Recent Ten Years. Curr Genomics 2023; 23:369-384. [PMID: 37920556 PMCID: PMC10173419 DOI: 10.2174/1389202924666221201140603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 12/11/2022] Open
Abstract
The first complete chloroplast genome of rice (Oryza sativa) was published in 1989, ushering in a new era of studies of chloroplast genomics in Poaceae. Progresses in Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) technologiesand in the development of genome assembly software, have significantly advanced chloroplast genomics research. Poaceae is one of the most targeted families in chloroplast genome research because of its agricultural, ecological, and economic importance. Over the last 30 years, 2,050 complete chloroplast genome sequences from 40 tribes and 282 genera have been generated, most (97%) of them in the recent ten years. The wealth of data provides the groundwork for studies on species evolution, phylogeny, genetic transformation, and other aspects of Poaceae chloroplast genomes. As a result, we have gained a deeper understanding of the properties of Poaceae chloroplast genomes. Here, we summarize the achievements of the studies of the Poaceae chloroplast genomes and envision the challenges for moving the area ahead.
Collapse
Affiliation(s)
- Yiyu Hu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yanqing Sun
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
New Insights into Plastid and Mitochondria Evolution in Wild Peas (Pisum L.). DIVERSITY 2023. [DOI: 10.3390/d15020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plastids and mitochondria are organelles of plant cells with small genomes, which may exhibit discordant microevolution as we earlier revealed in pea crop wild relatives. We sequenced 22 plastid and mitochondrial genomes of Pisum sativum subsp. elatius and Pisum fulvum using Illumina platform, so that the updated sample comprised 64 accessions. Most wild peas from continental southern Europe and a single specimen from Morocco were found to share the same organellar genome constitution; four others, presumably hybrid constitutions, were revealed in Mediterranean islands and Athos Peninsula. A mitochondrial genome closely related to that of Pisum abyssinicum, from Yemen and Ethiopia, was unexpectedly found in an accession of P. sativum subsp. elatius from Israel, their plastid genomes being unrelated. Phylogenetic reconstructions based on plastid and mitochondrial genomes revealed different sets of wild peas to be most related to cultivated P. sativum subsp. sativum, making its wild progenitor and its origin area enigmatic. An accession of P. fulvum representing ‘fulvum-b’ branch, according to a nuclear marker, appeared in the same branch as other fulvum accessions in organellar trees. The results stress the complicated evolution and structure of genetic diversity of pea crop wild relatives.
Collapse
|
32
|
Li J, Cullis C. Comparative analysis of 84 chloroplast genomes of Tylosema esculentum reveals two distinct cytotypes. FRONTIERS IN PLANT SCIENCE 2023; 13:1025408. [PMID: 36798803 PMCID: PMC9927231 DOI: 10.3389/fpls.2022.1025408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Tylosema esculentum (marama bean) is an important orphan legume from southern Africa that has long been considered to have the potential to be domesticated as a crop. The chloroplast genomes of 84 marama samples collected from various geographical locations in Namibia and Pretoria were compared in this study. The cp genomes were analyzed for diversity, including SNPs, indels, structural alterations, and heteroplasmy. The marama cp genomes ranged in length from 161,537 bp to 161,580 bp and contained the same sets of genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The genes rpoC2 and rpoB, and the intergenic spacers trnT-trnL and ndhG-ndhI were found to be more diverse than other regions of the marama plastome. 15 haplotypes were found to be divided into two groups, differing at 122 loci and at a 230 bp inversion. One type appears to have greater variability within the major genome present, and variations amongst individuals with this type of chloroplast genome seems to be distributed within specific geographic regions but with very limited sampling for some regions. However, deep sequencing has identified that within most of the individuals, both types of chloroplast genomes are present, albeit one is generally at a very low frequency. The inheritance of this complex of chloroplast genomes appears to be fairly constant, providing a conundrum of how the two genomes co-exist and are propagated through generations. The possible consequences for adaptation to the harsh environment in which T. esculentum survives are considered. The results pave the way for marama variety identification, as well as for understanding the origin and evolution of the bean.
Collapse
|
33
|
Wang Y, Xu J, Hu B, Dong C, Sun J, Li Z, Ye K, Deng F, Wang L, Aslam M, Lv W, Qin Y, Cheng Y. Assembly, annotation, and comparative analysis of Ipomoea chloroplast genomes provide insights into the parasitic characteristics of Cuscuta species. FRONTIERS IN PLANT SCIENCE 2023; 13:1074697. [PMID: 36733590 PMCID: PMC9887335 DOI: 10.3389/fpls.2022.1074697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
In the Convolvulaceae family, around 1650 species belonging to 60 genera are widely distributed globally, mainly in the tropical and subtropical regions of America and Asia. Although a series of chloroplast genomes in Convolvulaceae were reported and investigated, the evolutionary and genetic relationships among the chloroplast genomes of the Convolvulaceae family have not been extensively elucidated till now. In this study, we first reported the complete chloroplast genome sequence of Ipomoea pes-caprae, a widely distributed coastal plant with medical values. The chloroplast genome of I. pes-caprae is 161667 bp in length, and the GC content is 37.56%. The chloroplastic DNA molecule of I. pes-caprae is a circular structure composed of LSC (large-single-copy), SSC (small-single-copy), and IR (inverted repeat) regions, with the size of the three regions being 88210 bp, 12117 bp, and 30670 bp, respectively. The chloroplast genome of I. pes-caprae contains 141 genes, and 35 SSRs are identified in the chloroplast genome. Our research results provide important genomic information for the molecular phylogeny of I. pes-caprae. The Phylogenetic analysis of 28 Convolvulaceae chloroplast genomes showed that the relationship of I. pes-caprae with I. involucrata or I. obscura was much closer than that with other Convolvulaccae species. Further comparative analyses between the Ipomoea species and Cuscuta species revealed the mechanism underlying the formation of parasitic characteristics of Cuscuta species from the perspective of the chloroplast genome.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Xu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunxing Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixian Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kangzhuo Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Wenliang Lv
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
34
|
Li H, Guo Q, Xu L, Gao H, Liu L, Zhou X. CPJSdraw: analysis and visualization of junction sites of chloroplast genomes. PeerJ 2023; 11:e15326. [PMID: 37193025 PMCID: PMC10182761 DOI: 10.7717/peerj.15326] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/18/2023] Open
Abstract
Background Chloroplast genomes are usually circular molecules, and most of them are tetrad structures with two inverted repeat (IR) regions, a large single-copy region, and a small single-copy region. IR contraction and expansion are among the genetic diversities during the evolution of plant chloroplast genomes. The only previously released tool for the visualization of junction sites of the regions does not consider the diversity of the starting point of genomes, which leads to incorrect results or even no results for the examination of IR contraction and expansion. Results In this work, a new tool named CPJSdraw was developed for visualizing the junction sites of chloroplast genomes. CPJSdraw can format the starting point of the irregular linearized genome, correct the junction sites of IR and single-copy regions, display the tetrad structure, visualize the junction sites of any number (≥1) of chloroplast genomes, show the transcription direction of genes adjacent to junction sites, and indicate the IR expansion or contraction of chloroplast genomes. Conclusions CPJSdraw is a software that is universal and reliable in analysis and visualization of IR expansion or contraction of chloroplast genomes. CPJSdraw has more accurate analysis and more complete functions when compared with previously released tool. CPJSdraw as a perl package and tested data are available at http://dx.doi.org/10.5281/zenodo.7669480 for English users. In addition, an online version with a Chinese interface is available at http://cloud.genepioneer.com:9929/#/tool/alltool/detail/335.
Collapse
Affiliation(s)
- Huie Li
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Qiqiang Guo
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
| | - Lei Xu
- Nanjing Genepioneer Biotechnologies Co., Ltd, Nanjing, Jiangsu, China
| | - Haidong Gao
- Nanjing Genepioneer Biotechnologies Co., Ltd, Nanjing, Jiangsu, China
| | - Lei Liu
- Nanjing Genepioneer Biotechnologies Co., Ltd, Nanjing, Jiangsu, China
| | - Xiangyang Zhou
- Nanjing Genepioneer Biotechnologies Co., Ltd, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Li H, Chen M, Wang Z, Hao Z, Zhao X, Zhu W, Liu L, Guo W. Characterization of the Complete Chloroplast Genome and Phylogenetic Implications of Euonymus microcarpus (Oliv.) Sprague. Genes (Basel) 2022; 13:genes13122352. [PMID: 36553619 PMCID: PMC9778254 DOI: 10.3390/genes13122352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Euonymus microcarpus (Oliv.) Sprague, is a species of evergreen shrub of the genus Euonymus, family Celastraceae. Here, we extracted the genomic DNA from the leaves of E. microcarpus and constructed a paired-end library. The chloroplast genome of E. microcarpus was generated with the high-throughput sequencing by the illumina Hiseq X Ten platform and de novo assembly. The chloroplast genome had a quadripartite structure, containing a long single copy region with a size of 85,386 bp and a short single copy region with a size of 18,456 bp, separated by two inverted repeat regions of 26,850 bp. The chloroplast genome contained 133 genes identified in total, including 87 potential protein-coding genes, 38 transfer RNA genes, and eight ribosomal RNA genes. A total of 282 simple sequence repeats and 63 long repeats were found. Furthermore, the phylogenetic relationships inferred that E. microcarpus is sister to E. japonicus and E. schensianus. A comparison of the structure of the chloroplast genomes of eight Euonymus species suggests a nucleotide variability of the junction sites and a higher divergence of non-coding regions, compared to the coding regions. The original findings of the study serves as a good reference for chloroplast genome assembly and a valuable foundation for the genetic diversity and evolution of E. microcarpus.
Collapse
Affiliation(s)
- Hongying Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengdi Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhengbo Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Ziyuan Hao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiping Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenyan Zhu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Longchang Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian 271000, China
- Correspondence:
| |
Collapse
|
36
|
Yang Y, Jia Y, Zhao Y, Wang Y, Zhou T. Comparative chloroplast genomics provides insights into the genealogical relationships of endangered Tetraena mongolica and the chloroplast genome evolution of related Zygophyllaceae species. Front Genet 2022; 13:1026919. [PMID: 36568371 PMCID: PMC9773207 DOI: 10.3389/fgene.2022.1026919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
A comprehensive understanding of genetic background for rare species will provide an important theoretical basis for the future species management, monitoring and conservation. Tetraena mongolica is restrictedly distributed in the western Ordos plateau of China and has been listed as a national protected plant. We generated 13 chloroplast (cp) genomes of T. mongolica (size range of 106,062-106,230 bp) and conducted a series of comparative analyses of six Zygophyllaceae cp genomes. T. mongolica cp genome exhibited a quadripartite structure with drastically reduced inverted repeats (IRs, 4,315 bp) and undergone the loss of a suit of ndh genes and a copy of rRNAs. Furthermore, all the T. mongolica populations were divided into two genetic groups based on complete cp phylogenomics. In addition, notably variable genome size, gene order and structural changes had been observed among the six Zygophyllaceae cp genomes. Overall, our findings provide insights into the cp genome evolution mode and intraspecific relationships of T. mongolica, and provide a molecular basis for scientific conservation of this endangered plant.
Collapse
Affiliation(s)
- Yanci Yang
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Yun Jia
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, Shaanxi, China
| | - Yanling Zhao
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Yonglong Wang
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
37
|
Lan Z, Shi Y, Yin Q, Gao R, Liu C, Wang W, Tian X, Liu J, Nong Y, Xiang L, Wu L. Comparative and phylogenetic analysis of complete chloroplast genomes from five Artemisia species. FRONTIERS IN PLANT SCIENCE 2022; 13:1049209. [PMID: 36479523 PMCID: PMC9720176 DOI: 10.3389/fpls.2022.1049209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Artemisia Linn. is a large genus within the family Asteraceae that includes several important medicinal plants. Because of their similar morphology and chemical composition, traditional identification methods often fail to distinguish them. Therefore, developing an effective identification method for Artemisia species is an urgent requirement. In this study, we analyzed 15 chloroplast (cp) genomes, including 12 newly sequenced genomes, from 5 Artemisia species. The cp genomes from the five Artemisia species had a typical quadripartite structure and were highly conserved across species. They had varying lengths of 151,132-151,178 bp, and their gene content and codon preferences were similar. Mutation hotspot analysis identified four highly variable regions, which can potentially be used as molecular markers to identify Artemisia species. Phylogenetic analysis showed that the five Artemisia species investigated in this study were sister branches to each other, and individuals of each species formed a monophyletic clade. This study shows that the cp genome can provide distinguishing features to help identify closely related Artemisia species and has the potential to serve as a universal super barcode for plant identification.
Collapse
Affiliation(s)
- Zhaohui Lan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlian Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenting Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xufang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiawei Liu
- Department of product development, Hubei Aiaitie Health Technology Co., LTD, Huanggang, China
| | - Yiying Nong
- Department of product development, Hubei Aiaitie Health Technology Co., LTD, Huanggang, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Han F, Qu Y, Chen Y, Xu L, Bi C. Assembly and comparative analysis of the complete mitochondrial genome of Salix wilsonii using PacBio HiFi sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1031769. [PMID: 36466227 PMCID: PMC9709322 DOI: 10.3389/fpls.2022.1031769] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
Salix L. (willows) is one of the most taxonomically complex genera of flowering plants, including shrubs, tall trees, bushes, and prostrate plants. Despite the high species diversity, only five mitochondrial genomes (mitogenomes) have been released in this genus. Salix wilsonii is an important ornamental and economic willow tree in section Wilsonia of the genus Salix. In this study, the S. wilsonii mitogenome was assembled into a typical circular structure with a size of 711,456 bp using PacBio HiFi sequencing. A total of 58 genes were annotated in the S. wilsonii mitogenome, including 33 protein-coding genes (PCGs), 22 tRNAs, and 3 rRNAs. In the S. wilsonii mitogenome, four genes (mttB, nad3, nad4, and sdh4) were found to play important roles in its evolution through selection pressure analysis. Collinearity analysis of six Salix mitogenomes revealed high structural variability. To determine the evolutionary position of S. wilsonii, we conducted a phylogenetic analysis of the mitogenomes of S. wilsonii and 12 other species in the order Malpighiales. Results strongly supported the segregation of S. wilsonii and other five Salix species with 100% bootstrap support. The comparative analysis of the S. wilsonii mitogenome not only sheds light on the functional and structural features of S. wilsonii but also provides essential information for genetic studies of the genus Salix.
Collapse
Affiliation(s)
- Fuchuan Han
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yanshu Qu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yicun Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Li’an Xu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Changwei Bi
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
39
|
Wang Y, Yu J, Chen YK, Wang ZC. Complete Chloroplast Genome Sequence of the Endemic and Endangered Plant Dendropanax oligodontus: Genome Structure, Comparative and Phylogenetic Analysis. Genes (Basel) 2022; 13:2028. [PMID: 36360265 PMCID: PMC9690231 DOI: 10.3390/genes13112028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2023] Open
Abstract
Dendropanax oligodontus, which belongs to the family Araliaceae, is an endemic and endangered species of Hainan Island, China. It has potential economic and medicinal value owing to the presence of phenylpropanoids, flavonoids, triterpenoids, etc. The analysis of the structure and characteristics of the D. oligodontus chloroplast genome (cpDNA) is crucial for understanding the genetic and phylogenetic evolution of this species. In this study, the cpDNA of D. oligodontus was sequenced for the first time using next-generation sequencing methods, assembled, and annotated. We observed a circular quadripartite structure comprising a large single-copy region (86,440 bp), a small single-copy region (18,075 bp), and a pair of inverted repeat regions (25,944 bp). The total length of the cpDNA was 156,403 bp, and the GC% was 37.99%. We found that the D. oligodontus chloroplast genome comprised 131 genes, with 86 protein-coding genes, 8 rRNA genes, and 37 tRNAs. Furthermore, we identified 26,514 codons, 13 repetitive sequences, and 43 simple sequence repeat sites in the D. oligodontus cpDNA. The most common amino acid encoded was leucine, with a strong A/T preference at the third position of the codon. The prediction of RNA editing sites in the protein-coding genes indicated that RNA editing was observed in 19 genes with a total of 54 editing sites, all of which involved C-to-T transitions. Finally, the cpDNA of 11 species of the family Araliaceae were selected for comparative analysis. The sequences of the untranslated regions and coding regions among 11 species were highly conserved, and minor differences were observed in the length of the inverted repeat regions; therefore, the cpDNAs were relatively stable and consistent among these 11 species. The variable hotspots in the genome included clpP, ycf1, rnK-rps16, rps16-trnQ, atpH-atpI, trnE-trnT, psbM-trnD, ycf3-trnS, and rpl32-trnL, providing valuable molecular markers for species authentication and regions for inferring phylogenetic relationships among them, as well as for evolutionary studies. Evolutionary selection pressure analysis indicated that the atpF gene was strongly subjected to positive environmental selection. Phylogenetic analysis indicated that D. oligodontus and Dendropanax dentiger were the most closely related species within the genus, and D. oligodontus was closely related to the genera Kalopanax and Metapanax in the Araliaceae family. Overall, the cp genomes reported in this study will provide resources for studying the genetic diversity and conservation of the endangered plant D. oligodontus, as well as resolving phylogenetic relationships within the family.
Collapse
Affiliation(s)
- Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jing Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Yu-Kai Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhu-Cheng Wang
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China
| |
Collapse
|
40
|
Ling K, Yi-ning D, Majeed A, Zi-jiang Y, Jun-wen C, Li-lian H, Xian-hong W, Lu-feng L, Zhen-feng Q, Dan Z, Shu-jie G, Rong X, Lin-yan X, Fu X, Yang D, Fu-sheng L. Evaluation of genome size and phylogenetic relationships of the Saccharum complex species. 3 Biotech 2022; 12:327. [PMID: 36276474 PMCID: PMC9582063 DOI: 10.1007/s13205-022-03338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
"Saccharum complex" is a hypothetical group of species, which is supposed to be involved in the origin of modern sugarcane, and displays large genomes and complex chromosomal alterations. The utilization of restricted parents in breeding programs of modern cultivated sugarcane has resulted in a genetic blockage, which controlled its improvement because of the limited genetic diversity. The use of wild relatives is an effective way to broaden the genetic composition of cultivated sugarcane. Due to the infrequent characterization of genomes, the potential of wild relatives is diffused in improving the cultivated sugarcane. To characterize the genomes of the wild relatives, the genome size and phylogenetic relationships among eight species, including Saccharum spontaneum, Erianthus arundinaceus, E. fulvus, E. rockii, Narenga porphyrocoma, Miscanthus floridulus, Eulalia quadrinervis, and M. sinensis were evaluated based on flow cytometry, genome surveys, K-mer analysis, chloroplast genome sequencing, and whole-genome SNPs analysis. We observed highly heterozygous genomes of S. spontaneum, E. rockii, and E. arundinaceus and the highly repetitive genome of E. fulvus. The genomes of Eulalia quadrinervis, N. porphyrocoma, M. sinensis, and M. floridulus were highly complex. Phylogenetic results of the two approaches were dissimilar, however, both indicate E. fulvus displayed closer relationships to Miscanthus and Saccharum than other species of Saccharum complex. Eulalia quadrinervis was more closely related to M. floridulus than M. sinensis; E. arundinaceus differ significantly from Miscanthus, Narenga, and Saccharum, but was relatively close to Erianthus. We proved the point of E. rockii and E. fulvus should not be classified as one genus, and E. fulvus should be classified as the Saccharum genus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03338-5.
Collapse
Affiliation(s)
- Kui Ling
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067 China
| | - Di Yi-ning
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - Aasim Majeed
- School of Agricultural Biotechnology, Punjab Agriculture University, Ludhiana, 141004 India
| | - Yang Zi-jiang
- Applied Genomics Technology Laboratory, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Chen Jun-wen
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - He Li-lian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Wang Xian-hong
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - Liu Lu-feng
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Qian Zhen-feng
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - Zeng Dan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Gu Shu-jie
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - Xu Rong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Xie Lin-yan
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - Xu Fu
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Dong Yang
- Applied Genomics Technology Laboratory, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Li Fu-sheng
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201 Yunnan China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| |
Collapse
|
41
|
Zhao Y, Qu D, Ma Y. Characterization of the Chloroplast Genome of Argyranthemum frutescens and a Comparison with Other Species in Anthemideae. Genes (Basel) 2022; 13:genes13101720. [PMID: 36292605 PMCID: PMC9602088 DOI: 10.3390/genes13101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Argyranthemum frutescens, which belongs to the Anthemideae (Asteraceae), is widely cultivated as an ornamental plant. In this study, the complete chloroplast genome of A. frutescens was obtained based on the sequences generated by Illumina HiSeq. The chloroplast genome of A. frutescens was 149,626 base pairs (bp) in length, containing a pair of inverted repeats (IR, 24,510 bp) regions separated by a small single-copy (SSC, 18,352 bp) sequence and a large single-copy (LSC, 82,254 bp) sequence. The genome contained 132 genes, consisting of 85 coding DNA sequences, 37 tRNA genes, and 8 rRNA genes, with nineteen genes duplicated in the IR region. A comparison chloroplast genome analysis among ten species from the tribe of Anthemideae revealed that the chloroplast genome size varied, but the genome structure, gene content, and oligonucleotide repeats were highly conserved. Highly divergent regions, e.g., ycf1, trnK-psbK, petN-psbM intronic, were detected. Phylogenetic analysis supported Argyranthemum as a separate genus. The findings of this study will be helpful in the exploration of the phylogenetic relationships of the tribe of Anthemideae and contribute to the breeding improvement of A. frutescens.
Collapse
|
42
|
Yang L, Abduraimov O, Tojibaev K, Shomurodov K, Zhang YM, Li WJ. Analysis of complete chloroplast genome sequences and insight into the phylogenetic relationships of Ferula L. BMC Genomics 2022; 23:643. [PMID: 36076164 PMCID: PMC9461113 DOI: 10.1186/s12864-022-08868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Background Ferula L. is one of the largest and most taxonomically complicated genera as well as being an important medicinal plant resource in the family Apiaceae. To investigate the plastome features and phylogenetic relationships of Ferula and its neighboring genera Soranthus Ledeb., Schumannia Kuntze., and Talassia Korovin, we sequenced 14 complete plastomes of 12 species. Results The size of the 14 complete chloroplast genomes ranged from 165,607 to 167,013 base pairs (bp) encoding 132 distinct genes (87 protein-coding, 37 tRNA, and 8 rRNA genes), and showed a typical quadripartite structure with a pair of inverted repeats (IR) regions. Based on comparative analysis, we found that the 14 plastomes were similar in codon usage, repeat sequence, simple sequence repeats (SSRs), and IR borders, and had significant collinearity. Based on our phylogenetic analyses, Soranthus, Schumannia, and Talassia should be considered synonymous with Ferula. Six highly divergent regions (rps16/trnQ-UUG, trnS-UGA/psbZ, psbH/petB, ycf1/ndhF, rpl32, and ycf1) were also detected, which may represent potential molecular markers, and combined with selective pressure analysis, the weak positive selection gene ccsA may be a discriminating DNA barcode for Ferula species. Conclusion Plastids contain abundant informative sites for resolving phylogenetic relationships. Combined with previous studies, we suggest that there is still much room for improvement in the classification of Ferula. Overall, our study provides new insights into the plastome evolution, phylogeny, and taxonomy of this genus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08868-z.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China.,Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, No.818 South Beijing Road, Urumqi, 830011, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Ozodbek Abduraimov
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Komiljon Tojibaev
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Khabibullo Shomurodov
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Yuan-Ming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China.,Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, No.818 South Beijing Road, Urumqi, 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China. .,Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, No.818 South Beijing Road, Urumqi, 830011, China. .,The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
43
|
Comparative Analysis of Complete Chloroplast Genomes of Nine Species of Litsea (Lauraceae): Hypervariable Regions, Positive Selection, and Phylogenetic Relationships. Genes (Basel) 2022; 13:genes13091550. [PMID: 36140718 PMCID: PMC9498446 DOI: 10.3390/genes13091550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Litsea is a group of evergreen trees or shrubs in the laurel family, Lauraceae. Species of the genus are widely used for a wide range of medicinal and industrial aspects. At present, most studies related to the gene resources of Litsea are restricted to morphological analyses or features of individual genomes, and currently available studies of select molecular markers are insufficient. In this study, we assembled and annotated the complete chloroplast genomes of nine species in Litsea, carried out a series of comparative analyses, and reconstructed phylogenetic relationships within the genus. The genome length ranged from 152,051 to 152,747 bp and a total of 128 genes were identified. High consistency patterns of codon bias, repeats, divergent analysis, single nucleotide polymorphisms (SNP) and insertions and deletions (InDels) were discovered across the genus. Variations in gene length and the presence of the pseudogene ycf1Ψ, resulting from IR contraction and expansion, are reported. The hyper-variable gene rpl16 was identified for its exceptionally high Ka/Ks and Pi values, implying that those frequent mutations occurred as a result of positive selection. Phylogenetic relationships were recovered for the genus based on analyses of full chloroplast genomes and protein-coding genes. Overall, both genome sequences and potential molecular markers provided in this study enrich the available genomic resources for species of Litsea. Valuable genomic resources and divergent analysis are also provided for further research of the evolutionary patterns, molecular markers, and deeper phylogenetic relationships of Litsea.
Collapse
|
44
|
Cao DL, Zhang XJ, Xie SQ, Fan SJ, Qu XJ. Application of chloroplast genome in the identification of Traditional Chinese Medicine Viola philippica. BMC Genomics 2022; 23:540. [PMID: 35896957 PMCID: PMC9327190 DOI: 10.1186/s12864-022-08727-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viola philippica Cav. is the only source plant of "Zi Hua Di Ding", which is a Traditional Chinese Medicine (TCM) that is utilized as an antifebrile and detoxicant agent for the treatment of acute pyogenic infections. Historically, many Viola species with violet flowers have been misused in "Zi Hua Di Ding". Viola have been recognized as a taxonomically difficult genera due to their highly similar morphological characteristics. Here, all common V. philippica adulterants were sampled. A total of 24 complete chloroplast (cp) genomes were analyzed, among these 5 cp genome sequences were downloaded from GenBank and 19 cp genomes, including 2 "Zi Hua Di Ding" purchased from a local TCM pharmacy, were newly sequenced. RESULTS The Viola cp genomes ranged from 156,483 bp to 158,940 bp in length. A total of 110 unique genes were annotated, including 76 protein-coding genes, 30 tRNAs, and four rRNAs. Sequence divergence analysis screening identified 16 highly diverged sequences; these could be used as markers for the identification of Viola species. The morphological, maximum likelihood and Bayesian inference trees of whole cp genome sequences and highly diverged sequences were divided into five monophyletic clades. The species in each of the five clades were identical in their positions within the morphological and cp genome tree. The shared morphological characters belonging to each clade was summarized. Interestingly, unique variable sites were found in ndhF, rpl22, and ycf1 of V. philippica, and these sites can be selected to distinguish V. philippica from samples all other Viola species, including its most closely related species. In addition, important morphological characteristics were proposed to assist the identification of V. philippica. We applied these methods to examine 2 "Zi Hua Di Ding" randomly purchased from the local TCM pharmacy, and this analysis revealed that the morphological and molecular characteristics were valid for the identification of V. philippica. CONCLUSIONS This study provides invaluable data for the improvement of species identification and germplasm of V. philippica that may facilitate the application of a super-barcode in TCM identification and enable future studies on phylogenetic evolution and safe medical applications.
Collapse
Affiliation(s)
- Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Shao-Qiu Xie
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China.
| | - Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China.
| |
Collapse
|
45
|
Chen S, Wang T, Shu J, Xiang Q, Yang T, Zhang X, Yan Y. Plastid Phylogenomics and Plastomic Diversity of the Extant Lycophytes. Genes (Basel) 2022; 13:genes13071280. [PMID: 35886063 PMCID: PMC9316050 DOI: 10.3390/genes13071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Although extant lycophytes represent the most ancient surviving lineage of early vascular plants, their plastomic diversity has long been neglected. The ancient evolutionary history and distinct genetic diversity patterns of the three lycophyte families, each with its own characteristics, provide an ideal opportunity to investigate the interfamilial relationships of lycophytes and their associated patterns of evolution. To compensate for the lack of data on Lycopodiaceae, we sequenced and assembled 14 new plastid genomes (plastomes). Combined with other lycophyte plastomes available online, we reconstructed the phylogenetic relationships of the extant lycophytes based on 93 plastomes. We analyzed, traced, and compared the plastomic diversity and divergence of the three lycophyte families (Isoëtaceae, Lycopodiaceae, and Selaginellaceae) in terms of plastomic diversity by comparing their plastome sizes, GC contents, substitution rates, structural rearrangements, divergence times, ancestral states, RNA editings, and gene losses. Comparative analysis of plastid phylogenomics and plastomic diversity of three lycophyte families will set a foundation for further studies in biology and evolution in lycophytes and therefore in vascular plants.
Collapse
Affiliation(s)
- Sisi Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Jiangping Shu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qiaoping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China;
| | - Tuo Yang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
| | - Xianchun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China;
- Correspondence: (X.Z.); (Y.Y.)
| | - Yuehong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- Correspondence: (X.Z.); (Y.Y.)
| |
Collapse
|
46
|
Chen C, Xia X, Peng J, Wang D. Comparative Analyses of Six Complete Chloroplast Genomes from the Genus Cupressus and Juniperus (Cupressaceae). Gene 2022; 837:146696. [PMID: 35738448 DOI: 10.1016/j.gene.2022.146696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Cupressaceae is a conifer family distributed around the world. Cupressus and Juniperus are the main genera of the Cupressaceae family and have important medicinal value. This leads to confusion between Cupressus and Juniperus due to similar morphologies. Here, the complete cp genomes of two Cupressus (C. duclouxiana and C. funebri) and four Juniperus (J. chinensis, J. gaussenii J. pingii and J. procumbens) were sequenced. The results revealed that the length of the cp genomes ranged from 126,996 bp to 129,959 bp, with 119 genes comprising 82 protein-coding genes, 33 transfer RNAs and 4 ribosomal RNAs. All chloroplast genomes of Cupressus and Juniperus lost whole IR regions, which is consistent with gymnosperm cp genome studies. In addition, the number of SSRs per species ranged from 54 to 73 and was dominated by mononucleotide repeats. In the six cp genomes of Cupressus and Juniperus, five highly divergent regions, including accD, accD-rpl2, ycf1, ycf2 and rrn23-rrn4.5, can be used as DNA barcodes of interspecific relationships and potential genetic markers. We compared the gene selection pressures (C. chengiana as reference species), and 6 genes underwent positive selection, the majority of which were related to photosynthesis. Phylogenetic results showed that the monophyly of Cupressus and Juniperus supported most bootstrap support. Cupressus funebris and J. chinensis were resolved to be early diverging species within Cupressus and Juniperus, and the two genera were sister groups to each other. This research revealed a new understanding of the structural pluralism and phylogenetic relationships of Cupressaceae cp genomes. These results will facilitate comprehension of the complexity and diversity of conifer cp genomes. SIGNIFICANCE:: Phylogenetic relationships among Cupressus, Juniperus, and their closest relatives are controversial, and generic delimitations have been in flux for the past decade. To address relationships and attempt to produce a more robust classification, we sequenced 6 new plastid genomes (plastomes) from the two variously described genera in this complex (Cupressus and Juniperus) and compared them with additional plastomes from diverse members of Cupressaceae. Our study corroborated the accD of Cupressophytes have a tendency to expand in size and strongly supported a sister relationship between Cupressus and Juniperus. The disparity in these results could be traced to the facts that the chloroplast genome is uniparentally inherited, also the usage of the whole chloroplast genome for this research is of a better advantage compared to usage of selected genes or portion of the plastome. The complete CP genomic data will provide useful information for studying genetic diversity and species identification, which is important for the overarching goal of biodiversity conservation.
Collapse
Affiliation(s)
- Can Chen
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Xi Xia
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Jingyu Peng
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| | - Dawei Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
47
|
Zhu S, Liu A, Xie X, Xia M, Chen H. Characterization of the complete chloroplast genome of Wisteriopsis reticulata (Fabaceae): an IRLC legumes. Mitochondrial DNA B Resour 2022; 7:1137-1139. [PMID: 35756451 PMCID: PMC9225703 DOI: 10.1080/23802359.2022.2079436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The inverted repeat‐lacking clade (IRLC) species are characterized by the loss of an IR region in their plastomes, which has long been of great interest. Wisteriopsis reticulata is one of the members of the tribe Wisterieae, which belongs to Fabaceae and is well-known as IRLC. Here, we reported and characterized the complete chloroplast genome of W. reticulata using the genome skimming approach. The chloroplast genome is 132,477 bp in length and lacks one copy of IR region. The genome encoded 112 unique genes including 89 protein-coding genes, 29 transfer RNA genes and four ribosomal RNA genes. Phylogenetic results supported the monophyly of the tribe Wisterieae (IRLC) and confirmed that W. reticulata belongs to the genus Wisteriopsis.
Collapse
Affiliation(s)
- Shanshan Zhu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aowei Liu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Maoqin Xia
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haimin Chen
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
48
|
Ogoma CA, Liu J, Stull GW, Wambulwa MC, Oyebanji O, Milne RI, Monro AK, Zhao Y, Li DZ, Wu ZY. Deep Insights Into the Plastome Evolution and Phylogenetic Relationships of the Tribe Urticeae (Family Urticaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:870949. [PMID: 35668809 PMCID: PMC9164014 DOI: 10.3389/fpls.2022.870949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 05/09/2023]
Abstract
Urticeae s.l., a tribe of Urticaceae well-known for their stinging trichomes, consists of more than 10 genera and approximately 220 species. Relationships within this tribe remain poorly known due to the limited molecular and taxonomic sampling in previous studies, and chloroplast genome (CP genome/plastome) evolution is still largely unaddressed. To address these concerns, we used genome skimming data-CP genome and nuclear ribosomal DNA (18S-ITS1-5.8S-ITS2-26S); 106 accessions-for the very first time to attempt resolving the recalcitrant relationships and to explore chloroplast structural evolution across the group. Furthermore, we assembled a taxon rich two-locus dataset of trnL-F spacer and ITS sequences across 291 accessions to complement our genome skimming dataset. We found that Urticeae plastomes exhibit the tetrad structure typical of angiosperms, with sizes ranging from 145 to 161 kb and encoding a set of 110-112 unique genes. The studied plastomes have also undergone several structural variations, including inverted repeat (IR) expansions and contractions, inversion of the trnN-GUU gene, losses of the rps19 gene, and the rpl2 intron, and the proliferation of multiple repeat types; 11 hypervariable regions were also identified. Our phylogenomic analyses largely resolved major relationships across tribe Urticeae, supporting the monophyly of the tribe and most of its genera except for Laportea, Urera, and Urtica, which were recovered as polyphyletic with strong support. Our analyses also resolved with strong support several previously contentious branches: (1) Girardinia as a sister to the Dendrocnide-Discocnide-Laportea-Nanocnide-Zhengyia-Urtica-Hesperocnide clade and (2) Poikilospermum as sister to the recently transcribed Urera sensu stricto. Analyses of the taxon-rich, two-locus dataset showed lower support but was largely congruent with results from the CP genome and nuclear ribosomal DNA dataset. Collectively, our study highlights the power of genome skimming data to ameliorate phylogenetic resolution and provides new insights into phylogenetic relationships and chloroplast structural evolution in Urticeae.
Collapse
Affiliation(s)
- Catherine A. Ogoma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Gregory W. Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Moses C. Wambulwa
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, Kitui, Kenya
| | - Oyetola Oyebanji
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Richard I. Milne
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ying Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zeng-Yuan Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
49
|
Infrageneric Plastid Genomes of Cotoneaster (Rosaceae): Implications for the Plastome Evolution and Origin of C. wilsonii on Ulleung Island. Genes (Basel) 2022; 13:genes13050728. [PMID: 35627113 PMCID: PMC9141645 DOI: 10.3390/genes13050728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022] Open
Abstract
Cotoneaster is a taxonomically and ornamentally important genus in the family Rosaceae; however, phylogenetic relationships among its species are complicated owing to insufficient morphological diagnostic characteristics and hybridization associated with polyploidy and apomixis. In this study, we sequenced the complete plastomes of seven Cotoneaster species (C. dielsianus, C. hebephyllus, C. integerrimus, C. mongolicus, C. multiflorus, C. submultiflorus, and C. tenuipes) and included the available complete plastomes in a phylogenetic analysis to determine the origin of C. wilsonii, which is endemic to Ulleung Island, Korea. Furthermore, based on 15 representative lineages within the genus, we carried out the first comparative analysis of Cotoneaster plastid genomes to gain an insight into their molecular evolution. The plastomes were highly conserved, with sizes ranging from 159,595 bp (C. tenuipes) to 160,016 bp (C. hebephyllus), and had a GC content of 36.6%. The frequency of codon usage showed similar patterns among the 15 Cotoneaster species, and 24 of the 35 protein-coding genes were predicted to undergo RNA editing. Eight of the 76 common protein-coding genes, including ccsA, matK, ndhD, ndhF, ndhK, petA, rbcL, and rpl16, were positively selected, implying their potential roles in adaptation and speciation. Of the 35 protein-coding genes, 24 genes (15 photosynthesis-related, seven self-replications, and three others) were found to harbor RNA editing sites. Furthermore, several mutation hotspots were identified, including trnG-UCC/trnR-UCU/atpA and trnT-UGU/trnL-UAA. Maximum likelihood analysis based on 57 representative plastomes of Cotoneaster and two Heteromeles plastomes as outgroups revealed two major lineages within the genus, which roughly correspond to two subgenera, Chaenopetalum and Cotoneaster. The Ulleung Island endemic, C. wilsonii, shared its most recent common ancestor with two species, C. schantungensis and C. zabelii, suggesting its potential origin from geographically close members of the subgenus Cotoneaster, section Integerrimi.
Collapse
|
50
|
Comparative analysis of chloroplast genomes reveals phylogenetic relationships and intraspecific variation in the medicinal plant Isodon rubescens. PLoS One 2022; 17:e0266546. [PMID: 35385539 PMCID: PMC8985940 DOI: 10.1371/journal.pone.0266546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Isodon rubescens (Hemsley) H. Hara (Lamiaceae) is a traditional Chinese medicine plant that has been used to treat various human diseases and conditions such as inflammation, respiratory and gastrointestinal bacterial infections, and malignant tumors. However, the contents of the main active components of I. rubescens from different origins differ significantly, which greatly affected its quality. Therefore, a molecular method to identify and classify I. rubescens is needed. Here, we report the DNA sequence of the chloroplast genome of I. rubescens collected from Lushan, Henan province. The genome is 152,642 bp in length and has a conserved structure that includes a pair of IR regions (25,726 bp), a LSC region (83,527 bp) and a SSC region (17,663 bp). The chloroplast genome contains 113 unique genes, four rRNA genes, 30 tRNA genes, and 79 protein-coding genes, 23 of which contain introns. The protein-coding genes account for a total of 24,412 codons, and most of them are A/T biased usage. We identified 32 simple sequence repeats (SSRs) and 48 long repeats. Furthermore, we developed valuable chloroplast molecular resources by comparing chloroplast genomes from three Isodon species, and both mVISTA and DnaSP analyses showed that rps16-trnQ, trnS-trnG, and ndhC-trnM are candidate regions that will allow the identification of intraspecific differences within I. rubescens. Also 14 candidate fragments can be used to identify interspecific differences between species in Isodon. A phylogenetic analysis of the complete chloroplast genomes of 24 species in subfamily Nepetoideae was performed using the maximum likelihood method, and shows that I. rubescens clustered closer to I. serra than I. lophanthoides. Interestingly, our analysis showed that I. rubescens (MW018469.1) from Xianyang, Shaanxi Province (IR-X), is closer to I. serra than to the other two I. rubescens accessions. These results strongly indicate that intraspecific diversity is present in I. rubescens. Therefore, our results provide further insight into the phylogenetic relationships and interspecific diversity of species in the genus Isodon.
Collapse
|