1
|
Dutta M, Acharya P. Cryo-electron microscopy in the study of virus entry and infection. Front Mol Biosci 2024; 11:1429180. [PMID: 39114367 PMCID: PMC11303226 DOI: 10.3389/fmolb.2024.1429180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses have been responsible for many epidemics and pandemics that have impacted human life globally. The COVID-19 pandemic highlighted both our vulnerability to viral outbreaks, as well as the mobilization of the scientific community to come together to combat the unprecedented threat to humanity. Cryo-electron microscopy (cryo-EM) played a central role in our understanding of SARS-CoV-2 during the pandemic and continues to inform about this evolving pathogen. Cryo-EM with its two popular imaging modalities, single particle analysis (SPA) and cryo-electron tomography (cryo-ET), has contributed immensely to understanding the structure of viruses and interactions that define their life cycles and pathogenicity. Here, we review how cryo-EM has informed our understanding of three distinct viruses, of which two - HIV-1 and SARS-CoV-2 infect humans, and the third, bacteriophages, infect bacteria. For HIV-1 and SARS-CoV-2 our focus is on the surface glycoproteins that are responsible for mediating host receptor binding, and host and cell membrane fusion, while for bacteriophages, we review their structure, capsid maturation, attachment to the bacterial cell surface and infection initiation mechanism.
Collapse
Affiliation(s)
- Moumita Dutta
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Surgery, Durham, NC, United States
- Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
2
|
Vijayakrishnan S. In Situ Imaging of Virus-Infected Cells by Cryo-Electron Tomography: An Overview. Subcell Biochem 2023; 106:3-36. [PMID: 38159222 DOI: 10.1007/978-3-031-40086-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cryo-electron tomography (cryo-ET) has emerged as a powerful tool in structural biology to study viruses and is undergoing a resolution revolution. Enveloped viruses comprise several RNA and DNA pleomorphic viruses that are pathogens of clinical importance to humans and animals. Considerable efforts in cryogenic correlative light and electron microscopy (cryo-CLEM), cryogenic focused ion beam milling (cryo-FIB), and integrative structural techniques are helping to identify virus structures within cells leading to a rise of in situ discoveries shedding light on how viruses interact with their hosts during different stages of infection. This chapter reviews recent advances in the application of cryo-ET in imaging enveloped viruses and the structural and mechanistic insights revealed studying the viral infection cycle within their eukaryotic cellular hosts, with particular attention to viral entry, replication, assembly, and egress during infection.
Collapse
Affiliation(s)
- Swetha Vijayakrishnan
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK.
| |
Collapse
|
3
|
Gorman J, Wang C, Mason RD, Nazzari AF, Welles HC, Zhou T, Bess JW, Bylund T, Lee M, Tsybovsky Y, Verardi R, Wang S, Yang Y, Zhang B, Rawi R, Keele BF, Lifson JD, Liu J, Roederer M, Kwong PD. Cryo-EM structures of prefusion SIV envelope trimer. Nat Struct Mol Biol 2022; 29:1080-1091. [PMID: 36344847 PMCID: PMC10606957 DOI: 10.1038/s41594-022-00852-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
Simian immunodeficiency viruses (SIVs) are lentiviruses that naturally infect non-human primates of African origin and seeded cross-species transmissions of HIV-1 and HIV-2. Here we report prefusion stabilization and cryo-EM structures of soluble envelope (Env) trimers from rhesus macaque SIV (SIVmac) in complex with neutralizing antibodies. These structures provide residue-level definition for SIV-specific disulfide-bonded variable loops (V1 and V2), which we used to delineate variable-loop coverage of the Env trimer. The defined variable loops enabled us to investigate assembled Env-glycan shields throughout SIV, which we found to comprise both N- and O-linked glycans, the latter emanating from V1 inserts, which bound the O-link-specific lectin jacalin. We also investigated in situ SIVmac-Env trimers on virions, determining cryo-electron tomography structures at subnanometer resolutions for an antibody-bound complex and a ligand-free state. Collectively, these structures define the prefusion-closed structure of the SIV-Env trimer and delineate variable-loop and glycan-shielding mechanisms of immune evasion conserved throughout SIV evolution.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Chunyan Wang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Hugh C Welles
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Julian W Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Yongping Yang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Gao R, Yu CCJ, Gao L, Piatkevich KD, Neve RL, Munro JB, Upadhyayula S, Boyden ES. A highly homogeneous polymer composed of tetrahedron-like monomers for high-isotropy expansion microscopy. NATURE NANOTECHNOLOGY 2021; 16:698-707. [PMID: 33782587 PMCID: PMC8197733 DOI: 10.1038/s41565-021-00875-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/11/2021] [Indexed: 05/08/2023]
Abstract
Expansion microscopy (ExM) physically magnifies biological specimens to enable nanoscale-resolution imaging using conventional microscopes. Current ExM methods permeate specimens with free-radical-chain-growth-polymerized polyacrylate hydrogels, whose network structure limits the local isotropy of expansion as well as the preservation of morphology and shape at the nanoscale. Here we report that ExM is possible using hydrogels that have a more homogeneous network structure, assembled via non-radical terminal linking of tetrahedral monomers. As with earlier forms of ExM, such 'tetra-gel'-embedded specimens can be iteratively expanded for greater physical magnification. Iterative tetra-gel expansion of herpes simplex virus type 1 (HSV-1) virions by ~10× in linear dimension results in a median spatial error of 9.2 nm for localizing the viral envelope layer, rather than 14.3 nm from earlier versions of ExM. Moreover, tetra-gel-based expansion better preserves the virion spherical shape. Thus, tetra-gels may support ExM with reduced spatial errors and improved local isotropy, pointing the way towards single-biomolecule accuracy ExM.
Collapse
Affiliation(s)
- Ruixuan Gao
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Chih-Chieh Jay Yu
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Linyi Gao
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute, MIT, Cambridge, MA, USA
| | - Kiryl D Piatkevich
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
| | - Rachael L Neve
- Department of Neurology, Massachusetts General Hospital, Cambridge, MA, USA
| | - James B Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Srigokul Upadhyayula
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Advanced Bioimaging Center, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
- Media Arts and Sciences, MIT, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Koch Institute, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Chang Y, Zhang K, Carroll BL, Zhao X, Charon NW, Norris SJ, Motaleb MA, Li C, Liu J. Molecular mechanism for rotational switching of the bacterial flagellar motor. Nat Struct Mol Biol 2020; 27:1041-1047. [PMID: 32895555 PMCID: PMC8129871 DOI: 10.1038/s41594-020-0497-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
The bacterial flagellar motor can rotate in counterclockwise (CCW) or clockwise (CW) senses, and transitions are controlled by the phosphorylated form of the response regulator CheY (CheY-P). To dissect the mechanism underlying flagellar rotational switching, we use Borrelia burgdorferi as a model system to determine high-resolution in situ motor structures in cheX and cheY3 mutants, in which motors are locked in either CCW or CW rotation. The structures showed that CheY3-P interacts directly with a switch protein, FliM, inducing a major remodeling of another switch protein, FliG2, and altering its interaction with the torque generator. Our findings lead to a model in which the torque generator rotates in response to an inward flow of H+ driven by the proton motive force, and conformational changes in FliG2 driven by CheY3-P allow the switch complex to interact with opposite sides of the rotating torque generator, facilitating rotational switching.
Collapse
Affiliation(s)
- Yunjie Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06516, USA,Microbial Sciences Institute, Yale University, West Haven, CT 06536, USA
| | - Kai Zhang
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Brittany L. Carroll
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06516, USA,Microbial Sciences Institute, Yale University, West Haven, CT 06536, USA
| | - Xiaowei Zhao
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX 77030, USA,Current address: Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Nyles W. Charon
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Chunhao Li
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA. .,Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
6
|
Li Z, Li W, Lu M, Bess J, Chao CW, Gorman J, Terry DS, Zhang B, Zhou T, Blanchard SC, Kwong PD, Lifson JD, Mothes W, Liu J. Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. Nat Struct Mol Biol 2020; 27:726-734. [PMID: 32601441 PMCID: PMC8138683 DOI: 10.1038/s41594-020-0452-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The HIV-1 envelope glycoprotein (Env) trimer, composed of gp120 and gp41 subunits, mediates viral entry into cells. Recombinant Env trimers have been studied structurally, but characterization of Env embedded in intact virus membranes has been limited to low resolution. Here, we deploy cryo-electron tomography and subtomogram averaging to determine the structures of Env trimers on aldrithiol-2 (AT-2)-inactivated virions in ligand-free, antibody-bound and CD4-bound forms at subnanometer resolution. Tomographic reconstructions document molecular features consistent with high-resolution structures of engineered soluble and detergent-solubilized Env trimers. One of three conformational states previously predicted by smFRET was not observed by cryo-ET, potentially owing to AT-2 inactivation. We did observe Env trimers to open in situ in response to CD4 binding, with an outward movement of gp120-variable loops and an extension of a critical gp41 helix. Overall features of Env trimer embedded in AT-2-treated virions appear well-represented by current engineered trimers.
Collapse
Affiliation(s)
- Ze Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Julian Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
7
|
Chang Y, Moon KH, Zhao X, Norris SJ, Motaleb MA, Liu J. Structural insights into flagellar stator-rotor interactions. eLife 2019; 8:48979. [PMID: 31313986 PMCID: PMC6663468 DOI: 10.7554/elife.48979] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
The bacterial flagellar motor is a molecular machine that can rotate the flagellar filament at high speed. The rotation is generated by the stator–rotor interaction, coupled with an ion flux through the torque-generating stator. Here we employed cryo-electron tomography to visualize the intact flagellar motor in the Lyme disease spirochete, Borrelia burgdorferi. By analyzing the motor structures of wild-type and stator-deletion mutants, we not only localized the stator complex in situ, but also revealed the stator–rotor interaction at an unprecedented detail. Importantly, the stator–rotor interaction induces a conformational change in the flagella C-ring. Given our observation that a non-motile mutant, in which proton flux is blocked, cannot generate the similar conformational change, we propose that the proton-driven torque is responsible for the conformational change required for flagellar rotation.
Collapse
Affiliation(s)
- Yunjie Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| | - Ki Hwan Moon
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, United States
| | - Xiaowei Zhao
- Microbial Sciences Institute, Yale University, West Haven, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, United States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| |
Collapse
|
8
|
Antibody responses to viral infections: a structural perspective across three different enveloped viruses. Nat Microbiol 2019; 4:734-747. [PMID: 30886356 PMCID: PMC6818971 DOI: 10.1038/s41564-019-0392-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Antibodies serve as critical barriers to viral infection. Humoral immunity to a virus is achieved through the dual role of antibodies in communicating the presence of invading pathogens in infected cells to effector cells and interfering with processes essential to the viral lifecycle, chiefly entry into the host cell. For individuals that successfully control infection, virus-elicited antibodies can provide lifelong surveillance and protection from future insults. One approach to understand the nature of a successful immune response has been to utilize structural biology to uncover the molecular details of the antibodies derived from vaccines or natural infection and how they interact with their cognate microbial antigens. The ability to isolate antigen specific B-cells and rapidly solve structures of functional, monoclonal antibodies in complex with viral glycoprotein surface antigens has greatly expanded our knowledge of the sites of vulnerability on viruses. In this review, we compare the adaptive humoral immune responses to HIV, influenza, and filoviruses, with a particular focus on neutralizing antibodies. The pathogenesis of each of these viruses is quite different, providing an opportunity for comparison of immune responses: HIV causes a persistent, chronic infection; influenza an acute infection with multiple exposures during a lifetime and annual vaccination; and filoviruses, a virulent, acute infection. Neutralizing antibodies that develop under these different constraints are therefore sentinels that can provide insight into the underlying humoral immune responses and important lessons to guide future development of vaccines and immunotherapeutics.
Collapse
|
9
|
Cryo-electron tomography of periplasmic flagella in Borrelia burgdorferi reveals a distinct cytoplasmic ATPase complex. PLoS Biol 2018; 16:e3000050. [PMID: 30412577 PMCID: PMC6248999 DOI: 10.1371/journal.pbio.3000050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/21/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
Periplasmic flagella are essential for the distinct morphology and motility of spirochetes. A flagella-specific type III secretion system (fT3SS) composed of a membrane-bound export apparatus and a cytosolic ATPase complex is responsible for the assembly of the periplasmic flagella. Here, we deployed cryo-electron tomography (cryo-ET) to visualize the fT3SS machine in the Lyme disease spirochete Borrelia burgdorferi. We show, for the first time, that the cytosolic ATPase complex is attached to the flagellar C-ring through multiple spokes to form the “spoke and hub” structure in B. burgdorferi. This structure not only strengthens structural rigidity of the round-shaped C-ring but also appears to rotate with the C-ring. Our studies provide structural insights into the unique mechanisms underlying assembly and rotation of the periplasmic flagella and may provide the basis for the development of novel therapeutic strategies against several pathogenic spirochetes. Cryo-electron tomography of periplasmic flagella in the Lyme disease bacterium Borrelia burgdorferi reveals it to have a distinct cytoplasmic ATPase complex and an atypical interaction with the flagellar C-ring. Type III secretion systems are widely utilized by gram-negative bacteria to assemble flagella or to transport virulence effectors into eukaryotic cells. The central component is known as a type III secretion machine, which consists of a membrane-bound export apparatus and a cytosolic ATPase complex. Powered by the proton motive force and ATP hydrolysis, the secretion machine is responsible for substrate recognition and export. Here, we use the Lyme disease spirochete B. burgdorferi as a model system to unveil unprecedented structural details of the intact flagellar secretion machine by high-throughput cryo-electron tomography (cryo-ET) and subtomogram averaging. We provide the first structural evidence that the cytosolic ATPase complex is attached to the flagellar C-ring through multiple spokes to form the “spoke and hub” structure in B. burgdorferi. The novel architecture of the ATPase complex not only strengthens the flagellar C-ring but also enables an optimal translocation of substrates through the ATPase complex and the export apparatus.
Collapse
|
10
|
Dutta M. Recent Advances in Single Particle Cryo-electron Microscopy and Cryo-electron Tomography to Determine the Structures of Biological Macromolecules. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Visualization of Assembly Intermediates and Budding Vacuoles of Singapore Grouper Iridovirus in Grouper Embryonic Cells. Sci Rep 2016; 6:18696. [PMID: 26727547 PMCID: PMC4698634 DOI: 10.1038/srep18696] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/23/2015] [Indexed: 02/05/2023] Open
Abstract
Iridovirid infection is associated with the catastrophic loss in aquaculture industry and the population decline of wild amphibians and reptiles, but none of the iridovirid life cycles have been well explored. Here, we report the detailed visualization of the life cycle of Singapore grouper iridovirus (SGIV) in grouper cells by cryo-electron microscopy (cryoEM) and tomography (ET). EM imaging revealed that SGIV viral particles have an outer capsid layer, and the interaction of this layer with cellular plasma membrane initiates viral entry. Subsequent viral replication leads to formation of a viral assembly site (VAS), where membranous structures emerge as precursors to recruit capsid proteins to form an intermediate, double-shell, crescent-shaped structure, which curves to form icosahedral capsids. Knockdown of the major capsid protein eliminates the formation of viral capsids. As capsid formation progresses, electron-dense materials known to be involved in DNA encapsidation accumulate within the capsid until it is fully occupied. Besides the well-known budding mechanism through the cell periphery, we demonstrate a novel budding process in which viral particles bud into a tubular-like structure within vacuoles. This budding process may denote a new strategy used by SGIV to disseminate viral particles into neighbor cells while evading host immune response.
Collapse
|
12
|
Electron cryotomography reveals ultrastructure alterations in platelets from patients with ovarian cancer. Proc Natl Acad Sci U S A 2015; 112:14266-71. [PMID: 26578771 DOI: 10.1073/pnas.1518628112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Thrombocytosis and platelet hyperreactivity are known to be associated with malignancy; however, there have been no ultrastructure studies of platelets from patients with ovarian cancer. Here, we used electron cryotomography (cryo-ET) to examine frozen-hydrated platelets from patients with invasive ovarian cancer (n = 12) and control subjects either with benign adnexal mass (n = 5) or free from disease (n = 6). Qualitative inspections of the tomograms indicate significant morphological differences between the cancer and control platelets, including disruption of the microtubule marginal band. Quantitative analysis of subcellular features in 120 platelet electron tomograms from these two groups showed statistically significant differences in mitochondria, as well as microtubules. These structural variations in the platelets from the patients with cancer may be correlated with the altered platelet functions associated with malignancy. Cryo-ET of platelets shows potential as a noninvasive biomarker technology for ovarian cancer and other platelet-related diseases.
Collapse
|
13
|
Brandenberg OF, Magnus C, Regoes RR, Trkola A. The HIV-1 Entry Process: A Stoichiometric View. Trends Microbiol 2015; 23:763-774. [PMID: 26541228 DOI: 10.1016/j.tim.2015.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/31/2015] [Accepted: 09/16/2015] [Indexed: 11/15/2022]
Abstract
HIV-1 infection starts with fusion of the viral and the host cell membranes, a process mediated by the HIV-1 envelope glycoprotein trimer. The number of trimers required to complete membrane fusion, referred to as HIV-1 entry stoichiometry, remains under debate. A precise definition of HIV-1 entry stoichiometry is important as it reflects the efficacy of the viral entry process and steers the infectivity of HIV-1 virion populations. Initial estimates suggested a unanimous entry stoichiometry across HIV-1 strains while recent findings showed that HIV-1 strains can differ in entry stoichiometry. Here, we review current analyses of HIV-1 entry stoichiometry and point out future research directions to further define the interplay between entry stoichiometry, virus entry fitness, transmission, and susceptibility to antibody neutralization.
Collapse
Affiliation(s)
- Oliver F Brandenberg
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Carsten Magnus
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
14
|
Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci U S A 2015; 112:E4919-28. [PMID: 26283379 DOI: 10.1073/pnas.1501064112] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The first stages of productive bacteriophage infections of bacterial host cells require efficient adsorption to the cell surface followed by ejection of phage DNA into the host cytoplasm. To achieve this goal, a phage virion must undergo significant structural remodeling. For phage T4, the most obvious change is the contraction of its tail. Here, we use skinny E. coli minicells as a host, along with cryo-electron tomography and mutant phage virions, to visualize key structural intermediates during initiation of T4 infection. We show for the first time that most long tail fibers are folded back against the tail sheath until irreversible adsorption, a feature compatible with the virion randomly walking across the cell surface to find an optimal site for infection. Our data confirm that tail contraction is triggered by structural changes in the baseplate, as intermediates were found with remodeled baseplates and extended tails. After contraction, the tail tube penetrates the host cell periplasm, pausing while it degrades the peptidoglycan layer. Penetration into the host cytoplasm is accompanied by a dramatic local outward curvature of the cytoplasmic membrane as it fuses with the phage tail tip. The baseplate hub protein gp27 and/or the ejected tape measure protein gp29 likely form the transmembrane channel for viral DNA passage into the cell cytoplasm. Building on the wealth of prior biochemical and structural information, this work provides new molecular insights into the mechanistic pathway of T4 phage infection.
Collapse
|
15
|
Visualization of the type III secretion sorting platform of Shigella flexneri. Proc Natl Acad Sci U S A 2015; 112:1047-52. [PMID: 25583506 DOI: 10.1073/pnas.1411610112] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial type III secretion machines are widely used to inject virulence proteins into eukaryotic host cells. These secretion machines are evolutionarily related to bacterial flagella and consist of a large cytoplasmic complex, a transmembrane basal body, and an extracellular needle. The cytoplasmic complex forms a sorting platform essential for effector selection and needle assembly, but it remains largely uncharacterized. Here we use high-throughput cryoelectron tomography (cryo-ET) to visualize intact machines in a virulent Shigella flexneri strain genetically modified to produce minicells capable of interaction with host cells. A high-resolution in situ structure of the intact machine determined by subtomogram averaging reveals the cytoplasmic sorting platform, which consists of a central hub and six spokes, with a pod-like structure at the terminus of each spoke. Molecular modeling of wild-type and mutant machines allowed us to propose a model of the sorting platform in which the hub consists mainly of a hexamer of the Spa47 ATPase, whereas the MxiN protein comprises the spokes and the Spa33 protein forms the pods. Multiple contacts among those components are essential to align the Spa47 ATPase with the central channel of the MxiA protein export gate to form a unique nanomachine. The molecular architecture of the Shigella type III secretion machine and its sorting platform provide the structural foundation for further dissecting the mechanisms underlying type III secretion and pathogenesis and also highlight the major structural distinctions from bacterial flagella.
Collapse
|
16
|
Abstract
![]()
The flagellum is one of the most
sophisticated self-assembling
molecular machines in bacteria. Powered by the proton-motive force,
the flagellum rapidly rotates in either a clockwise or counterclockwise
direction, which ultimately controls bacterial motility and behavior. Escherichia coli and Salmonella enterica have served as important model systems for extensive genetic, biochemical,
and structural analysis of the flagellum, providing unparalleled insights
into its structure, function, and gene regulation. Despite these advances,
our understanding of flagellar assembly and rotational mechanisms
remains incomplete, in part because of the limited structural information
available regarding the intact rotor–stator complex and secretion
apparatus. Cryo-electron tomography (cryo-ET) has become a valuable
imaging technique capable of visualizing the intact flagellar motor
in cells at molecular resolution. Because the resolution that can
be achieved by cryo-ET with large bacteria (such as E. coli and S. enterica) is limited, analysis of small-diameter
bacteria (including Borrelia burgdorferi and Campylobacter jejuni) can provide additional insights into
the in situ structure of the flagellar motor and
other cellular components. This review is focused on the application
of cryo-ET, in combination with genetic and biophysical approaches,
to the study of flagellar structures and its potential for improving
the understanding of rotor–stator interactions, the rotational
switching mechanism, and the secretion and assembly of flagellar components.
Collapse
Affiliation(s)
- Xiaowei Zhao
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston , Houston, Texas 77030, United States
| | | | | |
Collapse
|
17
|
Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc Natl Acad Sci U S A 2013; 110:14390-5. [PMID: 23940315 DOI: 10.1073/pnas.1308306110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Periplasmic flagella are essential for the distinctive morphology, motility, and infectious life cycle of the Lyme disease spirochete Borrelia burgdorferi. In this study, we genetically trapped intermediates in flagellar assembly and determined the 3D structures of the intermediates to 4-nm resolution by cryoelectron tomography. We provide structural evidence that secretion of rod substrates triggers remodeling of the central channel in the flagellar secretion apparatus from a closed to an open conformation. This open channel then serves as both a gateway and a template for flagellar rod assembly. The individual proteins assemble sequentially to form a modular rod. The hook cap initiates hook assembly on completion of the rod, and the filament cap facilitates filament assembly after formation of the mature hook. Cryoelectron tomography and mutational analysis thus combine synergistically to provide a unique structural blueprint of the assembly process of this intricate molecular machine in intact cells.
Collapse
|
18
|
Hu B, Margolin W, Molineux IJ, Liu J. The bacteriophage t7 virion undergoes extensive structural remodeling during infection. Science 2013; 339:576-9. [PMID: 23306440 DOI: 10.1126/science.1231887] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Adsorption and genome ejection are fundamental to the bacteriophage life cycle, yet their molecular mechanisms are not well understood. We used cryo-electron tomography to capture T7 virions at successive stages of infection of Escherichia coli minicells at ~4-nm resolution. The six phage tail fibers were folded against the capsid, extending and orienting symmetrically only after productive adsorption to the host cell surface. Receptor binding by the tail triggered conformational changes resulting in the insertion of an extended tail, which functions as the DNA ejection conduit into the cell cytoplasm. After ejection, the extended phage tail collapsed or disassembled, which allowed resealing of the infected cell membrane. These structural studies provide a detailed series of intermediates during phage infection.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, TX 77030, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Paracrystalline arrays possess specific types of disorder that reduce the structural information as well as resolution when spatially averaged over repeating motifs. Electron tomography combined with motif classification and averaging can solve the heterogeneity problem and provide information on the structural elements that give rise to the disorder. This chapter describes procedures that would be used in a typical tomography application to identify and characterize a paracrystalline specimen. Particular emphasis is given to actively contracting insect flight muscle, a specimen with particularly difficult to characterize structural heterogeneity and 2D paracrystalline arrays of myosin-V, from which a particularly high resolution motif average was obtained. All aspects of the study are described including data collection, merging of micrographs to produce the tomogram, alignment to an invariant structural element, classification and averaging of heterogeneous structures, and reassembly of focused class averages into high signal-to-noise ratio representations of the original raw repeats. Particular emphasis is placed on limitations of the various processes to produce the final class averages.
Collapse
|
20
|
Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 2012; 531:65-79. [PMID: 23142681 DOI: 10.1016/j.abb.2012.10.015] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/13/2022]
Abstract
Most viruses use a hollow protein shell, the capsid, to enclose the viral genome. Virus capsids are large, symmetric oligomers made of many copies of one or a few types of protein subunits. Self-assembly of a viral capsid is a complex oligomerization process that proceeds along a pathway regulated by ordered interactions between the participating protein subunits, and that involves a series of (usually transient) assembly intermediates. Assembly of many virus capsids requires the assistance of scaffolding proteins or the viral nucleic acid, which interact with the capsid subunits to promote and direct the process. Once assembled, many capsids undergo a maturation reaction that involves covalent modification and/or conformational rearrangements, which may increase the stability of the particle. The final, mature capsid is a relatively robust protein complex able to protect the viral genome from physicochemical aggressions; however, it is also a metastable, dynamic structure poised to undergo controlled conformational transitions required to perform biologically critical functions during virus entry into cells, intracellular trafficking, and viral genome uncoating. This article provides an updated general overview on structural, biophysical and biochemical aspects of the assembly, stability and dynamics of virus capsids.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
21
|
Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 2012; 48:179-88. [PMID: 22001604 PMCID: PMC3293995 DOI: 10.1016/j.nbd.2011.09.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/17/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022] Open
Abstract
The potential benefits of gene therapy for neurological diseases such as Parkinson's, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer's are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features.
Collapse
Affiliation(s)
- Thomas B. Lentz
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J. Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Mateu MG. Mechanical properties of viruses analyzed by atomic force microscopy: A virological perspective. Virus Res 2012; 168:1-22. [DOI: 10.1016/j.virusres.2012.06.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
23
|
Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci U S A 2012; 109:E1481-8. [PMID: 22556268 DOI: 10.1073/pnas.1200781109] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The chemoreceptors of Escherichia coli localize to the cell poles and form a highly ordered array in concert with the CheA kinase and the CheW coupling factor. However, a high-resolution structure of the array has been lacking, and the molecular basis of array assembly has thus remained elusive. Here, we use cryoelectron tomography of flagellated E. coli minicells to derive a 3D map of the intact array. Docking of high-resolution structures into the 3D map provides a model of the core signaling complex, in which a CheA/CheW dimer bridges two adjacent receptor trimers via multiple hydrophobic interactions. A further, hitherto unknown, hydrophobic interaction between CheW and the homologous P5 domain of CheA in an adjacent core complex connects the complexes into an extended array. This architecture provides a structural basis for array formation and could explain the high sensitivity and cooperativity of chemotaxis signaling in E. coli.
Collapse
|
24
|
Sakuragi JI. Morphogenesis of the Infectious HIV-1 Virion. Front Microbiol 2011; 2:242. [PMID: 22163227 PMCID: PMC3234525 DOI: 10.3389/fmicb.2011.00242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/21/2011] [Indexed: 12/24/2022] Open
Abstract
The virion of HIV-1 is spherical and viral glycoprotein spikes (gp120, gp41) protrude from its envelope. The characteristic cone-shaped core exists within the virion, caging the ribonucleoprotein (RNP) complex, which is comprised of viral RNA, nucleocapsid (NC), and viral enzymes. The HIV-1 virion is budded and released from the infected cell as an immature donut-shaped particle. During or immediately after release, viral protease (PR) is activated and subsequently processes the viral structural protein Gag. Through this maturation process, virions acquire infectivity, but its mechanism and transition of morphology largely remain unclear. Recent technological advances in experimental devices and techniques have made it possible to closely dissect the viral production site on the cell, the exterior – or even the interior – of an individual virion, and many new aspects on virion morphology and maturation. In this manuscript, I review the morphogenesis of HIV-1 virions. I focus on several studies, including some of our recent findings, which examined virion formation and/or maturation processes. The story of novel compound, which inhibits virion maturation, and the importance of maturation research are also discussed.
Collapse
Affiliation(s)
- Jun-Ichi Sakuragi
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Osaka, Japan
| |
Collapse
|
25
|
Fu X, Walter MH, Paredes A, Morais MC, Liu J. The mechanism of DNA ejection in the Bacillus anthracis spore-binding phage 8a revealed by cryo-electron tomography. Virology 2011; 421:141-8. [PMID: 22018785 DOI: 10.1016/j.virol.2011.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/27/2011] [Accepted: 08/30/2011] [Indexed: 10/16/2022]
Abstract
The structure of the Bacillus anthracis spore-binding phage 8a was determined by cryo-electron tomography. The phage capsid forms a T=16 icosahedron attached to a contractile tail via a head-tail connector protein. The tail consists of a six-start helical sheath surrounding a central tail tube, and a structurally novel baseplate at the distal end of the tail that recognizes and attaches to host cells. The parameters of the icosahedral capsid lattice and the helical tail sheath suggest protein folds for the capsid and tail-sheath proteins, respectively, and indicate evolutionary relationships to other dsDNA viruses. Analysis of 2518 intact phage particles show four distinct conformations that likely correspond to four sequential states of the DNA ejection process during infection. Comparison of the four observed conformations suggests a mechanism for DNA ejection, including the molecular basis underlying coordination of tail sheath contraction and genome release from the capsid.
Collapse
Affiliation(s)
- Xiaofeng Fu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
26
|
Yahav T, Maimon T, Grossman E, Dahan I, Medalia O. Cryo-electron tomography: gaining insight into cellular processes by structural approaches. Curr Opin Struct Biol 2011; 21:670-7. [PMID: 21813274 DOI: 10.1016/j.sbi.2011.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/23/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022]
Abstract
Visualization of cellular processes at a resolution of the individual protein should involve integrative and complementary approaches that can eventually draw realistic functional and cellular landscapes. Electron tomography of vitrified but otherwise unaltered cells emerges as a central method for three-dimensional reconstruction of cellular architecture at a resolution of 2-6 nm. While a combination of correlative light-based microscopy with cryo-electron tomography (cryo-ET) provides medium-resolution insight into pivotal cellular processes, fitting high-resolution structural approaches, for example, X-ray crystallography, into reconstructed macromolecular assemblies provides unprecedented information on native protein assemblies. Thus, cryo-ET bridges the resolution gap between cellular and structural biology. In this article, we focus on the study of eukaryotic cells and macromolecular complexes in a close-to-life-state. We discuss recent developments and structural findings enabling major strides to be made in understanding complex physiological functions.
Collapse
Affiliation(s)
- Tal Yahav
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|