1
|
Akatsu C, Tsuneshige T, Numoto N, Long W, Uchiumi T, Kaneko Y, Asano M, Ito N, Tsubata T. CD72 is an inhibitory pattern recognition receptor that recognizes ribosomes and suppresses production of anti-ribosome autoantibody. J Autoimmun 2024; 146:103245. [PMID: 38754236 DOI: 10.1016/j.jaut.2024.103245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
B cell responses to nucleic acid-containing self-antigens that involve intracellular nucleic acid sensors play a crucial role in autoantibody production in SLE. CD72 is an inhibitory B cell co-receptor that down-regulates BCR signaling, and prevents the development of SLE. We previously showed that CD72 recognizes the RNA-containing self-antigen Sm/RNP, a target of SLE-specific autoantibodies, and induces B cell tolerance to Sm/RNP by specifically inhibiting B cell response to this self-antigen. Here, we address whether CD72 inhibits B cell response to ribosomes because the ribosome is an RNA-containing self-antigen and is a target of SLE-specific autoantibodies as well as Sm/RNP. We demonstrate that CD72 recognizes ribosomes as a ligand, and specifically inhibits BCR signaling induced by ribosomes. Although conventional protein antigens by themselves do not induce proliferation of specific B cells, ribosomes induce proliferation of B cells reactive to ribosomes in a manner dependent on RNA. This proliferative response is down-regulated by CD72. These results suggest that ribosomes activate B cells by inducing dual signaling through BCR and intracellular RNA sensors and that CD72 inhibits B cell response to ribosomes. Moreover, CD72-/- but not CD72+/+ mice spontaneously produce anti-ribosome autoantibodies. Taken together, CD72 induces B cell self-tolerance to ribosomes by recognizing ribosomes and inhibiting RNA-dependent B cell response to this self-antigen. CD72 appears to prevent development of SLE by inhibiting autoimmune B cell responses to multiple RNA-containing self-antigens. Because these self-antigens but not protein self-antigens induce RNA-dependent B cell activation, self-tolerance to RNA-containing self-antigens may require a distinct tolerance mechanism mediated by CD72.
Collapse
MESH Headings
- Animals
- Ribosomes/metabolism
- Ribosomes/immunology
- Mice
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
- Autoantibodies/immunology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, CD/metabolism
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Signal Transduction/immunology
- Autoantigens/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Proliferation
- Immune Tolerance
- Humans
Collapse
Affiliation(s)
- Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Tsuneshige
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Nihon University School of Dentistry, Tokyo, Japan
| | - Nobutaka Numoto
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wang Long
- Nihon University School of Dentistry, Tokyo, Japan
| | - Toshio Uchiumi
- Department of Biology, Niigata University School of Science, Niigata, Japan
| | - Yoshikatsu Kaneko
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Nobutoshi Ito
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
2
|
Miyoshi T, Nomura T, Takeya K, Uchiumi T. The natural bicyclic hexapeptide RA-VII is a novel inhibitor of the eukaryotic translocase eEF2. Biochem Biophys Res Commun 2022; 615:88-93. [DOI: 10.1016/j.bbrc.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
|
3
|
Yang L, Lee KM, Yu CWH, Imai H, Choi AH, Banfield D, Ito K, Uchiumi T, Wong KB. The flexible N-terminal motif of uL11 unique to eukaryotic ribosomes interacts with P-complex and facilitates protein translation. Nucleic Acids Res 2022; 50:5335-5348. [PMID: 35544198 PMCID: PMC9122527 DOI: 10.1093/nar/gkac292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic uL11 contains a conserved MPPKFDP motif at the N-terminus that is not found in archaeal and bacterial homologs. Here, we determined the solution structure of human uL11 by NMR spectroscopy and characterized its backbone dynamics by 15N-1H relaxation experiments. We showed that these N-terminal residues are unstructured and flexible. Structural comparison with ribosome-bound uL11 suggests that the linker region between the N-terminal domain and C-terminal domain of human uL11 is intrinsically disordered and only becomes structured when bound to the ribosomes. Mutagenesis studies show that the N-terminal conserved MPPKFDP motif is involved in interacting with the P-complex and its extended protuberant domain of uL10 in vitro. Truncation of the MPPKFDP motif also reduced the poly-phenylalanine synthesis in both hybrid ribosome and yeast mutagenesis studies. In addition, G→A/P substitutions to the conserved GPLG motif of helix-1 reduced poly-phenylalanine synthesis to 9-32% in yeast ribosomes. We propose that the flexible N-terminal residues of uL11, which could extend up to ∼25 Å from the N-terminal domain of uL11, can form transient interactions with the uL10 that help to fetch and fix it into a position ready for recruiting the incoming translation factors and facilitate protein synthesis.
Collapse
Affiliation(s)
- Lei Yang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ka-Ming Lee
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Conny Wing-Heng Yu
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hirotatsu Imai
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Andrew Kwok-Ho Choi
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - David K Banfield
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
- The Institute of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
4
|
Zhang H, Ng MY, Chen Y, Cooperman BS. Kinetics of initiating polypeptide elongation in an IRES-dependent system. eLife 2016; 5. [PMID: 27253065 PMCID: PMC4963199 DOI: 10.7554/elife.13429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
The intergenic IRES of Cricket Paralysis Virus (CrPV-IRES) forms a tight complex with 80S ribosomes capable of initiating the cell-free synthesis of complete proteins in the absence of initiation factors. Such synthesis raises the question of what effect the necessary IRES dissociation from the tRNA binding sites, and ultimately from all of the ribosome, has on the rates of initial peptide elongation steps as nascent peptide is formed. Here we report the first results measuring rates of reaction for the initial cycles of IRES-dependent elongation. Our results demonstrate that 1) the first two cycles of elongation proceed much more slowly than subsequent cycles, 2) these reduced rates arise from slow pseudo-translocation and translocation steps, and 3) the retarding effect of ribosome-bound IRES on protein synthesis is largely overcome following translocation of tripeptidyl-tRNA. Our results also provide a straightforward approach to detailed mechanistic characterization of many aspects of eukaryotic polypeptide elongation.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Martin Y Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Yuanwei Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
5
|
Ruehle MD, Zhang H, Sheridan RM, Mitra S, Chen Y, Gonzalez RL, Cooperman BS, Kieft JS. A dynamic RNA loop in an IRES affects multiple steps of elongation factor-mediated translation initiation. eLife 2015; 4. [PMID: 26523395 PMCID: PMC4709265 DOI: 10.7554/elife.08146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/01/2015] [Indexed: 01/06/2023] Open
Abstract
Internal ribosome entry sites (IRESs) are powerful model systems to understand how the translation machinery can be manipulated by structured RNAs and for exploring inherent features of ribosome function. The intergenic region (IGR) IRESs from the Dicistroviridae family of viruses are structured RNAs that bind directly to the ribosome and initiate translation by co-opting the translation elongation cycle. These IRESs require an RNA pseudoknot that mimics a codon-anticodon interaction and contains a conformationally dynamic loop. We explored the role of this loop and found that both the length and sequence are essential for translation in different types of IGR IRESs and from diverse viruses. We found that loop 3 affects two discrete elongation factor-dependent steps in the IRES initiation mechanism. Our results show how the IRES directs multiple steps after 80S ribosome placement and highlights the often underappreciated significance of discrete conformationally dynamic elements within the context of structured RNAs. DOI:http://dx.doi.org/10.7554/eLife.08146.001 Many viruses store their genetic information in the form of strands of ribonucleic acid (RNA), which contain building blocks called nucleotides. Once inside an infected cell, the virus hijacks the cellular structures that build proteins (called ribosomes), which forces the cell to start making viral proteins. Many RNA viruses manipulate the cell’s ribosomes using RNA elements called Internal Ribosome Entry Sites, or IRESs. In a family of viruses called Dicistroviridae, which infect a number of insects, a section of the IRES RNA binds directly to the ribosome. Proteins called elongation factors then trigger a series of events that lead to the cell starting to make the viral proteins. By mutating the RNA of many different Dicistroviridae viruses that infect a variety of invertebrates, Ruehle et al. have now investigated how a particular loop in the structure of the IRES helps to make cells build the viral proteins. This loop is flexible, and interacts with the ribosome to enable the IRES to move through the ribosome. Mutations that shorten the loop or alter the sequence of nucleotides in the loop prevent the occurrence of two of the steps that need to occur for the cell to make viral proteins. Both of these steps depend on elongation factors. Determining how the entire IRES might change shape as it moves through the ribosome is an important next step, since the ribosome is exquisitely sensitive to the shape and motions of its binding partners. DOI:http://dx.doi.org/10.7554/eLife.08146.002
Collapse
Affiliation(s)
- Marisa D Ruehle
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States
| | - Haibo Zhang
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States
| | - Somdeb Mitra
- Department of Chemistry, Columbia University, New York, United States
| | - Yuanwei Chen
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, United States
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States.,Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, United States
| |
Collapse
|
6
|
Sato H, Onozuka M, Hagiya A, Hoshino S, Narita I, Uchiumi T. Characterization of anti-P monoclonal antibodies directed against the ribosomal protein-RNA complex antigen and produced using Murphy Roths large autoimmune-prone mice. Clin Exp Immunol 2015; 179:236-44. [PMID: 25255895 DOI: 10.1111/cei.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 11/30/2022] Open
Abstract
Autoantibodies, including anti-ribosomal P proteins (anti-P), are thought to be produced by an antigen-driven immune response in systemic lupus erythematosus (SLE). To test this hypothesis, we reconstituted the ribosomal antigenic complex in vitro using human P0, phosphorylated P1 and P2 and a 28S rRNA fragment covering the P0 binding site, and immunized Murphy Roths large (MRL)/lrp lupus mice with this complex without any added adjuvant to generate anti-P antibodies. Using hybridoma technology, we subsequently obtained 34 clones, each producing an anti-P monoclonal antibody (mAb) that recognized the conserved C-terminal tail sequence common to all three P proteins. We also obtained two P0-specific monoclonal antibodies, but no antibody specific to P1, P2 or rRNA fragment. Two types of mAbs were found among these anti-P antibodies: one type (e.g. 9D5) reacted more strongly with the phosphorylated P1 and P2 than that with their non-phosphorylated forms, whereas the other type (e.g. 4H11) reacted equally with both phosphorylated and non-phosphorylated forms of P1/P2. Both 9D5 and 4H11 inhibited the ribosome/eukaryotic elongation factor-2 (eEF-2)-coupled guanosine triphosphate (GTP)ase activity. However, preincubation with a synthetic peptide corresponding to the C-terminal sequence common to all three P proteins, but not the peptide that lacked the last three C-terminal amino acids, mostly prevented the mAb-induced inhibition of GTPase activity. Thus, at least two types of anti-P were produced preferentially following the immunization of MRL mice with the reconstituted antigenic complex. Presence of multiple copies of the C-termini, particularly that of the last three C-terminal amino acid residues, in the antigenic complex appears to contribute to the immunogenic stimulus.
Collapse
Affiliation(s)
- H Sato
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Lee KM, Yusa K, Chu LO, Yu CWH, Oono M, Miyoshi T, Ito K, Shaw PC, Wong KB, Uchiumi T. Solution structure of human P1•P2 heterodimer provides insights into the role of eukaryotic stalk in recruiting the ribosome-inactivating protein trichosanthin to the ribosome. Nucleic Acids Res 2013; 41:8776-87. [PMID: 23892290 PMCID: PMC3794596 DOI: 10.1093/nar/gkt636] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lateral ribosomal stalk is responsible for binding and recruiting translation factors during protein synthesis. The eukaryotic stalk consists of one P0 protein with two copies of P1•P2 heterodimers to form a P0(P1•P2)2 pentameric P-complex. Here, we have solved the structure of full-length P1•P2 by nuclear magnetic resonance spectroscopy. P1 and P2 dimerize via their helical N-terminal domains, whereas the C-terminal tails of P1•P2 are unstructured and can extend up to ∼125 Å away from the dimerization domains. 15N relaxation study reveals that the C-terminal tails are flexible, having a much faster internal mobility than the N-terminal domains. Replacement of prokaryotic L10(L7/L12)4/L11 by eukaryotic P0(P1•P2)2/eL12 rendered Escherichia coli ribosome, which is insensitive to trichosanthin (TCS), susceptible to depurination by TCS and the C-terminal tail was found to be responsible for this depurination. Truncation and insertion studies showed that depurination of hybrid ribosome is dependent on the length of the proline-alanine rich hinge region within the C-terminal tail. All together, we propose a model that recruitment of TCS to the sarcin-ricin loop required the flexible C-terminal tail, and the proline-alanine rich hinge region lengthens this C-terminal tail, allowing the tail to sweep around the ribosome to recruit TCS.
Collapse
Affiliation(s)
- Ka-Ming Lee
- School of Life Sciences, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, Hong Kong, China and Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Baba K, Tumuraya K, Tanaka I, Yao M, Uchiumi T. Molecular dissection of the silkworm ribosomal stalk complex: the role of multiple copies of the stalk proteins. Nucleic Acids Res 2013; 41:3635-43. [PMID: 23376928 PMCID: PMC3616719 DOI: 10.1093/nar/gkt044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In animal ribosomes, two stalk proteins P1 and P2 form a heterodimer, and the two dimers, with the anchor protein P0, constitute a pentameric complex crucial for recruitment of translational GTPase factors to the ribosome. To investigate the functional contribution of each copy of the stalk proteins, we constructed P0 mutants, in which one of the two C-terminal helices, namely helix I (N-terminal side) or helix II (C-terminal side) were unable to bind the P1–P2 dimer. We also constructed ‘one-C-terminal domain (CTD) stalk dimers’, P1–P2ΔC and P1ΔC–P2, composed of intact P1/P2 monomer and a CTD-truncated partner. Through combinations of P0 and P1–P2 variants, various complexes were reconstituted and their function tested in eEF-2-dependent GTPase and eEF-1α/eEF-2-dependent polyphenylalanine synthesis assays in vitro. Double/single-CTD dimers bound to helix I showed higher activity than that bound to helix II. Despite low polypeptide synthetic activity by a single one-CTD dimer, its binding to both helices considerably increased activity, suggesting that two stalk dimers cooperate, particularly in polypeptide synthesis. This promotion of activity by two stalk dimers was lost upon mutation of the conserved YPT sequence connecting the two helices of P0, suggesting a role for this sequence in cooperativity of two stalk dimers.
Collapse
Affiliation(s)
- Kentaro Baba
- Department of Biology, Faculty of Science, Niigata University, Nishi-ku, Ikarashi-2, Niigata 950-2181, Japan
| | | | | | | | | |
Collapse
|
9
|
Mochizuki M, Kitamyo M, Miyoshi T, Ito K, Uchiumi T. Analysis of chimeric ribosomal stalk complexes from eukaryotic and bacterial sources: structural features responsible for specificity of translation factors. Genes Cells 2012; 17:273-84. [DOI: 10.1111/j.1365-2443.2012.01586.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
CPEB2-eEF2 interaction impedes HIF-1α RNA translation. EMBO J 2011; 31:959-71. [PMID: 22157746 DOI: 10.1038/emboj.2011.448] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 11/15/2011] [Indexed: 12/21/2022] Open
Abstract
Translation of mRNA into protein proceeds in three phases: initiation, elongation, and termination. Regulated translation allows the prompt production of selective proteins in response to physiological needs and is often controlled by sequence-specific RNA-binding proteins that function at initiation. Whether the elongation phase of translation can be modulated individually by trans-acting factors to synthesize polypeptides at variable rates remains to be determined. Here, we demonstrate that the RNA-binding protein, cytoplasmic polyadenylation element binding protein (CPEB)2, interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-triggered GTP hydrolysis in vitro and slow down peptide elongation of CPEB2-bound RNA in vivo. The interaction of CPEB2 with eEF2 downregulates HIF-1α RNA translation under normoxic conditions; however, when cells encounter oxidative stress, CPEB2 dissociates from HIF-1α RNA, leading to rapid synthesis of HIF-1α for hypoxic adaptation. This study delineates the molecular mechanism of CPEB2-repressed translation and presents a unique model for controlling transcript-selective translation at elongation.
Collapse
|
11
|
Naganuma T, Nomura N, Yao M, Mochizuki M, Uchiumi T, Tanaka I. Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes. J Biol Chem 2009; 285:4747-56. [PMID: 20007716 DOI: 10.1074/jbc.m109.068098] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The archaeal ribosomal stalk complex has been shown to have an apparently conserved functional structure with eukaryotic pentameric stalk complex; it provides access to eukaryotic elongation factors at levels comparable to that of the eukaryotic stalk. The crystal structure of the archaeal heptameric (P0(P1)(2)(P1)(2)(P1)(2)) stalk complex shows that the rRNA anchor protein P0 consists of an N-terminal rRNA-anchoring domain followed by three separated spine helices on which three P1 dimers bind. Based on the structure, we have generated P0 mutants depleted of any binding site(s) for P1 dimer(s). Factor-dependent GTPase assay of such mutants suggested that the first P1 dimer has higher activity than the others. Furthermore, we constructed a model of the archaeal 50 S with stalk complex by superposing the rRNA-anchoring domain of P0 on the archaeal 50 S. This model indicates that the C termini of P1 dimers where translation factors bind are all localized to the region between the stalk base of the 50 S and P0 spine helices. Together with the mutational experiments we infer that the functional significance of multiple copies of P1 is in creating a factor pool within a limited space near the stalk base of the ribosome.
Collapse
Affiliation(s)
- Takao Naganuma
- Faculty of Advanced Life Science, Hokkaido University, Kita-ku, Kita-10, Nishi-8, Sapporo, 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Maki Y, Hashimoto T, Zhou M, Naganuma T, Ohta J, Nomura T, Robinson CV, Uchiumi T. Three Binding Sites for Stalk Protein Dimers Are Generally Present in Ribosomes from Archaeal Organism. J Biol Chem 2007; 282:32827-33. [PMID: 17804412 DOI: 10.1074/jbc.m705412200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosomes have a characteristic protuberance termed the stalk, which is indispensable for ribosomal function. The ribosomal stalk has long been believed to be a pentameric protein complex composed of two sets of protein dimers, L12-L12, bound to a single anchor protein, although ribosomes carrying three L12 dimers were recently discovered in a few thermophilic bacteria. Here we have characterized the stalk complex from Pyrococcus horikoshii, a thermophilic species of Archaea. This complex is known to be composed of proteins homologous to eukaryotic counterparts rather than bacterial ones. In truncation experiments of the C-terminal regions of the anchor protein Ph-P0, we surprisingly observed three Ph-L12 dimers bound to the C-terminal half of Ph-P0, and the binding site for the third dimer was unique to the archaeal homologs. The stoichiometry of the heptameric complex Ph-P0(Ph-L12)(2)(Ph-L12)(2)(Ph-L12)(2) was confirmed by mass spectrometry of the intact complex. In functional tests, ribosomes carrying a single Ph-L12 dimer had significant activity, but the addition of the second and third dimers increased the activity. A bioinformatics analysis revealed the evidence that ribosomes from all archaeal and also from many bacterial organisms may contain a heptameric complex at the stalk, whereas eukaryotic ribosomes seem to contain exclusively a pentameric stalk complex, thus modifying our view of the stalk structure significantly.
Collapse
Affiliation(s)
- Yasushi Maki
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Naganuma T, Shiogama K, Uchiumi T. The N-terminal regions of eukaryotic acidic phosphoproteins P1 and P2 are crucial for heterodimerization and assembly into the ribosomal GTPase-associated center. Genes Cells 2007; 12:501-10. [PMID: 17397397 DOI: 10.1111/j.1365-2443.2007.01067.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acidic phosphoproteins P1 and P2 form a heterodimer and play a crucial role in assembly of the GTPase-associated center in eukaryotic ribosomes and in ribosomal interaction with translation factors. We investigated the structural elements within P1 and P2 essential for their dimerization and for ribosomal function. Truncation of the N-terminal 10 amino acids in either P1 or P2 and swapping of the N-terminal 10 amino acid sequences between these two proteins disrupted their dimerization, binding to P0 and P0 binding to rRNA. In contrast, truncation of the C-terminal halves of P1 and P2 as well as swapping of these parts between them gave no significant effects. The protein dimers containing the C-terminal truncation mutants or swapped variants were assembled with P0 onto Escherichia coli 50 S subunits deficient in the homologous protein L10 and L7/L12 and gave reduced ribosomal activity in terms of eukaryotic elongation factor dependent GTPase activity and polyphenylalanine synthesis. The results indicate that the N-terminal 10 amino acid sequences of both P1 and P2 are crucial for P1-P2 heterodimerization and for their functional assembly with P0 into the GTPase-associated center, whereas the C-terminal halves of P1 and P2 are not essential for the assembly.
Collapse
Affiliation(s)
- Takao Naganuma
- Department of Biology, Niigata University, Niigata 950-2181, Japan
| | | | | |
Collapse
|
14
|
Yamamoto H, Nakashima N, Ikeda Y, Uchiumi T. Binding mode of the first aminoacyl-tRNA in translation initiation mediated by Plautia stali intestine virus internal ribosome entry site. J Biol Chem 2007; 282:7770-6. [PMID: 17209036 DOI: 10.1074/jbc.m610887200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic ribosomes directly bind to the intergenic region-internal ribosome entry site (IGR-IRES) of Plautia stali intestine virus (PSIV) and initiate translation without either initiation factors or initiator Met-tRNA. We have investigated the mode of binding of the first aminoacyl-tRNA in translation initiation mediated by the IGR-IRES. Binding ability of aminoacyl-tRNA to the first codon within the IGR-IRES/80 S ribosome complex was very low in the presence of eukaryotic elongation factor 1A (eEF1A) alone but markedly enhanced by the translocase eEF2. Moreover, eEF2-dependent GTPase activity of the IRES/80 S ribosome complex was 3-fold higher than that of the free 80 S ribosome. This activation was suppressed by addition of the antibiotics pactamycin and hygromycin B, which are inhibitors of translocation. The results suggest that translocation by the action of eEF2 is essential for stable tRNA binding to the first codon of the PSIV-IRES in the ribosome. Chemical probing analysis showed that IRES binding causes a conformational change in helix 18 of 18 S rRNA at the A site such that IRES destabilizes the conserved pseudoknot within the helix. This conformational change caused by the PSIV-IRES may be responsible for the activation of eEF2 action and stimulation of the first tRNA binding to the P site without initiation factors.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | | | | | | |
Collapse
|
15
|
Nomura T, Nakano K, Maki Y, Naganuma T, Nakashima T, Tanaka I, Kimura M, Hachimori A, Uchiumi T. In vitro reconstitution of the GTPase-associated centre of the archaebacterial ribosome: the functional features observed in a hybrid form with Escherichia coli 50S subunits. Biochem J 2006; 396:565-71. [PMID: 16594895 PMCID: PMC1482815 DOI: 10.1042/bj20060038] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We cloned the genes encoding the ribosomal proteins Ph (Pyrococcus horikoshii)-P0, Ph-L12 and Ph-L11, which constitute the GTPase-associated centre of the archaebacterium Pyrococcus horikoshii. These proteins are homologues of the eukaryotic P0, P1/P2 and eL12 proteins, and correspond to Escherichia coli L10, L7/L12 and L11 proteins respectively. The proteins and the truncation mutants of Ph-P0 were overexpressed in E. coli cells and used for in vitro assembly on to the conserved domain around position 1070 of 23S rRNA (E. coli numbering). Ph-L12 tightly associated as a homodimer and bound to the C-terminal half of Ph-P0. The Ph-P0.Ph-L12 complex and Ph-L11 bound to the 1070 rRNA fragments from the three biological kingdoms in the same manner as the equivalent proteins of eukaryotic and eubacterial ribosomes. The Ph-P0.Ph-L12 complex and Ph-L11 could replace L10.L7/L12 and L11 respectively, on the E. coli 50S subunit in vitro. The resultant hybrid ribosome was accessible for eukaryotic, as well as archaebacterial elongation factors, but not for prokaryotic elongation factors. The GTPase and polyphenylalanine-synthetic activity that is dependent on eukaryotic elongation factors was comparable with that of the hybrid ribosomes carrying the eukaryotic ribosomal proteins. The results suggest that the archaebacterial proteins, including the Ph-L12 homodimer, are functionally accessible to eukaryotic translation factors.
Collapse
Affiliation(s)
- Takaomi Nomura
- *Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Kohji Nakano
- *Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Yasushi Maki
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Takao Naganuma
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Takashi Nakashima
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Isao Tanaka
- ‡Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Kimura
- §Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Akira Hachimori
- *Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Toshio Uchiumi
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Hagiya A, Naganuma T, Maki Y, Ohta J, Tohkairin Y, Shimizu T, Nomura T, Hachimori A, Uchiumi T. A Mode of Assembly of P0, P1, and P2 Proteins at the GTPase-associated Center in Animal Ribosome. J Biol Chem 2005; 280:39193-9. [PMID: 16188884 DOI: 10.1074/jbc.m506050200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosomal P0, P1, and P2 proteins, together with the conserved domain of 28 S rRNA, constitute a major part of the GTPase-associated center in eukaryotic ribosomes. We investigated the mode of assembly in vitro by using various truncation mutants of silkworm P0. When compared with wild type (WT)-P0, the C-terminal truncation mutants CDelta65 and CDelta81 showed markedly reduced binding ability to P1 and P2, which was offset by the addition of an rRNA fragment covering the P0.P1-P2 binding site. The mutant CDelta107 lost the P1/P2 binding activity, whereas it retained the rRNA binding. In contrast, the N-terminal truncation mutants NDelta21-NDelta92 completely lost the rRNA binding, although they retained P1/P2 binding capability, implying an essential role of the N terminus of P0 for rRNA binding. The P0 mutants NDelta6, NDelta14, and CDelta18-CDelta81, together with P1/P2 and eL12, bound to the Escherichia coli core 50 S subunits deficient in L10.L7/L12 complex and L11. Analysis of incorporation of (32)P-labeled P1/P2 into the 50 S subunits with WT-P0 and CDelta81 by sedimentation analysis indicated that WT-P0 bound two copies of P1 and P2, but CDelta81 bound only one copy each. The hybrid ribosome with CDelta81 that appears to contain one P1-P2 heterodimer retained lower but considerable activities dependent on eukaryotic elongation factors. These results suggested that two P1-P2 dimers bind to close but separate regions on the C-terminal half of P0. The results were further confirmed by binding experiments using chimeric P0 mutants in which the C-terminal 81 or 107 amino acids were replaced with the homologous sequences of the archaebacterial P0.
Collapse
Affiliation(s)
- Akiko Hagiya
- Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abo Y, Hagiya A, Naganuma T, Tohkairin Y, Shiomi K, Kajiura Z, Hachimori A, Uchiumi T, Nakagaki M. Baculovirus-mediated expression and isolation of human ribosomal phosphoprotein P0 carrying a GST-tag in a functional state. Biochem Biophys Res Commun 2004; 322:814-9. [PMID: 15336536 DOI: 10.1016/j.bbrc.2004.07.196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Indexed: 11/24/2022]
Abstract
We constructed an overexpression system for human ribosomal phosphoprotein P0, together with P1 and P2, which is crucially important for translation. Genes for these proteins, fused with the glutathione S-transferase (GST)-tag at the N-terminus, were inserted into baculovirus and introduced to insect cells. The fusion proteins, but not the proteins without the tag, were efficiently expressed into cells as soluble forms. The fusion protein GST.P0 as well as GST.P1/GST.P2 was phosphorylated in cells as detected by incorporation of (32)P and reactivity with monoclonal anti-phosphoserine antibody. GST.P0 expressed in insect cells, but not the protein obtained in Escherichia coli, had the ability to form a complex with P1 and P2 proteins and to bind to 28S rRNA. Moreover, the GST.P0-P1-P2 complex participated in high eEF-2-dependent GTPase activity. Baculovirus expression systems appear to provide recombinant human P0 samples that can be used for studies on the structure and function.
Collapse
Affiliation(s)
- Yohichi Abo
- Laboratory of Silkworm Genetics and Pathology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ozawa A, Sawasaki T, Takai K, Uchiumi T, Hori H, Endo Y. RALyase; a terminator of elongation function of depurinated ribosomes. FEBS Lett 2004; 555:455-8. [PMID: 14675755 DOI: 10.1016/s0014-5793(03)01304-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plant ribosomal RNA apurinic site specific lyase (RALyase) cleaves the phosphodiester bond at the depurinated site produced by ribosome-inactivating protein, while the biological role of this enzyme is not clear. As the depurinated ribosomes retain weak translation elongation activities, it was suggested that RALyase completes the ribosome inactivation. To confirm this point, we measured the effects of the phosphodiester cleavage using a fusion of wheat RALyase produced with a cell-free protein synthesis system from wheat germ. The results indicated that RALyase diminishes the residual elongation activities of the depurinated ribosomes.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, 790-8577, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Nishiyama T, Yamamoto H, Shibuya N, Hatakeyama Y, Hachimori A, Uchiumi T, Nakashima N. Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. Nucleic Acids Res 2003; 31:2434-42. [PMID: 12711689 PMCID: PMC154222 DOI: 10.1093/nar/gkg336] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plautia stali intestine virus (PSIV) has an internal ribosome entry site (IRES) at the intergenic region of the genome. The PSIV IRES initiates translation with glutamine rather than the universal methionine. To analyze the mechanism of IRES-mediated initiation, binding of IRES RNA to salt-washed ribosomes in the absence of translation factors was studied. Among the three pseudoknots (PKs I, II and III) within the IRES, PK III was the most important for ribosome binding. Chemical footprint analyses showed that the loop parts of the two stem-loop structures in Domain 2, which are highly conserved in related viruses, are protected by 40S but not by 60S ribosomes. Because PK III is close to the two loops, these structural elements were considered to be important for binding of the 40S subunit. Competitive binding analyses showed that the IRES RNA does not bind poly(U)-programmed ribosomes preincubated with tRNA(Phe) or its anticodon stem- loop (ASL) fragment. However, Domain 3-deleted IRES bound to programmed ribosomes preincubated with the ASL, suggesting that Domains 1 and 2 have roles in IRES binding to 40S subunits and that Domain 3 is located at the ribosome decoding site.
Collapse
Affiliation(s)
- Takashi Nishiyama
- National Institute of Agrobiological Sciences, Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Uchiumi T, Honma S, Endo Y, Hachimori A. Ribosomal proteins at the stalk region modulate functional rRNA structures in the GTPase center. J Biol Chem 2002; 277:41401-9. [PMID: 12198134 DOI: 10.1074/jbc.m207424200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replacement of the L10.L7/L12 protein complex and L11 in Escherichia coli ribosomes with the respective rat counterparts P0.P1/P2 and eukaryotic L12 causes conversion of ribosomal specificity for elongation factors from prokaryotic elongation factor (EF)-Tu/EF-G to eukaryotic EF (eEF)-1alpha/eEF-2. Here we have investigated the effects of protein replacement on the structure and function of two rRNA domains around positions 1070 and 2660 (sarcin/ricin loop) of 23 S rRNA. Protein replacement at the 1070 region in E. coli 50 S subunits was demonstrated by chemical probing analysis. Binding of rat proteins to the 1070 region caused increased accessibility of the 2660 and 1070 regions to ligands for eukaryotic ribosomes: the ribotoxin pepocin for the 2660 region (E. coli numbering), anti-28 S autoantibody for the 1070 region, and eEF-2 for both regions. Moreover, binding of the E. coli L10.L7/L12 complex and L11 to the 1070 region was shown to be responsible for E. coli ribosomal accessibility to another ribotoxin, gypsophilin. Ribosomal proteins at the 1070 region appear to modulate the structures and functions of the 2660 and 1070 RNA regions in slightly different modes in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Toshio Uchiumi
- Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| | | | | | | |
Collapse
|
21
|
Shimizu T, Nakagaki M, Nishi Y, Kobayashi Y, Hachimori A, Uchiumi T. Interaction among silkworm ribosomal proteins P1, P2 and P0 required for functional protein binding to the GTPase-associated domain of 28S rRNA. Nucleic Acids Res 2002; 30:2620-7. [PMID: 12060678 PMCID: PMC117291 DOI: 10.1093/nar/gkf379] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acidic ribosomal phosphoproteins P0, P1 and P2 were isolated in soluble form from silkworm ribosomes and tested for their interactions with each other and with RNA fragments corresponding to the GTPase-associated domain of residues 1030-1127 (Escherichia coli numbering) in silkworm 28S rRNA in vitro. Mixing of P1 and P2 formed the P1-P2 heterodimer, as demonstrated by gel mobility shift and chemical crosslinking. This heterodimer, but neither P1 or P2 alone, tightly bound to P0 and formed a pentameric complex, presumably as P0(P1-P2)2, assumed from its molecular weight derived from sedimentation analysis. Complex formation strongly stimulated binding of P0 to the GTPase-associated RNA domain. The protein complex and eL12 (E.coli L11-type), which cross-bound to the E.coli equivalent RNA domain, were tested for their function by replacing with the E.coli counterparts L10.L7/L12 complex and L11 on the rRNA domain within the 50S subunits. Both P1 and P2, together with P0 and eL12, were required to activate ribosomes in polyphenylalanine synthesis dependent on eucaryotic elongation factors as well as eEF-2-dependent GTPase activity. The results suggest that formation of the P1-P2 heterodimer is required for subsequent formation of the P0(P1-P2)2 complex and its functional rRNA binding in silkworm ribosomes.
Collapse
Affiliation(s)
- Tomomi Shimizu
- Institute of High Polymer Research and Department of Applied Biological Science, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Uchiumi T, Honma S, Nomura T, Dabbs ER, Hachimori A. Translation elongation by a hybrid ribosome in which proteins at the GTPase center of the Escherichia coli ribosome are replaced with rat counterparts. J Biol Chem 2002; 277:3857-62. [PMID: 11729183 DOI: 10.1074/jbc.m107730200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosomal L10-L7/L12 protein complex and L11 bind to a highly conserved RNA region around position 1070 in domain II of 23 S rRNA and constitute a part of the GTPase-associated center in Escherichia coli ribosomes. We replaced these ribosomal proteins in vitro with the rat counterparts P0-P1/P2 complex and RL12, and tested them for ribosomal activities. The core 50 S subunit lacking the proteins on the 1070 RNA domain was prepared under gentle conditions from a mutant deficient in ribosomal protein L11. The rat proteins bound to the core 50 S subunit through their interactions with the 1070 RNA domain. The resultant hybrid ribosome was insensitive to thiostrepton and showed poly(U)-programmed polyphenylalanine synthesis dependent on the actions of both eukaryotic elongation factors 1alpha (eEF-1alpha) and 2 (eEF-2) but not of the prokaryotic equivalent factors EF-Tu and EF-G. The results from replacement of either the L10-L7/L12 complex or L11 with rat protein showed that the P0-P1/P2 complex, and not RL12, was responsible for the specificity of the eukaryotic ribosomes to eukaryotic elongation factors and for the accompanying GTPase activity. The presence of either E. coli L11 or rat RL12 considerably stimulated the polyphenylalanine synthesis by the hybrid ribosome, suggesting that L11/RL12 proteins play an important role in post-GTPase events of translation elongation.
Collapse
Affiliation(s)
- Toshio Uchiumi
- Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| | | | | | | | | |
Collapse
|
23
|
Uchiumi T, Nomura T, Shimizu T, Katakai Y, Mita K, Koike Y, Nakagaki M, Taira H, Hachimori A. A covariant change of the two highly conserved bases in the GTPase-associated center of 28 S rRNA in silkworms and other moths. J Biol Chem 2000; 275:35116-21. [PMID: 10960474 DOI: 10.1074/jbc.m004596200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GTPase-associated center in 23/28 S rRNA is one of the most conserved functional domains throughout all organisms. We detected a unique sequence of this domain in Bombyx mori species in which the bases at positions 1094 and 1098 (numbering from Escherichia coli 23 S rRNA) are C and G instead of the otherwise universally conserved bases U and A, respectively. These changes were also observed in four other species of moths, but not in organisms other than the moths. Characteristics of the B. mori rRNA domain were investigated by native polyacrylamide gel electrophoresis using RNA fragments containing residues 1030-1128. Although two bands of protein-free RNA appeared on gel, they shifted to a single band when bound to Bombyx ribosomal proteins Bm-L12 and Bm-P complex, equivalent to E. coli L11 and L8, respectively. Bombyx RNA showed lower binding capacity than rat RNA for the ribosomal proteins and anti-28 S autoantibody, specific for a folded structure of the eukaryotic GTPase-associated domain. When the C(1094)/G(1098) bases in Bombyx RNA were replaced by the conserved U/A bases, the protein-free RNA migrated as a single band, and the complex formation with Bm-L12, Bm-P complex, and anti-28 S autoantibody was comparable to that of rat RNA. The results suggest that the GTPase-associated domain of moth-type insects has a labile structural feature that is caused by an unusual covariant change of the U(1094)/A(1098) bases to C/G.
Collapse
Affiliation(s)
- T Uchiumi
- Institute of High Polymer Research and the Department of Applied Biological Science, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Uchiumi T, Hori K, Nomura T, Hachimori A. Replacement of L7/L12.L10 protein complex in Escherichia coli ribosomes with the eukaryotic counterpart changes the specificity of elongation factor binding. J Biol Chem 1999; 274:27578-82. [PMID: 10488095 DOI: 10.1074/jbc.274.39.27578] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L8 protein complex consisting of L7/L12 and L10 in Escherichia coli ribosomes is assembled on the conserved region of 23 S rRNA termed the GTPase-associated domain. We replaced the L8 complex in E. coli 50 S subunits with the rat counterpart P protein complex consisting of P1, P2, and P0. The L8 complex was removed from the ribosome with 50% ethanol, 10 mM MgCl(2), 0.5 M NH(4)Cl, at 30 degrees C, and the rat P complex bound to the core particle. Binding of the P complex to the core was prevented by addition of RNA fragment covering the GTPase-associated domain of E. coli 23 S rRNA to which rat P complex bound strongly, suggesting a direct role of the RNA domain in this incorporation. The resultant hybrid ribosomes showed eukaryotic translocase elongation factor (EF)-2-dependent, but not prokaryotic EF-G-dependent, GTPase activity comparable with rat 80 S ribosomes. The EF-2-dependent activity was dependent upon the P complex binding and was inhibited by the antibiotic thiostrepton, a ligand for a portion of the GTPase-associated domain of prokaryotic ribosomes. This hybrid system clearly shows significance of binding of the P complex to the GTPase-associated RNA domain for interaction of EF-2 with the ribosome. The results also suggest that E. coli 23 S rRNA participates in the eukaryotic translocase-dependent GTPase activity in the hybrid system.
Collapse
Affiliation(s)
- T Uchiumi
- Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| | | | | | | |
Collapse
|
25
|
Negrutskii BS, Budkevich TV, Shalak VF, Turkovskaya GV, El'Skaya AV. Rabbit translation elongation factor 1 alpha stimulates the activity of homologous aminoacyl-tRNA synthetase. FEBS Lett 1996; 382:18-20. [PMID: 8612747 DOI: 10.1016/0014-5793(96)00128-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional and structural sequestration of aminoacyl-tRNA has been recently found in eukaryotic cells and the aminoacyl-tRNA channeling has been suggested [B.S. Negrutskii et al., Proc. Natl. Acad. Sci. 91 (1994) 964-968], but molecular details and mechanism of the process remained unclear. In this paper we have verified a possible interaction between rabbit aminoacyl-tRNA synthetase and homologous translation elongation factor 1 alpha (EF-1 alpha), the proteins which may play a role of sequential components involved in the transfer of the aminoacyl-tRNA along the protein synthetic metabolic chain. The stimulation of the phenylalanyl-tRNA synthetase activity by EF-1 alpha is found. The effect is shown to be specific towards the origin of tRNA and elongation factor molecules. The data obtained favor the direct transfer mechanism of the aminoacyl-tRNA channeling process during eukaryotic protein synthesis.
Collapse
Affiliation(s)
- B S Negrutskii
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev
| | | | | | | | | |
Collapse
|
26
|
Bec G, Kerjan P, Waller J. Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex. Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42139-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Hiraga K, Suzuki K, Tsuchiya E, Miyakawa T. Cloning and characterization of the elongation factor EF-1 beta homologue of Saccharomyces cerevisiae. EF-1 beta is essential for growth. FEBS Lett 1993; 316:165-9. [PMID: 8420802 DOI: 10.1016/0014-5793(93)81208-h] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A Saccharomyces cerevisiae cDNA homologue of the elongation factor EF-1 beta was found among the clones obtained by immunoscreening of a yeast cDNA expression library with an antibody against calmodulin affinity-purified proteins. The cDNA encoded a protein of 206 amino acids which was highly homologous (about 70% homology) with Artemia salina and human EF-1 beta. A protein with an apparent molecular mass of 33,000, significantly larger than that expected from the gene, was identified by Western blotting. Gene disruption experiments indicated that EF-1 beta is essential for growth.
Collapse
Affiliation(s)
- K Hiraga
- Department of Fermentation Technology, Faculty of Engineering, Hiroshima University, Japan
| | | | | | | |
Collapse
|
28
|
The primary structure of elongation factor 1β from pig liver. Protein J 1992. [DOI: 10.1007/bf01673762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Uchiumi T, Traut RR, Elkon K, Kominami R. A human autoantibody specific for a unique conserved region of 28 S ribosomal RNA inhibits the interaction of elongation factors 1 alpha and 2 with ribosomes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52208-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Abstract
The molecular events responsible for controlling cell growth and development, as well as their coordinate interaction is only beginning to be revealed. At the basis of these controlling events are hormones, growth factors and mitogens which, through transmembrane signalling trigger an array of cellular responses, initiated by receptor-associated tyrosine kinases, which in turn either directly or indirectly mediate their effects through serine/threonine protein kinases. Utilizing the obligatory response of activation of protein synthesis in cell growth and development, we describe efforts to work backwards along the regulatory pathway to the receptor, identifying those molecular components involved in modulating the rate of translation. We begin by describing the components and steps of protein synthesis and then discuss in detail the regulatory pathways involved in the mitogenic response of eukaryotic cells and during meiotic maturation of oocytes. Finally we discuss possible future work which will further our understanding of these systems.
Collapse
Affiliation(s)
- S J Morley
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
31
|
Uchiumi T, Traut RR, Kominami R. Monoclonal antibodies against acidic phosphoproteins P0, P1, and P2 of eukaryotic ribosomes as functional probes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40199-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Nomenclature of initiation, elongation and termination factors for translation in eukaryotes. Recommendations 1988. Nomenclature Committee of the International Union of Biochemistry (NC-IUB). EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:1-3. [PMID: 2598922 DOI: 10.1111/j.1432-1033.1989.tb15169.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Chakraburtty K, Kamath A. Protein synthesis in yeast. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1988; 20:581-90. [PMID: 3292311 DOI: 10.1016/0020-711x(88)90096-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Abstract
By two-dimensional gel electrophoresis, partial peptide mapping, and antibody binding we have shown that eukaryotic elongation factor Tu is in close contact with mRNA in rabbit reticulocytes. It can be crosslinked to mRNA by irradiating both polysomes and 40-80 S mRNA-protein complexes with short-wave UV light. To our knowledge this is the first case in which a known translation factor has been shown to be associated with mRNA in native ribonucleoproteins.
Collapse
Affiliation(s)
- J R Greenberg
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545
| | | |
Collapse
|
35
|
Protein synthesis in yeast. Isolation of variant forms of elongation factor 1 from the yeast Saccharomyces cerevisiae. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67132-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Cross-linking study on localization of the binding site for elongation factor 1 alpha on rat liver ribosomes. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67566-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Uchiumi T, Kikuchi M, Terao K, Iwasaki K, Ogata K. Cross-linking of elongation factor 2 to rat-liver ribosomal proteins by 2-iminothiolane. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 156:37-48. [PMID: 3956508 DOI: 10.1111/j.1432-1033.1986.tb09545.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Complexes containing rat liver 80S ribosomes treated with puromycin and high concentrations of KCl, elongation factor 2 (EF-2) from pig liver, and guanosine 5'-[beta, gamma-methylene]triphosphate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 22 fractions by chromatography on carboxymethylcellulose of which seven fractions were used for further analyses. Each protein fraction was subjected to diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Nine cross-linked protein pairs between EF-2 and ribosomal proteins were shifted from the line formed with monomeric proteins. The spots of ribosomal proteins cross-linked to EF-2 were cut out from the gel plate and labelled with 125I. The labelled protein was extracted from the gel and identified by three kinds of two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both large and small subunits were identified: L9, L12, L23, LA33 (acidic protein of Mr 33000), P2, S6 and S23/S24, and L3 and L4 in lower yields. The results are discussed in relation to the topographies of ribosomal proteins in large and small subunits. Furthermore we found new neighboring protein pairs in large subunits, LA33-L11 and LA33-L12.
Collapse
|
38
|
Cavallius J, Rattan SI, Clark BF. Changes in activity and amount of active elongation factor 1 alpha in aging and immortal human fibroblast cultures. Exp Gerontol 1986; 21:149-57. [PMID: 3026828 DOI: 10.1016/0531-5565(86)90068-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stoichiometrically estimated amounts of active elongation factor, EF-1 alpha, remain constant in serially passaged Phase II cultures of human fibroblasts, MRC-5, but decrease by 45% towards the end (Phase III) of their lifespan. Catalytic activity of EF-1 alpha is also reduced by 35% in Phase III old cells. The SV40 transformed immortal cell line MRC-5V2 has 30% higher levels of active EF-1 alpha without significant increase in its catalytic activity. Low-serum-associated G1 arrest of normal and transformed cells reduces amounts of active EF-1 alpha by 35% and 20%, respectively. Catalytic activity, however, is reduced rapidly only in G1 arrested normal cells and not in transformed cells. Even though the cell cycle-related changes are reversible both in normal and transformed cells, the age-related decline in amounts of active EF-1 alpha and its activity are irreversible and, most probably, crucial.
Collapse
|
39
|
Lauer SJ, Burks E, Irvin JD, Ravel JM. Purification and characterization of three elongation factors, EF-1 alpha, EF-1 beta gamma, and EF-2, from wheat germ. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43456-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Protein synthesis in yeast. II. Purification and properties of the elongation factor 1 from Saccharomyces cerevisiae. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68731-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Sanai Y, Morihara K, Tsuzuki H, Homma JY, Kato I. Proteolytic cleavage of exotoxin A from Pseudomonas aeruginosa: formation of an ADP-ribosyltransferase active fragment by the action of Pseudomonas elastase. FEBS Lett 1980; 120:131-4. [PMID: 6254804 DOI: 10.1016/0014-5793(80)81063-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Slobin LI. The role of eucaryotic factor Tu in protein synthesis. The measurement of the elongation factor Tu content of rabbit reticulocytes and other mammalian cells by a sensitive radioimmunoassay. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 110:555-63. [PMID: 7192214 DOI: 10.1111/j.1432-1033.1980.tb04898.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A sensitive radioimmunoassay for eucaryotic elongation factor Tu (eEF-TU) was developed using radioiodinated elongation factor T (eEF-T) and goat anti-(rabbit eEF-T) immunoglobulins coupled to a solid support. eEF-T was iodinated with 125I to a specific activity of 7 x 10(3) counts min-1 ng-1 using a system employing lactoperoxidase and glucose oxidase coupled to a solid support. The assay exhibits a limit of detection of about 1 ng eEF-TU and an intraassay variability of < 10%. By using the radioimmunoassay, it was found that eEF-Tu is a major non-hemoglobin protein of rabbit reticulocyte postribosomal supernatant proteins, comprising about 3% of the total hemoglobin and 10--13% of the non-hemoglobin proteins. Similar results were found for a number of different tissues and cells, including rabbit heart, brain, liver and kidneys, as well as both induced and non induced Friend erythroleukemia cells. Values of eEF-Tu ranged from 1% of supernatant proteins in heart to about 11% in noninduced erythroleukemic cells. The levels of eEF-Tu in these mammalian tissues were comparable to the level of the homologous factor EF-Tu in Escherichia coli. It has previously been found that EF-Tu constitutes about 6--8% of the supernatant proteins of E. coli [Furano, A. V. (1975) Proc. Natl Acad. Sci. USA, 72, 4780--4784]. The level of eEF-Tu in reticulocytes was compared to the abundance of other components of protein synthesis in reticulocytes, such as translocase (eEF-G), tRNA, ribosomes and eIF-2. In all cases eEF-Tu was present in large excess over these other components.
Collapse
|