1
|
Hecht F, Zocchi M, Tuttle ET, Ward NP, Smith B, Kang YP, Cazarin J, Soares ZG, Ozgurses ME, Zhao H, Sheehan C, Alimohammadi F, Munger LD, Trivedi D, Asantewaa G, Blick-Nitko SK, Zoeller JJ, Chen Y, Vasiliou V, Turner BM, Muir A, Coloff JL, Munger J, DeNicola GM, Harris IS. Catabolism of extracellular glutathione supplies amino acids to support tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617667. [PMID: 39416022 PMCID: PMC11482906 DOI: 10.1101/2024.10.10.617667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Restricting amino acids from tumors is an emerging therapeutic strategy with significant promise. While typically considered an intracellular antioxidant with tumor-promoting capabilities, glutathione (GSH) is a tripeptide of cysteine, glutamate, and glycine that can be catabolized, yielding amino acids. The extent to which GSH-derived amino acids are essential to cancers is unclear. Here, we find that GSH catabolism promotes tumor growth. We show that depletion of intracellular GSH does not perturb tumor growth, and extracellular GSH is highly abundant in the tumor microenvironment, highlighting the potential importance of GSH outside of tumors. We find supplementation with GSH can rescue cancer cell survival and growth in cystine-deficient conditions, and this rescue is dependent on the catabolic activity of γ-glutamyltransferases (GGTs). Finally, pharmacologic targeting of GGTs' activity prevents the breakdown of circulating GSH, lowers tumor cysteine levels, and slows tumor growth. Our findings indicate a non-canonical role for GSH in supporting tumors by acting as a reservoir of amino acids. Depriving tumors of extracellular GSH or inhibiting its breakdown is potentially a therapeutically tractable approach for patients with cancer. Further, these findings change our view of GSH and how amino acids, including cysteine, are supplied to cells.
Collapse
Affiliation(s)
- Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- These authors contributed equally
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- These authors contributed equally
| | - Emily T. Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Nathan P. Ward
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Bradley Smith
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Yun Pyo Kang
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Zamira G. Soares
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Huiping Zhao
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Colin Sheehan
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Fatemeh Alimohammadi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Lila D. Munger
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Dhvani Trivedi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Gloria Asantewaa
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Sara K. Blick-Nitko
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Jason J. Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06510
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06510
| | - Bradley M. Turner
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Joshua Munger
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Isaac S. Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| |
Collapse
|
2
|
Bouranis DL, Chorianopoulou SN. Foliar Application of Sulfur-Containing Compounds-Pros and Cons. PLANTS (BASEL, SWITZERLAND) 2023; 12:3794. [PMID: 38005690 PMCID: PMC10674314 DOI: 10.3390/plants12223794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Sulfate is taken up from the soil solution by the root system; and inside the plant, it is assimilated to hydrogen sulfide, which in turn is converted to cysteine. Sulfate is also taken up by the leaves, when foliage is sprayed with solutions containing sulfate fertilizers. Moreover, several other sulfur (S)-containing compounds are provided through foliar application, including the S metabolites hydrogen sulfide, glutathione, cysteine, methionine, S-methylmethionine, and lipoic acid. However, S compounds that are not metabolites, such as thiourea and lignosulfonates, along with dimethyl sulfoxide and S-containing adjuvants, are provided by foliar application-these are the S-containing agrochemicals. In this review, we elaborate on the fate of these compounds after spraying foliage and on the rationale and the efficiency of such foliar applications. The foliar application of S-compounds in various combinations is an emerging area of agricultural usefulness. In the agricultural practice, the S-containing compounds are not applied alone in spray solutions and the need for proper combinations is of prime importance.
Collapse
Affiliation(s)
- Dimitris L. Bouranis
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, 11855 Athens, Greece;
- PlanTerra Institute for Plant Nutrition and Soil Quality, Agricultural University of Athens, 11855 Athens, Greece
| | - Styliani N. Chorianopoulou
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, 11855 Athens, Greece;
- PlanTerra Institute for Plant Nutrition and Soil Quality, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
3
|
Farhat F, Wasim S, Rehman L, Abidi SMA. Affinity purification, identification, and biochemical characterization of Gamma-glutamyl transpeptidase, a membrane anchored enzyme of Gigantocotyle explanatum. Parasitol Res 2023; 122:915-926. [PMID: 36719531 DOI: 10.1007/s00436-023-07786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Gamma-glutamyl transpeptidase is an enzyme that facilitates the transfer of glutamyl groups from glutamyl peptides to other peptides or water. Additionally, it also participates in important processes such as amino acid transport, cellular redox control, drug detoxification, apoptosis, and DNA fragmentation in a various organism. In the present study, GGT activity in Gigantocotyle explanatum was examined in order to characterize the enzyme in the helminth system. GGT is isolated using membrane solubilization and purified through affinity column chromatography (Con-A Sepharose column). Km and Vmax values, as well as the optimal pH, optimal temperature, and incubation period, are also determined using enzyme kinetics. The hetero-dimeric property of the enzyme is demonstrated by the purified GGT, which yielded two subunits of 65.5 and 55 kDa. The optimal pH and temperature are found to be 8.0 and 37 °C, respectively. While assessing the optimal incubation time of the enzyme, it was observed that the purified GGT not only retained its functional integrity up to 15 min but also reflected considerable thermostability at higher temperatures, by retaining 78% and 25% of its initial activities at 50 °C and 60 °C, respectively. One millimolar concentration of 6-Diazo-5-Oxo Nor-isoleucine (DON), a specific inhibitor of GGT, completely abolished GGT activity. These results suggest that GGT in these worms is a catalytically active enzyme with distinguishing characteristics that can be used for further study to comprehend its function in amphistome biology and in host-parasite relationships, especially since the potential therapeutic candidacy of the GGT enzyme has already been indicated in these groups of organisms.
Collapse
Affiliation(s)
- Faiza Farhat
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Uttar Pradesh, Aligarh, 202002, India.
| | - Sobia Wasim
- College of Medicine, Gachon University, Incheon, South Korea
| | - Lubna Rehman
- Department of Lymphoma/Myeloma, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - S M A Abidi
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Uttar Pradesh, Aligarh, 202002, India
| |
Collapse
|
4
|
Antihelminthic effect of thymoquinone against biliary amphistome, Gigantocotyle explanatum. Exp Parasitol 2022; 243:108421. [DOI: 10.1016/j.exppara.2022.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
|
5
|
Nishikawa A, Senba H, Kimura Y, Yokota S, Doi M, Takenaka S. Isolation and characterization of a salt-tolerant γ-glutamyl transpeptidase from xerophilic Aspergillus sydowii. 3 Biotech 2022; 12:253. [PMID: 36060894 PMCID: PMC9433638 DOI: 10.1007/s13205-022-03259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 11/01/2022] Open
Abstract
Xerophilic Aspergillus molds isolated from halo-alkaliphilic and dry environments are attractive genetic resources for obtaining salt- and osmo-adaptive enzymes. A. sydowii MA0196 secreted the largest amount of γ-glutamyl transpeptidase (GGT) during solid-state fermentation at a low initial water activity (a w = 0.85). Gel filtration analysis revealed that the molecular mass of the purified native enzyme (MA0196 GGT) was 120 kDa. SDS-PAGE analysis showed that MA0196 GGT consists of two subunits with molecular masses of 56.4 and 33 kDa, indicating production from a proenzyme via autoproteolysis. Deglycosylation of the subunits by N-glycosidase F yielded 40.9 and 19.6 kDa species. MA0196 GGT retained transpeptidase and hydrolysis activities and their catalytic efficiency (k cat/K m) under high salt and low water activity. The enzyme displayed broad substrate specificity toward γ-glutamyl acceptors such as amino acids and the imidazole dipeptides, carnosine and anserine. Carnosine and L-glutamine were converted into γ-glutamyl-β-alanyl-L-histidine by MA0196 GGT with a 32.9% yield in the presence of 2% (v/v) dimethyl sulfoxide. Phylogenetic analysis indicated that MA0196 GGT forms a distinct lineage from A. oryzae and A. sojae GGTs. These excellent properties indicate that MA0196 GGT can be used in salted fermentation and for producing bioactive peptides. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03259-3.
Collapse
Affiliation(s)
- Arisa Nishikawa
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501 Japan
| | - Hironori Senba
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501 Japan
- Gen Res Lab, Ozeki Corp, 4-9 Imazu, Nishinomiya, Hyogo 663-8227 Japan
| | - Yukihiro Kimura
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501 Japan
| | - Satoko Yokota
- Marutomo Co., Ltd, 1696 Kominato, Iyo, Ehime 799-3192 Japan
| | - Mikiharu Doi
- Marutomo Co., Ltd, 1696 Kominato, Iyo, Ehime 799-3192 Japan
| | - Shinji Takenaka
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501 Japan
| |
Collapse
|
6
|
Metabolic Shades of S-D-Lactoylglutathione. Antioxidants (Basel) 2022; 11:antiox11051005. [PMID: 35624868 PMCID: PMC9138017 DOI: 10.3390/antiox11051005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
S-D-lactoylglutathione (SDL) is an intermediate of the glutathione-dependent metabolism of methylglyoxal (MGO) by glyoxalases. MGO is an electrophilic compound that is inevitably produced in conjunction with glucose breakdown and is essentially metabolized via the glyoxalase route. In the last decades, MGO metabolism and its cytotoxic effects have been under active investigation, while almost nothing is known about SDL. This article seeks to fill the gap by presenting an overview of the chemistry, biochemistry, physiological role and clinical importance of SDL. The effects of intracellular SDL are investigated in three main directions: as a substrate for post-translational protein modifications, as a reservoir for mitochondrial reduced glutathione and as an energy currency. In essence, all three approaches point to one direction, namely, a metabolism-related regulatory role, enhancing the cellular defense against insults. It is also suggested that an increased plasma concentration of SDL or its metabolites may possibly serve as marker molecules in hemolytic states, particularly when the cause of hemolysis is a disturbance of the pay-off phase of the glycolytic chain. Finally, SDL could also represent a useful marker in such metabolic disorders as diabetes mellitus or ketotic states, in which its formation is expected to be enhanced. Despite the lack of clear-cut evidence underlying the clinical and experimental findings, the investigation of SDL metabolism is a promising field of research.
Collapse
|
7
|
Une M, Takemura K, Inamura K, Fukushima H, Ito M, Kobayashi S, Yuasa T, Yonese J, Board PG, Koga F. Impact of Serum γ-Glutamyltransferase on Overall Survival in Men with Metastatic Castration-Resistant Prostate Cancer Treated with Docetaxel. Cancers (Basel) 2021; 13:cancers13215587. [PMID: 34771748 PMCID: PMC8583487 DOI: 10.3390/cancers13215587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary γ-Glutamyltransferase (GGT) is a biomarker of oxidative stress and its elevation in the serum is linked to poor survival in various malignancies; however, reports on metastatic castration-resistant prostate cancer (mCRPC) are scarce. Moreover, the source of serum GGT in men with mCRPC is largely unknown. The aims of this study were to determine the impact of serum GGT on overall survival in men with mCRPC receiving docetaxel therapy, and to examine the association between systemic and local GGT levels using immunohistochemistry. Of note, high serum GGT was associated with adverse overall survival as were low hemoglobin and high prostate-specific antigen levels. Additionally, tissue GGT expression status in prostate specimens was moderately positively associated with serum GGT. We demonstrated that pre-therapeutic serum GGT was an independent prognosticator in men with mCRPC receiving docetaxel therapy, and that overexpression of GGT in cancer cells might be responsible for the elevation of serum GGT. Abstract Background: Reports on the prognostic significance of serum γ-glutamyltransferase (GGT) in men with metastatic castration-resistant prostate cancer (mCRPC) are limited. In addition, GGT expression status in cancer tissues has not been well characterized regardless of cancer types. Methods: This retrospective study included 107 consecutive men with mCRPC receiving docetaxel therapy. The primary endpoints were associations of serum GGT with overall survival (OS) and prostate-specific antigen (PSA) response. The secondary endpoint was an association of serum GGT with progression-free survival (PFS). Additionally, GGT expression status was immunohistochemically semi-quantified using tissue microarrays. Results: A total of 67 (63%) men died during follow-up periods (median 22.5 months for survivors). On multivariable analysis, high Log GGT was independently associated with adverse OS (HR 1.49, p = 0.006) as were low hemoglobin (HR 0.79, p = 0.002) and high PSA (HR 1.40, p < 0.001). In contrast, serum GGT was not significantly associated with PSA response or PFS. Moreover, incorporation of serum GGT into established prognostic models (i.e., Halabi and Smaletz models) increased their C-indices for predicting OS from 0.772 to 0.787 (p = 0.066) and from 0.777 to 0.785 (p = 0.118), respectively. Furthermore, there was a positive correlation between serum and tissue GGT levels (ρ = 0.53, p = 0.003). Conclusions: Serum GGT may be a prognostic biomarker in men with mCRPC receiving docetaxel therapy. GGT overexpression by prostate cancer cells appears to be responsible for the elevation of GGT in the serum.
Collapse
Affiliation(s)
- Minami Une
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan; (M.U.); (M.I.); (S.K.); (F.K.)
| | - Kosuke Takemura
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan; (M.U.); (M.I.); (S.K.); (F.K.)
- Department of Urology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.Y.); (J.Y.)
- Correspondence: ; Tel.: +81-3-3823-2101
| | - Kentaro Inamura
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Hiroshi Fukushima
- Department of Urology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| | - Masaya Ito
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan; (M.U.); (M.I.); (S.K.); (F.K.)
| | - Shuichiro Kobayashi
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan; (M.U.); (M.I.); (S.K.); (F.K.)
| | - Takeshi Yuasa
- Department of Urology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.Y.); (J.Y.)
| | - Junji Yonese
- Department of Urology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.Y.); (J.Y.)
| | - Philip G. Board
- ACRF Department of Cancer Biology and Therapeutics, Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia;
| | - Fumitaka Koga
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan; (M.U.); (M.I.); (S.K.); (F.K.)
| |
Collapse
|
8
|
Zhan J, Wang S, Li F, Ji C, Wu H. Dose-dependent responses of metabolism and tissue injuries in clam Ruditapes philippinarum after subchronic exposure to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146479. [PMID: 33744590 DOI: 10.1016/j.scitotenv.2021.146479] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Marine cadmium (Cd) pollution has been globally occurring, which creates a pressing need to characterize toxicological effects and develop biomarkers for Cd. However, the dose-response relationships challenge toxicity characterization and biomarkers selection. Metabolic processes have been frequently targeted by Cd. In this work, we investigated the dose-dependent effects of Cd on metabolic endpoints in whole soft tissues as well as gill and hepatopancreas injuries in clam Ruditapes philippinarum, aiming to better understand the metabolic responses and develop biomarkers. Nuclear magnetic resonance (NMR)-based metabolomic analysis was conducted on clam whole soft tissues to identify metabolites. The enzymes and metabolites associated with tricarboxylic acid (TCA) cycle, glycolysis, and oxidative phosphorylation showed both monotonic and non-monotonic curves with the increase of Cd dose. In details, glutamine, glucose-1-phosphate, hexokinase (HK), and citrate synthase (CS) presented monotonic decreases with the increase of Cd dose, among which glutamine and CS were preferable biomarkers to Cd exposure based on lower benchmark dose (BMD) values. The monotonic decreases of HK and CS activities suggested Cd exposure potentially disrupted glycolysis and TCA cycle via inhibiting rate-limiting enzymes. In contrast, the non-monotonic responses of succinate dehydrogenase (SDH), alanine aminotransferase (ALT), and their substrates (succinate and alanine) were approximate to U- or J-shaped curves, suggesting the adaptive strategy of metabolic responses to different degrees of Cd stress, like induction of anaerobiosis as energy compensation. Especially, the alterations of succinate and SDH presented typical hormetic dose-response curves. What is more, clam hepatopancreas was more sensitive to Cd than gill in terms of injury occurrence. Overall, characterization of dose-dependent effect of Cd on metabolism and tissue injuries provides a new insight into understanding the metabolic adaptation in marine clams and risk assessment of Cd pollution.
Collapse
Affiliation(s)
- Junfei Zhan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
9
|
A Systematic Review of Serum γ-Glutamyltransferase as a Prognostic Biomarker in Patients with Genitourinary Cancer. Antioxidants (Basel) 2021; 10:antiox10040549. [PMID: 33916150 PMCID: PMC8066142 DOI: 10.3390/antiox10040549] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
γ-Glutamyltransferase (GGT), a membrane-bound enzyme, contributes to the metabolism of glutathione (GSH), which plays a critical physiological role in protecting cells against oxidative stress. GGT has been proposed as a biomarker of carcinogenesis and tumor progression given that GGT activity is important during both the promotion and invasion phases in cancer cells. Moreover, GGT expression is reportedly related to drug-resistance possibly because a wide range of drugs are conjugated with GSH, the availability of which is influenced by GGT activity. While serum GGT activity is commonly used as a quick, inexpensive, yet reliable means of assessing liver function, recent epidemiological studies have shown that it may also be an indicator of an increased risk of prostate cancer development. Moreover, elevated serum GGT is reportedly an adverse prognostic predictor in patients with urologic neoplasms, including renal cell carcinoma, prostate cancer, and urothelial carcinoma, although the background mechanisms have still not been well-characterized. The present review article summarizes the possible role of GGT in cancer cells and focuses on evidence evaluation through a systematic review of the latest literature on the prognostic role of serum GGT in patients with genitourinary cancer.
Collapse
|
10
|
Brown-Borg HM, Rakoczy S, Wonderlich JA, Borg KE, Rojanathammanee L. Metabolic adaptation of short-living growth hormone transgenic mice to methionine restriction and supplementation. Ann N Y Acad Sci 2019; 1418:118-136. [PMID: 29722030 DOI: 10.1111/nyas.13687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/17/2018] [Accepted: 02/26/2018] [Indexed: 01/07/2023]
Abstract
Extension of mammalian health and life span has been achieved using various dietary interventions. We previously reported that restricting dietary methionine (MET) content extends life span only when growth hormone signaling is intact (no life span increase in GH deficiency or GH resistance). To understand the metabolic responses of altered dietary MET in the context of accelerated aging (high GH), the current study evaluated MET and related pathways in short-living GH transgenic (GH Tg) and wild-type mice following 8 weeks of restricted (0.16%), low (0.43%), or enriched (1.3%) MET consumption. Liver MET metabolic enzymes were suppressed in GH Tg compared to diet-matched wild-type mice. MET metabolite levels were differentially affected by GH status and diet. SAM:SAH ratios were markedly higher in GH Tg mice. Glutathione levels were lower in both genotypes consuming 0.16% MET but reduced in GH Tg mice when compared to wild type. Tissue thioredoxin and glutaredoxin were impacted by diet and GH status. The responsiveness to the different MET diets is reflected across many metabolic pathways indicating the importance of GH signaling in the ability to discriminate dietary amino acid levels and alter metabolism and life span.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Sharlene Rakoczy
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Joseph A Wonderlich
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota.,Department of Psychology, George Mason University, Fairfax, Virginia
| | - Kurt E Borg
- Education Resources, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Lalida Rojanathammanee
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota.,School of Sports Science, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
11
|
Wieser M, Francisci T, Lackner D, Buerckstuemmer T, Wasner K, Eilenberg W, Stift A, Wahrmann M, Böhmig GA, Grillari J, Grillari-Voglauer R. CD46 knock-out using CRISPR/Cas9 editing of hTERT immortalized human cells modulates complement activation. PLoS One 2019; 14:e0214514. [PMID: 30958843 PMCID: PMC6453361 DOI: 10.1371/journal.pone.0214514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
The kidney is especially sensitive to diseases associated with overactivation of the complement system. While most of these diseases affect kidney glomeruli and the microvasculature, there is also evidence for tubulointerstitial deposition of complement factors. Complement inactivating factors on cell membranes comprise CD55, CD59 and CD46, which is also termed membrane cofactor protein (MCP). CD46 has been described as localized to glomeruli, but especially also to proximal tubular epithelial cells (RPTECs). However, human cell culture models to assess CD46 function on RPTECs are still missing. Therefore, we here performed gene editing of RPTEC/TERT1 cells generating a monoclonal CD46-/- cell line that did not show changes of the primary cell like characteristics. In addition, factor I and CD46-mediated cleavage of C4b into soluble C4c and membrane deposited C4d was clearly reduced in the knock-out cell line as compared to the maternal cells. Thus, human CD46-/- proximal tubular epithelial cells will be of interest to dissect the roles of the epithelium and the kidney in various complement activation mediated tubulointerstitial pathologies or in studying CD46 mediated uropathogenic internalization of bacteria. In addition, this gives proof-of-principle, that telomerized cells can be used in the generation of knock-out, knock-in or any kind of reporter cell lines without losing the primary cell characteristics of the maternal cells.
Collapse
Affiliation(s)
| | | | | | | | - Kamilla Wasner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Wolf Eilenberg
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Anton Stift
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Wahrmann
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Georg A. Böhmig
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Evercyte GmbH, Vienna, Austria
- Department of Biotechnology, BOKU Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Regina Grillari-Voglauer
- Evercyte GmbH, Vienna, Austria
- Department of Biotechnology, BOKU Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- * E-mail:
| |
Collapse
|
12
|
Hibi T, Imaoka M, Shimizu Y, Itoh T, Wakayama M. Crystal structure analysis and enzymatic characterization of γ-glutamyltranspeptidase from Pseudomonas nitroreducens. Biosci Biotechnol Biochem 2019; 83:262-269. [DOI: 10.1080/09168451.2018.1547104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Theanine (γ-glutamylethylamide) is an amino acid analog that reduces blood pressure and improves immune responses. The ϒ-glutamyltranspeptidase (GGT) from Pseudomonas nitroreducens IFO12694 (PnGGT) has a unique preference for primary amines as ϒ-glutamyl acceptors over standard L-amino acids and peptides. This characteristic is useful for the synthesis of theanine. We used X-ray crystallographic analysis to understand the structural basis of PnGGT’s hydrolysis and transpeptidation reactions and to characterize its previously unidentified acceptor site. Structural studies of PnGGT have shown that key interactions between three residues (Trp385, Phe417, and Trp525) distinguish PnGGT from other GGTs. We studied the roles of these residues in the distinct biochemical properties of PnGGT using site-directed mutagenesis. All mutants showed a significant decrease in hydrolysis activity and an increase in transpeptidase activity, suggesting that the aromatic side chains of Trp385, Phe417, and Trp525 were involved in the recognition of acceptor substrates.
Abbreviations: ϒ-glutamyl peptide, theanine, X-ray crystallography.
Collapse
Affiliation(s)
- Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Masashi Imaoka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yoichiro Shimizu
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
13
|
Soo JYC, Jansen J, Masereeuw R, Little MH. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 2018; 14:378-393. [PMID: 29626199 PMCID: PMC6013592 DOI: 10.1038/s41581-018-0003-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro screens for nephrotoxicity are currently poorly predictive of toxicity in humans. Although the functional proteins that are expressed by nephron tubules and mediate drug susceptibility are well known, current in vitro cellular models poorly replicate both the morphology and the function of kidney tubules and therefore fail to demonstrate injury responses to drugs that would be nephrotoxic in vivo. Advances in protocols to enable the directed differentiation of pluripotent stem cells into multiple renal cell types and the development of microfluidic and 3D culture systems have opened a range of potential new platforms for evaluating drug nephrotoxicity. Many of the new in vitro culture systems have been characterized by the expression and function of transporters, enzymes, and other functional proteins that are expressed by the kidney and have been implicated in drug-induced renal injury. In vitro platforms that express these proteins and exhibit molecular biomarkers that have been used as readouts of injury demonstrate improved functional maturity compared with static 2D cultures and represent an opportunity to model injury to renal cell types that have hitherto received little attention. As nephrotoxicity screening platforms become more physiologically relevant, they will facilitate the development of safer drugs and improved clinical management of nephrotoxicants.
Collapse
Affiliation(s)
- Joanne Y-C Soo
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jitske Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Melissa H Little
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Huang J, Jia Y, Li Q, Burris WR, Bridges PJ, Matthews JC. Hepatic glutamate transport and glutamine synthesis capacities are decreased in finished vs. growing beef steers, concomitant with increased GTRAP3-18 content. Amino Acids 2018; 50:513-525. [PMID: 29392419 PMCID: PMC5917004 DOI: 10.1007/s00726-018-2540-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/22/2018] [Indexed: 01/17/2023]
Abstract
Hepatic glutamate uptake and conversion to glutamine is critical for whole-body N metabolism, but how this process is regulated during growth is poorly described. The hepatic glutamate uptake activities, protein content of system [Formula: see text] transporters (EAAC1, GLT-1) and regulatory proteins (GTRAP3-18, ARL6IP1), glutamine synthetase (GS) activity and content, and glutathione (GSH) content, were compared in liver tissue of weaned Angus steers randomly assigned (n = 8) to predominantly lean (growing) or predominantly lipid (finished) growth regimens. Steers were fed a cotton seed hull-based diet to achieve final body weights of 301 or 576 kg, respectively, at a constant rate of growth. Liver tissue was collected at slaughter and hepatic membranes fractionated. Total (75%), Na+-dependent (90%), system [Formula: see text]-dependent (abolished) glutamate uptake activity, and EAAC1 content (36%) in canalicular membrane-enriched vesicles decreased as steers developed from growing (n = 6) to finished (n = 4) stages, whereas Na+-independent uptake did not change. In basolateral membrane-enriched vesicles, total (60%), Na+-dependent (60%), and Na+-independent (56%) activities decreased, whereas neither system [Formula: see text]-dependent uptake nor protein content changed. EAAC1 protein content in liver homogenates (n = 8) decreased in finished vs. growing steers, whereas GTRAP3-18 and ARL6IP1 content increased and GLT-1 content did not change. Concomitantly, hepatic GS activity decreased (32%) as steers fattened, whereas GS and GSH contents did not differ. We conclude that hepatic glutamate uptake and GS synthesis capacities are reduced in livers of finished versus growing beef steers, and that hepatic system [Formula: see text] transporter activity/EAAC1 content is inversely proportional to GTRAP3-18 content.
Collapse
Affiliation(s)
- J Huang
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, USA
| | - Y Jia
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, USA
| | - Q Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, USA
| | - W R Burris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, USA
| | - P J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, USA
| | - J C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, USA.
| |
Collapse
|
15
|
Romeih E, Walker G. Recent advances on microbial transglutaminase and dairy application. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.02.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Bolz C, Bach NC, Meyer H, Müller G, Dawidowski M, Popowicz G, Sieber SA, Skerra A, Gerhard M. Comparison of enzymatic properties and small molecule inhibition of γ-glutamyltranspeptidases from pathogenic and commensal bacteria. Biol Chem 2017; 398:341-357. [PMID: 27636829 DOI: 10.1515/hsz-2016-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023]
Abstract
Helicobacter pylori infects the stomach of 50% of the population worldwide, thus causing chronic gastritis. Although this infection can be cured by antibiotic treatment, therapeutic options are increasingly limited due to the development of resistances. The γ-glutamyl-transpeptidase (gGT) of H. pylori (HpgGT) is a virulence factor important for colonization and contributes to bacterial immune evasion. Therefore, this enzyme is a potential target for developing new anti-infectives. As species specificity of such compounds is required in order to avoid off-target or adverse effects, comparative analysis of the gGTs from different organisms is a prerequisite for drug development. To allow detailed biochemical and enzymatic characterization, recombinant gGTs from five different bacteria as well as Homo sapiens were characterized and compared. Investigation of the enzymatic activity, the binding modes of known inhibitors to the catalytic center, and a high resolution X-ray structure of the HpgGT provided a starting point for the identification of new inhibitory substances targeting HpgGT. Inhibitors with Ki values in the nm to mm range were identified and their binding modes were analyzed by mass spectrometry. The results of this study provide a basis for the development of species-specific lead compounds with anti-infective potential by effectively inhibiting HpgGT.
Collapse
|
17
|
Phosphonate-based irreversible inhibitors of human γ-glutamyl transpeptidase (GGT). GGsTop is a non-toxic and highly selective inhibitor with critical electrostatic interaction with an active-site residue Lys562 for enhanced inhibitory activity. Bioorg Med Chem 2016; 24:5340-5352. [PMID: 27622749 DOI: 10.1016/j.bmc.2016.08.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 11/22/2022]
Abstract
γ-Glutamyl transpeptidase (GGT, EC 2.3.2.2) that catalyzes the hydrolysis and transpeptidation of glutathione and its S-conjugates is involved in a number of physiological and pathological processes through glutathione metabolism and is an attractive pharmaceutical target. We report here the evaluation of a phosphonate-based irreversible inhibitor, 2-amino-4-{[3-(carboxymethyl)phenoxy](methoyl)phosphoryl}butanoic acid (GGsTop) and its analogues as a mechanism-based inhibitor of human GGT. GGsTop is a stable compound, but inactivated the human enzyme significantly faster than the other phosphonates, and importantly did not inhibit a glutamine amidotransferase. The structure-activity relationships, X-ray crystallography with Escherichia coli GGT, sequence alignment and site-directed mutagenesis of human GGT revealed a critical electrostatic interaction between the terminal carboxylate of GGsTop and the active-site residue Lys562 of human GGT for potent inhibition. GGsTop showed no cytotoxicity toward human fibroblasts and hepatic stellate cells up to 1mM. GGsTop serves as a non-toxic, selective and highly potent irreversible GGT inhibitor that could be used for various in vivo as well as in vitro biochemical studies.
Collapse
|
18
|
Bragiel AM, Wang D, Pieczonka TD, Shono M, Ishikawa Y. Mechanisms Underlying Activation of α₁-Adrenergic Receptor-Induced Trafficking of AQP5 in Rat Parotid Acinar Cells under Isotonic or Hypotonic Conditions. Int J Mol Sci 2016; 17:ijms17071022. [PMID: 27367668 PMCID: PMC4964398 DOI: 10.3390/ijms17071022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 11/18/2022] Open
Abstract
Defective cellular trafficking of aquaporin-5 (AQP5) to the apical plasma membrane (APM) in salivary glands is associated with the loss of salivary fluid secretion. To examine mechanisms of α1-adrenoceptor (AR)-induced trafficking of AQP5, immunoconfocal microscopy and Western blot analysis were used to analyze AQP5 localization in parotid tissues stimulated with phenylephrine under different osmolality. Phenylephrine-induced trafficking of AQP5 to the APM and lateral plasma membrane (LPM) was mediated via the α1A-AR subtype, but not the α1B- and α1D-AR subtypes. Phenylephrine-induced trafficking of AQP5 was inhibited by ODQ and KT5823, inhibitors of nitric oxide (NO)-stimulated guanylcyclase (GC) and protein kinase (PK) G, respectively, indicating the involvement of the NO/ soluble (c) GC/PKG signaling pathway. Under isotonic conditions, phenylephrine-induced trafficking was inhibited by La3+, implying the participation of store-operated Ca2+ channel. Under hypotonic conditions, phenylephrine-induced trafficking of AQP5 to the APM was higher than that under isotonic conditions. Under non-stimulated conditions, hypotonicity-induced trafficking of AQP5 to the APM was inhibited by ruthenium red and La3+, suggesting the involvement of extracellular Ca2+ entry. Thus, α1A-AR activation induced the trafficking of AQP5 to the APM and LPM via the Ca2+/ cyclic guanosine monophosphate (cGMP)/PKG signaling pathway, which is associated with store-operated Ca2+ entry.
Collapse
Affiliation(s)
- Aneta M Bragiel
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8504, Japan.
| | - Di Wang
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8504, Japan.
| | - Tomasz D Pieczonka
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8504, Japan.
| | - Masayuki Shono
- Support Center for Advanced Medical Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8504, Japan.
| | - Yasuko Ishikawa
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8504, Japan.
| |
Collapse
|
19
|
Luisi G, Mollica A, Carradori S, Lenoci A, De Luca A, Caccuri AM. Nitrobenzoxadiazole-based GSTP1-1 inhibitors containing the full peptidyl moiety of (pseudo)glutathione. J Enzyme Inhib Med Chem 2015; 31:924-30. [PMID: 26329912 DOI: 10.3109/14756366.2015.1070845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT The inhibition of glutathione S-transferase P1-1 (GSTP1-1) is a sound strategy to overcome drug resistance in oncology practice. OBJECTIVE The nitrobenzoxadiazolyl (NBD) S-conjugate of glutathione and the corresponding γ-oxa-glutamyl isostere (compounds 1 and 5, respectively) have been disclosed as GST inhibitors. The rationale of their design is discussed in juxtaposition to non-peptide NBD thioethers. MATERIALS AND METHODS Synthesis of derivatives 1 and 5 and in vitro evaluation on human GSTP1-1 and M2-2 are reported. RESULTS Conjugates 1 and 5 were found to be low micromolar inhibitors of both isoforms. Furthermore, they display a threefold reduction in selectivity for GSTM2-2 over the P1-1 isozyme in comparison with the potent non-peptide inhibitor nitrobenzoxadiazolyl-thiohexanol (NBDHEX). DISCUSSION AND CONCLUSIONS Spectroscopic data are congruent with the formation of a stable sigma-complex between GSH and the inhibitors in the protein active site. Conjugate 5 is suitable for in vivo modulation of GST activity in cancer treatment.
Collapse
Affiliation(s)
- Grazia Luisi
- a Department of Pharmacy , "Gabriele d'Annunzio" University , Chieti , Italy
| | - Adriano Mollica
- a Department of Pharmacy , "Gabriele d'Annunzio" University , Chieti , Italy
| | - Simone Carradori
- a Department of Pharmacy , "Gabriele d'Annunzio" University , Chieti , Italy
| | - Alessia Lenoci
- b Department of Drug Chemistry and Technologies , "Sapienza" University , Rome , Italy
| | - Anastasia De Luca
- c The NAST Centre for Nanoscience & Nanotechnology & Innovative Instrumentation, University of Tor Vergata , Rome , Italy , and
| | - Anna Maria Caccuri
- c The NAST Centre for Nanoscience & Nanotechnology & Innovative Instrumentation, University of Tor Vergata , Rome , Italy , and.,d Department of Experimental Medicine and Surgery , University of Tor Vergata , Rome , Italy
| |
Collapse
|
20
|
Brown-Borg HM, Rakoczy S, Wonderlich JA, Armstrong V, Rojanathammanee L. Altered dietary methionine differentially impacts glutathione and methionine metabolism in long-living growth hormone-deficient Ames dwarf and wild-type mice. LONGEVITY & HEALTHSPAN 2014; 3:10. [PMID: 25584190 PMCID: PMC4290132 DOI: 10.1186/2046-2395-3-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023]
Abstract
Background Extending mammalian health span and life span has been achieved under a variety of dietary restriction protocols. Reducing the intake of a specific amino acid has also been shown to extend health and longevity. We recently reported that methionine (MET) restriction is not effective in life span extension in growth hormone (GH) signaling mutants. To better understand the apparent necessity of GH in the ‘sensing’ of altered dietary MET, the current study was designed to evaluate MET and glutathione (GSH) metabolism (as well as other pathways) in long-living GH-deficient Ames dwarf and wild-type mice following 8 weeks of restricted (0.16%), low (0.43%), or enriched (1.3%) dietary MET consumption. Metabolite expression was examined in liver tissue, while gene and protein expression were evaluated in liver, kidney, and muscle tissues. Results Body weight was maintained in dwarf mice on the MET diets, while wild-type mice on higher levels of MET gained weight. Liver MET levels were similar in Ames mice, while several MET pathway enzymes were elevated regardless of dietary MET intake. Transsulfuration enzymes were also elevated in Ames mice but differences in cysteine levels were not different between genotypes. Dwarf mice maintained higher levels of GSH on MET restriction compared to wild-type mice, while genotype and diet effects were also detected in thioredoxin and glutaredoxin. MET restriction increased transmethylation in both genotypes as indicated by increased S-adenosylmethionine (SAM), betaine, and dimethylglycine. Diet did not impact levels of glycolytic components, but dwarf mice exhibited higher levels of key members of this pathway. Coenzyme A and measures of fatty acid oxidation were elevated in dwarf mice and unaffected by diet. Conclusions This component analysis between Ames and wild-type mice suggests that the life span differences observed may result from the atypical MET metabolism and downstream effects on multiple systems. The overall lack of responsiveness to the different diets is well reflected across many metabolic pathways in dwarf mice indicating the importance of GH signaling in the ability to discriminate dietary amino acid levels. Electronic supplementary material The online version of this article (doi:10.1186/2046-2395-3-10) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Sharlene Rakoczy
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Joseph A Wonderlich
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Vanessa Armstrong
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Lalida Rojanathammanee
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA ; School of Sports Science, Institute of Science, Suranaree University of Technology, Muang District, Nakhon Ratchasima, 30000 Thailand
| |
Collapse
|
21
|
γ-Glutamyl transpeptidase architecture: Effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2290-7. [PMID: 25218521 DOI: 10.1016/j.bbapap.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
γ-Glutamyl transpeptidases (γ-GTs, EC 2.3.2.2) are a class of ubiquitous enzymes which initiate the cleavage of extracellular glutathione (γ-Glu-Cys-Gly, GSH) into its constituent glutamate, cysteine, and glycine and catalyze the transfer of its γ-glutamyl group to water (hydrolysis), amino acids or small peptides (transpeptidation). These proteins utilize a conserved Thr residue to process their chains into a large and a small subunit that then form the catalytically competent enzyme. Multiple sequence alignments have shown that some bacterial γ-GTs, including that from Bacillus licheniformis (BlGT), possess an extra sequence at the C-terminal tail of the large subunit, whose role is unknown. Here, autoprocessing, structure, catalytic activity and stability against both temperature and the chemical denaturant guanidinium hydrochloride of six BlGT extra-sequence deletion mutants have been characterized by SDS-PAGE, circular dichroism, intrinsic fluorescence and homology modeling. Data suggest that the extra sequence has a crucial role in enzyme activation and structural stability. Our results assist in the development of a structure-based interpretation of the autoprocessing reaction of γ-GTs and are helpful to unveil the molecular bases of their structural stability.
Collapse
|
22
|
Lin LL, Chen YY, Chi MC, Merlino A. Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformis: Opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1523-9. [DOI: 10.1016/j.bbapap.2014.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/12/2014] [Accepted: 04/21/2014] [Indexed: 12/21/2022]
|
23
|
Chen X, Su L, Wu D, Wu J. Application of recombinant Bacillus subtilis γ-glutamyltranspeptidase to the production of l-theanine. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Ito R, Ihara H, Okada T, Ikeda Y. 1α,25-Dihydroxyvitamin D3 enhances γ-glutamyl transpeptidase activity in LLC-PK1 porcine kidney epithelial cells. Mol Med Rep 2014; 10:2111-5. [PMID: 25109309 DOI: 10.3892/mmr.2014.2436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/15/2013] [Indexed: 11/05/2022] Open
Abstract
Mammalian γ-glutamyl transpeptidase (GGT) is expressed most highly in the kidney and serves to recover the constituent amino acids of glutathione in the proximal tubules. Serum GGT is used as a marker for obstructive jaundice and alcoholic liver disease and it has been reported that urinary GGT is a potential marker for bone resorption. The present study investigated the effect of derivatives of vitamin D3 on GGT activity in LLC-PK1 porcine renal tubular epithelial cells in order to analyze the biochemical basis of bone metabolism-associated alterations in GGT activity in the kidney. In the presence of 1α,25-dihydroxyvitamin D3 [1,25(OH)2VD3], GGT activity was observed to be significantly increased in LLC-PK1 cells, with an increase in GGT activity also found in the cell medium. While the stimulatory effect of 1-OH-VD3 was similar to that of 1,25(OH)2VD3, vitamin D3 and 25-OH-VD3 had no effect on GGT activity. The increased GGT activity caused by 1,25(OH)2VD3 in LLC-PK1 cells was the result of long-term stimulation of the cells, in contrast to the GGT-induced increase in alkaline phosphatase, which is more transient. Polymerase chain reaction analysis revealed that the 1,25(OH)2VD3‑induced increase in GGT activity was due to prolonged GGT turnover, rather than increased GGT expression, as no increase in GGT mRNA expression was observed. Thus, it is likely that the expression of GGT is not entirely constitutive in the kidney, but is altered under certain conditions, including under hormonal regulation.
Collapse
Affiliation(s)
- Ritsu Ito
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hideyuki Ihara
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Takahiro Okada
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
25
|
Floch P, Pey V, Castroviejo M, Dupuy JW, Bonneu M, de la Guardia AH, Pitard V, Mégraud F, Lehours P. Role of Campylobacter jejuni gamma-glutamyl transpeptidase on epithelial cell apoptosis and lymphocyte proliferation. Gut Pathog 2014; 6:20. [PMID: 24995041 PMCID: PMC4080688 DOI: 10.1186/1757-4749-6-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Background A gamma-glutamyl transpeptidase (GGT) is produced by up to 31% of strains of Campylobacter jejuni isolates. C. jejuni GGT is close to Helicobacter pylori GGT suggesting a conserved activity but unlike the latter, C. jejuni GGT has not been studied extensively. In line with the data available for H. pylori, our objectives were to purify C. jejuni GGT from the bacteria, and to evaluate its inhibitory and proapoptotic activities on epithelial cells and human lymphocytes. Methods C. jejuni GGT was purified from culture supernatants by chromatography. After verification of the purity by using mass spectrometry of the purified enzyme, its action on two epithelial cell lines and human lymphocytes was investigated. Cell culture as well as flow cytometry experiments were developed for these purposes. Results This study demonstrated that C. jejuni GGT is related to Helicobacter GGTs and inhibits the proliferation of epithelial cells with no proapoptotic activity. C. jejuni GGT also inhibits lymphocyte proliferation by causing a cell cycle arrest in the G0/G1 phase. These effects are abolished in the presence of a specific pharmacological inhibitor of GGT. Conclusion C. jejuni GGT activity is comparable to that of other Epsilonproteobacteria GGTs and more generally to Helicobacter bilis (inhibition of epithelial cell and lymphocyte proliferation, however with no proapoptotic activity). It could therefore be considered as a pathogenicity factor and promote, via the inhibition of lymphocyte proliferation, the persistence of the bacteria in the host. These observations are consistent with a role of this enzyme in the pathophysiology of chronic infections associated with C. jejuni.
Collapse
Affiliation(s)
- Pauline Floch
- Bacteriology Laboratory, University of Bordeaux, F-33000 Bordeaux, France ; INSERM U853, F-33000 Bordeaux, France
| | - Vincent Pey
- Bacteriology Laboratory, University of Bordeaux, F-33000 Bordeaux, France ; INSERM U853, F-33000 Bordeaux, France
| | | | - Jean William Dupuy
- Centre de Génomique Fonctionnelle, Plateforme Protéome, University of Bordeaux, F-33000 Bordeaux, France
| | - Marc Bonneu
- Centre de Génomique Fonctionnelle, Plateforme Protéome, University of Bordeaux, F-33000 Bordeaux, France
| | - Anaïs Hocès de la Guardia
- Bacteriology Laboratory, University of Bordeaux, F-33000 Bordeaux, France ; INSERM U853, F-33000 Bordeaux, France
| | - Vincent Pitard
- CNRS, UMR 5164, CIRID, University of Bordeaux, F-33000 Bordeaux, France
| | - Francis Mégraud
- Bacteriology Laboratory, University of Bordeaux, F-33000 Bordeaux, France ; INSERM U853, F-33000 Bordeaux, France
| | - Philippe Lehours
- Bacteriology Laboratory, University of Bordeaux, F-33000 Bordeaux, France ; INSERM U853, F-33000 Bordeaux, France ; INSERM U853, Bacteriology Laboratory, Université de Bordeaux (site Carreire), F-33076 Bordeaux, France
| |
Collapse
|
26
|
|
27
|
Fliedl L, Manhart G, Kast F, Katinger H, Kunert R, Grillari J, Wieser M, Grillari-Voglauer R. Novel human renal proximal tubular cell line for the production of complex proteins. J Biotechnol 2014; 176:29-39. [DOI: 10.1016/j.jbiotec.2014.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 11/29/2022]
|
28
|
Gigolashvili T, Kopriva S. Transporters in plant sulfur metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:442. [PMID: 25250037 PMCID: PMC4158793 DOI: 10.3389/fpls.2014.00442] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 05/02/2023]
Abstract
Sulfur is an essential nutrient, necessary for synthesis of many metabolites. The uptake of sulfate, primary and secondary assimilation, the biosynthesis, storage, and final utilization of sulfur (S) containing compounds requires a lot of movement between organs, cells, and organelles. Efficient transport systems of S-containing compounds across the internal barriers or the plasma membrane and organellar membranes are therefore required. Here, we review a current state of knowledge of the transport of a range of S-containing metabolites within and between the cells as well as of their long distance transport. An improved understanding of mechanisms and regulation of transport will facilitate successful engineering of the respective pathways, to improve the plant yield, biotic interaction and nutritional properties of crops.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
- *Correspondence: Tamara Gigolashvili, Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Zülpicher Street 47 B, 50674 Cologne, Germany e-mail:
| | - Stanislav Kopriva
- Plant Biochemistry Department, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
| |
Collapse
|
29
|
Morelli CF, Calvio C, Biagiotti M, Speranza G. pH-Dependent hydrolase, glutaminase, transpeptidase and autotranspeptidase activities ofBacillus subtilisγ-glutamyltransferase. FEBS J 2013; 281:232-45. [DOI: 10.1111/febs.12591] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Carlo F. Morelli
- Department of Chemistry; University of Milan; Italy
- Italian Biocatalysis Center (IBC); c/o Dipartimento di Scienza del Farmaco; University of Pavia; Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology; University of Pavia; Italy
| | | | - Giovanna Speranza
- Department of Chemistry; University of Milan; Italy
- Italian Biocatalysis Center (IBC); c/o Dipartimento di Scienza del Farmaco; University of Pavia; Italy
- Istituto di Scienze e Tecnologie Molecolari (INSTM); CNR; c/o Department of Chemistry; University of Milan; Italy
| |
Collapse
|
30
|
Anilakumar KR, Khanum F, Bawa AS. Effect of coriander seed powder (CSP) on 1, 2-dimethyl hydrazine-induced changes in antioxidant enzyme system and lipid peroxide formation in rats. J Diet Suppl 2013; 7:9-20. [PMID: 22435570 DOI: 10.3109/19390210903534970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of coriander seed powder (CSP), a culinary spice, on dimethyl hydrazine (DMH)-induced oxidative stress and toxicity in rats was investigated. Six groups of 6 male rats each were maintained for 12 weeks as (a) Control; (b) DMH (60 mg/kg body weight) injected; (c) 5% CSP incorporated diet; (d) 5% CSP incorporated diet + DMH; (e) 10% CSP incorporated diet; and (f) 10% CSP incorporated diet + DMH. The rats were sacrificed after 12 weeks. The results revealed that DMH administration lead to an increase in hepatic lipid peroxidation associated with reduction in levels of glutathione (GSH), activity of superoxide dismutase (SOD), and catalase and glucose-6-phosphate dehydrogenase. The coadministration of CSP and DMH diminished the hepatic malondialdehyde (MDA) significantly as compared to DMH-alone administered rats. The intake of coriander seeds at 10% level also enhanced the hepatic GSH-redox system by elevating GSH-Px, GSSGR, and GST activities. The DMH-induced decline in SOD and catalase activities was brought to normal by 10% CSP. The coadministration of CSP and the DMH produced a significant reduction in MDA and enhancement in catalase activity as compared to control. Coriander powder at 5% and 10% levels produced a significant rise in colonic catalase and GSH-Px. The coriander seeds produced significant beneficial effects by reducing the DMH-induced oxidative stress and enhancing the tissue levels of antioxidant/detoxification agent in tissues.
Collapse
Affiliation(s)
- K R Anilakumar
- Biochemistry and Nutrition Discipline, Defence Food Research Laboratory, Mysore, Karnataka, India.
| | | | | |
Collapse
|
31
|
Tolin S, Arrigoni G, Trentin AR, Veljovic-Jovanovic S, Pivato M, Zechman B, Masi A. Biochemical and quantitative proteomics investigations in Arabidopsisggt1mutant leaves reveal a role for the gamma-glutamyl cycle in plant's adaptation to environment. Proteomics 2013; 13:2031-45. [DOI: 10.1002/pmic.201200479] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/13/2013] [Accepted: 04/24/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Serena Tolin
- DAFNAE, University of Padova; Legnaro Italy
- Proteomics Center of Padova University; VIMM, Padova University Hospital; Padova Italy
| | - Giorgio Arrigoni
- Proteomics Center of Padova University; VIMM, Padova University Hospital; Padova Italy
- Department of Biomedical Sciences; University of Padova; Padova Italy
| | | | | | | | - Bernd Zechman
- Karl-Franzens-University of Graz; Institute of Plant Sciences; Graz Austria
| | | |
Collapse
|
32
|
Pang X, Panee J, Liu X, Berry MJ, Chang SL, Chang L. Regional variations of antioxidant capacity and oxidative stress responses in HIV-1 transgenic rats with and without methamphetamine administration. J Neuroimmune Pharmacol 2013; 8:691-704. [PMID: 23546885 PMCID: PMC3773562 DOI: 10.1007/s11481-013-9454-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/17/2013] [Indexed: 11/24/2022]
Abstract
HIV infection and methamphetamine (Meth) abuse both may lead to oxidative stress. This study used HIV-1 transgenic (HIV-1Tg) rats to investigate the independent and combined effects of HIV viral protein expression and low dose repeated Meth exposure on the glutathione (GSH)-centered antioxidant system and oxidative stress in the brain. Total GSH content, gene expression and/or enzymatic activities of glutamylcysteine synthetase (GCS), gamma-glutamyltransferase (GGT), glutathione reductase (GR), glutathione peroxidase (GPx), glutaredoxin (Glrx), and glutathione-s-transferase (GST) were measured. The protein expression of cystine transporter (xCT) and oxidative stress marker 4-hydroxynonenal (HNE) were also analyzed. Brain regions studied include thalamus, frontal and remainder cortex, striatum, cerebellum and hippocampus. HIV-1Tg rats and Meth exposure showed highly regional specific responses. In the F344 rats, the thalamus had the highest baseline GSH concentration and potentially higher GSH recycle rate. HIV-1Tg rats showed strong transcriptional responses to GSH depletion in the thalamus. Both HIV-1Tg and Meth resulted in decreased GR activity in thalamus, and decreased Glrx activity in frontal cortex. However, the increased GR and Glrx activities synergized with increased GSH concentration, which might have partially prevented Meth-induced oxidative stress in striatum. Interactive effects between Meth and HIV-1Tg were observed in thalamus on the activities of GCS and GGT, and in thalamus and frontal cortex on Glrx activity and xCT protein expression. Findings suggest that HIV viral protein and low dose repeated Meth exposure have separate and combined effects on the brain's antioxidant capacity and the oxidative stress response that are regional specific.
Collapse
Affiliation(s)
- Xiaosha Pang
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| | - Jun Panee
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| | - Xiangqian Liu
- Institute of NeuroImmune Pharmacology and Department of
Biological Sciences, Seton Hall University, South Orange, NJ 07079
- Department of Histology and Embryology, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, P.R.
China
| | - Marla J. Berry
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology and Department of
Biological Sciences, Seton Hall University, South Orange, NJ 07079
| | - Linda Chang
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| |
Collapse
|
33
|
Inhibition of human γ-glutamyl transpeptidase: development of more potent, physiologically relevant, uncompetitive inhibitors. Biochem J 2013; 450:547-57. [PMID: 23301618 DOI: 10.1042/bj20121435] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GGT (γ-glutamyl transpeptidase) is an essential enzyme for maintaining cysteine homoeostasis, leukotriene synthesis, metabolism of glutathione conjugates and catabolism of extracellular glutathione. Overexpression of GGT has been implicated in many pathologies, and clinical inhibitors of GGT are under development for use in the treatment of asthma, cancer and other diseases. Inhibitors are generally characterized using synthetic GGT substrates. The present study of uncompetitive inhibitors of GGT, has revealed that the potency with which compounds inhibit GGT activity in the standard biochemical assay does not correlate with the potency with which they inhibit the physiological reaction catalysed by GGT. Kinetic studies provided insight into the mechanism of inhibition. Modifications to the sulfobenzene or distal benzene ring of the uncompetitive inhibitor OU749 affected activity. One of the most potent inhibitors was identified among a novel group of analogues with an amine group para on the benzosulfonamide ring. New more potent uncompetitive inhibitors of the physiological GGT reaction were found to be less toxic than the glutamine analogues that have been tested clinically. Development of non-toxic inhibitors is essential for exploiting GGT as a therapeutic target.
Collapse
|
34
|
Donor substrate specificity of bovine kidney gamma-glutamyltransferase. Chem Biol Interact 2013; 203:480-5. [DOI: 10.1016/j.cbi.2013.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/18/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
|
35
|
Ikeda Y, Taniguchi N. γ-Glutamyl Transpeptidase Activity Assay. CURRENT PROTOCOLS IN TOXICOLOGY 2013; Chapter 6:Unit6.6. [PMID: 23045058 DOI: 10.1002/0471140856.tx0606s05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gamma-glutamyl transpeptidase catalyzes the transfer of a gamma-glutamyl bond and is of importance in glutathione metabolism. The most common assay methods for this enzyme, in which gamma-glutamyl derivatives of p-nitroaniline are used as a gamma-glutamyl donor, are described in this unit.
Collapse
Affiliation(s)
- Y Ikeda
- Osaka University Medical School, Osaka, Japan
| | | |
Collapse
|
36
|
Shivanna N, Naika M, Khanum F, Kaul VK. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complications 2013; 27:103-13. [PMID: 23140911 DOI: 10.1016/j.jdiacomp.2012.10.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 09/15/2012] [Accepted: 10/01/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Stevia rebaudiana Bertoni has been used for the treatment of diabetes in, for example, Brazil, although a positive effect on antidiabetic and its complications has not been unequivocally demonstrated. This herb also has numerous therapeutic properties which have been proven safe and effective over hundreds of years. Streptozotocin is a potential source of oxidative stress that induces genotoxicity. OBJECTIVE We studied the effects of stevia leaves and its extracted polyphenols and fiber on streptozotocin induced diabetic rats. We hypothesize that supplementation of polyphenols extract from stevia to the diet causes a reduction in diabetes and its complications. DESIGN/METHODS Eighty Wistar rats were randomly divided into 8 groups; a standard control diet was supplemented with either stevia whole leaves powder (4.0%) or polyphenols or fiber extracted from stevia separately and fed for one month. Streptozotocin (60 mg/kg body weight, i.p) was injected to the diabetic groups on the 31st day. Several indices were analyzed to assess the modulation of the streptozotocin induced oxidative stress, toxicity and blood glucose levels by stevia. RESULTS The results showed a reduction of blood glucose, ALT and AST, and increment of insulin level in the stevia whole leaves powder and extracted polyphenols fed rats compared to control diabetic group. Its feeding also reduced the MDA concentration in liver and improved its antioxidant status through antioxidant enzymes. Glucose tolerance and insulin sensitivity were improved by their feeding. Streptozotocin was also found to induce kidney damage as evidenced by decreased glomerular filtration rate; this change was however alleviated in the stevia leaves and extracted polyphenol fed groups. CONCLUSION The results suggested that stevia leaves do have a significant role in alleviating liver and kidney damage in the STZ-diabetic rats besides its hypoglycemic effect. It might be adequate to conclude that stevia leaves could protect rats against streptozotocin induced diabetes, reduce the risk of oxidative stress and ameliorate liver and kidney damage.
Collapse
Affiliation(s)
- Naveen Shivanna
- Department of Applied Nutrition, Defence Food Research Laboratory, Mysore, India.
| | | | | | | |
Collapse
|
37
|
Broniowska KA, Diers AR, Hogg N. S-nitrosoglutathione. Biochim Biophys Acta Gen Subj 2013; 1830:3173-81. [PMID: 23416062 DOI: 10.1016/j.bbagen.2013.02.004] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND S-Nitrosoglutathione (GSNO) is the S-nitrosated derivative of glutathione and is thought to be a critical mediator of the down stream signaling effects of nitric oxide (NO). GSNO has also been implicated as a contributor to various disease states. SCOPE OF REVIEW This review focuses on the chemical nature of GSNO, its biological activities, the evidence that it is an endogenous mediator of NO action, and implications for therapeutic use. MAJOR CONCLUSIONS GSNO clearly exerts its cellular actions through both NO- and S-nitrosation-dependent mechanisms; however, the chemical and biological aspects of this compound should be placed in the context of S-nitrosation as a whole. GENERAL SIGNIFICANCE GSNO is a central intermediate in formation and degradation of cellular S-nitrosothiols with potential therapeutic applications; thus, it remains an important molecule of study. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
|
38
|
Irie M, Sohda T, Iwata K, Kunimoto H, Fukunaga A, Kuno S, Yotsumoto K, Sakurai K, Iwashita H, Hirano G, Ueda SI, Yokoyama K, Morihara D, Nishizawa S, Anan A, Takeyama Y, Sakamoto M, Shakado S, Sakisaka S. Levels of the oxidative stress marker γ-glutamyltranspeptidase at different stages of nonalcoholic fatty liver disease. J Int Med Res 2013; 40:924-33. [PMID: 22906265 DOI: 10.1177/147323001204000311] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This study investigated oxidative stress in the liver, by determining hepatic expression and serum levels of γ-glutamyltranspeptidase (GGT) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in different stages of nonalcoholic fatty liver disease (NAFLD), and assessed whether GGT can differentiate between the various stages of NAFLD. METHODS Expression of GGT and 8-OHdG was examined in biopsy specimens by immunohistochemistry, and serum GGT and 8-OHdG levels were measured by enzyme-linked immuno sorbent assays in patients with simple fatty liver (n = 10), nonalcoholic steatohepatitis (NASH; n = 10) and, as a control, in alcoholic liver disease (ALD; n = 10). RESULTS Hepatic tissue expression of GGT and 8-OHdG was seen in ALD, NASH and fatty liver patients. The percentage of hepatocytes positive for 8-OHdG expression and serum 8-OHdG levels was significantly higher in patients with NASH than simple fatty liver. Serum GGT levels were increased in all cases with ALD, NASH and fatty liver, and correlated significantly with serum levels of 8-OHdG in ALD and NASH, but not in simple fatty liver. CONCLUSIONS Levels of GGT in fatty liver patients may compensate for mild oxidative stress by repressing 8-OHdG levels and preventing progression to NASH; however further oxidative stress leads to increased levels of 8-OHdG and the development of NASH.
Collapse
Affiliation(s)
- M Irie
- Department of Gastroenterology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Castellano I, Merlino A. Gamma-Glutamyl Transpeptidases: Structure and Function. GAMMA-GLUTAMYL TRANSPEPTIDASES 2013. [DOI: 10.1007/978-3-0348-0682-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
|
41
|
Reduced lipid intake leads to changes in digestive enzymes in the intestine but has minor effects on key enzymes of hepatic intermediary metabolism in rainbow trout ( Oncorhynchus mykiss). Animal 2012; 1:1272-82. [PMID: 22444883 DOI: 10.1017/s1751731107000596] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For sustainable aquaculture, the removal of marine resource ingredients in fish diets is an important objective. While most studies focus on the replacement of fish oil by vegetable oil, little is known on the nutritional effects of presence (which corresponds to the control diet) or absence of dietary fish oil. We studied fatty acid composition of brush-border membranes and digestive enzyme activities of the intestine and measured the expression and activities of several enzymes involved in the hepatic intermediary metabolism of rainbow trout (Oncorhynchus mykiss) fed for 7 weeks with or without fish oil. The diets were pair-fed to ensure that fish fed either diet had comparable carbohydrate and protein intakes. Absence of fish oil significantly reduced growth rate, protein efficiency and plasma lipid components. Activities of intestinal digestive enzymes were significantly decreased in the anterior intestine in fish fed without fish oil. In liver, dietary fish oil removal did not affect the transcript levels or activities of the main enzymes involved in lipogenesis (fatty acid synthase) and fatty acid β-oxidation (3-hydroxyacyl-CoA dehydrogenase), glycolysis or amino acid oxidation. It lowered the expression of the genes coding for gluconeogenic enzymes (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase), but their enzyme activities were not affected. The activities, but not gene expression of lipogenic enzymes, involved in NADPH and malonyl-CoA formation were also modified after fish oil removal as reflected by higher activities of isocitrate dehydrogenase/glucose-6-phosphate dehydrogenase and acetyl-CoA carboxylase enzymes. Overall, our results indicate that the intestinal digestive capacity was strongly modified by dietary fish oil removal, while hepatic intermediary metabolism was only marginally affected, in fed rainbow trout.
Collapse
|
42
|
Djukic MM, Jovanovic MD, Ninkovic M, Stevanovic I, Ilic K, Curcic M, Vekic J. Protective role of glutathione reductase in paraquat induced neurotoxicity. Chem Biol Interact 2012; 199:74-86. [DOI: 10.1016/j.cbi.2012.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 11/16/2022]
|
43
|
Candiracci M, Citterio B, Piatti E. Antifungal activity of the honey flavonoid extract against Candida albicans. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Tasnim F, Kandasamy K, Muck JS, bin Ibrahim MS, Ying JY, Zink D. Effects of Bone Morphogenetic Proteins on Primary Human Renal Cells and the Generation of Bone Morphogenetic Protein-7-Expressing Cells for Application in Bioartificial Kidneys. Tissue Eng Part A 2012; 18:262-76. [DOI: 10.1089/ten.tea.2011.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | - Joscha S. Muck
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | - Jackie Y. Ying
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| |
Collapse
|
45
|
Abstract
Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG.
Collapse
Affiliation(s)
- Eva-Maria Patzewitz
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| | | | | |
Collapse
|
46
|
Li Y, Zheng Y, Zhang K, Ying JY, Zink D. Effects of quantum dots on different renal proximal tubule cell models and on gel-free renal tubules generatedin vitro. Nanotoxicology 2011; 6:121-33. [DOI: 10.3109/17435390.2011.562326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Gamma-glutamyl compounds: substrate specificity of gamma-glutamyl transpeptidase enzymes. Anal Biochem 2011; 414:208-14. [PMID: 21447318 DOI: 10.1016/j.ab.2011.03.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/19/2011] [Accepted: 03/23/2011] [Indexed: 11/23/2022]
Abstract
Gamma-glutamyl compounds include antioxidants, inflammatory molecules, drug metabolites, and neuroactive compounds. Two cell surface enzymes that metabolize gamma-glutamyl compounds have been identified: gamma-glutamyl transpeptidase (GGT1) and gamma-glutamyl leukotrienase (GGT5). There is controversy in the literature regarding the substrate specificity of these enzymes. To address this issue, we have developed a method for comprehensive kinetic analysis of compounds as substrates for GGT enzymes. Our assay is sensitive, quantitative, and conducted at physiological pH. We evaluated a series of gamma-glutamyl compounds as substrates for human GGT1 and human GGT5. The K(m) value for reduced glutathione was 11μM for both GGT1 and GGT5. However, the K(m) values for oxidized glutathione were 9μM for GGT1 and 43μM for GGT5. Our data show that the K(m) values for leukotriene C(4) are equivalent for GGT1 and GGT5 at 10.8 and 10.2μM, respectively. This assay was also used to evaluate serine-borate, a well-known inhibitor of GGT1, which was 8-fold more potent in inhibiting GGT1 than in inhibiting GGT5. These data provide essential information regarding the target enzymes for developing treatments for inflammatory diseases such as asthma and cardiovascular disease in humans. This assay is invaluable for studies of oxidative stress, drug metabolism, and other pathways that involve gamma-glutamyl compounds.
Collapse
|
48
|
Ravuri C, Svineng G, Pankiv S, Huseby NE. Endogenous production of reactive oxygen species by the NADPH oxidase complexes is a determinant of γ-glutamyltransferase expression. Free Radic Res 2011; 45:600-10. [PMID: 21381898 DOI: 10.3109/10715762.2011.564164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
γ-Glutamyltransferase (GGT) plays a significant role in antioxidant defence and participates in the metabolism of glutathione (GSH). The enzyme is up-regulated after acute oxidative stress and during pro-oxidant periods, but the underlying regulatory mechanisms are not well known. The present investigation studied whether the endogenous reactive oxygen species (ROS) level was a determinant for GGT expression. A substantial amount of ROS is produced through the NADPH oxidase (NOX) system and knockdown of p22phox, a sub-unit of NOX1-4, resulted not only in reduced ROS levels but also in reduced GGT expression in human endometrial carcinoma cells. Phorbol-12-myristate-13-acetate (PMA) is an activator of NOX and it was found that PMA treatment of human colon carcinoma cells both increased cellular ROS levels and subsequently up-regulated GGT expression. On the other hand, the NOX inhibitor apocynin reduced ROS levels as well as GGT expression. The GGT mRNA sub-type A was increased after PMA-induced NOX activation. These results demonstrate that ROS generated from NOX enzymes are a significant determinant for GGT expression and activity.
Collapse
Affiliation(s)
- Chandra Ravuri
- Tumor Biology Research Group, Faculty of Health Sciences, University of Tromsø, Norway
| | | | | | | |
Collapse
|
49
|
Lee YM. Effect of Apocynin on Acute Lung Injury in Rats Given Interleukin-1α Intratracheally. Tuberc Respir Dis (Seoul) 2011. [DOI: 10.4046/trd.2011.70.6.482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Young Man Lee
- Department of Physiology, The Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
50
|
Franzini M, Fornaciari I, Siciliano G, Volpi L, Ricci G, Marchi S, Gagliardi G, Baggiani A, Torracca F, Fierabracci V, Miccoli M, Pompella A, Emdin M, Paolicchi A. Serum gamma-glutamyltransferase fractions in Myotonic Dystrophy type I: Differences with healthy subjects and patients with liver disease. Clin Biochem 2010; 43:1246-8. [DOI: 10.1016/j.clinbiochem.2010.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/16/2010] [Accepted: 07/17/2010] [Indexed: 01/19/2023]
|