1
|
Kato M, Sugiyama T, Sakai K, Yamashita T, Fujita H, Sato K, Tomonari S, Shichida Y, Ohuchi H. Two Opsin 3-Related Proteins in the Chicken Retina and Brain: A TMT-Type Opsin 3 Is a Blue-Light Sensor in Retinal Horizontal Cells, Hypothalamus, and Cerebellum. PLoS One 2016; 11:e0163925. [PMID: 27861495 PMCID: PMC5115664 DOI: 10.1371/journal.pone.0163925] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/17/2016] [Indexed: 01/15/2023] Open
Abstract
Opsin family genes encode G protein-coupled seven-transmembrane proteins that bind a retinaldehyde chromophore in photoreception. Here, we sought potential as yet undescribed avian retinal photoreceptors, focusing on Opsin 3 homologs in the chicken. We found two Opsin 3-related genes in the chicken genome: one corresponding to encephalopsin/panopsin (Opn3) in mammals, and the other belonging to the teleost multiple tissue opsin (TMT) 2 group. Bioluminescence imaging and G protein activation assays demonstrated that the chicken TMT opsin (cTMT) functions as a blue light sensor when forced-expressed in mammalian cultured cells. We did not detect evidence of light sensitivity for the chicken Opn3 (cOpn3). In situ hybridization demonstrated expression of cTMT in subsets of differentiating cells in the inner retina and, as development progressed, predominant localization to retinal horizontal cells (HCs). Immunohistochemistry (IHC) revealed cTMT in HCs as well as in small numbers of cells in the ganglion and inner nuclear layers of the post-hatch chicken retina. In contrast, cOpn3-IR cells were found in distinct subsets of cells in the inner nuclear layer. cTMT-IR cells were also found in subsets of cells in the hypothalamus. Finally, we found differential distribution of cOpn3 and cTMT proteins in specific cells of the cerebellum. The present results suggest that a novel TMT-type opsin 3 may function as a photoreceptor in the chicken retina and brain.
Collapse
Affiliation(s)
- Mutsuko Kato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sayuri Tomonari
- Department of Life Systems, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| |
Collapse
|
2
|
Sakai K, Yamashita T, Imamoto Y, Shichida Y. Diversity of Active States in TMT Opsins. PLoS One 2015; 10:e0141238. [PMID: 26491964 PMCID: PMC4619619 DOI: 10.1371/journal.pone.0141238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022] Open
Abstract
Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions.
Collapse
Affiliation(s)
- Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
3
|
Yamashita T, Tose K, Shichida Y. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin. Photochem Photobiol 2008; 84:931-6. [PMID: 18363619 DOI: 10.1111/j.1751-1097.2008.00327.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G protein-coupled receptors (GPCRs) are classified into several families based on their amino acid sequences. In family 1, GPCRs such as rhodopsin and adrenergic receptor, the structure-function relationship has been extensively investigated to demonstrate that exposure of the third cytoplasmic loop is essential for selective G protein activation. In contrast, much less is known about other families. Here we prepared chimeric mutants between Gt-coupled rhodopsin and Gi/Go- and Gs-coupled glucagon-like peptide-1 (GLP-1) receptor of family 2 and tried to identify the loop region that functions at the third cytoplasmic loop position of rhodopsin. We succeeded in expressing a mutant having the first cytoplasmic loop of GLP-1 receptor and found that this mutant activated Gi and Go efficiently but did not activate Gt. Moreover, the rhodopsin mutant having the first loop of Gs-coupled secretin receptor of family 2 decreased the Gi and Go activation efficiencies. Therefore, the first loop of GLP-1 receptor would share a similar role to the third loop of rhodopsin in G protein activation. This result strongly suggested that different families of GPCRs have maintained molecular architectures of their ancestral types to generate a common mechanism, namely exposure of the cytoplasmic loop, to activate peripheral G protein.
Collapse
Affiliation(s)
- Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
4
|
Cabrera-Vera TM, Thomas TO, Vanhauwe J, Depree KM, Graber SG, Hamm HE. Dissecting receptor-G protein specificity using G alpha chimeras. Methods Enzymol 2002; 344:69-81. [PMID: 11771421 DOI: 10.1016/s0076-6879(02)44706-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
In conclusion, by taking advantage of the overall sequence homology and structural similarity of G alpha subunits, functional chimeric G alpha subunits can be generated and used as tools for the identification of sequence-specific factors that mediate receptor: G protein specificity. The [35S]GTP gamma S binding assay and the affinity shift activity assay are two sensitive biochemical approaches that can be used to assess receptor: G protein coupling in vitro. These in vitro assays limit confounding influences from cellular proteins and allow for the strict control of receptor: G protein ratios.
Collapse
Affiliation(s)
- Theresa M Cabrera-Vera
- Department of Molecular Pharmacology and Biochemistry, Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
5
|
Dell EJ, Blackmer T, Skiba NP, Daaka Y, Shekter LR, Rosal R, Reuveny E, Hamm HE. Defining G protein beta gamma specificity for effector recognition. Methods Enzymol 2002; 344:421-34. [PMID: 11771401 DOI: 10.1016/s0076-6879(02)44731-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- E J Dell
- Institute for Neuroscience, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60613, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Terakita A, Yamashita T, Nimbari N, Kojima D, Shichida Y. Functional interaction between bovine rhodopsin and G protein transducin. J Biol Chem 2002; 277:40-6. [PMID: 11606568 DOI: 10.1074/jbc.m104960200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the mechanisms of specific coupling of bovine rhodopsin with the G protein transducin (G(t)), we have constructed the bovine rhodopsin mutants whose second or third cytoplasmic loop (loop 2 or 3) was replaced with the corresponding loop of the G(o)-coupled scallop rhodopsin and investigated the difference in the activation abilities for G(t), G(o), and G(i) among these mutants and wild type. We have also prepared the Galpha(i) mutants whose C-terminal 11 or 5 amino acids were replaced with those of Galpha(t), Galpha(o), and Galpha(q) to evaluate the role of the C-terminal tail of the alpha-subunit on the specific coupling of bovine rhodopsin with G(t). Replacement of loop 2 of bovine rhodopsin with that of the scallop rhodopsin caused about a 40% loss of G(t) and G(o) activation, whereas that of loop 3 enhanced the G(o) activation four times with a 60% decrease in the G(t) activation. These results indicated that loop 3 of bovine rhodopsin is one of the regions responsible for the specific coupling with G(t). Loop 3 of bovine rhodopsin discriminates the difference of the 6-amino acid sequence (region A) at a position adjacent to the C-terminal 5 amino acids of the G protein, resulting in the different activation efficiency between G(t) and G(o). In addition, the binding of region A to loop 3 of bovine rhodopsin is essential for activation of G(t) but not G(i), even though the sequence of the region A is almost identical between Galpha(t) and Galpha(i). These results suggest that the binding of loop 3 of bovine rhodopsin to region A in Galpha(t) is one of the mechanisms of specific G(t) activation by bovine rhodopsin.
Collapse
Affiliation(s)
- Akihisa Terakita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
7
|
Yamashita T, Terakita A, Shichida Y. Distinct roles of the second and third cytoplasmic loops of bovine rhodopsin in G protein activation. J Biol Chem 2000; 275:34272-9. [PMID: 10930404 DOI: 10.1074/jbc.m002954200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to the extensive studies of light-induced conformational changes in rhodopsin, the cytoplasmic architecture of rhodopsin related to the G protein activation and the selective recognition of G protein subtype is still unclear. Here, we prepared a set of bovine rhodopsin mutants whose cytoplasmic loops were replaced by those of other ligand-binding receptors, and we compared their ability for G protein activation in order to obtain a clue to the roles of the second and third cytoplasmic loops of rhodopsin. The mutants bearing the third loop of four other G(o)-coupled receptors belonging to the rhodopsin superfamily showed significant G(o) activation, indicating that the third loop of rhodopsin possibly has a putative site(s) related to the interaction of G protein and that it is simply exchangeable with those of other G(o)-coupled receptors. The mutants bearing the second loop of other receptors, however, had little ability for G protein activation, suggesting that the second loop of rhodopsin contains a specific region essential for rhodopsin to be a G protein-activating form. Systematic chimeric and point mutational studies indicate that three amino acids (Glu(134), Val(138), and Cys(140)) in the N-terminal region of the second loop of rhodopsin are crucial for efficient G protein activation. These results suggest that the second and third cytoplasmic loops of bovine rhodopsin have distinct roles in G protein activation and subtype specificity.
Collapse
Affiliation(s)
- T Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | | | | |
Collapse
|
8
|
McKillop IH, Vyas N, Schmidt CM, Cahill PA, Sitzmann JV. Enhanced Gi-protein-mediated mitogenesis following chronic ethanol exposure in a rat model of experimental hepatocellular carcinoma. Hepatology 1999; 29:412-20. [PMID: 9918917 DOI: 10.1002/hep.510290218] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hepatocellular carcinoma (HCC) is associated with increased expression and function of inhibitory guanine nucleotide regulatory proteins (Gi-proteins). This study addresses the effects of chronic ethanol exposure on the expression and function of adenylyl cyclase (AC)-linked G-proteins (Gs and Gi) and growth in experimental HCC. G-protein expression and function was determined by immunoblot in the hepatic tumorigenic H4IIE cell line and isolated cultured hepatocytes in the absence or presence of ethanol (5-100 mmol/L). Chronic exposure (24 hours) to ethanol dose-dependently increased Gialpha1/2 expression in the H4IIE cell line, but not in cultured hepatocytes. Gsalpha-protein expression remained unchanged in both H4IIE cells and cultured hepatocytes following ethanol treatment. In addition, ethanol directly activated a Gi-protein, because pertussis toxin (PTx)-catalyzed, adenosine diphosphate (ADP)-dependent ribosylation of Gialpha substrates decreased following ethanol treatment. The increased functional activity of Gialpha1/2-protein expression was confirmed by demonstrating that ethanol dose-dependently inhibited basal and stimulated AC activity in H4IIE cells, while not significantly altering basal AC activity in isolated cultured hepatocytes. Furthermore, while ethanol had no significant effect on basal mitogenesis in H4IIE cells or hepatocytes, increased mitogenesis caused by direct Gialpha-protein stimulation (mastoparan M7; 10-5,000 nmol/L) was further enhanced in the presence of ethanol, an effect that was completely blocked following Gi-protein inhibition (PTx; 100 ng/mL). In contrast, activation of Gi-proteins using M7 failed to alter cellular mitogenesis in isolated cultured hepatocytes, whether in the absence or presence of ethanol. Finally, analysis of mitogen-activated protein kinase (MAPK) activity demonstrated that chronic ethanol treatment further enhanced Gi-protein-stimulated MAPK activity in hepatic tumorigenic cells. In conclusion, these data demonstrate that ethanol enhances cellular mitogenesis in experimental HCC as a result of, at least in part, a Gi-MAPK-dependent pathway. Furthermore, this effect may be caused by ethanol's direct up-regulation of the expression and activity of Gi-proteins in HCC.
Collapse
Affiliation(s)
- I H McKillop
- Department of Surgery, Georgetown University Medical Center, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
9
|
Smine A, Xu X, Nishiyama K, Katada T, Gambetti P, Yadav SP, Wu X, Shi YC, Yasuhara S, Homburger V, Okamoto T. Regulation of brain G-protein go by Alzheimer's disease gene presenilin-1. J Biol Chem 1998; 273:16281-8. [PMID: 9632688 DOI: 10.1074/jbc.273.26.16281] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate a possible association between G-proteins and presenilin-1 (PS-1), a series of glutathione S-transferase-fusion proteins containing portions of PS-1 were prepared and used in vitro in binding experiments with tissue and recombinant G-proteins. The results demonstrate that the 39 C-terminal amino acids of PS-1 selectively bind the brain G-protein, Go. Addition of guanosine 5'-3-O-(thio)triphosphate promoted Go dissociation from PS-1, indicating that this domain mimics the function of G-protein-coupling domains found in receptors. The 39-amino acid synthetic polypeptide activated Go in a magnesium ion-dependent manner. Physical interaction of full-length PS-1 and Go was also demonstrated. Following transfection of Goalpha and N-terminally FLAG-tagged PS-1 in COS-7 cells, Go was immunoprecipitated by FLAG antibodies. In addition, endogenous PS-1 and Goalpha were colocalized immunocytochemically in human glioma cell lines. The results indicate that PS-1 regulates Go activities in living cells.
Collapse
Affiliation(s)
- A Smine
- The Lerner Research Institute, Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ford CE, Skiba NP, Bae H, Daaka Y, Reuveny E, Shekter LR, Rosal R, Weng G, Yang CS, Iyengar R, Miller RJ, Jan LY, Lefkowitz RJ, Hamm HE. Molecular basis for interactions of G protein betagamma subunits with effectors. Science 1998; 280:1271-4. [PMID: 9596582 DOI: 10.1126/science.280.5367.1271] [Citation(s) in RCA: 360] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Both the alpha and betagamma subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins) communicate signals from receptors to effectors. Gbetagamma subunits can regulate a diverse array of effectors, including ion channels and enzymes. Galpha subunits bound to guanine diphosphate (Galpha-GDP) inhibit signal transduction through Gbetagamma subunits, suggesting a common interface on Gbetagamma subunits for Galpha binding and effector interaction. The molecular basis for interaction of Gbetagamma with effectors was characterized by mutational analysis of Gbeta residues that make contact with Galpha-GDP. Analysis of the ability of these mutants to regulate the activity of calcium and potassium channels, adenylyl cyclase 2, phospholipase C-beta2, and beta-adrenergic receptor kinase revealed the Gbeta residues required for activation of each effector and provides evidence for partially overlapping domains on Gbeta for regulation of these effectors. This organization of interaction regions on Gbeta for different effectors and Galpha explains why subunit dissociation is crucial for signal transmission through Gbetagamma subunits.
Collapse
Affiliation(s)
- C E Ford
- Institute for Neuroscience and Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kanzaki M, Lindorfer MA, Garrison JC, Kojima I. Activation of the calcium-permeable cation channel CD20 by alpha subunits of the Gi protein. J Biol Chem 1997; 272:14733-9. [PMID: 9169438 DOI: 10.1074/jbc.272.23.14733] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
When the calcium-permeable cation channel CD20 is expressed in Balb/c 3T3 cells, it is activated by insulin-like growth factor-I (IGF-I) via the IGF-I receptor (Kanzaki, M., Nie, L., Shibata, H., and Kojima, I. (1997) J. Biol. Chem. 272, 4964-4969). The present study was conducted to investigate the role of G proteins in the regulation of the CD20 channel. In the excised patch clamp mode, activation of the CD20 channel by IGF-I required GTP, Mg2+, and ATP in the bath solution, and removal of either GTP or ATP attenuated the activation. Non-hydrolyzable ATP could substitute for ATP, and guanyl-5'-yl thiophosphate blocked the activation of the channel by IGF-I. The CD20 channel was also activated by guanosine 5'-3-O-(thio)triphosphate, and ATP was not required for the activation. Addition of a preparation of Gi/Go holoprotein purified from bovine brain activated the CD20, and the beta-adrenergic receptor kinase peptide did not affect the number of channel openings induced by the G protein. The CD20 channel was stimulated by the GTP-bound form of recombinant Gi2 alpha subunit purified from Sf9 cells. The Gi3 alpha subunit was less effective, and the Gi1 alpha subunit had no effect. Purified recombinant beta1gamma2 subunits did not affect the activity of the channel. Finally, IGF-I-induced activation of CD20 was inhibited by an antibody against Gi2 alpha subunit. These findings indicate that the CD20 channel expressed in Balb/c 3T3 cells is activated by the IGF-I receptor via the alpha subunits of heterotrimeric G proteins.
Collapse
Affiliation(s)
- M Kanzaki
- Department of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371, Japan
| | | | | | | |
Collapse
|