1
|
Al-Rahahleh RQ, Sobol RW. Poly-ADP-ribosylation dynamics, signaling, and analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:315-337. [PMID: 39221603 PMCID: PMC11604531 DOI: 10.1002/em.22623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
ADP-ribosylation is a reversible post-translational modification that plays a role as a signaling mechanism in various cellular processes. This modification is characterized by its structural diversity, highly dynamic nature, and short half-life. Hence, it is tightly regulated at many levels by cellular factors that fine-tune its formation, downstream signaling, and degradation that together impacts cellular outcomes. Poly-ADP-ribosylation is an essential signaling mechanism in the DNA damage response that mediates the recruitment of DNA repair factors to sites of DNA damage via their poly-ADP-ribose (PAR)-binding domains (PBDs). PAR readers, encoding PBDs, convey the PAR signal to mediate cellular outcomes that in some cases can be dictated by PAR structural diversity. Several PBD families have been identified, each with variable PAR-binding affinity and specificity, that also recognize and bind to distinct parts of the PAR chain. PARylation signaling has emerged as an attractive target for the treatment of specific cancer types, as the inhibition of PAR formation or degradation can selectively eliminate cancer cells with specific DNA repair defects and can enhance radiation or chemotherapy response. In this review, we summarize the key players of poly-ADP-ribosylation and its regulation and highlight PBDs as tools for studying PARylation dynamics and the expanding potential to target PARylation signaling in cancer treatment.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
2
|
Glumoff T, Sowa ST, Lehtiö L. Assay technologies facilitating drug discovery for ADP-ribosyl writers, readers and erasers. Bioessays 2021; 44:e2100240. [PMID: 34816463 DOI: 10.1002/bies.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
ADP-ribosylation is a post-translational modification catalyzed by writer enzymes - ADP-ribosyltransferases. The modification is part of many signaling events, can modulate the function and stability of target proteins, and often results in the recruitment of reader proteins that bind to the ADP-ribosyl groups. Erasers are integral actors in these signaling events and reverse the modification. ADP-ribosylation can be targeted with therapeutics and many inhibitors against writers exist, with some being in clinical use. Inhibitors against readers and erasers are sparser and development of these has gained momentum only in recent years. Drug discovery has been hampered by the lack of specific tools, however many significant advances in the methods have recently been reported. We discuss assays used in the field with a focus on methods allowing efficient identification of small molecule inhibitors and profiling against enzyme families. While human proteins are focused, the methods can be also applied to bacterial toxins and virus encoded erasers that can be targeted to treat infectious diseases in the future.
Collapse
Affiliation(s)
- Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sven T Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Biochemical characterization of mono ADP ribosyl transferase activity of human sirtuin SIRT7 and its regulation. Arch Biochem Biophys 2019; 680:108226. [PMID: 31843644 DOI: 10.1016/j.abb.2019.108226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023]
Abstract
SIRT7, an epigenetic modulator is related to several important cellular processes like aging, genome stability, and metabolism. The mechanistic and regulatory aspect of this enzyme needs to be explored. SIRT7 contains a conserved catalytic core with long flanking N- and C-terminal extensions. We find that the N terminus is involved in substrate binding, thus also in its dual enzyme activity i.e. deacetylation and ADP ribosylation. The C-terminus is not essential for its catalysis. Mutation of certain residues at the active site suggests that mono ADP-ribosylation and deacetylation are two distinct activities of SIRT7. In this study, we also find that the SIRT7 enzyme can specifically transfer a single moiety of ADP ribose on other nuclear proteins, with a preference for NAD+. For this, the ADPr transfer follows the enzymatic reaction mechanism. Nicotinamide and certain metal ions have a significant negative effect on this mono ADP ribosylation process. A comparison of these dual activities suggests SIRT7's preference for the mono ADPr transfer over its deacetylation of H3K18Ac. Mono ADP ribosylation in cells is often linked to different metabolic disease conditions. This kind of modification of transcription factors, p53 and ELK4 by SIRT7 may play a key role in maintaining the tumor phenotype. Thus, SIRT7 becomes an important therapeutic hotspot for drug designing against several diseases. Finally, we can also relate SIRT7 to the DNA repair process through ADP ribosylation of one of its key players, PARP1. Here, SIRT7 positively regulates the PARP1 activity.
Collapse
|
4
|
Depaix A, Kowalska J. NAD Analogs in Aid of Chemical Biology and Medicinal Chemistry. Molecules 2019; 24:molecules24224187. [PMID: 31752261 PMCID: PMC6891637 DOI: 10.3390/molecules24224187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) serves as an essential redox co-factor and mediator of multiple biological processes. Besides its well-established role in electron transfer reactions, NAD serves as a substrate for other biotransformations, which, at the molecular level, can be classified as protein post-translational modifications (protein deacylation, mono-, and polyADP-ribosylation) and formation of signaling molecules (e.g., cyclic ADP ribose). These biochemical reactions control many crucial biological processes, such as cellular signaling and recognition, DNA repair and epigenetic modifications, stress response, immune response, aging and senescence, and many others. However, the links between the biological effects and underlying molecular processes are often poorly understood. Moreover, NAD has recently been found to tag the 5′-ends of some cellular RNAs, but the function of these NAD-capped RNAs remains largely unrevealed. Synthetic NAD analogs are invaluable molecular tools to detect, monitor, structurally investigate, and modulate activity of NAD-related enzymes and biological processes in order to aid their deeper understanding. Here, we review the recent advances in the design and development of NAD analogs as probes for various cellular NAD-related enzymes, enzymatic inhibitors with anticancer or antimicrobial therapeutic potential, and other NAD-related chemical biology tools. We focus on research papers published within the last 10 years.
Collapse
|
5
|
The multifunctional protein YB-1 potentiates PARP1 activity and decreases the efficiency of PARP1 inhibitors. Oncotarget 2018; 9:23349-23365. [PMID: 29805738 PMCID: PMC5955111 DOI: 10.18632/oncotarget.25158] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/02/2018] [Indexed: 02/06/2023] Open
Abstract
Y-box-binding protein 1 (YB-1) is a multifunctional cellular factor overexpressed in tumors resistant to chemotherapy. An intrinsically disordered structure together with a high positive charge peculiar to YB-1 allows this protein to function in almost all cellular events related to nucleic acids including RNA, DNA and poly(ADP-ribose) (PAR). In the present study we show that YB-1 acts as a potent poly(ADP-ribose) polymerase 1 (PARP1) cofactor that can reduce the efficiency of PARP1 inhibitors. Similarly to that of histones or polyamines, stimulatory effect of YB-1 on the activity of PARP1 was significantly higher than the activator potential of Mg2+ and was independent of the presence of EDTA. The C-terminal domain of YB-1 proved to be indispensable for PARP1 stimulation. We also found that functional interactions of YB-1 and PARP1 can be mediated and regulated by poly(ADP-ribose).
Collapse
|
6
|
A rapid fluorescent method for the real-time measurement of poly(ADP-ribose) polymerase 1 activity. Anal Biochem 2018; 545:91-97. [PMID: 29326071 DOI: 10.1016/j.ab.2017.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/27/2017] [Accepted: 12/30/2017] [Indexed: 01/17/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a key enzyme that regulates important cellular processes, including DNA repair. PARP1 binds to a DNA damage site and synthesizes poly(ADP-ribose) chains (PARs), which serve as a signal of DNA damage for other DNA repair enzymes. PARP1 is a recognized target for the development of anti-cancer drugs. In this work, a method is developed that makes it possible to investigate the complex formation of PARP1 with DNA as well as its dissociation by detecting the fluorescence anisotropy of this complex during the poly(ADP-ribose) synthesis. The method allows investigation of the inhibition of PARP1 activity in the presence of its inhibitors. In this work, we demonstrated that PARP1 is activated by DNA duplexes containing a damage and a fluorophore at the 3'-end of one of the DNA duplex chains. The effects of the clinical inhibitor olaparib on the activity of PARP1 was studied. It was shown that olaparib has no influence on the binding of PARP1 to the model DNA structures used, but it significantly inhibits the poly(ADP-ribosyl)ation of PARP1. The proposed convenient method for the real-time determination of the PARP1 activity can be used to screen PARP1 inhibitors with the calculation of quantitative inhibition parameters.
Collapse
|
7
|
Abstract
ADP-ribosylation, a posttranslational modification catalyzed by a family of enzymes known as poly(ADP-ribose) polymerases (PARPs, 17 in humans), regulates diverse cellular processes. To aid in understanding the functions of ADP-ribosylation in cells, we developed a clickable aminooxy probe, AO-alkyne, which detects ADP-ribosylation of acidic amino acids. AO-alkyne can be used to detect auto-ADP-ribosylation of PARP10 in cells following Cu-catalyzed click conjugation to an azide reporter. This method can be extended to other PARP family members that catalyze ADP-ribosylation on acidic amino acids, providing a convenient and direct readout of PARP activity in cells.
Collapse
|
8
|
Synthesis of adenosine-imprinted microspheres for the recognition of ADP-ribosylated proteins. Biosens Bioelectron 2016; 87:858-864. [PMID: 27657848 DOI: 10.1016/j.bios.2016.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/02/2023]
Abstract
Core-shell structural adenosine-imprinted microspheres were prepared via a two-step procedure. Polystyrene core particles (CP) were firstly prepared via a reversible addition-fragmentation chain transfer (RAFT) polymerization leaving the iniferter on the surface of the cores, then a molecularly imprinted polymer (MIP) shell was synthesized on the surface of the cores by using acrylamide (AAm) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The formation and growth of the MIP layer were seen dependent on the initiator (AIBN), AAm and the polymerization time used within the polymerization. SEM/TEM images showed that the dimensions of the cores and shells were 2μM and 44nm, respectively. The MIP microspheres exhibited a fast rebinding rate within 2h and a maximum adsorption capacity of 177μg per gram for adenosine. The adsorption fitted a Langmuir-Freundlich (LF) isotherm model with a KLF value of 41mL/μg and a qm value of 177μg/g for the MIP microspheres. The values were larger than those for a non-molecularly imprinted polymer (NIP) particles (5mL/μg and 88μg/g) indicating a better adsorption ability towards adenosine. The MIP microspheres showed a good selectivity for adenosine with a higher adsorption (683nmol/g) for adenosine than that (91nmol/g, 24nmol/g and 54nmol/g) for guanosine, cytidine and uridine respectively. Further experiment proved that the adenosine-imprinted polymer microspheres also had a good selectivity for ADP-ribosylated proteins that the MIP could extract the ADP-ribosylated proteins from the cell extract samples.
Collapse
|
9
|
Kim BR, Yoon K, Byun HJ, Seo SH, Lee SH, Rho SB. The anti-tumor activator sMEK1 and paclitaxel additively decrease expression of HIF-1α and VEGF via mTORC1-S6K/4E-BP-dependent signaling pathways. Oncotarget 2015; 5:6540-51. [PMID: 25153728 PMCID: PMC4171649 DOI: 10.18632/oncotarget.2119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recently, we found that sMEK1 effectively regulates pro-apoptotic activity when combined with a traditional chemotherapeutic drug. Therefore, combinational therapeutic strategies targeting critical molecular and cellular mechanisms are urgently required. In this present work, we evaluated whether sMEK1 enhanced the pro-apoptotic activity of chemotherapeutic drugs in ovarian carcinoma cells. Combined with a chemotherapeutic drug, sMEK1 showed an additive effect on the suppression of ovarian cancer cell growth by inducing cell cycle arrest and apoptosis and regulating related gene expression levels or protein activities. In addition, the phosphoinositide-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was strongly inhibited by the combined treatment, showing de-repression of the tuberous sclerosis complex (TSC) and suppression of ras homolog enriched in the brain (Rheb) and mTOR and raptor in aggressive ovarian carcinoma cells and mouse xenograft models. Treatment with sMEK1 and paclitaxel reduced phosphorylation of ribosomal S6 kinase (S6K) and 4E-binding protein (4E-BP), two critical downstream targets of the mTOR-signaling pathway. Furthermore, both sMEK1 and paclitaxel significantly inhibited the expression of signaling components downstream of S6K/4E-BP, such as hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), both in vitro and in vivo. Therefore, our data suggest that the combination of sMEK1 and paclitaxel is a promising and effective targeted therapy for chemotherapy-resistant or recurrent ovarian cancers.
Collapse
Affiliation(s)
- Boh-Ram Kim
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea; These Authors contributed equally to this work
| | - Kyungsil Yoon
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea; These Authors contributed equally to this work
| | - Hyun-Jung Byun
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Seung Hee Seo
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Seung-Hoon Lee
- Department of Life Science, Yong In University, 470, Samga-dong, Cheoin-gu, Yongin-si Gyeonggi-do, Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Morgan RK, Cohen MS. A Clickable Aminooxy Probe for Monitoring Cellular ADP-Ribosylation. ACS Chem Biol 2015; 10:1778-84. [PMID: 25978521 DOI: 10.1021/acschembio.5b00213] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ADP-ribosylation is essential for cell function, yet there is a dearth of methods for detecting this post-translational modification in cells. Here, we describe a clickable aminooxy alkyne (AO-alkyne) probe that can detect cellular ADP-ribosylation on acidic amino acids following Cu-catalyzed conjugation to an azide-containing reporter. Using AO-alkyne, we show that PARP10 and PARP11 are auto-ADP-ribosylated in cells. We also demonstrate that AO-alkyne can be used to monitor stimulus-induced ADP-ribosylation in cells. Functional studies using AO-alkyne support a previously unknown mechanism for ADP-ribosylation on acidic amino acids, wherein a glutamate or aspartate at the initial C1'-position of ADP-ribose transfers to the C2' position. This new mechanism for ADP-ribosylation has important implications for how glutamyl/aspartyl-ADP-ribose is recognized by proteins in cells.
Collapse
Affiliation(s)
- Rory K. Morgan
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97210, United States
| | - Michael S. Cohen
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97210, United States
| |
Collapse
|
11
|
Kim BR, Lee EJ, Seo SH, Lee SH, Rho SB. Dickkopf-3 (DKK-3) obstructs VEGFR-2/Akt/mTOR signaling cascade by interacting of β2-microglobulin (β2M) in ovarian tumorigenesis. Cell Signal 2015; 27:2150-9. [PMID: 26278164 DOI: 10.1016/j.cellsig.2015.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022]
Abstract
In this study, we investigated a possible mechanism of β2-microglobulin (β2M) function in cancer metastases in vitro, using a human ovarian carcinoma cell line. β2M, a modulator acts as a cell growth-promoting and cellular signaling factors, was identified as a dickkopf-3 (DKK-3) interacting protein. We also observed that DKK-3 suppresses endothelial cell angiogenesis of β2M through vascular endothelial growth factor receptor-2 (VEGFR-2) in tumorigenesis. Luciferase activity was remarkably reduced by the transfection of DKK-3 in a dose-dependent manner. In addition, over-expression of β2M activates cell growth by suppressing DKK-3-induced apoptosis. The effect of β2M on cell cycle and apoptosis-regulatory components was also confirmed through the silencing of β2M expression. Furthermore, induction of β2M-mediated VEGFR-2/Akt/mTOR phosphorylation and tumor angiogenesis was significantly suppressed by over-expression of DKK-3. Taken together, our results suggest an underlying mechanism for an increase of β2M-related activity in ovarian tumor cells.
Collapse
Affiliation(s)
- Boh-Ram Kim
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Chung-Ang University Hospital, 224-1, Heuksuk-Dong, Dongjak-Gu, Seoul 156-755, Republic of Korea
| | - Seung Hee Seo
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | - Seung-Hoon Lee
- Department of Life Science, Yong In University, 470, Samga-dong, Cheoin-gu, Yongin-si, Gyeonggi-do 449-714, Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea.
| |
Collapse
|
12
|
Carter-O'Connell I, Cohen MS. Identifying Direct Protein Targets of Poly-ADP-Ribose Polymerases (PARPs) Using Engineered PARP Variants-Orthogonal Nicotinamide Adenine Dinucleotide (NAD+) Analog Pairs. ACTA ACUST UNITED AC 2015; 7:121-39. [PMID: 26344237 DOI: 10.1002/9780470559277.ch140259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poly-ADP-ribose polymerases (PARPs) comprise a family of 17 distinct enzymes that catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to acceptor sites on protein targets. PARPs have been implicated in a number of essential signaling pathways regulating both normal cell function and pathophysiology. To understand the physiological role of each PARP family member in the cell we need to identify the direct targets for each unique PARP in a cellular context. PARP-family member-specific target identification is challenging because of their shared catalytic mechanism and functional redundancy. To address this challenge, we have engineered a PARP variant that efficiently uses an orthogonal NAD+ analog, an analog that endogenous PARPs cannot use, as a substrate for ADP-ribosylation. The protocols in this unit describe a general procedure for using engineered PARP variants-orthogonal NAD+ analog pairs for labeling and identifying the direct targets of the poly-subfamily of PARPs (PARPs 1-3, 5, and 6).
Collapse
Affiliation(s)
- Ian Carter-O'Connell
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Michael S Cohen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
13
|
Identification and analysis of ADP-ribosylated proteins. Curr Top Microbiol Immunol 2015; 384:33-50. [PMID: 25113886 DOI: 10.1007/82_2014_424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The analysis of ADP-ribosylated proteins is a challenging task, on the one hand because of the diversity of the target proteins and the modification sites, on the other hand because of the particular problems posed by the analysis of ADP-ribosylated peptides. ADP-ribosylated proteins can be detected in in vitro experiments after the incorporation of radioactively labeled or chemically modified ADP-ribose. Endogenously ADP-ribosylated proteins may be detected and enriched by antibodies directed against the ADP-ribosyl moiety or by ADP-ribosyl binding macro domains. The determination of the exact attachment site of the modification, which is a prerequisite for the understanding of the specificity of the various ADP-ribosyl transferases and the structural consequences of ADP-ribosylation, necessitates the proteolytic cleavage of the proteins. The resulting peptides can afterwards be enriched either by IMAC (using the affinity of the pyrophosphate group for heavy metal ions) or by immobilized boronic acid beads (using the affinity of the vicinal ribose hydroxy groups for boronic acid). The identification of the modified peptides usually requires tandem mass spectrometric measurements. Problems that hamper the mass spectrometric analysis by collision-induced decay (CID) can be circumvented either by the application of different fragmentation techniques (electron transfer or electron capture dissociation; ETD or ECD) or by enzymatic cleavage of the ADP-ribosyl group to ribosyl-phosphate.
Collapse
|
14
|
Vivelo CA, Leung AKL. Proteomics approaches to identify mono-(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins. Proteomics 2014; 15:203-17. [PMID: 25263235 DOI: 10.1002/pmic.201400217] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/17/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022]
Abstract
ADP-ribosylation refers to the addition of one or more ADP-ribose units onto protein substrates and this protein modification has been implicated in various cellular processes including DNA damage repair, RNA metabolism, transcription, and cell cycle regulation. This review focuses on a compilation of large-scale proteomics studies that identify ADP-ribosylated proteins and their associated proteins by MS using a variety of enrichment strategies. Some methods, such as the use of a poly(ADP-ribose)-specific antibody and boronate affinity chromatography and NAD(+) analogues, have been employed for decades while others, such as the use of protein microarrays and recombinant proteins that bind ADP-ribose moieties (such as macrodomains), have only recently been developed. The advantages and disadvantages of each method and whether these methods are specific for identifying mono(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins will be discussed. Lastly, since poly(ADP-ribose) is heterogeneous in length, it has been difficult to attain a mass signature associated with the modification sites. Several strategies on how to reduce polymer chain length heterogeneity for site identification will be reviewed.
Collapse
Affiliation(s)
- Christina A Vivelo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
15
|
Kim BR, Dong SM, Seo SH, Lee JH, Lee JM, Lee SH, Rho SB. Lysyl oxidase-like 2 (LOXL2) controls tumor-associated cell proliferation through the interaction with MARCKSL1. Cell Signal 2014; 26:1765-73. [DOI: 10.1016/j.cellsig.2014.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/25/2023]
|
16
|
Carter-O'Connell I, Jin H, Morgan RK, David LL, Cohen MS. Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets. J Am Chem Soc 2014; 136:5201-4. [PMID: 24641686 DOI: 10.1021/ja412897a] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adenosine diphosphate ribosyltransferases (ARTDs; ARTD1-17 in humans) are emerging as critical regulators of cell function in both normal physiology and disease. These enzymes transfer the ADP-ribose moiety from its substrate, nicotinamide adenine dinucleotide (NAD(+)), to amino acids of target proteins. The functional redundancy and overlapping target specificities among the 17 ARTDs in humans make the identification of direct targets of individual ARTD family members in a cellular context a formidable challenge. Here we describe the rational design of orthogonal NAD(+) analogue-engineered ARTD pairs for the identification of direct protein targets of individual ARTDs. Guided by initial inhibitor studies with nicotinamide analogues containing substituents at the C-5 position, we synthesized an orthogonal NAD(+) variant and found that it is used as a substrate for several engineered ARTDs (ARTD1, -2, and -6) but not their wild-type counterparts. Comparing the target profiles of ARTD1 (PARP1) and ARTD2 (PARP2) in nuclear extracts highlighted the semi-complementary, yet distinct, protein targeting. Using affinity purification followed by tandem mass spectrometry, we identified 42 direct ARTD1 targets and 301 direct ARTD2 targets. This represents a powerful new technique for identifying direct protein targets of individual ARTD family members, which will facilitate studies delineating the pathway from ARTD activation to a given cellular response.
Collapse
Affiliation(s)
- Ian Carter-O'Connell
- Program in Chemical Biology and Department of Physiology and Pharmacology, and †Department of Biochemistry, Oregon Health & Science University , Portland, Oregon 97210, United States
| | | | | | | | | |
Collapse
|
17
|
Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ, Rho SB. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 2013; 17:989-97. [PMID: 22460505 PMCID: PMC3413814 DOI: 10.1007/s10495-012-0717-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, thioridazine (10-[2-(1-methyl-2-piperidyl) ethyl]-2-methylthiophenothiazine), a well-known anti-psychotic agent was found to have anti-cancer activity in cancer cells. However, the molecular mechanism of the agent in cellular signal pathways has not been well defined. Thioridazine significantly increased early- and late-stage apoptotic fraction in cervical and endometrial cancer cells, suggesting that suppression of cell growth by thioridazine was due to the induction of apoptosis. Cell cycle analysis indicated thioridazine induced the down-regulation of cyclin D1, cyclin A and CDK4, and the induction of p21 and p27, a cyclin-dependent kinase inhibitor. Additionally, we compared the influence of thioridazine with cisplatin used as a control, and similar patterns between the two drugs were observed in cervical and endometrial cancer cell lines. Furthermore, as expected, thioridazine successfully inhibited phosphorylation of Akt, phosphorylation of 4E-BP1 and phosphorylation of p70S6K, which is one of the best characterized targets of the mTOR complex cascade. These results suggest that thioridazine effectively suppresses tumor growth activity by targeting the PI3K/Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Sokbom Kang
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
- Division of Gynecologic Cancer Research, Research Institute and Hospital, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Seung Myung Dong
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Boh-Ram Kim
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Mi Sun Park
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Barry Trink
- Division of Head and Neck Cancer Research, Department of Otolaryngology and Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Hyun-Jung Byun
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| |
Collapse
|
18
|
Park ST, Byun HJ, Kim BR, Dong SM, Park SH, Jang PR, Rho SB. Tumor suppressor BLU promotes paclitaxel antitumor activity by inducing apoptosis through the down-regulation of Bcl-2 expression in tumorigenesis. Biochem Biophys Res Commun 2013; 435:153-9. [PMID: 23628417 DOI: 10.1016/j.bbrc.2013.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 01/30/2023]
Abstract
In this current work, we investigated whether BLU could enhance pro-apoptotic activity of chemotherapeutic drugs in ovarian carcinoma cells. A combination with a chemotherapeutic drug showed an additive effect, and this additive effect was supplemented by the enhancement of caspase-3 and -9 activities. BLU and paclitaxel induced cell cycle arrest in the G2/M phase through the reduction of cyclin dependent kinase 1, cyclin B1, while promoting both p16 and p27 expression. In addition, both BLU and paclitaxel enhanced the expression of the pro-apoptotic protein Bax together with the suppression of anti-apoptotic protein Bcl-2, a protein which is well-known for its function as a regulator in protecting cells from apoptosis. As expected, the Bax and p21 activities were enhanced by BLU or paclitaxel, while a combination of BLU and paclitaxel were additively promoted, whereas Bcl-xL and NF-κB including Bcl-2 activity were inactivated. This study has yielded promising results, which evidence for the first time that BLU could suppress the growth of carcinoma cells. Furthermore, both BLU and paclitaxel inhibited the phosphorylation of signaling components downstream of phosphoinositide 3-kinase, such as 3-phosphoinositide-dependent protein kinase 1, and Akt. Also, BLU plus paclitaxel decreased phosphorylation of p70 ribosomal S6 kinase, as well as decreasing the phosphorylation of glycogen synthase kinase-3β, which is one of the representative targets of the mammalian target of rapamycin signaling cascade. These results provide evidence that BLU enhances G2/M cell cycle arrest and apoptotic cell death through the up-regulation of Bax, p21 and p53 expression.
Collapse
Affiliation(s)
- Sung Taek Park
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University, 948-1, Daerim 1-dong, Yeongdeungpo-gu, Seoul 150-950, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Di Paola S, Micaroni M, Di Tullio G, Buccione R, Di Girolamo M. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1. PLoS One 2012; 7:e37352. [PMID: 22701565 PMCID: PMC3372510 DOI: 10.1371/journal.pone.0037352] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/20/2012] [Indexed: 11/18/2022] Open
Abstract
Background Protein mono-ADP-ribosylation is a reversible post-translational modification that modulates the function of target proteins. The enzymes that catalyze this reaction in mammalian cells are either bacterial pathogenic toxins or endogenous cellular ADP-ribosyltransferases. The latter include members of three different families of proteins: the well characterized arginine-specific ecto-enzymes ARTCs, two sirtuins and, more recently, novel members of the poly(ADP-ribose) polymerase (PARP/ARTD) family that have been suggested to act as cellular mono-ADP-ribosyltransferases. Here, we report on the characterisation of human ARTD15, the only known ARTD family member with a putative C-terminal transmembrane domain. Methodology/Principal Findings Immunofluorescence and electron microscopy were performed to characterise the sub-cellular localisation of ARTD15, which was found to be associated with membranes of the nuclear envelope and endoplasmic reticulum. The orientation of ARTD15 was determined using protease protection assay, and is shown to be a tail-anchored protein with a cytosolic catalytic domain. Importantly, by combining immunoprecipitation with mass spectrometry and using cell lysates from cells over-expressing FLAG-ARTD15, we have identified karyopherin-ß1, a component of the nuclear trafficking machinery, as a molecular partner of ARTD15. Finally, we demonstrate that ARTD15 is a mono-ADP-ribosyltransferase able to induce the ADP-ribosylation of karyopherin-ß1, thus defining the first substrate for this enzyme. Conclusions/Significance Our data reveal that ARTD15 is a novel ADP-ribosyltransferase enzyme with a new intracellular location. Finally, the identification of karyopherin-ß1 as a target of ARTD15-mediated ADP-ribosylation, hints at a novel regulatory mechanism of karyopherin-ß1 functions.
Collapse
Affiliation(s)
- Simone Di Paola
- Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | | | | | | | - Maria Di Girolamo
- Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
- * E-mail:
| |
Collapse
|
20
|
Dong SM, Byun HJ, Kim BR, Lee SH, Trink B, Rho SB. Tumor suppressor BLU enhances pro-apoptotic activity of sMEK1 through physical interaction. Cell Signal 2012; 24:1208-14. [PMID: 22349239 DOI: 10.1016/j.cellsig.2012.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
BLU is a tumor suppressor that acts as a transcriptional regulator through the association with cellular components. However, the working mechanism of BLU in cellular functions was not understood. We found that BLU directly interacts with sMEK1, a regulatory subunit of protein phosphatase 4. Furthermore, we determined the binding domains that are required for interaction between BLU and sMEK1. The N-terminal of BLU was observed to interact with the C-terminal of sMEK1. Binding activity was confirmed by the BLU-dependent increase of sMEK1 expression, as well as by the induced apoptotic activity. Also, expression of BLU and sMEK1 was down-regulated in ovarian and cervical patients, and was hypermethylated. These findings indicate that BLU can mediate the pro-apoptotic activity through the induction of sMEK1.
Collapse
Affiliation(s)
- Seung Myung Dong
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Méré J, Chopard C, Bonhoure A, Morlon-Guyot J, Beaumelle B. Increasing stability and toxicity of Pseudomonas exotoxin by attaching an antiproteasic Peptide. Biochemistry 2011; 50:10052-60. [PMID: 22014283 DOI: 10.1021/bi2010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trypsin-like activities are present within the endocytic pathway and allow cells to inactivate a fraction of incoming toxins, such as Pseudomonas exotoxin (PE), that require endocytic uptake before reaching the cytosol to inactivate protein synthesis. PE is a favorite toxin for building immunotoxins. The latter are promising molecules to fight cancer or transplant rejection, and producing more active toxins is a key challenge. More broadly, increasing protein stability is a potentially useful approach to improve the efficiency of therapeutic proteins. We report here that fusing an antiproteasic peptide (bovine pancreatic trypsin inhibitor, BPTI) to PE increases its toxicity to human cancer cell lines by 20-40-fold. Confocal microscopic examination of toxin endocytosis, digestion, and immunoprecipitation experiments showed that the fused antiproteasic peptide specifically protects PE from trypsin-like activities. Hence, the attached BPTI acts as a bodyguard for the toxin within the endocytic pathway. Moreover, it increased the PE elimination half-time in mice by 70%, indicating that the fused BPTI stabilizes the toxin in vivo. This BPTI-fusion approach may be useful for protecting other circulating or internalized proteins of therapeutic interest from premature degradation.
Collapse
Affiliation(s)
- Jocelyn Méré
- CPBS, UMR 5236 CNRS, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | |
Collapse
|
22
|
Langelier MF, Ruhl DD, Planck JL, Kraus WL, Pascal JM. The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J Biol Chem 2010; 285:18877-87. [PMID: 20388712 DOI: 10.1074/jbc.m110.105668] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PARP-1 is involved in multiple cellular processes, including transcription, DNA repair, and apoptosis. PARP-1 attaches ADP-ribose units to target proteins, including itself as a post-translational modification that can change the biochemical properties of target proteins and mediate recruitment of proteins to sites of poly(ADP-ribose) synthesis. Independent of its catalytic activity, PARP-1 binds to chromatin and promotes compaction affecting RNA polymerase II transcription. PARP-1 has a modular structure composed of six independent domains. Two homologous zinc fingers, Zn1 and Zn2, form the DNA-binding module. Zn1-Zn2 binding to DNA breaks triggers catalytic activity. Recently, we have identified a third zinc binding domain in PARP-1, the Zn3 domain, which is essential for DNA-dependent PARP-1 activity. The crystal structure of the Zn3 domain revealed a novel zinc-ribbon fold and a homodimeric Zn3 structure that formed in the crystal lattice. Structure-guided mutagenesis was used here to investigate the roles of these two features of the Zn3 domain. Our results indicate that the zinc-ribbon fold of the Zn3 domain mediates an interdomain contact crucial to assembly of the DNA-activated conformation of PARP-1. In contrast, residues located at the Zn3 dimer interface are not required for DNA-dependent activation but rather make important contributions to the chromatin compaction activity of PARP-1. Thus, the Zn3 domain has dual roles in regulating the functions of PARP-1.
Collapse
Affiliation(s)
- Marie-France Langelier
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
23
|
Devalaraja-Narashimha K, Padanilam BJ. PARP-1 inhibits glycolysis in ischemic kidneys. J Am Soc Nephrol 2008; 20:95-103. [PMID: 19056868 DOI: 10.1681/asn.2008030325] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
After ischemic renal injury (IRI), selective damage occurs in the S(3) segments of the proximal tubules as a result of inhibition of glycolysis, but the mechanism of this inhibition is unknown. We previously reported that inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) activity protects against ischemia-induced necrosis in proximal tubules by preserving ATP levels. Here, we tested whether PARP-1 activation in proximal tubules after IRI leads to poly(ADP-ribosyl)ation of the key glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a modification that inhibits its activity. Using in vitro and in vivo models, under hypoxic conditions, we detected poly(ADP-ribosyl)ation and reduced activity of GAPDH; inhibition of PARP-1 activity restored GAPDH activity and ATP levels. Inhibition of GAPDH with iodoacetate exacerbated ATP depletion, cytotoxicity, and necrotic cell death of LLCPK(1) cells subjected to hypoxic conditions, whereas inhibition of PARP-1 activity was cytoprotective. In conclusion, these data indicate that poly(ADP-ribosyl)ation of GAPDH and the subsequent inhibition of anaerobic respiration exacerbate ATP depletion selectively in the proximal tubule after IRI.
Collapse
Affiliation(s)
- Kishor Devalaraja-Narashimha
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | |
Collapse
|
24
|
Kim JH, Suk MH, Yoon DW, Kim HY, Jung KH, Kang EH, Lee SY, Lee SY, Suh IB, Shin C, Shim JJ, In KH, Yoo SH, Kang KH. Inflammatory and transcriptional roles of poly (ADP-ribose) polymerase in ventilator-induced lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R108. [PMID: 18718025 PMCID: PMC2575597 DOI: 10.1186/cc6995] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/14/2008] [Accepted: 08/22/2008] [Indexed: 02/01/2023]
Abstract
Introduction Poly (ADP-ribose) polymerase (PARP) participates in inflammation by cellular necrosis and the nuclear factor-kappa-B (NF-κB)-dependent transcription. The purpose of this study was to examine the roles of PARP in ventilator-induced lung injury (VILI) in normal mice lung. Methods Male C57BL/6 mice were divided into four groups: sham tracheostomized (sham), lung-protective ventilation (LPV), VILI, and VILI with PARP inhibitor PJ34 pretreatment (PJ34+VILI) groups. Mechanical ventilation (MV) settings were peak inspiratory pressure (PIP) 15 cm H2O + positive end-expiratory pressure (PEEP) 3 cm H2O + 90 breaths per minute for the LPV group and PIP 40 cm H2O + PEEP 0 cm H2O + 90 breaths per minute for the VILI and PJ34+VILI groups. After 2 hours of MV, acute lung injury (ALI) score, wet-to-dry (W/D) weight ratio, PARP activity, and dynamic compliance (CD) were recorded. Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), myeloperoxidase (MPO) activity, and nitrite/nitrate (NOX) in the bronchoalveolar lavage fluid and NF-κB DNA-binding activity in tissue homogenates were measured. Results The VILI group showed higher ALI score, W/D weight ratio, MPO activity, NOX, and concentrations of TNF-α and IL-6 along with lower CD than the sham and LPV groups (P < 0.05). In the PJ34+VILI group, PJ34 pretreatment improved all histopathologic ALI, inflammatory profiles, and pulmonary dynamics (P < 0.05). NF-κB activity was increased in the VILI group as compared with the sham and LPV groups (P < 0.05) and was decreased in the PJ34+VILI group as compared with the VILI group (P = 0.009). Changes in all parameters were closely correlated with the PARP activity (P < 0.05). Conclusion Overactivation of PARP plays an important role in the inflammatory and transcriptional pathogenesis of VILI, and PARP inhibition has potentially beneficial effects on the prevention and treatment of VILI.
Collapse
Affiliation(s)
- Je Hyeong Kim
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, 516, Gojan 1-dong, Danwon-gu, Ansan 425-707, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kowieski TM, Lee S, Denu JM. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2. J Biol Chem 2007; 283:5317-26. [PMID: 18165239 DOI: 10.1074/jbc.m707613200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sirtuins are a highly conserved family of proteins implicated in diverse cellular processes such as gene silencing, aging, and metabolic regulation. Although many sirtuins catalyze a well characterized protein/histone deacetylation reaction, there are a number of reports that suggest protein ADP-ribosyltransferase activity. Here we explored the mechanisms of ADP-ribosylation using the Trypanosoma brucei Sir2 homologue TbSIR2rp1 as a model for sirtuins that reportedly display both activities. Steady-state kinetic analysis revealed a highly active histone deacetylase (k cat = 0.1 s(-1), with Km values of 42 microm and for NAD+ and 65 microm for acetylated substrate). A series of biochemical assays revealed that TbSIR2rp1 ADP-ribosylation of protein/histone requires an acetylated substrate. The data are consistent with two distinct ADP-ribosylation pathways that involve an acetylated substrate, NAD+ and TbSIR2rp1 as follows: 1) a noncatalytic reaction between the deacetylation product O-acetyl-ADP-ribose (or its hydrolysis product ADP-ribose) and histones, and 2) a more efficient mechanism involving interception of an ADP-ribose-acetylpeptide-enzyme intermediate by a side-chain nucleophile from bound histone. However, the sum of both ADP-ribosylation reactions was approximately 5 orders of magnitude slower than histone deacetylation under identical conditions. The biological implications of these results are discussed.
Collapse
Affiliation(s)
- Terri M Kowieski
- Department of Biomolecular Chemistry, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
26
|
Alvarez-Dominguez C, Madrazo-Toca F, Fernandez-Prieto L, Vandekerckhove J, Pareja E, Tobes R, Gomez-Lopez MT, Del Cerro-Vadillo E, Fresno M, Leyva-Cobián F, Carrasco-Marín E. Characterization of a Listeria monocytogenes protein interfering with Rab5a. Traffic 2007; 9:325-37. [PMID: 18088303 DOI: 10.1111/j.1600-0854.2007.00683.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes (LM) phagocytic strategy implies recruitment and inhibition of Rab5a. Here, we identify a Listeria protein that binds to Rab5a and is responsible for Rab5a recruitment to phagosomes and impairment of the GDP/GTP exchange activity. This protein was identified as a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Listeria (p40 protein, Lmo 2459). The p40 protein was found within the phagosomal membrane. Analysis of the sequence of LM p40 protein revealed two enzymatic domains: the nicotinamide adenine dinucleotide (NAD)-binding domain at the N-terminal and the C-terminal glycolytic domain. The putative ADP-ribosylating ability of this Listeria protein located in the N-terminal domain was examined and showed some similarities to the activity and Rab5a inhibition exerted by Pseudomonas aeruginosa ExoS onto endosome-endosome fusion. Listeria p40 caused Rab5a-specific ADP ribosylation and blocked Rab5a-exchange factor (Vps9) and GDI interaction and function, explaining the inhibition observed in Rab5a-mediated phagosome-endosome fusion. Meanwhile, ExoS impaired Rab5-early endosomal antigen 1 (EEA1) interaction and showed a wider Rab specificity. Listeria GAPDH might be the first intracellular gram-positive enzyme targeted to Rab proteins with ADP-ribosylating ability and a putative novel virulence factor.
Collapse
Affiliation(s)
- Carmen Alvarez-Dominguez
- Servicio de Inmunología and Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Hospital Universitario "Marqués de Valdecilla", 39008 Santander, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Osago H, Terashima M, Hara N, Yamada K, Tsuchiya M. A new detection method for arginine-specific ADP-ribosylation of protein -- a combinational use of anti-ADP-ribosylarginine antibody and ADP-ribosylarginine hydrolase. ACTA ACUST UNITED AC 2007; 70:1014-9. [PMID: 18160133 DOI: 10.1016/j.jprot.2007.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 11/19/2007] [Indexed: 11/17/2022]
Abstract
Arginine-specific ADP-ribosylation is one of the posttranslational modifications of proteins by transferring one ADP-ribose moiety of NAD to arginine residues of target proteins. This modification, catalyzed by ADP-ribosyltransferase (Art), is reversed by ADP-ribosylarginine hydrolase (AAH). In this study, we describe a new method combining an anti-ADP-ribosylarginine antibody (alphaADP-R-Arg Ab) and AAH for detection of the target protein of ADP-ribosylation. We have raised alphaADP-R-Arg Ab with ADP-ribosylated histone and examined the reactivity of the antibody with proteins treated by Art and/or AAH, as well as in situ ADP-ribosylation system with mouse T cells. Our results indicate that the detection of ADP-ribosylated protein with alphaADP-R-Arg Ab and AAH is a useful tool to explore the target proteins of ADP-ribosylation. We applied the method to search endogenously ADP-ribosylated protein in the rat, and detected possible target proteins in the skeletal muscle, which has high Art activity.
Collapse
Affiliation(s)
- Harumi Osago
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan.
| | | | | | | | | |
Collapse
|
28
|
Bachran C, Sutherland M, Bachran D, Fuchs H. Quantification of diphtheria toxin mediated ADP-ribosylation in a solid-phase assay. Clin Chem 2007; 53:1676-83. [PMID: 17712004 DOI: 10.1373/clinchem.2007.085365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Because of reduced vaccination programs, the number of diphtheria infections has increased in the last decade. Diphtheria toxin (DT) is expressed by Corynebacterium diphtheriae and is responsible for the lethality of diphtheria. DT inhibits cellular protein synthesis by ADP-ribosylation of the eukaryotic elongation factor 2 (eEF2). No in vitro system for the quantification of DT enzymatic activity exists. We developed a solid-phase assay for the specific detection of ADP-ribosylation by DT. METHODS Solid phase-bound his-tag eEF2 is ADP-ribosylated by toxins using biotinylated NAD(+) as substrate, and the transferred biotinylated ADP-ribose is detected by streptavidin-peroxidase. DT enzymatic activity correlated with absorbance. We measured the amount of ADP-ribosylated eEF2 after precipitation with streptavidin-Sepharose. Quantification was done after Western blotting and detection with anti-his-tag antibody using an LAS-1000 System. RESULTS The assay detected enzymatically active DT at 30 ng/L, equivalent to 5 mU/L ADP-ribosylating activity. Pseudomonas exotoxin A (PE) activity was also detected at 100 ng/L. We verified the assay with chimeric toxins composed of the catalytic domain of DT or PE and a tumor-specific ligand. These chimeric toxins revealed increased signals at 1000 ng/L. Heat-inactivated DT and cholera toxin that ADP-ribosylates G-proteins did not show any signal increase. CONCLUSIONS The assay may be the basis for the development of a routine diagnostic assay for the detection of DT activity and highly specific inhibitors of DT.
Collapse
Affiliation(s)
- Christopher Bachran
- Zentralinstitut für Laboratoriumsmedizin und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | |
Collapse
|
29
|
Kim JH, Yoon DW, Hur GY, Jung KH, Lee SY, Lee SY, Shin C, Shim JJ, In KH, Yoo SH, Kang KH. The Role of Poly(ADP-ribose) Polymerase-1 in Ventilator-Induced Lung Injury. Tuberc Respir Dis (Seoul) 2006. [DOI: 10.4046/trd.2006.60.4.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Je-Hyeong Kim
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Dae Wui Yoon
- Institute of Human Genomic Study, Ansan Hospital, Korea University Medical Center, Ansan, Korea
| | - Gyu Young Hur
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Ki Hwan Jung
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Sung Yong Lee
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Sang Yeub Lee
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Chol Shin
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Jae Jeong Shim
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kwang Ho In
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Se Hwa Yoo
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kyung Ho Kang
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
30
|
Na X, Zhao D, Koon HW, Kim H, Husmark J, Moyer MP, Pothoulakis C, LaMont JT. Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology 2005; 128:1002-11. [PMID: 15825081 DOI: 10.1053/j.gastro.2005.01.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Clostridium difficile toxin B (TxB) mediates acute inflammatory diarrhea characterized by neutrophil infiltration and intestinal mucosal injury. In a xenograft animal model, TxB was shown to induce interleukin (IL)-8 gene expression in human colonic epithelium. However, the precise mechanisms of this TxB response are unknown. The aim of this study was to investigate the TxB-mediated proinflammatory pathway in colonocytes. METHODS The effect of TxB on epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK) 1/2 signaling pathway and IL-8 gene expression was assessed in nontransformed human colonic epithelial NCM460 cells. TxB regulation of EGFR-ERK1/2 signaling pathways was determined using immunoblot analysis, confocal microscopy, and enzyme-linked immunosorbent assay, whereas IL-8 gene expression was measured by luciferase promoter assay. RESULTS TxB activates EGFR and ERK1/2 phosphorylation with subsequent release of IL-8 from human colonocytes. Pretreatment with either the EGFR tyrosine kinase inhibitor, AG1478, or an EGFR-neutralizing antibody blocked both TxB-induced EGFR and ERK activation. By using neutralizing antibodies against known ligands of EGFR, we found that the activation of EGFR and ERK1/2 phosphorylation was mediated by transforming growth factor-alpha (TGF-alpha). Inhibition of matrix metalloproteinase (MMP) decreased TGF-alpha secretion and TxB-induced EGFR and ERK activation. Inhibition of MMP, EGFR, and ERK activation significantly decreased TxB-induced IL-8 expression. CONCLUSIONS TxB signals acute proinflammatory responses in colonocytes by transactivation of the EGFR and activation of the ERK/MAP kinase pathway.
Collapse
Affiliation(s)
- Xi Na
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Jagtap P, Soriano FG, Virág L, Liaudet L, Mabley J, Szabó E, Haskó G, Marton A, Lorigados CB, Gallyas F, Sümegi B, Hoyt DG, Baloglu E, VanDuzer J, Salzman AL, Southan GJ, Szabó C. Novel phenanthridinone inhibitors of poly (adenosine 5'-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit Care Med 2002; 30:1071-82. [PMID: 12006805 DOI: 10.1097/00003246-200205000-00019] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To synthesize novel inhibitors of the nuclear enzyme poly(adenosine 5'-diphosphate [ADP]-ribose) synthetase (PARS), also known as poly(ADP-ribose) polymerase (PARP), and to test them in in vitro models of oxidant-induced cytotoxicity and in endotoxin and splanchnic occlusion-reperfusion-induced shock. DESIGN Randomized, prospective laboratory study. SETTING Research laboratory. SUBJECTS Murine macrophages, thymocytes, and endothelial cells; Balb/c mice and Wistar rats. INTERVENTIONS Macrophages and endothelial cells were treated with peroxynitrite and bleomycin to induce PARS activation, and thymocytes were treated with peroxynitrite to induce cell necrosis. Novel PARS inhibitors were synthesized and used to reduce PARS activation and to reverse cytotoxicity. Balb/c mice were subjected to splanchnic occlusion and reperfusion and were pretreated with various doses (1-10 mg/kg intraperitoneally) of PJ34, a selected, potent, water-soluble PARS inhibitor. The passage of fluorescein isothiocyanate-conjugated dextran (4 kDa) was analyzed in everted gut ileal sacs incubated ex vivo as an index of gut permeability. Wistar rats were subjected to Escherichia coli bacterial lipopolysaccharide (40 mg/kg intraperitoneally). PJ34 was also used at 10 mg/kg intraperitoneally, 1 hr before lipopolysaccharide or at 25 mg/kg intraperitoneally 1 hr after lipopolysaccharide treatment. Serum concentrations of indicators or multiple organ injury, concentrations of various proinflammatory mediators, and tissue concentrations of myeloperoxidase and malondialdehyde were measured. In addition, survival rates and vascular contractile and relaxant responses were recorded. MEASUREMENTS AND MAIN RESULTS Appropriate modifications of the phenanthridinone core structure yielded significant increases in the potency of the compounds, both as PARS inhibitors and as cytoprotective agents. The compound N-(6-oxo-5,6-dihydro-phenanthridin-2-yl) -N,N-dimethylacetamide (designated as PJ34) was one of the potent PARS inhibitors of the series, and it dose-dependently protected against thymocyte necrosis, with a half-maximal restoration of cell viability of 35 nM and complete protection at 200 nM. PARS activation also was visualized by immunohistochemistry and was dose-dependently suppressed by PJ34. The effect of PJ34 was dose-dependently reversed by excess nicotinamide adenine dinucleotide (oxidized). The PARS inhibitors dose-dependently suppressed proinflammatory cytokine and chemokine production and restored viability in immunostimulated macrophages. PJ34 was selected for the subsequent in vivo studies. PJ34 significantly protected against splanchnic reperfusion-induced intestinal hyperpermeability in the mouse. PJ34 reduced peak plasma concentrations of tumor necrosis factor-alpha, interleukin-1beta, and nitrite/nitrate in the plasma of lipopolysaccharide-treated rats. PJ34 ameliorated the lipopolysaccharide-induced increases in indexes of liver and kidney failure and concentrations of myeloperoxidase and malondialdehyde in the lung and gut. Lipopolysaccharide elicited vascular dysfunction, which was normalized by PJ34. Lipopolysaccharide-induced mortality was reduced by PJ34 (both pre- and posttreatment). CONCLUSIONS The novel series of phenanthridinone PARS inhibitors have potent cytoprotective effects in vitro and significant protective effects in shock and reperfusion injury in rodent models in vivo.
Collapse
|
32
|
Barbieri AM, Sha Q, Bette-Bobillo P, Stahl PD, Vidal M. ADP-ribosylation of Rab5 by ExoS of Pseudomonas aeruginosa affects endocytosis. Infect Immun 2001; 69:5329-34. [PMID: 11500402 PMCID: PMC98642 DOI: 10.1128/iai.69.9.5329-5334.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa exoenzyme S (ExoS) is an ADP-ribosyltransferase that modifies low-molecular-weight GTPases. Here we studied the effect of Rab5 ADP-ribosylation by ExoS on its cellular function, i.e., regulation of early endocytic events. Coculture of CHO cells with P. aeruginosa induced a marked decrease in horseradish peroxidase (HRP) uptake compared to noninfected cells, while coculture with a P. aeruginosa mutant strain that fails to produce ExoS did not lead to any change in HRP uptake. Microinjection of recombinant ExoS into Xenopus oocytes induced strong inhibition of basal HRP uptake by oocytes. Moreover, coinjection of recombinant ExoS with Rab5 abolished the typical stimulation of HRP uptake obtained after GTPase microinjection. Cytosols prepared from injected oocytes were used in an endosome-endosome fusion assay. Cytosol from ExoS-microinjected oocytes was ineffective in promoting endosome-endosome fusion. However, in these conditions, the addition of Rab5 to the assay led to fusion recovery. Finally, we found that the interaction of Rab5 with EEA1 was markedly diminished after Rab5 ADP-ribosylation by ExoS.
Collapse
Affiliation(s)
- A M Barbieri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
33
|
Szabó E, Virág L, Bakondi E, Gyüre L, Haskó G, Bai P, Hunyadi J, Gergely P, Szabó C. Peroxynitrite production, DNA breakage, and poly(ADP-ribose) polymerase activation in a mouse model of oxazolone-induced contact hypersensitivity. J Invest Dermatol 2001; 117:74-80. [PMID: 11442752 DOI: 10.1046/j.0022-202x.2001.01388.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peroxynitrite-induced poly(ADP-ribose) polymerase activation has been implicated in the pathogenesis of various inflammatory conditions. Here we have investigated whether peroxynitrite and poly(ADP-ribose) polymerase may play a role in the pathophysiology of the elicitation phase of contact hypersensitivity. We have detected nitrotyrosine, DNA breakage, and poly(ADP-ribose) polymerase activation in the epidermis of mice in an oxazolone-induced contact hypersensitivity model. As tyrosine nitration is mostly mediated by peroxynitrite, a nitric-oxide-derived cytotoxic oxidant capable of causing DNA breakage, we have applied peroxynitrite directly on mouse skin and showed poly(ADP-ribose) polymerase activation in keratinocytes and in some scattered dermal cells. We have also investigated the cellular effects of peroxynitrite in HaCaT cells, a human keratinocyte cell line. We found that peroxynitrite inhibited cell proliferation and at higher concentrations also caused cytotoxicity. Peroxynitrite activates poly(ADP-ribose) polymerase in HaCaT cells and poly(ADP-ribose) polymerase activation contributes to peroxynitrite-induced cytotoxicity, as indicated by the cytoprotective effect of the poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide. The cytoprotective effect of 3-aminobenzamide cannot be attributed to inhibition of apoptosis, as apoptotic parameters (caspase activation and DNA fragmentation) were not reduced in the presence of 3-aminobenzamide in peroxynitrite-treated cells. Moreover, poly(ADP-ribose) polymerase inhibition by 3-aminobenzamide dose-dependently reduced interferon-induced intercellular adhesion molecule 1 expression as well as interleukin-1beta-induced interleukin-8 expression. Our results indicate that peroxynitrite and poly(ADP-ribose) polymerase regulate keratinocyte function and death in contact hypersensitivity.
Collapse
Affiliation(s)
- E Szabó
- Inotek Corporation, Beverly, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Virág L, Jagtap P, Szabó E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, Southan GJ, Szabó C. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 2001; 7:108-13. [PMID: 11135624 DOI: 10.1038/83241] [Citation(s) in RCA: 451] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetic patients frequently suffer from retinopathy, nephropathy, neuropathy and accelerated atherosclerosis. The loss of endothelial function precedes these vascular alterations. Here we report that activation of poly(ADP-ribose) polymerase (PARP) is an important factor in the pathogenesis of endothelial dysfunction in diabetes. Destruction of islet cells with streptozotocin in mice induced hyperglycemia, intravascular oxidant production, DNA strand breakage, PARP activation and a selective loss of endothelium-dependent vasodilation. Treatment with a novel potent PARP inhibitor, starting after the time of islet destruction, maintained normal vascular responsiveness, despite the persistence of severe hyperglycemia. Endothelial cells incubated in high glucose exhibited production of reactive nitrogen and oxygen species, consequent single-strand DNA breakage, PARP activation and associated metabolic and functional impairment. Basal and high-glucose-induced nuclear factor-kappaB activation were suppressed in the PARP-deficient cells. Our results indicate that PARP may be a novel drug target for the therapy of diabetic endothelial dysfunction.
Collapse
|