1
|
Moktan N, Gajbhiye RL, Sahithi TVVS, Roy DN, Kundu R, Banerjee A. Antibacterial and antibiofilm activities of extract and bioactive compounds from Bergenia ciliata (Haw.) Sternb. flowers against Streptococcus mutans through cell membrane damage. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119144. [PMID: 39577678 DOI: 10.1016/j.jep.2024.119144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bergenia ciliata (Haw.) Sternb. (Family Saxifragaceae) remains mentioned as Pashanbheda in Ayurveda and Zakhmehayat in Unani. In North Waziristan, Pakistan, indigenous communities use this plant in ethnodentistry to treat tooth decay and toothaches. However, scientific evidence on its mode of action is still lacking. AIM OF THE STUDY To evaluate the effect of extracts and fractions of B. ciliata flower against oral bacteria and elucidate the possible antibacterial and antibiofilm mechanism. MATERIALS AND METHODS Prepared extract of B. ciliata flowers were checked for its antibacterial activity against oral (S. mutans, S. pyogenes, S. oralis) and opportunistic bacteria (Staphylococcus aureus, Citrobacter clonae and Achromobacter insolitus). Preparative TLC-bioautography and silica gel column chromatography was used to isolate bioactive compounds. HRESI-MS and NMR studies were employed for its structural elucidation. Antibacterial and antibiofilm activities of extracts and isolated compounds were studied against S. mutans. Scanning Electron Microscope studies indicated membrane damage. Reactive Oxygen Species (ROS) production, lipid peroxidation and cytoplasmic leakage were also assessed. RESULTS The most active ethyl acetate extract (EA) showed potent inhibitory effect against S. mutans (0.390 μg/μl). TLC-bioautography indicated spots F1 & F2 to show inhibition zones. F1 was identified as kaempferol. This is the first report on flowers of B. ciliata against oral infection. The mode of action of F1 can be attributed to its ability to destroy the membrane integrity, reducing and disrupting biofilm. It also produced ROS within the bacterial cell, leading to lipid peroxidation and subsequently causing death of the bacteria. CONCLUSION Kaempferol is the active compound in bioactive spot F1 which showed antibacterial and antibiofilm activity. The antibacterial activity can be linked with the membrane disrupting properties of kaempferol and producing ROS inside S. mutans. Thus, phytochemicals derived from B. ciliata can be used in the development of pharmaceutical dental products.
Collapse
Affiliation(s)
- Nirza Moktan
- Dept of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, West Bengal, India; PG & Research Dept of Microbiology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India
| | - Rahul Laxman Gajbhiye
- Department of Pharmaceutical Analysis, National Institue of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - T V V S Sahithi
- Department of Pharmaceutical Analysis, National Institue of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Dijendra Nath Roy
- Department of Biotechnology, National Institute of Technology Raipur, Chhattisgarh, India
| | - Rita Kundu
- Dept of Botany, University of Calcutta, West Bengal, India
| | - Anindita Banerjee
- PG & Research Dept of Microbiology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Shao Y, Zhu W, Liu S, Zhang K, Sun Y, Liu Y, Wen T, Zou Y, Zheng Q. Cordycepin affects Streptococcus mutans biofilm and interferes with its metabolism. BMC Oral Health 2025; 25:25. [PMID: 39755609 DOI: 10.1186/s12903-024-05355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Streptococcus mutans (S. mutans) contributes to caries. The biofilm formed by S. mutans exhibits greater resistance to drugs and host immune defenses than the planktonic form of the bacteria. The objective of this study was to evaluate the anti-biofilm effect of cordycepin from the perspective of metabolomics. METHODS The minimum inhibitory concentration (MIC) was determined to evaluate the antimicrobial effect of cordycepin on planktonic S. mutans. The 24-h biofilm was treated with 128 µg/mL of cordycepin for 10 min at the 8- or 20-h time points. Biofilm biomass and metabolism were assessed using crystal violet and MTT assays and cordycepin cytotoxicity was evaluated in human oral keratinocytes (HOK) using CCK-8 assays. The live bacterial rate and the biofilm volume were assessed by confocal laser scanning microscopy. Metabolic changes in the biofilm collected at different times during with cordycepin were analyzed by metabolomics and verified by quantitative real-time PCR. RESULTS The results showed that treatment with 128 µg/mL cordycepin reduced both the biomass and metabolic activity of the biofilm without killing the bacteria, and cordycepin at this concentration showed good biocompatibility. Metabolomics analysis showed that differentially abundant metabolites following cordycepin treatment were mainly related to purine and nucleotide metabolism. After immediate treatment with cordycepin, genes related to purine and nucleotide metabolism were downregulated, and the levels of various metabolites changed significantly. However, the effect was reversible. After continuing culture for 4 h, the changes in genes and most metabolites were reversed, although the levels of 2'-deoxyadenosine, 2'-deoxyinosine, and adenine remained significantly different. CONCLUSIONS Cordycepin has the effect of anti-biofilm of S. mutans, mainly related to purine and nucleotide metabolism.
Collapse
Affiliation(s)
- Yidan Shao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Wenyan Zhu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Shanshan Liu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, 287 Chuang Huai Road, Bengbu, 233004, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, 287 Chuang Huai Road, Bengbu, 233004, China
| | - Yu Sun
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Yudong Liu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Tingchi Wen
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yingxue Zou
- Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Tianjin Children's Hospital, 225 Machang Road, Hexi District, Tianjin, 300202, China.
| | - Qingwei Zheng
- Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China.
| |
Collapse
|
3
|
Goc A, Sumera W, Rath M, Niedzwiecki A. Antibacterial and Antibiofilm Effects of L-Carnitine-Fumarate on Oral Streptococcal Strains Streptococcus mutans and Streptococcus sobrinus. Microorganisms 2024; 12:1613. [PMID: 39203455 PMCID: PMC11356751 DOI: 10.3390/microorganisms12081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Streptococcus mutans is a major pathogenic habitant of oral caries. Owing to its physiological and biochemical features, it prevails in the form of plaque biofilm together with another important mutans streptococci species, Streptococcus sobrinus. Both species are considered as initiators of cavity lesions, and biofilm is essential to the dental caries process. Compared with the planktonic populations, the biofilm form has higher resistance to environmental conditions and antibiotics. Dental plaques also secure the long-term survival of microorganisms and protection from any stress conditions. To address the need for new antibiofilm agents, we have focused on L-carnitine-fumarate, a fumarate-conjugated quaternary ammonium compound. Using the macro-broth susceptibility testing method, we established its MIC value as 6.0 mg/mL. The MBC value, determined from the broth dilution minimum inhibitory concentration test by sub-culturing it to BHI agar plates, was established as 7.0 mg/mL. Antibiofilm efficacy was tested in 96-well plates coated with saliva using BHI broth supplemented with 1% sucrose as a standard approach. The obtained results allowed us to assess the MIBC as 7.5 mg/mL and the MBBC value as 10.0 mg/mL. The latter concentration also caused approximately 20% eradication of pre-existing biofilm. EPS-rich matrix, forming the core of the biofilm and enabling a confined acidic microenvironment, was also examined and confirmed the effectiveness of 10.0 mg/mL L-carnitine-fumarate concentration in inhibiting EPS formation. Furthermore, the anti-adherent and anti-aciduric impacts of L-carnitine-fumarate were investigated and revealed significant inhibitory effects at sub-MIC concentrations. The influence of L-carnitine-fumarate on the phosphotransferase system was investigated as well. Our results provide a new insight into the antibacterial potential of L-carnitine-fumarate as a valuable compound to be considered for alternative or adjunct anti-caries and antibiofilm preventive approaches.
Collapse
Affiliation(s)
- Anna Goc
- Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA 95138, USA; (W.S.); (M.R.)
| | | | | | | |
Collapse
|
4
|
Jeyasri R, Muthuramalingam P, Priya A, Alexpandi R, Shanmugam NRS, Nivetha S, Shin H, Pandian SK, Ravi AV, Ramesh M. Comprehensive in vitro and in vivo evaluation of therapeutic potential of Bacopa-derived asiatic acid against a human oral pathogen Streptococcus mutans. Front Microbiol 2024; 15:1404012. [PMID: 38983632 PMCID: PMC11231090 DOI: 10.3389/fmicb.2024.1404012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
Dental caries is a common human oral disease worldwide, caused by an acid-producing bacteria Streptococcus mutans. The use of synthetic drugs and antibiotics to prevent dental caries has been increasing, but this can lead to severe side effects. To solve this issue, developing and developed countries have resorted to herbal medicines as an alternative to synthetic drugs for the treatment and prevention of dental caries. Therefore, there is an urgent need for plant-derived products to treat such diseases. Bacopa monnieri, a well-documented medicinal plant, contains 52 phytocompounds, including the pentacyclic triterpenoid metabolite known as asiatic acid (ASTA). Hence, this study aimed to demonstrate, for the first time, the antibacterial activity of phytocompound ASTA against S. mutans. The findings revealed that ASTA significantly inhibited the growth of S. mutans and the production of virulence factors such as acidurity, acidogenicity, and eDNA synthesis. Molecular docking analysis evaluated the potential activity of ASTA against S. mutans virulence genes, including VicR and GtfC. Furthermore, toxicity assessment of ASTA in human buccal epithelial cells was performed, and no morphological changes were observed. An in vivo analysis using Danio rerio (zebrafish) confirmed that the ASTA treatment significantly increased the survival rates of infected fish by hindering the intestinal colonization of S. mutans. Furthermore, the disease protection potential of ASTA against the pathognomonic symptom of S. mutans infection was proven by the histopathological examination of the gills, gut, and kidney. Overall, these findings suggest that ASTA may be a promising therapeutic and alternative drug for the treatment and prevention of oral infection imposed by S. mutans.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Arumugam Priya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
- Department of Medicine, Division of Gastroenterology and Hepatology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rajaiah Alexpandi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - N. R. Siva Shanmugam
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska - Lincoln, Lincoln, NE, United States
| | - Saminathan Nivetha
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
5
|
Hu Z, Tang Y, Jiang B, Xu Y, Liu S, Huang C. Functional liposome loaded curcumin for the treatment of Streptococcus mutans biofilm. Front Chem 2023; 11:1160521. [PMID: 37007057 PMCID: PMC10065455 DOI: 10.3389/fchem.2023.1160521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: Plaque biofilms, mainly formed by Streptococcus mutans (S. mutans), play an important role in the occurrence and development of dental caries. Antibiotic treatment is the traditional way to control plaque. However, problems such as poor drug penetration and antibiotic resistance have encouraged the search for alternative strategies. In this paper, we hope to avoid antibiotic resistance through the antibacterial effect of curcumin, a natural plant extract with photodynamic effects, on S. mutans. However, the clinical application of curcumin is limited due to its low water solubility, poor stability, high metabolic rate, fast clearance rate, and limited bioavailability. In recent years, liposomes have become a widely used drug carrier due to their numerous advantages, such as high drug loading efficiency, high stability in the biological environment, controlled release, biocompatibility, non-toxic, and biodegradability. So, we constructed a curcumin-loaded liposome (Cur@LP) to avoid the defect of curcumin.Methods: Cur@LP functioned with NHS can adhere to the surface of the S. mutans biofilm by condensation reaction. Liposome (LP) and Cur@LP was characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The cytotoxicity of Cur@LP was evaluated by CCK-8 assay and LDH assay. The adhesion of Cur@LP to S. mutans biofilm was observed by confocal laser scanning microscope (CLSM). The antibiofilm efficiency of Cur@LP were evaluated by crystal violet staining, CLSM, and scanning electron microscope (SEM).Results: The mean diameter of LP and Cur@LP were 206.67 ± 8.38 nm and 312 ± 18.78 nm respectively. The ζ-potential of LP and Cur@LP were ∼−19.3 mV and ∼−20.8 mV respectively. The encapsulation efficiency of Cur@LP was (42.61 ± 2.19) %, and curcumin was rapidly released up to ±21% at 2 h. Cur@LP has negligible cytotoxicity, and can effectively adhered to the S. mutans biofilm and inhibited its growth.Discussion: Curcumin has been widely studied in many fields such as cancer, which can be attributed to its antioxidant and anti-inflammatory effects. At present, there are few studies on the delivery of curcumin to S. mutans biofilm. In this study, we verified the adhesion and antibiofilm of Cur@LP to S. mutans biofilm. This biofilm removal strategy has the potential to be translated into the clinic.
Collapse
|
6
|
Kouanda B, Sattar Z, Geraghty P. Periodontal Diseases: Major Exacerbators of Pulmonary Diseases? Pulm Med 2021; 2021:4712406. [PMID: 34765263 PMCID: PMC8577952 DOI: 10.1155/2021/4712406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontal diseases are a range of polymicrobial infectious disorders, such as gingivitis and periodontitis, which affect tooth-supporting tissues and are linked to playing a role in the exacerbation of several pulmonary diseases. Pulmonary diseases, such as pneumonia, chronic obstructive pulmonary disease (COPD), asthma, tuberculosis, COVID-19, and bronchiectasis, significantly contribute to poor quality of life and mortality. The association between periodontal disease and pulmonary outcomes is an important topic and requires further attention. Numerous resident microorganisms coexist in the oral cavity and lungs. However, changes in the normal microflora due to oral disease, old age, lifestyle habits, or dental intervention may contribute to altered aspiration of oral periodontopathic bacteria into the lungs and changing inflammatory responses. Equally, periodontal diseases are associated with the longitudinal decline in spirometry lung volume. Several studies suggest a possible beneficial effect of periodontal therapy in improving lung function with a decreased frequency of exacerbations and reduced risk of adverse respiratory events and morbidity. Here, we review the current literature outlining the link between the oral cavity and pulmonary outcomes and focus on the microflora of the oral cavity, environmental and genetic factors, and preexisting conditions that can impact oral and pulmonary outcomes.
Collapse
Affiliation(s)
- Bakey Kouanda
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
- Department of Cell Biology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| |
Collapse
|
7
|
Malik Z, Qasim Butt D, Qasim Butt Z, Muhammad N, Kaleem M, Liaqat S, Adnan Khan M, Samad Khan A. Evolution of Anticariogenic Resin‐Modified Glass Ionomer Cements. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zuleikha Malik
- National University of Medical Sciences (NUMS) Department of Dental Materials Rawalpindi Pakistan
| | - Danial Qasim Butt
- Dental College HITEC-IMS Department of Oral Pathology Taxila Cantt Pakistan
| | - Zainab Qasim Butt
- National University of Medical Sciences (NUMS) Department of Dental Materials Rawalpindi Pakistan
| | - Nawshad Muhammad
- Khyber Medical University Department of Dental Materials Institute of Basic Medical Sciences 25100 Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Kaleem
- National University of Medical Sciences (NUMS) Department of Dental Materials Rawalpindi Pakistan
| | - Saad Liaqat
- Khyber Medical University Department of Dental Materials Institute of Basic Medical Sciences 25100 Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Adnan Khan
- Khyber Medical University Department of Dental Materials Institute of Basic Medical Sciences 25100 Peshawar Khyber Pakhtunkhwa Pakistan
| | - Abdul Samad Khan
- Imam Abdulrahman Bin Faisal University Department of Restorative Dental Sciences College of Dentistry Dammam Saudi Arabia
| |
Collapse
|
8
|
Inhibitory effect of toothbrush monofilament containing surface pre-reacted glass-ionomer (S-PRG) filler on Streptococcus mutans. Sci Rep 2021; 11:211. [PMID: 33420320 PMCID: PMC7794465 DOI: 10.1038/s41598-020-80646-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
The oral environment affects not only oral health, but also general health, and the importance of oral self-care has recently been recognised. Although toothbrushes are the most important self-care product, there are few toothbrushes that have an inhibitory effect on oral bacteria. In the present study, monofilaments used for toothbrushes containing surface pre-reacted glass-ionomer (S-PRG) filler (a component recently applied to various dental materials) were developed. Among nylon and polyester monofilaments commonly used for toothbrushes, nylon monofilaments can accommodate more S-PRG filler than polyester monofilaments, resulting in greater release of ions from the S-PRG filler. These monofilaments containing S-PRG filler formed less biofilm containing Streptococcus mutans, a major pathogen of dental caries, than monofilaments without S-PRG filler. Moreover, S. mutans adhering to monofilaments containing S-PRG filler were more easily exfoliated and eliminated than those adhering to monofilaments without S-PRG filler. Such inhibitory effects on S. mutans were more marked in nylon monofilaments than in polyester monofilaments. These findings that monofilaments containing S-PRG filler can release ions and have an inhibitory effect on S. mutans suggest that they may be an effective material for toothbrushes.
Collapse
|
9
|
Minami M, Takase H, Taira M, Makino T. Suppressive Effects of Hainosan (Painongsan) against Biofilm Production by Streptococcus mutans. Dent J (Basel) 2020; 8:dj8030071. [PMID: 32640544 PMCID: PMC7557787 DOI: 10.3390/dj8030071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Streptococcus mutans, a bacterium that causes dental plaques, forms a biofilm on tooth surfaces. This biofilm can cause gingivitis by stimulating the gingival margin. However, there is no established treatment for biofilm removal. Hainosan (Painongsan), a traditional Japanese Kampo formula, has been used to treat gingivitis. Therefore, we investigated the biofilm suppressive effects of the hainosan extract (HNS) and its components on S. mutans. We conducted scanning electron microscopy and confocal laser microscopy analyses to clarify the anti-biofilm activities of HNS and its crude drugs. We also performed a quantitative RT-PCR assay to assess the biofilm-related gene expression. HNS showed a significant dose-dependent suppressive effect on biofilm formation. Both the scanning electron microscopy and confocal laser microscopy analyses also revealed the significant inhibitory effects of the extract on biofilm formation. Transmission electron microscopy analysis showed that HNS disrupted the surface of the bacterial wall. Furthermore, HNS reduced the hydrophobicity of the bacteria, and suppressed the mRNA expression of β-glucosyltransferase (gtfB), glucosyltransferase-SI (gtfC), and fructosyltransferase (ftf). Among the constituents of hainosan, the extract of the root of Platycodon grandiflorum (PG) showed the strongest biofilm suppression effect. Platycodin D, one of the constituent natural compounds of PG, inhibited S. mutans-associated biofilm. These findings indicate that hainosan eliminates dental plaques by suppressing biofilm formation by S. mutans.
Collapse
Affiliation(s)
- Masaaki Minami
- Department of Bacteriology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601, Japan
- Correspondence: ; Tel.: +81-52-853-8166
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan;
| | - Masayo Taira
- JPS Pharmaceutical Co. Ltd., 4-42-22 Higashiyamata, Tsuzuki-ku, Yokohama 224-0023, Japan;
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 467-8601, Japan;
| |
Collapse
|
10
|
Mandava K, Batchu UR, Kakulavaram S, Repally S, Chennuri I, Bedarakota S, Sunkara N. Design and study of anticaries effect of different medicinal plants against S.mutans glucosyltransferase. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:197. [PMID: 31375097 PMCID: PMC6679430 DOI: 10.1186/s12906-019-2608-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 07/23/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND The present study was aimed to evaluate the molecular level anticaries effect of different medicinal plants against Streptococcus mutans (S.mutans) glucosyltransferases (gtf). METHODS A total of six natural sources named as Terminalia chebula (T.chebula), Psidium guajava (P.guajava), Azadirachta indica (A.indica) and Pongamia pinnata (P.pinnata); two essential oils, clove (Syzygium aromaticum) and peppermint oil (Mentha piperita) were selected as test samples. Hydroalcoholic plant extracts and essential oils were examined for their inhibitory potential on gtf isolated from S.mutans. Polyherbal mouth wash was prepared and its effect on gtf activity was compared with commercial chlorhexidine mouth wash (5%w/v). Enzyme kinetic study was carried out in order to explore the molecular mechanism of enzyme action. RESULTS Out of six natural sources tested, A.indica has shown maximum inhibitory effect of 91.647% on gtf and T.chebula has shown IC50 of 1.091 mg/ml which is significant when compared to standard chlorhexidine. From the final result of kinetic analysis it was found that T.chebula, P.guajava and P.pinnata have show uncompetitive inhibition where as A.indica has shown non-competitive inhibition. Surprisingly, both essential oils have shown allosteric inhibition (sigmoidal response). The polyherbal moutwash has shown significant inhibitory potential on gtf (95.936%) when compared to commercial chlorhexidine mouthwash (p < 0.05). CONCLUSION All the tested samples have shown considerable gtf inhibitory action. Moreover polyherbal mouth wash has shown promising noncompetitive inhibitory activity against gtf and it could be the future formulation to combat dental caries.
Collapse
Affiliation(s)
- Kiranmai Mandava
- Department of Pharmaceutical Chemistry, Bharat Institute of Technology, Mangalpally, JNTUH, R.R. District, Hyderabad, Telangana, 501510, India.
| | - Uma Rajeswari Batchu
- Department of Pharmaceutical Biotechnology, Bharat Institute of Technology, Mangalpally, JNTUH, R.R. District, Hyderabad, 501510, India
| | - Shravya Kakulavaram
- Department of Pharmaceutical Chemistry, Bharat Institute of Technology, Mangalpally, JNTUH, R.R. District, Hyderabad, Telangana, 501510, India
| | - Shulamithi Repally
- Department of Pharmaceutical Chemistry, Bharat Institute of Technology, Mangalpally, JNTUH, R.R. District, Hyderabad, Telangana, 501510, India
| | - Ishwarya Chennuri
- Department of Pharmaceutical Chemistry, Bharat Institute of Technology, Mangalpally, JNTUH, R.R. District, Hyderabad, Telangana, 501510, India
| | - Srinivas Bedarakota
- Department of Pharmaceutical Chemistry, Bharat Institute of Technology, Mangalpally, JNTUH, R.R. District, Hyderabad, Telangana, 501510, India
| | - Namratha Sunkara
- Department of Pharmaceutical Chemistry, Bharat Institute of Technology, Mangalpally, JNTUH, R.R. District, Hyderabad, Telangana, 501510, India
| |
Collapse
|
11
|
Inhibitory Effects of Ethyl Gallate on Streptococcus mutans Biofilm Formation by Optical Profilometry and Gene Expression Analysis. Molecules 2019; 24:molecules24030529. [PMID: 30717122 PMCID: PMC6384797 DOI: 10.3390/molecules24030529] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 11/17/2022] Open
Abstract
This study aimed to test the effectiveness of ethyl gallate (EG) against S. mutans biofilm formation on solid surfaces (polystyrene, glass) and acidogenicity, and to examine the effect on expression of related genes. The biofilm that is formed by S. mutans bacteria was evaluated using colorimetric assay and optical profilometry, while the pH of the biofilm growth medium was measured with microelectrode. The expression of genes encoding glucan binding protein B (gbpB), glucosyltranferases B, -C, -D (gtfB, -C, -D) and F-ATPase (atpD, atpF) was assessed using a quantitative reverse transcription-polymerase chain reaction (RT-qPCR). It was revealed that all of the EG concentrations significantly suppressed S. mutans biofilm build-up on polystyrene and glass surfaces, and inhibited acidogenicity, in a dose-dependent manner, compared to the activity of untreated bacteria (p < 0.05). The highest concentration of EG (3.53 mM) reduced biofilm formation on polystyrene and glass surfaces by 68% and more than 91%, respectively, and prevented a decrease in pH levels by 95%. The RT-qPCR data demonstrate that the biofilm-producing bacteria treated with EG underwent significant gene expression changes involving the gtfC (a 98.6 increase in fold change), gtfB gene (a 47.5 increase in fold change) and the gbpB gene (a 13.8 increase in fold change). However, for the other genes tested (gtfD, atpD and atpF), the EG treatments did not produce significant expression change compared to the control. EG produced significant gene expression change in three genes—gtfC,gtfB, and gbpB; it has the capacity to inhibit S. mutans biofilm formation on solid surfaces (polystyrene, glass), as well as acidogenicity. Therefore, EG might be used as an antibiofilm and/or anticaries agent for oral formulations in order to reduce the prevalence of dental caries.
Collapse
|
12
|
Genomic, Phenotypic, and Virulence Analysis of Streptococcus sanguinis Oral and Infective-Endocarditis Isolates. Infect Immun 2018; 87:IAI.00703-18. [PMID: 30396893 DOI: 10.1128/iai.00703-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus sanguinis, an abundant and benign inhabitant of the oral cavity, is an important etiologic agent of infective endocarditis (IE), particularly in people with predisposing cardiac valvular damage. Although commonly isolated from patients with IE, little is known about the factors that make any particular S. sanguinis isolate more virulent than another or, indeed, whether significant differences in virulence exist among isolates. In this study, we compared the genomes of a collection of S. sanguinis strains comprised of both oral isolates and bloodstream isolates from patients diagnosed with IE. Oral and IE isolates could not be distinguished by phylogenetic analyses, and we did not succeed in identifying virulence genes unique to the IE strains. We then investigated the virulence of these strains in a rabbit model of IE using a variation of the Bar-seq (barcode sequencing) method wherein we pooled the strains and used Illumina sequencing to count unique barcodes that had been inserted into each isolate at a conserved intergenic region. After we determined that several of the genome sequences were misidentified in GenBank, our virulence results were used to inform our bioinformatic analyses, identifying genes that may explain the heterogeneity in virulence. We further characterized these strains by assaying for phenotypes potentially contributing to virulence. Neither strain competition via bacteriocin production nor biofilm formation showed any apparent relationship with virulence. Increased cell-associated manganese was, however, correlated with blood isolates. These results, combined with additional phenotypic assays, suggest that S. sanguinis virulence is highly variable and results from multiple genetic factors.
Collapse
|
13
|
Nomura R, Morita Y, Matayoshi S, Nakano K. Inhibitory effect of surface pre-reacted glass-ionomer (S-PRG) eluate against adhesion and colonization by Streptococcus mutans. Sci Rep 2018; 8:5056. [PMID: 29568011 PMCID: PMC5864963 DOI: 10.1038/s41598-018-23354-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/08/2018] [Indexed: 12/17/2022] Open
Abstract
Surface Pre-reacted Glass-ionomer (S-PRG) filler is a bioactive filler produced by PRG technology, which has been applied to various dental materials. A S-PRG filler can release multiple ions from a glass-ionomer phase formed in the filler. In the present study, detailed inhibitory effects induced by S-PRG eluate (prepared with S-PRG filler) against Streptococcus mutans, a major pathogen of dental caries, were investigated. S-PRG eluate effectively inhibited S. mutans growth especially in the bacterium before the logarithmic growth phase. Microarray analysis was performed to identify changes in S. mutans gene expression in the presence of the S-PRG eluate. The S-PRG eluate prominently downregulated operons related to S. mutans sugar metabolism, such as the pdh operon encoding the pyruvate dehydrogenase complex and the glg operon encoding a putative glycogen synthase. The S-PRG eluate inhibited several in vitro properties of S. mutans relative to the development of dental caries especially prior to active growth. These results suggest that the S-PRG eluate may effectively inhibit the bacterial growth of S. mutans following downregulation of operons involved in sugar metabolism resulting in attenuation of the cariogenicity of S. mutans, especially before the active growth phase.
Collapse
Affiliation(s)
- Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infections and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
| | - Yumiko Morita
- Department of Pediatric Dentistry, Division of Oral Infections and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Saaya Matayoshi
- Department of Pediatric Dentistry, Division of Oral Infections and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infections and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
14
|
Matsumoto-Nakano M. Role of Streptococcus mutans surface proteins for biofilm formation. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:22-29. [PMID: 29628998 PMCID: PMC5884221 DOI: 10.1016/j.jdsr.2017.08.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022] Open
Abstract
Streptococcus mutans has been implicated as a primary causative agent of dental caries in humans. An important virulence property of the bacterium is its ability to form biofilm known as dental plaque on tooth surfaces. In addition, this organism also produces glucosyltransferases, multiple glucan-binding proteins, protein antigen c, and collagen-binding protein, surface proteins that coordinate to produce dental plaque, thus inducing dental caries. Bacteria utilize quorum-sensing systems to modulate environmental stress responses. A major mechanism of response to signals is represented by the so called two-component signal transduction system, which enables bacteria to regulate their gene expression and coordinate activities in response to environmental stress. As for S. mutans, a signal peptide-mediated quorum-sensing system encoded by comCDE has been found to be a regulatory system that responds to cell density and certain environmental stresses by excreting a peptide signal molecule termed CSP (competence-stimulating peptide). One of its principal virulence factors is production of bacteriocins (peptide antibiotics) referred to as mutacins. Two-component signal transduction systems are commonly utilized by bacteria to regulate bacteriocin gene expression and are also related to biofilm formation by S. mutans.
Collapse
Affiliation(s)
- Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| |
Collapse
|
15
|
Lapirattanakul J, Takashima Y, Tantivitayakul P, Maudcheingka T, Leelataweewud P, Nakano K, Matsumoto-Nakano M. Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects. Arch Oral Biol 2017; 81:7-14. [PMID: 28458044 DOI: 10.1016/j.archoralbio.2017.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/27/2017] [Accepted: 04/17/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. DESIGN Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. RESULTS Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. CONCLUSIONS Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them.
Collapse
Affiliation(s)
- Jinthana Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.
| | - Yukiko Takashima
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Thaniya Maudcheingka
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | | | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| |
Collapse
|
16
|
Tamesada M, Kawabata S, Fujiwara T, Hamada S. Synergistic Effects of Streptococcal Glucosyltransferases on Adhesive Biofilm Formation. J Dent Res 2016; 83:874-9. [PMID: 15505239 DOI: 10.1177/154405910408301110] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glucosyltransferases (GTF)-I and GTF-SI of Streptococcus mutans synthesize water-insoluble and both water-soluble and -insoluble glucans, respectively, and play essential roles in the sucrose-dependent adhesion of the organism to tooth surfaces. To examine the interactions of different GTFs on artificial biofilm formed by S. mutans and other oral streptococci, we generated GTF-I- and GTF-SI-hyperproducing isogenic mutant strains. Transformant B42-21, which hyperexpressed GTF-SI, exhibited firm adhesion in the presence of sucrose, whereas transformant B42-10, which hyperexpressed GTF-I, failed to exhibit firm adhesion. Furthermore, co-culture of transformant B42-21 with water-soluble glucan-synthesizing Streptococcus sanguinis yielded firm adhesion, while the addition of dextran T10 to B42-21 growing culture had no effect on adhesion. These findings suggest that GTF-SI has a strong effect on sucrose-dependent adhesion and is essential for biofilm formation on smooth surfaces, in cooperation with water-soluble glucans synthesized de novo by oral streptococci that inherently lack cell adhesion ability.
Collapse
Affiliation(s)
- M Tamesada
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-Osaka 5650871, Japan
| | | | | | | |
Collapse
|
17
|
Potential high virulence for infective endocarditis in Streptococcus mutans strains with collagen-binding proteins but lacking PA expression. Arch Oral Biol 2013; 58:1627-34. [PMID: 24112728 DOI: 10.1016/j.archoralbio.2013.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/13/2013] [Accepted: 06/05/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Streptococcus mutans, an aetiologic agent of dental caries, is a pathogen for infective endocarditis (IE). We investigated strains that express collagen-binding proteins (CBPs) with further classification based on expression of the 190-kDa protein antigen (PA). METHOD Zeta-potential values of strains TW871 (CBP+/PA+) and MT8148 (CBP-/PA+), and their respective PA-defective mutant strains TW871PD (CBP+/PA-) and MT8148PD (CBP-/PA-), were analysed, as were their adhesion to and invasion of human umbilical vein endothelial cells (HUVECs). The distribution of strains from the oral cavities of 200 healthy individuals was analysed for CBP and/or PA expression and the strains were characterised for their adhesion and invasion properties. RESULTS TW871PD and MT8148PD showed significantly lower zeta-potential values than TW871 and MT8148, respectively. Collagen-binding rates were significantly higher for TW871PD than for TW871 but nearly negligible for MT8148 and MT8148PD. The adhesion and invasion rates of HUVECs were significantly higher for TW871PD than for TW871 and significantly higher for TW871 than for MT8148 and MT8148PD. The prevalence of CBP+ strains was ~10% and ~3% in the case of CBP+/PA- strains. Analyses of 200 clinical strains showed the CBP+/PA- group to have higher adhesion and invasion rates than other groups. CONCLUSIONS CBP+/PA- S. mutans strains, despite their low distribution frequency, may be highly virulent for infective endocarditis.
Collapse
|
18
|
Battagim J, de Souza VT, Sato Miyasaka NR, da Silva Cunha IB, Sawaya AC, de Piloto Fernandes AMA, Eberlin MN, Ribeiro ML, de Oliveira Carvalho P. Comparative study of the effect of green and roasted water extracts of mate (Ilex paraguariensis) on glucosyltransferase activity of Streptococcus mutans. J Enzyme Inhib Med Chem 2011; 27:232-40. [DOI: 10.3109/14756366.2011.585986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jim Battagim
- São Francisco University (USF),
Bragança Paulista, SP, Brazil
| | | | | | | | | | | | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas,
UNICAMP, Campinas, Brazil
| | | | | |
Collapse
|
19
|
Matsumoto-Nakano M, Nagayama K, Kitagori H, Fujita K, Inagaki S, Takashima Y, Tamesada M, Kawabata S, Ooshima T. Inhibitory effects of Oenothera biennis (evening primrose) seed extract on Streptococcus mutans and S. mutans-induced dental caries in rats. Caries Res 2011; 45:56-63. [PMID: 21311187 DOI: 10.1159/000323376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oenothera biennis (evening primrose) seed extract (OBSE) is known to contain polyphenols, which may possess antioxidant activities. Polyphenols extracted from several plants are reported to exhibit cariostatic activities by inhibiting mutans streptococcus growth and glucosyltransferase activities. The purpose of the present study was to examine the inhibitory effects of OBSE on the development of dental caries, both in vitro and in vivo. METHODS OBSE was investigated for its inhibitory effects on cellular aggregation, hydrophobicity, sucrose-dependent adherence and insoluble glucan synthesis. Furthermore, biofilm formation was examined in the presence of OBSE, using confocal microscopic imaging. An animal experiment was also performed to examine the in vivo effects. RESULTS OBSE induced a strong aggregation of Streptococcus mutans MT8148 cells, while cell surface hydrophobicity was decreased by approximately 90% at a concentration of 0.25 mg/ml. The sucrose-dependent adherence of the MT8148 cells was also reduced by addition of OBSE, with a reduction rate of 73% seen at a concentration of 1.00 mg/ml. Additionally, confocal microscopic observations revealed the biofilm development phase to be remarkably changed in the presence of OBSE. Furthermore, insoluble glucan synthesis was significantly reduced when OBSE was present at concentrations greater than 0.03 mg/ml. In an animal experiment, the caries scores in rats given OBSE (0.05 mg/ml in drinking water) were significantly lower than those in rats given water without OBSE. CONCLUSION Our results indicate that OBSE has inhibitory activity on dental caries.
Collapse
Affiliation(s)
- M Matsumoto-Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A Porphyromonas gingivalis mutant defective in a putative glycosyltransferase exhibits defective biosynthesis of the polysaccharide portions of lipopolysaccharide, decreased gingipain activities, strong autoaggregation, and increased biofilm formation. Infect Immun 2010; 78:3801-12. [PMID: 20624909 DOI: 10.1128/iai.00071-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative anaerobic bacterium Porphyromonas gingivalis is a major pathogen in periodontal disease, one of the biofilm-caused infectious diseases. The bacterium possesses potential virulence factors, including fimbriae, proteinases, hemagglutinin, lipopolysaccharide (LPS), and outer membrane vesicles, and some of these factors are associated with biofilm formation; however, the precise mechanism of biofilm formation is still unknown. Colonial pigmentation of the bacterium on blood agar plates is related to its virulence. In this study, we isolated a nonpigmented mutant that had an insertion mutation within the new gene PGN_1251 (gtfB) by screening a transposon insertion library. The gene shares homology with genes encoding glycosyltransferase 1 of several bacteria. The gtfB mutant was defective in biosynthesis of both LPSs containing O side chain polysaccharide (O-LPS) and anionic polysaccharide (A-LPS). The defect in the gene resulted in a complete loss of surface-associated gingipain proteinases, strong autoaggregation, and a marked increase in biofilm formation, suggesting that polysaccharide portions of LPSs influence attachment of gingipain proteinases to the cell surface, autoaggregation, and biofilm formation of P. gingivalis.
Collapse
|
21
|
Defect of glucosyltransferases reduces platelet aggregation activity of Streptococcus mutans: analysis of clinical strains isolated from oral cavities. Arch Oral Biol 2010; 55:410-6. [PMID: 20398892 DOI: 10.1016/j.archoralbio.2010.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/13/2010] [Accepted: 03/18/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Streptococcus mutans is a major pathogen of dental caries and occasionally isolated from the blood of patients with infective endocarditis, though the association of its cell-surface glucosyltransferases (GTFB, GTFC, and GTFD) with pathogenicity for infective endocarditis remains to be elucidated. In this study, we investigated the contribution of S. mutans GTFs to platelet aggregation and analysed GTF expression profiles in a large number of clinical oral isolates. DESIGN The platelet aggregation properties of GTF-defective isogenic mutant strains constructed from S. mutans reference strain MT8148 were evaluated using whole blood and platelet-rich plasma (PRP) taken from mice, as well as human PRP. In addition, GTF expression profiles for 396 S. mutans strains isolated from the oral cavities of 396 subjects were analysed by western blotting using antisera specific for each GTF. RESULTS The platelet aggregation activities of the GTF-defective isogenic mutants were significantly lower than that of MT8148 when added to a large number of cells. Western blotting revealed no strains without GTF expression, though six strains had alterations of GTFB and GTFC as compared to MT8148. PCR analyses indicated that the gtfB-gtfC region length was approximately 4.5 kb shorter in those strains as compared to MT8148. These were designated as "GTFBC-fusion" strains and they demonstrated lower levels of platelet aggregation. CONCLUSIONS Our findings indicate that GTFs are associated with platelet aggregation. Although the clinical detection frequency of S. mutans strains with altered expressions is extremely low, GTFBC-fusion strains have activities similar to GTF-defective mutant strains.
Collapse
|
22
|
Lapirattanakul J, Nakano K, Nomura R, Nemoto H, Kojima A, Senawongse P, Srisatjaluk R, Ooshima T. Detection of serotypek Streptococcus mutansin Thai subjects. ACTA ACUST UNITED AC 2009; 24:431-3. [DOI: 10.1111/j.1399-302x.2009.00530.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Terao Y, Isoda R, Murakami J, Hamada S, Kawabata S. Molecular and biological characterization ofgtfregulation-associated genes inStreptococcus mutans. ACTA ACUST UNITED AC 2009; 24:211-7. [DOI: 10.1111/j.1399-302x.2008.00497.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Nomura R, Hamada M, Nakano K, Nemoto H, Fujimoto K, Ooshima T. Repeated bacteraemia caused by Streptococcus mutans in a patient with Sjogren's syndrome. J Med Microbiol 2007; 56:988-992. [PMID: 17577066 DOI: 10.1099/jmm.0.47186-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mutans, considered to be a pathogen for dental caries, is known to cause bacteraemia and infective endocarditis. Herein, an unusual case of repeated bacteraemia caused by S. mutans identified in a 71-year-old male is described. The patient visited Itami City Hospital with the major complaint of a fever, and a subsequent clinical examination led to a diagnosis of possible infective endocarditis without specific vegetation formation around the heart valve. A bacteriological examination of blood taken at the first visit showed the presence of S. mutans. Antimicrobial treatment was provided, which successfully eliminated the pathogenic bacteria from the blood. However, the patient returned and was hospitalized twice more with a recurrent fever, and S. mutans was again detected. Analyses of the biological properties of the S. mutans isolates showed that they possessed cariogenic properties and had a low susceptibility to phagocytosis by human polymorphonuclear leukocytes. Since the patient had Sjögren's syndrome, in which a reduction of saliva secretion is a characteristic feature, a great number of dental caries lesions were identified. The findings indicated that S. mutans present in those dental caries lesions caused repeated bacteraemia in this case.
Collapse
Affiliation(s)
- Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Masakazu Hamada
- Department of Dentistry and Oral Surgery, Itami City Hospital, Itami, Hyogo 664-8540, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Hirotoshi Nemoto
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Koji Fujimoto
- Department of Dentistry and Oral Surgery, Itami City Hospital, Itami, Hyogo 664-8540, Japan
| | - Takashi Ooshima
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Nakano K, Lapirattanakul J, Nomura R, Nemoto H, Alaluusua S, Grönroos L, Vaara M, Hamada S, Ooshima T, Nakagawa I. Streptococcus mutans clonal variation revealed by multilocus sequence typing. J Clin Microbiol 2007; 45:2616-25. [PMID: 17567784 PMCID: PMC1951271 DOI: 10.1128/jcm.02343-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is the major pathogen of dental caries, a biofilm-dependent infectious disease, and occasionally causes infective endocarditis. S. mutans strains have been classified into four serotypes (c, e, f, and k). However, little is known about the S. mutans population, including the clonal relationships among strains of S. mutans, in relation to the particular clones that cause systemic diseases. To address this issue, we have developed a multilocus sequence typing (MLST) scheme for S. mutans. Eight housekeeping gene fragments were sequenced from each of 102 S. mutans isolates collected from the four serotypes in Japan and Finland. Between 14 and 23 alleles per locus were identified, allowing us theoretically to distinguish more than 1.2 x 10(10) sequence types. We identified 92 sequence types in these 102 isolates, indicating that S. mutans contains a diverse population. Whereas serotype c strains were widely distributed in the dendrogram, serotype e, f, and k strains were differentiated into clonal complexes. Therefore, we conclude that the ancestral strain of S. mutans was serotype c. No geographic specificity was identified. However, the distribution of the collagen-binding protein gene (cnm) and direct evidence of mother-to-child transmission were clearly evident. In conclusion, the superior discriminatory capacity of this MLST scheme for S. mutans may have important practical implications.
Collapse
Affiliation(s)
- Kazuhiko Nakano
- Departments of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Matsumoto-Nakano M, Fujita K, Ooshima T. Comparison of glucan-binding proteins in cariogenicity of Streptococcus mutans. ACTA ACUST UNITED AC 2007; 22:30-5. [PMID: 17241168 DOI: 10.1111/j.1399-302x.2007.00318.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans has been implicated as a primary causative agent of dental caries in humans. Bacterial components associated with the adhesion phase of S. mutans include cell-associated and cell-free glucosyltransferases (GTFs), as well as protein antigen c and proteins that bind glucan. At least four types of S. mutans glucan-binding protein (Gbp) have been identified; GbpA, GbpB, GbpC and GbpD. In the present study, GbpA-, GbpB- and GbpC-deficient mutants (AD1, BD1 and CD1, respectively) were constructed, and their cariogenic properties were evaluated by comparing them to those of their parent strain MT8148. All of the Gbp mutants showed lower levels of dextran binding, while the sucrose-dependent adhesion levels of AD1 and CD1 were lower than in the parental strain. The expression of each GTF was detected in the Gbp mutants, however, they had lower levels of cell-free-GTF activity than the parental strain. On the other hand, in acid tolerance assays, BD1 was the most sensitive among all of the tested strains. These results suggest that GbpA and GbpC in S. mutans have strong relationships with cariogenicity, while GbpB may have another biological function.
Collapse
Affiliation(s)
- M Matsumoto-Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | |
Collapse
|
27
|
Yamaguchi M, Terao Y, Ogawa T, Takahashi T, Hamada S, Kawabata S. Role of Streptococcus sanguinis sortase A in bacterial colonization. Microbes Infect 2006; 8:2791-6. [PMID: 17045503 DOI: 10.1016/j.micinf.2006.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 02/05/2023]
Abstract
Streptococcus sanguinis, a normal inhabitant of the human oral cavity, has low cariogenicity, though colonization on tooth surfaces by this bacterium initiates aggregation by other oral bacteria and maturation of dental plaque. Additionally, S. sanguinis is frequently isolated from infective endocarditis patients. We investigated the functions of sortase A (SrtA), which cleaves LPXTG-containing proteins and anchors them to the bacterial cell wall, as a possible virulence factor of S. sanguinis. We identified the srtA gene of S. sanguinis by searching a homologous gene of Streptococcus mutans in genome databases. Next, we constructed an srtA-deficient mutant strain of S. sanguinis by insertional inactivation and compared it to the wild type strain. In the case of the mutant strain, some surface proteins could not anchor to the cell wall and were partially released into the culture supernatant. Furthermore, adherence to saliva-coated hydroxyapatite beads and polystyrene plates, as well as adherence to and invasion of human epithelial cells were reduced significantly in the srtA-deficient strain when compared to the wild type. In addition, antiopsonization levels and bacterial survival of the srtA-deficient mutant were decreased in human whole blood. This is the first known study to report that SrtA contributes to antiopsonization in streptococci. Our results suggest that SrtA anchors surface adhesins as well as some proteins that function as antiopsonic molecules as a means of evading the human immune system. Furthermore, they demonstrate that SrtA of S. sanguinis plays important roles in bacterial colonization.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Shi, Osaka-Fu 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Nomura R, Nakano K, Nemoto H, Fujita K, Inagaki S, Takahashi T, Taniguchi K, Takeda M, Yoshioka H, Amano A, Ooshima T. Isolation and characterization of Streptococcus mutans in heart valve and dental plaque specimens from a patient with infective endocarditis. J Med Microbiol 2006; 55:1135-1140. [PMID: 16849735 DOI: 10.1099/jmm.0.46609-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mutans, known to be an aetiologic agent of dental caries, also causes infective endocarditis (IE), although a comparison of isolates from the oral cavity and infected heart valve of the same patient has not been reported. In the present study, infected heart valve and dental plaque samples from a patient with IE were analysed. Broad-range PCR with DNA sequencing revealed that 50 clones from the dental plaque isolates were composed of oral streptococci and periodontopathic bacteria, whereas only Streptococcus mutans was detected in 50 clones from the heart valve. Eighteen strains of Streptococcus mutans were isolated from dental plaque and seven from the heart valve, and the biochemical properties of each were in accordance with those of Streptococcus mutans. DNA fingerprinting analysis revealed that all the oral isolates of Streptococcus mutans had similar patterns, which were different from those of the isolates from the infected heart valve. Western blotting using glucosyltransferase (GTF)-specific antiserum showed that the seven strains from the heart valve lacked the three types of intact GTF. In addition, the sucrose-dependent adhesion rates of these isolates were significantly lower than those of the oral isolates (P<0.001). Furthermore, the isolates from the heart valve were less susceptible to erythromycin and kanamycin. These results indicate that the properties of the Streptococcus mutans strains isolated from the infected valve were different from those of typical oral strains, which may be related to the effects of IE.
Collapse
|
29
|
Matsumoto M, Fujita K, Ooshima T. Binding of glucan-binding protein C to GTFD-synthesized soluble glucan in sucrose-dependent adhesion of Streptococcus mutans. ACTA ACUST UNITED AC 2006; 21:42-6. [PMID: 16390340 DOI: 10.1111/j.1399-302x.2005.00252.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Streptococcus mutans produces glucan-binding proteins (Gbp proteins) which promote the adhesion of the organism to teeth. Three Gbp proteins, GbpA protein, GbpB protein, and GbpC protein have been identified; however, the mechanism of adhesion between glucans and bacterial cell surfaces is unknown. We used glucosyltransferase (GTF)- and/or Gbp-deficient mutants to examine the role of GbpC protein in the sucrose-dependent cellular adhesion of S. mutans to glass surfaces. The wild-type strain MT8148 and a GbpA-deficient mutant strain displayed increased sucrose-dependent adhesion following the addition of rGTFD. However, a GbpC-deficient mutant strain demonstrated no changes in the level of sucrose-dependent adhesion in spite of the addition of rGTFD. Further, the binding of rGbpC protein to the glucan synthesized by rGTFD was significantly higher than that to the glucan synthesized by either rGTFB or rGTFC. These results suggest that GbpC protein may play an important role in sucrose-dependent adhesion by binding to the soluble glucan synthesized by GTFD.
Collapse
Affiliation(s)
- M Matsumoto
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Japan
| | | | | |
Collapse
|
30
|
Nakano K, Nomura R, Nakagawa I, Hamada S, Ooshima T. Role of Glucose Side Chains with Serotype-Specific Polysaccharide in the Cariogenicity of Streptococcus mutans. Caries Res 2005; 39:262-8. [PMID: 15942184 DOI: 10.1159/000084831] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 08/26/2004] [Indexed: 11/19/2022] Open
Abstract
Previously, we isolated and characterized a new Streptococcus mutans strain (serotype k) from human blood and oral cavity samples, and found that the serological properties of serotype k strains were similar to those of a gluA-inactivated mutant strain of MT8148 (MT8148GD). MT8148GD showed significantly lower sucrose-dependent adhesion to glass surfaces, sucrose-independent adhesion to saliva-coated hydroxyapatite, dextran-binding activity, and cell-associated glucosyltransferase (GTF) activity than the parent strain. Further, Western blot analysis revealed reduced GTFB and GTFC expression in serotype k strains as compared to MT8148, though the caries-inducing activities of MT8148GD and a serotype k oral isolate in rats were similar to that of MT8148. We conclude that a glucose side-chain defect in the serotype-specific polysaccharide of S. mutans may be associated with its cariogenicity, though to a lesser extent than its other major surface proteins.
Collapse
Affiliation(s)
- K Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | |
Collapse
|
31
|
Matsumoto M, Hamada S, Ooshima T. Molecular analysis of the inhibitory effects of oolong tea polyphenols on glucan-binding domain of recombinant glucosyltransferases fromStreptococcus mutansMT8148. FEMS Microbiol Lett 2003; 228:73-80. [PMID: 14612239 DOI: 10.1016/s0378-1097(03)00723-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An oolong tea polyphenol (OTF6) has been shown to possess a strong anti-glucosyltransferase (GTF) activity and inhibit experimental dental caries in rats infected with mutans streptococci. The effects of OTF6 on the functional domains of GTFs of Streptococcus mutans, an N-terminal catalytic domain (CAT), and a C-terminal glucan-binding domain (GBD), were examined. The maximum velocity of glucan synthesis by recombinant GTFB (rGTFB) and GTFD (rGTFD) became significantly slower in the presence of OTF6, however, Km values remained stable when compared in their absence. These results suggest that OTF6 reduces glucan synthesis by non-competitively inhibiting the GBD of S. mutans GTFB and GTFD. Further, the recombinant proteins of CAT (rCAT) and GBD (rGBD) were expressed using Escherichia coli, and purified by affinity column chromatography. rGBD but not rCAT was found to possess dextran-binding activity, which was shown to be inhibited by OTF6. These results indicate that OTF6, a polymeric polyphenol specific for oolong tea is able to reduce glucan synthesis by inhibiting the GBD of S. mutans GTFB.
Collapse
Affiliation(s)
- M Matsumoto
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|